
Performance Evaluation 145 (2021) 102146

X

y
c
b

S
a
m
o
i
I
P
c

Contents lists available at ScienceDirect

Performance Evaluation

journal homepage: www.elsevier.com/locate/peva

Asymptotically optimal load balancing in large-scale
heterogeneous systemswithmultiple dispatchers✩

ingyu Zhou a,∗, Ness Shroff b, Adam Wierman c

a Department of ECE, The Ohio State University, Columbus, USA
b Department of ECE and CSE, The Ohio State University, Columbus, USA
c Department of Computing and Mathematical Sciences, Caltech, Pasadena, USA

a r t i c l e i n f o

Article history:
Available online 8 October 2020

Keywords:
Asymptotically optimal
Load balancing
Heterogeneous systems
Multiple dispatchers
Delayed information

a b s t r a c t

We consider the load balancing problem in large-scale heterogeneous systems with
multiple dispatchers. We introduce a general framework called Local-Estimation-Driven
(LED). Under this framework, each dispatcher keeps local (possibly outdated) estimates
of the queue lengths for all the servers, and the dispatching decision is made purely
based on these local estimates. The local estimates are updated via infrequent communi-
cations between dispatchers and servers. We derive sufficient conditions for LED policies
to achieve throughput optimality and delay optimality in heavy-traffic, respectively.
These conditions directly imply delay optimality for many previous local-memory based
policies in heavy traffic. Moreover, the results enable us to design new delay optimal
policies for heterogeneous systems with multiple dispatchers. Finally, the heavy-traffic
delay optimality of the LED framework also sheds light on a recent open question on
how to design optimal load balancing schemes using delayed information.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Load balancing, which is responsible for dispatching jobs on parallel servers, has attracted significant interest in recent
ears. This is motivated by the challenges associated with efficiently dispatching jobs in large-scale data centers and
loud applications, which are rapidly increasing in size. A good load balancing policy not only ensures high throughput
y maximizing server utilization, but also improves the user experience by minimizing delay.
There have been numerous load balancing policies proposed in the literature. The most straightforward one is Join-

hortest-Queue (JSQ), which has been shown to enjoy optimal delay in both non-asymptotic (for homogeneous servers)
nd asymptotic regimes [1–3]. However, it is difficult to implement in today’s large-scale data centers due to the large
essage overhead between the dispatcher and servers. As a result, alternative load balancing policies with low message
verhead have been proposed. For example, the Power-of-d policy [4] has been shown to achieve optimal average delay
n heavy traffic with only 2d messages per arrival [5]. Another common load balancing policy is the pull-based Join-
dle-Queue (JIQ) [6,7], which has been shown to outperform the Power-of-d policy using less overhead. However, both
ower-of-d and JIQ mainly achieve good performance for systems with homogeneous servers. Recently, some works
onsider heterogeneous servers and propose flexible and low message overhead policies that achieve optimal delay in

✩ This project has been funded in part through NSF, USA grants: CNS-2007231, CNS-1719371, and CNS-1717060 and NSF, USA grants AitF-1637598
and CNS-1518941.

∗ Corresponding author.
E-mail addresses: zhou.2055@osu.edu (X. Zhou), shroff.11@osu.edu (N. Shroff), adamw@caltech.edu (A. Wierman).
https://doi.org/10.1016/j.peva.2020.102146
0166-5316/© 2020 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.peva.2020.102146
http://www.elsevier.com/locate/peva
http://www.elsevier.com/locate/peva
http://crossmark.crossref.org/dialog/?doi=10.1016/j.peva.2020.102146&domain=pdf
mailto:zhou.2055@osu.edu
mailto:shroff.11@osu.edu
mailto:adamw@caltech.edu
https://doi.org/10.1016/j.peva.2020.102146

X. Zhou, N. Shroff and A. Wierman Performance Evaluation 145 (2021) 102146

h
w
t

i
o
d

l
d
r
a
s
w
g
i
u
s

p
a

s
t
c
b

d
m
l
a

T
(
(
l
m
p
m
t

d
i
e
o
i

o
s
t
o
a
c

d
t
s
l
c
o

eavy traffic [8,9]. However, only a single dispatcher is considered in these works. Theoretical analysis of load balancing
ith multiple dispatchers has mainly focused on the JIQ policy so far [10,11], which has a poor performance in heavy
raffic and is even generally unstable for heterogeneous systems [8].

Note that heterogeneous systems with multiple dispatchers are now almost the default scenarios in today’s cloud
nfrastructures. On one hand, the heterogeneity comes from the usage of multiple generations of CPUs and various types
f devices [12]. On the other hand, with the massive amount of data, a scalable cloud infrastructure needs multiple
ispatchers to increase both throughput and robustness [13].
Motivated by this, a recent work [14] proposes a new framework named Local Shortest Queue (LSQ) for designing

oad balancing policies for heterogeneous systems with multiple dispatchers. In particular, under this framework, each
ispatcher keeps its own, local, and possibly outdated view of each server’s queue length. Upon arrival, each dispatcher
outes to the server with shortest local view. A small amount of message overhead is used to update the local view. The
uthors successfully establish sufficient conditions on the update scheme for the system to be stable. Moreover, extensive
imulations were conducted to show that LSQ policies significantly outperform well-known low-communication policies
hile using similar communication overhead in both heterogeneous and homogeneous cases. However, no theoretical
uarantee on the delay performance is provided and the authors mention it as an important future research direction. It
s worth noting that the key challenge for establishing a delay performance guarantee for this framework is that it only
ses possibly outdated local information to dispatch jobs. In fact, the problem of designing delay optimal load balancing
chemes that only have access to delayed information has recently been listed as an open problem in [15].
Inspired by this, in this paper, we are particularly interested in the following questions: Is it possible to establish delay

erformance guarantees for load balancing in heterogeneous systems with multiple dispatchers? If so, can these guarantees be
chieved using only delayed information?

Contributions. To answer the questions above, we propose a general framework of load balancing for heterogeneous
ystems with multiple dispatchers that uses only delayed (out-of-date) information about the system state. We call
his framework Local-Estimation-Driven (LED) and it generalizes the LSQ framework. Our main results provide sufficient
onditions for LED policies to be both throughput optimal and delay optimal in heavy-traffic. Our key contributions can
e summarized as follows.
First, we introduce the LED framework for designing load balancing policies for heterogeneous systems with multiple

ispatchers. In this framework, each dispatcher keeps its own local estimates of queue lengths for all the servers, and
akes its dispatching decision based purely on its own local estimates according to a certain dispatching strategy. The

ocal estimates are updated infrequently via an update strategy that is based on communications between dispatchers
nd servers.
Second, we derive sufficient conditions for LED policies to be throughput optimal and delay optimal in heavy-traffic.

he importance of the sufficient conditions is three-fold: (i) It can be shown that previous local-memory based policies
e.g., LSQ) satisfy our sufficient conditions. As a result, we are able to show that they are not only throughput optimal
in a stronger sense) but also delay optimal in heavy-traffic. (ii) The conditions allow us to design new delay optimal
oad balancing policies with zero dispatching delay and low message overhead that work for heterogeneous servers and
ultiple dispatchers. (iii) These conditions also provide us with a systematic approach for generalizing previous optimal
olicies to the case of multiple dispatchers and exploring the trade-off between memory (i.e., local estimations) and
essage overhead. For instance, we are able to show that the Power-of-d policy can achieve delay optimality in heavy

raffic, even in heterogeneous systems, as long as the imbalance among the service rates is not too large.
Third, the LED framework also sheds light on the open problem posed in [15], which asks how to design heavy-traffic

elay optimal policies that only use delayed information. Our main results for LED policies not only demonstrate that it
s possible to achieve optimal delay in heavy-traffic via only delayed information, but also highlight conditions on the
xtent to which old information is useful. Moreover, they provide methods for using the delayed information to achieve
ptimality in heavy traffic. Interestingly, the LED framework also shows that, in the case of multiple dispatchers, inaccurate
nformation can actually lead to improved performance.

To establish the main results, we need to address the following two technical challenges. First, each dispatcher in
ur model only has access to delayed and outdated system information. Second, we consider a large class of dispatching
trategies specified by a general condition. To handle the general condition, we have to apply a refined drift analysis
o obtain the necessary negative drifts required for throughput optimality and delay optimality. In order to handle the
utdated queue length information, we have to transfer the drift on local estimates to the corresponding drift on the
ctual queue lengths. To this end, we develop a new Lyapunov function, and combine this with sample-path analysis, and
ouplings arguments to obtain tight bounds.

Related work. The study of efficient load balancing algorithms has been a hot topic for a long time and spans across
ifferent asymptotic regimes. The most extensively investigated policy might be Join-Shortest-Queue (JSQ), under which
he incoming jobs are always sent to the server with the shortest queue length. JSQ has been shown to be optimal in a
tochastic order sense [1,16] and also heavy-traffic delay optimal [2,3]. To overcome the high-complexity of JSQ, several
ow-complexity schemes have been proposed, including Power-of-d [4] and Join-Idle-Queue (JIQ) [6,7]. Recently, different
lasses of policies are proposed in [8,9], which are able to obtain both advantages of Power-of-d (e.g., heavy-traffic delay

ptimality) and JIQ (e.g., low-message overhead and zero dispatching time).

2

X. Zhou, N. Shroff and A. Wierman Performance Evaluation 145 (2021) 102146
Compared to the large literature on the single dispatcher case, there are relatively few works that consider multiple
dispatchers, and they mainly focus on the JIQ policy. In particular, [10] presents a new large-system asymptotic analysis
of JIQ without the simplifying assumptions in [6]. The property of asymptotically zero waiting time of JIQ was generalized
to the case of multiple dispatchers in [11]. However, the results for JIQ in [6,10,11] all assume that the loads at various
dispatchers are strictly equal. Without this assumption, [17] shows that the waiting time under JIQ no longer vanishes
in the large-system regime and two enhanced JIQ schemes are proposed. As mentioned earlier, although JIQ is a scalable
choice for the multiple-dispatcher case, it is not delay optimal in heavy traffic for homogeneous servers and not even
generally stable for heterogeneous systems [8].

The case of heterogeneous systems with multiple dispatchers has received very little attention from the theoretical
community so far. To the best of our knowledge, the recent framework proposed in [14] is the first attempt to study
efficient load balancing schemes with a theoretical guarantee for the scenario of heterogeneous systems with multiple
dispatchers. In particular, under the proposed Local-Shortest-Queue (LSQ) framework, each dispatcher independently
keeps its own local view of server queue lengths and routes jobs to the shortest among them. Communication is used only
to update the local views and make sure that they are not too far from the real queue lengths. The main contributions
of [14] are the sufficient conditions for any LSQ policy to achieve strong stability with low message overhead. Additionally,
extensive simulations have been used to demonstrate its appeal. Nevertheless, theoretical guarantees on the delay of LSQ
policies remain an important unsolved question.

It is worth pointing out that the idea of using local memory to hold possibly old information for load balancing was also
explored in two recent works [18,19]. As we discuss later, these two proposed policies are in our LED framework. Both
works only consider a single dispatcher and homogeneous servers, which is also a special case of our model. Further, their
analysis focuses on the large-system asymptotic regime where the number of servers goes to infinity, while our analysis
deals with a finite number of servers.

2. System model and preliminaries

This section describes the system model and assumptions considered in this paper. Then, several necessary prelimi-
naries are presented.

2.1. System model

We consider a discrete-time (i.e., time-slotted) load balancing system consisting of M dispatchers and N possibly-
heterogeneous servers. Each server maintains an infinite capacity FIFO queue. At each dispatcher, there is a local memory,
through which the dispatcher can have some (possibly delayed) information about the system states. In each time-slot,
the central dispatcher routes the new incoming tasks to one of the servers, immediately upon arrival. Once a task joins a
queue, it remains in that queue until its service is completed. Each server is assumed to be work conserving, i.e., a server
is idle if and only if its corresponding queue is empty.

2.1.1. Arrivals
Let Am(t) denote the number of exogenous tasks that arrive at dispatcher m at the beginning of time-slot t . We assume

that AΣ (t) =
∑M

m=1 A
m(t) is an integer-valued random variable, which is i.i.d. across time-slots. The mean and variance of

AΣ (t) are denoted by λΣ and σ 2
Σ , respectively. We further assume that there is a positive probability that AΣ (t) is zero.

The allocation of total arriving tasks among the M dispatchers is allowed to use any arbitrary policy that is independent of
system states. Note that, in contrast to previous works on multiple dispatchers [6,10,11], we do not require that the loads
at all dispatchers are equal. We assume that there is a strictly positive probability for tasks to arrive at each dispatcher
at any time-slot t . That is, there exists a strictly positive constant p0 such that

P
(
Am(t) > 0

)
≥ p0, ∀(m, t) ∈ M × N, (1)

where M = {1, 2, . . . ,M}. Moreover, we assume that Am(t) is i.i.d. across time-slots with mean arrival rate denoted by
λm. We further let Am

n (t) denote the number of new arrivals at server n from dispatcher m at the beginning of time-slot
t . Let An(t) =

∑M
m=1 A

m
n (t) be the total number of arriving tasks at server n at the beginning of time-slot t .

2.1.2. Service
Let Sn(t) denote the amount of service that server n offers for queue n in time-slot t . That is, Sn(t) is the maximum

number of tasks that can be completed by server n at time-slot t . We assume that Sn(t) is an integer-valued random
variable, which is i.i.d. across time-slots. We also assume that Sn(t) is independent across different servers as well as the
arrival process. The mean and variance of Sn(t) are denoted as µn and ν2

n , respectively. Let µΣ ≜ ΣN
n=1µn and ν2

Σ ≜ ΣN
n=1ν

2
n

denote the mean and variance of the hypothetical total service process SΣ (t) ≜
∑N

n=1 Sn(t). Let ϵ = µΣ −λΣ characterize
the distance between the arrival rate and the boundary of capacity region.
3

X. Zhou, N. Shroff and A. Wierman Performance Evaluation 145 (2021) 102146

2

r
d

D
t

t

.1.3. Queue dynamics
Let Qn(t) be the queue length of server n at the beginning of time slot t . Let An(t) denote the number of tasks routed to

queue n at the beginning of time-slot t according to the dispatching decision. Then the evolution of the length of queue
n is given by

Qn(t + 1) = Qn(t) + An(t) − Sn(t) + Un(t), n = 1, 2, . . . ,N, (2)

where Un(t) = max{Sn(t) − Qn(t) − An(t), 0} is the unused service due to an empty queue.
We do not assume any specific distribution for arrival and service processes. Moreover, in contrast to previous

works [3,8], we do not require that both arrival and service processes have a finite support. Instead, we only need the
condition that their distributions are light-tailed. More specifically, we assume that

E
[
eθ1AΣ (t)]

≤ D1 and E
[
eθ2Sn(t)

]
≤ D2, (3)

for each n where the constants θ1 > 0, θ2 > 0, D1 < ∞ and D2 < ∞ are all independent of ϵ.

2.2. Local-estimation-driven (LED) framework

We are interested in the case that the local memory at each dispatcher m stores an estimate of the queue length for
each server n. In particular, we let Q̃m

n (t) be the local estimate of the queue length for server n from dispatcher m at the
beginning of time-slot t (before any arrivals and departures). More specifically, we introduce the following framework
for load balancing.

Definition 1. A Local-Estimation-Driven (LED) policy is composed of the following components:

(a) Dispatching strategy: At the beginning of each time-slot, each dispatcher m chooses one of the servers for new
arrivals purely based on its local estimates (i.e., local queue length estimates Q̃m)

(b) Update strategy: At the end of each time-slot, each dispatcher would possibly update its local estimates, e.g., syn-
chronize local queue length estimate with the true queue length.

The definition of LED is broad, and it includes a variety of classical load balancing policies. For example, it can be seen
to include LSQ policy studied in [14], by choosing the dispatching strategy to be that new arrivals at each dispatcher
are dispatched to the queue with the shortest local estimate. Moreover, it also includes two recent local memory based
policies in [18,19] that are developed for the case of single dispatcher and homogeneous servers.

To study LED, we model the system as a discrete-time Markov chain {Z(t) = (Q(t),m(t)), t ≥ 0} with state space Z ,
using the queue length vector Q(t) together with the memory state m(t) ≜ (̃Q1(t), Q̃2(t), . . . , Q̃m(t)). We consider a set of
load balancing systems {Z (ϵ)(t), t ≥ 0} parameterized by ϵ such that the mean arrival rate of the total exogenous arrival
process {A(ϵ)

Σ (t), t ≥ 0} is λ
(ϵ)
Σ = µΣ − ϵ. Note that the parameter ϵ characterizes the distance between the arrival rate

and the boundary of the capacity region. We are interested in the throughput performance and the steady-state delay
performance in the heavy-traffic regime under any LED policy.

A load balancing system is stable if the Markov chain {Z(t), t ≥ 0} is positive recurrent, and Z = {Q,m} denotes the
andom vector whose distribution is the same as the steady-state distribution of {Z(t), t ≥ 0}. We have the following
efinition.

efinition 2 (Throughput Optimality). A load balancing policy is said to be throughput optimal if for any arrival rate within
he capacity region, i.e., for any ϵ > 0, the system is positive recurrent and all the moments of

Q(ϵ) are finite.

Note that this is a stronger definition of throughput optimality than that in [14,20,21] because, besides the positive
recurrence, it also requires all the moments to be finite in steady state for any arrival rate within the capacity region.

To characterize the steady-state average delay performance in the heavy-traffic regime when ϵ approaches zero, by
Little’s law, it is sufficient to focus on the summation of all the queue lengths. First, recall the following fundamental
lower bound on the expected sum queue lengths in a load balancing system under any throughput optimal policy [3].
Note that this result was originally proved with the assumption of finite support on the service process (Lemma 5 in [3]),
which can be generalized to service processes with light-tailed distributions with a careful analysis of the unused service,
see our proof of Lemma 6.

Lemma 1. Given any throughput optimal policy and assuming that (σ (ϵ)
Σ)2 converges to a constant σ 2

Σ as ϵ decreases to zero,
hen

lim inf
ϵ↓0

ϵE

[
N∑

n=1

Q
(ϵ)
n

]
≥

ζ

2
, (4)

where ζ ≜ σ 2
+ ν2 .
Σ Σ

4

X. Zhou, N. Shroff and A. Wierman Performance Evaluation 145 (2021) 102146

w

2

d
n

g

i
o
h
t
w
n

D
a

p
i
I
t
s
a
a

3

d
n

3

f

t
t

The right-hand-side of Eq. (4) is the heavy-traffic limit of a hypothesized single-server system with arrival process
A(ϵ)

Σ (t) and service process
∑N

n Sn(t) for all t ≥ 0. This hypothetical single-server queueing system is often called the
resource-pooled system. Since a task cannot be moved from one queue to another in the load balancing system, it is easy
to see that the expected sum queue lengths of the load balancing system is larger than the expected queue length in the
resource-pooled system. However, if a policy achieves the lower bound in Eq. (4) in the heavy-traffic limit, based on Little’s
law this policy achieves the minimum average delay of the system in steady-state, and is thus said to be heavy-traffic
delay optimal, see [3,5,8,20–22].

Definition 3 (Heavy-traffic Delay Optimality in Steady-state). A load balancing scheme is said to be heavy-traffic delay
optimal in steady-state if the steady-state queue length vector Q

(ϵ)
satisfies

lim sup
ϵ↓0

ϵE

[
N∑

n=1

Q
(ϵ)
n

]
≤

ζ

2
,

here ζ is defined in Lemma 1.

.3. Dispatching preference

In order to provide a unified way to specify the dispatching strategy in LED, we first introduce a concept called
ispatching preference. In particular, let Pm

n (t) be the probability that new arrivals at dispatcher m are dispatched to server
at time-slot t . We define βm

n (t) ≜ Pm
n (t) −

µn
µΣ

, which is the difference in probability that server n will be chosen under
a particular dispatching strategy and random routing (weighted by service rate). Then, we have the following definition.

Definition 4 (Dispatching Preference). Fix a dispatcher m, let σt (·) be a permutation of (1, 2, . . . ,N) that satisfies

Q̃m
σt (1)(t) ≤ Q̃m

σt (2)(t) ≤ . . . ≤ Q̃m
σt (N)(t).

The dispatching preference at dispatcher m is a N-dimensional vector denoted by ∆m(t), the nth component of which is
iven by ∆m

n (t) ≜ βm
σt (n)(t).

In words, the dispatching preference at a dispatcherm specifies how servers with different local estimates are preferred
n a unified way such that it is independent of the actual values of local estimates. It only depends on the relative order
f local estimates. More specifically, fix a dispatcher m, by definition we can see that weighted random routing strategy
as no preference for any servers and ∆m

n (t) = 0 for any n. On the other hand, if new arrivals are always dispatched to
he server with the shortest local estimate (e.g, LSQ policy), we have ∆m

1 (t) > 0 and ∆m
n (t) < 0 for all 2 ≤ n ≤ N . Thus,

e can see that a positive value for ∆m
n (t) means that the dispatching strategy has a preference for the server with the

th shortest local estimation.

efinition 5 (δ-tilted Sum Condition). Fix a dispatcher m, for all 1 ≤ j ≤ N − 1,
∑j

n=1 ∆m
n (t) ≥ δ for some constant δ ≥ 0

t each time-slot t .

Note that a similar concept of dispatching preference was introduced in [8], which defines a class of load balancing
olicies for the case of a single dispatcher with up-to-date information. In comparison, the δ-tilted sum condition
ntroduced above is more general, even in the same scenario (i.e., M = 1 and local memory has up-to-date information).
n fact, it can be easily shown that any policy in the class introduced in [8] satisfies the δ-tilted sum condition, However,
here are various policies that satisfy the δ-tilted sum condition are not within the class in [8]. As shown in the next
ection, one important by-product of the δ-tilted sum condition is that it can be used to show that Power-of-d can also
chieve throughput optimality and heavy-traffic delay optimality even in heterogeneous servers as long as the imbalance
mong the service rates satisfies a certain condition. This result cannot be obtained by using the result in [8].

. Main results

In this section, we first present the sufficient conditions for LED policies to be throughput optimal and heavy-traffic
elay optimal. Then, we explore several example policies within LED framework to demonstrate its flexibility in designing
ew load balancing schemes.

.1. Sufficient conditions

Let us begin with the sufficient conditions for LED policies to be throughput optimal. In particular, we specify conditions
or the dispatching strategy and update strategy that guarantee throughput optimality.

To state the theorem, we need the following notation. Let Im
n (t) be an indicator function which equals 1 if and only if

he local estimate of server n’s queue length at dispatcher m gets updated, i.e., the estimated queue length Q̃m
n (t) is set

o the actual queue length Qn(t) at the end of time-slot t .
5

X. Zhou, N. Shroff and A. Wierman Performance Evaluation 145 (2021) 102146

T
t

h
r

P

t
r
t

a

T
w

heorem 1. Consider an LED policy. Suppose the dispatching strategy satisfies the δ-tilted sum condition for some δ ≥ 0 and
he update strategy can guarantee the condition that there exists a positive constant p such that

E
[
Im
n (t) | Z(t) = Z

]
≥ p (5)

olds for all Z and (m, n, t) ∈ M×N ×N. Then, this policy is throughput optimal, i.e., the system under this policy is positive
ecurrent with all the moments being bounded for any ϵ > 0.

roof. See Section 5.1 □

Note that this theorem directly implies that LSQ is not only strongly stable but also enables the system to have all
he moments bounded in steady-state. Moreover, it suggests that any dispatching strategy that is as good as (weighted)
andom routing is sufficient to guarantee throughput optimality. Further, the update probability can be a function of the
raffic load.

Now, we turn to presenting the sufficient conditions for LED policies to be delay optimal in heavy traffic. In order to
chieve delay optimality, we need stronger conditions on both the dispatching strategy and the update strategy.

heorem 2. Consider an LED policy. Suppose the dispatching strategy at each dispatcher satisfies the δ-tilted sum condition
ith a uniform lower bound δ > 0. Suppose the update strategy can guarantee that there exists a positive constant p such that

E
[
Im
n (t) | Z(t) = Z

]
≥ p (6)

holds for all Z and (m, n, t) ∈ M × N × N, independent of past updates. Moreover, both δ and p are independent of ϵ. Then,
this policy is heavy-traffic delay optimal.

Proof. See Section 5.2 □

This theorem not only establishes a delay performance guarantee for many previous local-memory based policies
(e.g., LSQ in [14], low-message policies in [18,19]), but also provides us with the flexibility to design new delay optimal
load balancing for different scenarios with heterogeneous servers and multiple dispatchers, as discussed in the next
section. More importantly, our results directly suggest that it is possible to use only delayed information to achieve delay
optimality, which resolves one of the open problems listed in [15].

Challenges and high-level proof idea. The key challenges to obtaining our main results are: (i) outdated queue length
information at each dispatcher and (ii) a large class of dispatching strategies specified by δ-tilted sum condition (which
is the most general condition to the best of our knowledge). For (ii), we need a refined analysis of the drift towards the
origin (which is required for throughput optimality) and the drift towards the line where all queue lengths are equal
(which is required for delay-optimality in heavy traffic). Loosely speaking, we successfully show that for any δ ≥ 0, the
δ-tilted sum condition can guarantee a drift towards the origin. For any δ > 0 (independent of ϵ), it can guarantee a
drift towards the line 1 = (1, 1, . . . , 1). However, all the drifts are with respect to local estimates since each dispatcher
is only aware of these local estimates rather than the true queue lengths. Thus, we need to further transfer the drifts on
local estimates to the actual queueing systems based on the update strategy. To this end, let us consider two queueing
systems: a local-estimation system at each dispatcher and the actual system (i.e., queue lengths at servers). For throughput
optimality, the drift towards the origin on local estimates implies that each local-estimation system will not blow up.
Meanwhile, the update strategy guarantees that the local-estimation system is not far away from the actual queueing
system in expectation. Therefore, the expected sum queue lengths of the actual queueing system will also not blow up.
Although the idea is intuitive, there are still some technical challenges. One is that we need to design a new Lyapunov
function which includes local estimates as well to apply Foster–Lyapunov theorem, since they can also be unbounded.
For delay optimality in heavy traffic, it is not obvious (as throughput optimality) that we can easily transfer the drift
based on the implication that the local-estimation is not far away from the actual queueing system in expectation. To
handle this, we need a careful sample path analysis and coupling of the two systems to obtain tight bounds. Roughly
speaking, we show that for each time-slot there is always a positive probability that shorter queues in the actual systems
are preferred (hence a drift towards the line 1 = (1, 1, . . . , 1)). In addition, we can upper bound the error that occurs
during the transferring process due to outdated queue lengths information. Combining the two parts, yields the delay
optimality result in heavy-traffic.

3.2. Examples

To illustrate the applications of Theorems 1 and 2, in this section, we introduce examples of LED policies that are both
throughput optimal and heavy-traffic delay optimal. The flexibility provided by our sufficient conditions not only allows
us to include previous policies as special cases, but also enables us to design new flexible policies.
6

X. Zhou, N. Shroff and A. Wierman Performance Evaluation 145 (2021) 102146

3

E

i

c
c

e

i
b
t
M

e

E
a

f
b
s

P

3

s

D
s

.2.1. Dispatching strategy
Let us first introduce some typical dispatching strategies that satisfy δ-tilted sum condition with δ > 0.

xample 1 (Local–Join-Shortest-Queue (L-JSQ)). At the beginning of each time-slot t , the dispatcher forwards its arrivals to
the server with the shortest local estimate with ties broken arbitrarily. That is, consider dispatcher m, the chosen server
s i∗ ∈ argminn{Q̃m

n }.

This dispatching strategy is the same as that in the LSQ policy in [14]. By the definition of dispatching preference, we
an see that under L-JSQ, ∆m

1 (t) = 1 − µσt (1)/µΣ > 0 and ∆m
n (t) = −µσt (n)/µΣ < 0. Hence, it satisfies δ-tilted sum

ondition even for heterogeneous servers with δ = µmin/µΣ where µmin = minn µn.
Instead of always joining the server with the shortest local estimate, it is also possible to join a server whose queue

length is below a threshold while satisfying the δ-tilted sum condition.

Example 2 (Local–Join-Below-Average (L-JBA)). At the beginning of each time-slot t , the dispatcher forwards its arrivals to
a randomly chosen server whose local estimate is below or equal to the average local queue length estimation. That is,
consider dispatcher m with the average local estimate being Q̄m(t) =

1
N

∑
n Q̃

m
n (t). Let A ≜ {n : Q̃m

n (t) ≤ Q̄m(t)}. Then, for
ach i ∈ A, Pm

i (t) = µi/
∑

n∈A µn, and for i /∈ A, Pm
i (t) = 0.

It can be easily shown from the definition that L-JBA also satisfies δ-tilted sum condition. Note that, compared to L-JSQ,
n the heterogeneous case, it needs the dispatcher to know the service rate of each server, which can be easily obtained
y the update strategies introduced next. This strategy is more flexible than L-JSQ since it does not require new arrivals
o be only sent to the server with the shortest local estimate, which could be used in the scenarios with data locality.
oreover, some randomness in the dispatching strategy is also useful, as discussed in the next section.
Further, it is possible to generalize many previous heavy-traffic delay optimal policies into the LED framework. For

xample, we can directly apply the Power-of-d policy as our dispatching strategy.

xample 3 (Local–Power-of-d (L-Pod)). At the beginning of each time-slot t , the dispatcher randomly chooses d ≥ 2 servers
nd sends arrivals to the server that has the shortest local estimation among the d servers.

It can be easily shown that L-Pod satisfies the δ-tilted sum condition with δ =
1
N for homogeneous servers. However,

or heterogeneous servers, Power-of-d is not stable in general [7] and hence L-Pod is not either. In the following, inspired
y [23], we show that as long as the service rate imbalance among servers satisfies a certain condition, L-Pod would also
atisfy the δ-tilted sum condition.

roposition 1. Suppose the service rate vector µµµ ∈ RN
+

satisfies∑j
n=1 µ[n]

µΣ

+ δ ≤ 1 −

(N−j
d

)(N
d

) ∀1 ≤ j ≤ N − 1, (7)

for some constant δ ≥ 0, in which µ[n] is the nth largest service rate. Then, L-Pod satisfies the δ-tilted sum condition.

Proof. See Appendix D. □

It can be seen from Proposition 1 that the condition on the imbalance of service rates depends on the value of d. If
d = 1 (i.e., Power-of-d reduces to random routing), then the only possible values of µµµ and δ that satisfy Eq. (7) are µn = µ

for all n and δ = 0. On the other extreme case when d = N , then all µµµ ∈ RN
+

satisfy Eq. (7) with δ =
µ[N]

µΣ
> 0.

.2.2. Update strategy
Now, let us turn to discussing update strategies that satisfy the condition in Theorem 2. In particular, the update

trategy can either be push-based (dispatcher samples servers) or pull-based (servers report to dispatchers).

efinition 6 (Push-Update). If there are new arrivals, then at the end of the time-slot the dispatcher m samples d distinct
ervers with a positive probability p̂. Then, it updates the corresponding d local estimates with the true values.

It has been shown in [14] that even for d = 1, the push-update strategy is guaranteed to satisfy the condition in
Theorem 2.

Definition 7 (Pull-Update). At the end of each time-slot, for each server n if there are completed tasks, then the server
will uniformly at random pick a dispatcher m and then abide by one of the following two rules:

• If the server becomes idle (i.e., no tasks), it sends (n, 0) to dispatcher m.
• If not, it sends (n,Qn) to dispatcher m with probability p̂.
7

X. Zhou, N. Shroff and A. Wierman Performance Evaluation 145 (2021) 102146
It has been shown in [14] that for any p̂ > 0, the pull-update strategy is guaranteed to satisfy the condition in
Theorem 2.

Now, having introduced both the dispatching strategy and the update strategy, we can combine them to obtain different
LED policies that are delay optimal in heavy-traffic. For example, we have L-JSQ-Push, L-JSQ-Pull, L-JBA-Push, L-JBA-Pull
for heterogeneous servers, as well as L-Pod-Push and L-Pod-Pull for homogeneous servers and for heterogeneous servers
satisfy condition Eq. (7).

We end this section by summarizing the contributions of the LED framework. (i) It covers previous polices. L-JSQ-
Push (with p̂ = 1) and L-JSQ-Pull are the same as LSQ policies considered in [14], which include the policies developed
in both [18] and [19] as special cases. Thus, by Theorems 1 and 2, all these policies are throughput and heavy-traffic
delay optimal. (ii) It allows randomness in dispatching. The randomness introduced in L-JBA and L-Pod is helpful when
dealing with the scenario with an extreme low budget on the message overhead, as discussed next. (iii) It enables trade-
offs between memory and message overhead. For example, L-Pod-Push and L-Pod-Pull represent good examples that
trade memory for low message overhead. That is, if each dispatcher directly uses the traditional Power-of-d without any
memory, then at least 4 messages are needed to guarantee delay optimality in heavy-traffic. In contrast, in both L-Pod-Push
and L-Pod-Pull, the worst-case message overhead is just 1 per arrival. In addition, the message can be further reduced by
choosing a smaller value of p̂ in the update strategy.

4. Discussion

Before moving to the proofs, we would like to discuss key features and insights about LED, and point out possible
refinements on LED.

4.1. Key features of LED

In this section, we highlight the key features of the LED framework, including low message overhead, zero dispatching
delay, low computational complexity and appealing performance across various loads.

Low message overhead. It should be noted that the communication overhead occurs only during the update phase in
LED policies. For the push-update strategy, the number of messages per arrival is at most 2d (d can even be one). For the
pull-update strategy, the number of messages per arrival is at most 1. In contrast, JSQ needs 2N messages per arrival and
Power-of-d needs at least 4 messages per arrival. Although JIQ has a comparative worst-case message overhead as LED
policies, it is not stable for heterogeneous servers.

Zero dispatching delay. Another key feature of all LED policies is that there is zero dispatching delay. That is, the
dispatcher can immediately route its new arrivals to the chosen server since the decision is made purely based on its
local estimations. Moreover, the communication between dispatchers and servers happens only after the decision is made.
This is in contrast to typical push-based policies like JSQ and Power-of-d, under which the dispatcher has to wait for the
response of sampled servers to make its dispatching decision, resulting in a non-zero dispatching delay.

Low computational complexity. In order to implement LED policies, each dispatcher has to keep an array of size
N its local estimations. Such a space requirement is negligible in a modern cluster. Further, the operations required by
dispatching strategies of LED policies are very efficient. For example, in order to find the server with the minimal local
estimate in L-JSQ, we can keep the array in a min-heap data structure. For L-JBA, we can calculate the average by using
an efficient running average algorithm. For the simple L-Pod, it only needs random number generators.

Appealing performance across loads. Although the theoretical delay optimality for the LED framework holds in
the heavy-traffic asymptotic regime, the family of LED policies includes efficient policies that significantly outperform
alternative low-message overhead policies with the same (or even smaller) amount of communications. For example, if
the dispatching strategy adopts L-JSQ in LED, then it reduces to the LSQ policy proposed in [14], which appeals to enjoy
good performance over a wide range of traffic loads in different scenarios via extensive simulations.

As mentioned earlier, the class of heavy-traffic delay optimal LED policies is broad and includes flexible choices of
different dispatching and update strategies based on different application scenarios. The actual delay performance (except
the heavy-load scenario) varies with the particular choice of dispatching strategy or update strategy under different
scenarios. Thus, it is not possible to pick one particular LED policy that fits every circumstance, which is also not the
focus of this paper. Instead, it would be useful to present some useful insights about the LED framework, as presented in
the following. These insights could serve as the guidance on the choice or design of new LED policies.

4.2. Useful insights from LED

The main trait of the LED framework is that only local, possibly delayed and inaccurate information, is used for making
the dispatching decision. In the following, we present two useful insights about the use of inaccurate delayed information
for load balancing.
8

X. Zhou, N. Shroff and A. Wierman Performance Evaluation 145 (2021) 102146

h
p
s
d
a
s
a
m
p

t
u
c
d
f
b
s
t
h

4

i
d
o

Fig. 1. Inaccurate information could improve performance in multiple-dispatcher case.

Fig. 2. Randomness is useful for heavily-delayed information.

Inaccurate information can improve performance. A big problem for load balancing with multiple dispatchers is
erd behavior, which means that arrivals at different dispatchers join the same server. This often leads to a poor delay
erformance in practice [24]. For example, JSQ used in the case of multiple dispatchers leads to a serious herd behavior
ince all the dispatchers will route arrivals to the single shortest queue. In contrast, under the LED framework, each
ispatcher may believe that a different queue is the shortest according to its own local estimates because these estimates
re inaccurate and delayed. Thus, jobs at different dispatchers are sent to different queues that may not have the actual
hortest length but still have relatively small queue lengths. This intuition is illustrated by Fig. 1. In particular, we consider
set up with 10 dispatchers and 100 heterogeneous servers. All the LED policies are configured to have the same average
essage overheads as Power-of-2. It can be seen that the LED policies are not only stable but also achieve a much better
erformance compared to JSQ, which suffers from the herd behavior in the multiple-dispatcher case.

Randomness is useful for heavily-delayed information. As mentioned earlier, the LED framework provides us with
he possibility of exploring load balancing with extremely low message overhead by choosing a small value p̂ in the
pdate strategy. As a result, the local information at each dispatcher will only be updated after a long time interval. In this
ase, if a deterministic dispatching strategy (e.g., L-JSQ) is adopted, it would again incur herd behavior (even for a single
ispatcher case) since all the arrivals during the long update interval will join the same queue. This is another motivation
or considering L-JBA and L-Pod, which naturally introduce a certain level of randomness and hence help avoid the herd
ehavior as suggested by [25]. To illustrate this insight, we consider a set up with 10 dispatchers and 100 homogeneous
ervers. We compare the delay performance of L-JSQ-Push, L-Pod-Push and L-JBA-Push with the update probability set
o p̂ = 0.01 and d = 2. As shown in Fig. 2, both L-JBA-Push and L-Pod-Push outperforms L-JSQ-Push, which suffers from
erd behavior because of heavily-delayed information.

.3. Refinements on LED

Our main results suggest that there is a large class of heavy-traffic delay optimal LED policies. On the one hand,
t provides us with flexibility to tailor our policy design for different application scenarios with different choices of
ispatching and update strategies. On the other hand, it also suggests the need for refinements on LED beyond delay
ptimality in heavy-traffic. To this end, we introduce two possible directions for refinements.
9

X. Zhou, N. Shroff and A. Wierman Performance Evaluation 145 (2021) 102146

h
d
t
L
t

d

L

i
o
i
l
f
h
M
t

L
a

Degree of queue imbalance. As introduced in [26], degree of queue imbalance is a refined metric to further distinguish
eavy-traffic delay optimal policies. The idea is that, instead of looking at the average queue length (and hence average
elay), the degree of queue imbalance measures the expected difference in queue lengths among the servers. By following
he proof of Proposition 5.6 in [26], we can establish that the degree of queue imbalance of all heavy-traffic delay optimal
ED policies is O(1

δ2p4
). Thus, even though by Theorem 2, any positive δ and p are sufficient for delay optimality in heavy-

raffic, a dispatching strategy with smaller δ or an update strategy with a smaller p could affect the performance in
practice.

Other asymptotic regimes. In this paper, we focus on the heavy-traffic asymptotic regime where the number of servers
is fixed and the load approaches one. As mentioned before, there are also other asymptotic regimes in the analysis of load
balancing schemes. One possible direction is to extend the fluid-limit techniques for the large-system regime in [19] to
the case of multiple dispatchers and heterogeneous servers. Another alternative regime is the many-server heavy-traffic
regime (e.g., Halfin–Whitt regime), which tends to keep a balance between heavy-traffic regime and large-system regime.
Studying LED in such a regime is another interesting direction for future work.

5. Proofs

In this paper, we extend the Lyapunov drift-based approach developed in [3] to allow for unbounded supports of arrival
and service processes. In particular, we replace the finiteness condition on the drift in [3] by a stochastically dominated
condition, as shown in (C2) in Lemma 2. As proved in [27], this weaker condition, combined with a negative drift condition,
can still guarantee finite moment bounds. Besides a weaker condition, we also replace the one-step drift with a T -step
rift. Formally, we use the following lemma to derive bounded moments in steady state.

emma 2. For an irreducible aperiodic and positive recurrent Markov chain {X(t), t ≥ 0} over a countable state space X ,
which converges in distribution to X, and suppose V : X → R+ is a Lyapunov function. We define the T time slot drift of V at
X as

∆V (X) ≜ [V (X(t0 + T)) − V (X(t0))]I(X(t0) = X),

where I(.) is the indicator function. Suppose for some positive finite integer T , the T time slot drift of V satisfies the following
conditions:

• (C1) There exist an η > 0 and a κ < ∞ such that for any t0 = 1, 2, . . . and for all X ∈ X with V (X) ≥ κ ,

E [∆V (X) | X(t0) = X] ≤ −η.

• (C2) |∆V (X)| ≺ W for all t0 and all X ∈ X , and E
[
eθW

]
= D is finite for some θ > 0,

Then {V (X(t)), t ≥ 0} converges in distribution to a random variable V for which there exist a θ∗ > 0 and a C∗ < ∞ such
that

E
[
eθ∗V

]
≤ C∗,

which directly implies that all the moments of V exist and are finite.

5.1. Proof of Theorem 1

To start with, let us first show that the Markov chain {Z(t) = (Q(t),m(t)), t ≥ 0} with m(t) ≜ (̃Q1(t), Q̃2(t), . . . , Q̃m(t))
s irreducible and aperiodic. Let the initial state be Z(0) = (Q(0),m(0)) = (01×N , 01×MN) and the state space Z consists
f all the states that can be reached from the initial state. Consider any state Z , the queue length vector Q can reach the
nitial state with a positive probability since the event that there are no exogenous arrivals and all the offered service is at
east one during each time-slot happens with positive probability under our assumptions. Moreover, under the condition
or the update strategy given by Eq. (5), the event that Q remains as the initial state while all Q̃m reach the initial state
appens with a positive probability. Therefore, any state in the state space can reach the initial state, and hence the
arkov chain is irreducible. The aperiodicity of the Markov chain comes from the fact that the transition probability from

he initial state to itself is positive.
In order to show positive recurrence, we adopt the Foster–Lyapunov theorem. In particular, we consider the following

yapunov function W (Z(t)) = ∥Q(t)∥2
+
∑M

m=1

Q(t) − Q̃m(t)

1, and in the rest of the proof we use W (t) as an

bbreviation of W (Z(t)) Let Xm
n (t) ≜ |Qn(t) − Q̃m

n (t)|. The conditional mean drift of W (t) defined as D(Z(t0)) ≜
E [W (t0 + T) − W (t0) | Z(t0)] can be decomposed as follows

D(Z(t0)) = DQ (t0) +

M∑ N∑
DXm

n (t0) (8)

m=1 n=1

10

X. Zhou, N. Shroff and A. Wierman Performance Evaluation 145 (2021) 102146

w
here

DQ (t0) ≜ E
[
∥Q(t0 + T)∥2

− ∥Q(t0)∥2
| Z(t0)

]
DXm

n (t0) ≜ E
[
Xm
n (t0 + T) − Xm

n (t0) | Z(t0)
]

Let us first consider the tern DXm
n (t0). Note that for all t0, m and n

E
[
Xm
n (t0 + 1) | Z(t0) = Z

]
≤E

[
(1 − Im

n (t0))
(
Xm
n (t0) + An(t0) + Sn(t0)

)
| Z(t0) = Z

]
(a)
≤(1 − p)Xm

n (t0) + λΣ + µmax (9)

where (a) follows from the condition in Eq. (5) and µmax = maxn µn. Then, we have (the time reference t0 is dropped for
simplicity)

DXm
n (t0)

=E

[t0+T−1∑
t=t0

Xm
n (t + 1) − Xm

n (t) | Z(t0) = Z

]

=

t0+T−1∑
t=t0

E
[
E
[
Xm
n (t + 1) − Xm

n (t) | Z(t)
]

| Z
]

(a)
≤

t0+T−1∑
t=t0

E
[
−pXm

n (t) + λΣ + µmax | Z
]

≤ − pXm
n (t0) + λΣ + µmax, (10)

where (a) follows from Eq. (9). Let us turn to consider the term DQ (t0). By the queue dynamics in Eq. (2),

DQ (t0)

=E

[t0+T−1∑
t=t0

∥Q(t + 1)∥2
− ∥Q(t)∥2

| Z(t0) = Z

]

=E

[t0+T−1∑
t=t0

∥Q(t) + A(t) − S(t) + U(t)∥2
− ∥Q(t)∥2

| Z

]

(a)
≤E

[t0+T−1∑
t=t0

∥Q(t) + A(t) − S(t)∥2
− ∥Q(t)∥2

| Z

]

=E

[t0+T−1∑
t=t0

2⟨Q(t),A(t) − S(t)⟩ + ∥A(t) − S(t)∥2
| Z

]

(b)
≤E

[t0+T−1∑
t=t0

2⟨Q(t),A(t) − S(t)⟩ + K | Z

]
, (11)

where (a) follows from the facts that Qn(t) + An(t) − Sn(t) + Un(t) = max(Qn(t) + An(t) − Sn(t), 0) for any t ≥ 0, and
(max(a, 0))2 ≤ a2 for any a ∈ R; (b) holds by our assumption of light-tailed distributions for the total arrival process
and each service process in Eq. (3). In particular, we have that the second moments for total arrival process and service
process of each server are finite (independent of ϵ), and hence there exists a finite upper bound K which is independent
of the load parameter ϵ.

Now, let us continue to work on Eq. (11). In particular, we have

E

[t0+T−1∑
t=t0

⟨Q(t),A(t) − S(t)⟩ | Z(t0) = Z

]

=

t0+T−1∑
E [E [⟨Q(t),A(t) − S(t)⟩ | Z(t)] | Z(t0) = Z]
t=t0

11

X. Zhou, N. Shroff and A. Wierman Performance Evaluation 145 (2021) 102146

w

T

=

t0+T−1∑
t=t0

E [E [⟨Q(t),A(t)⟩ | Z(t)] | Z(t0) = Z] (12)

−

t0+T−1∑
t=t0

E

[
N∑

n=1

Qn(t)µn | Z(t0) = Z

]
. (13)

For Eq. (12), we have

t0+T−1∑
t=t0

E [E [⟨Q(t),A(t)⟩ | Z(t)] | Z(t0) = Z]

=

t0+T−1∑
t=t0

E

[
N∑

n=1

Qn(t)
M∑

m=1

E
[
Am
n (t) | Z(t)

]
| Z

]

=

t0+T−1∑
t=t0

E

[
N∑

n=1

Qn(t)
M∑

m=1

Pm
n (t)λm | Z(t0) = Z

]

(a)
=

t0+T−1∑
t=t0

E

[
N∑

n=1

Qn(t)
M∑

m=1

(
βm
n (t) +

µn

µΣ

)
λm | Z(t0) = Z

]
,

here (a) follows from the definition of βm
n (t). Then, it can be further simplified as follows.

t0+T−1∑
t=t0

E [E [⟨Q(t),A(t)⟩ | Z(t)] | Z(t0) = Z]

=

t0+T−1∑
t=t0

E

[
N∑

n=1

Qn(t)
M∑

m=1

βm
n (t)λm | Z

]

+

t0+T−1∑
t=t0

E

[
N∑

n=1

Qn(t)µn | Z

]
−

t0+T−1∑
t=t0

E

[
N∑

n=1

Qn(t)
ϵµn

µΣ

| Z

]
. (14)

Combining Eqs. (12), (13) and (14), yields

E

[t0+T−1∑
t=t0

⟨Q(t),A(t) − S(t)⟩ | Z(t0) = Z

]

=

t0+T−1∑
t=t0

E

[
N∑

n=1

M∑
m=1

(
Qn(t) − Q̃m

n (t) + Q̃m
n (t)

)
βm
n (t)λm | Z

]

−

t0+T−1∑
t=t0

E

[
N∑

n=1

Qn(t)
ϵµn

µΣ

| Z

]
.

he RHS of the above equation can be further written as

RHS =

t0+T−1∑
t=t0

E

[
N∑

n=1

M∑
m=1

(
Qn(t) − Q̃m

n (t)
)
βm
n (t)λm | Z

]
  

T1

+

t0+T−1∑
t=t0

E

[
N∑

n=1

M∑
m=1

Q̃m
n (t)βm

n (t)λm | Z

]
  

T2

−

t0+T−1∑
t=t0

E

[
N∑

n=1

Qn(t)
ϵµn

µΣ

| Z

]
  

T3

.

We are going to handle each term one by one. To upper bound T1, we use the following result on Xm
n (t) =

|Qn(t) − Q̃m
n (t)|.
12

X. Zhou, N. Shroff and A. Wierman Performance Evaluation 145 (2021) 102146

L
c

h

P

w
I

N
s

w

N

emma 3. Under the condition given by Eq. (5), for any t0 and Z(t0), there exist a finite T1 independent of ϵ and a finite
onstant L that is only a function of p and µΣ , such that for all T ≥ T1

E

[t0+T−1∑
t=t0

Xn
m(t) | Z(t0) = Z

]
≤ LT

olds for all m and n.

roof. See Appendix A. □

By using Lemma 3 with T ≥ T1, we have

T1 ≤ λΣ

t0+T−1∑
t=t0

E

[
N∑

n=1

M∑
m=1

⏐⏐Qn(t) − Q̃m
n (t)

⏐⏐ | Z

]
≤ λΣMNLT . (15)

For T2, we have

T2
(a)
=

t0+T−1∑
t=t0

E

[
N∑

n=1

M∑
m=1

Q̃m
σt (n)(t)∆

m
n (t)λm | Z

]
(b)
≤ 0, (16)

here (a) comes from the definition of dispatching preference vector ∆m(t); (b) holds due to the δ-tilted sum condition.
n particular, we have the following decomposition of the term in the expectation.

E

[
N∑

n=1

M∑
m=1

Q̃m
σt (n)(t)∆

m
n (t)λm | Z

]

=E

[
M∑

m=1

(
Q̃m

σt (1)(t)
N∑

n=1

∆m
n (t)

)
| Z

]
(17)

+ E

[
M∑

m=1

(
N∑

k=2

(
N∑

n=k

∆m
n (t)

)
(Q̃m

σt (k)(t) − Q̃m
σt (k−1)(t))

)
| Z

]
. (18)

ote that Eq. (17) is zero since
∑N

n=1 ∆m
n (t) by the definition of dispatcher preference ∆m(t). Moreover, by the δ-tilted

um condition, we have
∑N

n=k ∆m
n (t) = 0 −

∑k−1
n=1 ∆m

n (t) ≤ −δ ≤ 0 for all k ≥ 2. Hence, Eq. (18) is less than or equal to
zero since Q̃m

σt (k)(t) − Q̃m
σt (k−1)(t) ≥ 0 by the definition of the permutation σt (·).

For T3, we have

T3 ≥
ϵµmin

µΣ

∥Q(t0)∥1 , (19)

here µmin = minn µn.
Now, combining Eqs. (15), (16) and (19), yields

E

[t0+T−1∑
t=t0

⟨Q(t),A(t) − S(t)⟩ | Z(t0) = Z

]
≤ −

ϵµmin

µΣ

∥Q(t0)∥1 + λΣMNLT .

Substituting the result above back into Eq. (11), yields

DQ (t0) ≤ −2
ϵµmin

µΣ

∥Q(t0)∥1 + 2λΣMNLT + KT . (20)

ow, we are ready to substitute Eqs. (10) and (20) back into Eq. (8). As a result, we have

D(Z(t0)) ≤ − 2
ϵµmin

µΣ

∥Q(t0)∥1 − p
M∑

m=1

N∑
n=1

Xm
n (t0)

+ 2λΣMNLT + KT + λΣ + µmax

(a)
≤ − ξ

(
∥Q(t0)∥1 +

M∑
m=1

N∑
n=1

|Qn(t0) − Q̃m
n (t0)|

)
+ K1,
13

X. Zhou, N. Shroff and A. Wierman Performance Evaluation 145 (2021) 102146

w

h

e

here in (a) ξ = min(2 ϵµmin
µΣ

, p) and K1 ≜ 2λΣMNLT + KT + λΣ + µmax. Pick any α > 0 and let

B ≜ {Z ∈ Z : ∥Q(t0)∥1 +

M∑
m=1

N∑
n=1

|Qn(t0) − Q̃m
n (t0)| ≤

K1 + α

ξ
}.

Then, B is a finite subset. For any Z ∈ Bc , D(Z) ≤ −α, and for any Z ∈ B, D(Z) ≤ K1. By Foster–Lyapunov theorem, we
ave established positive recurrence.
Having shown that the Markov chain {Z(t), t ≥ 0} is ergodic, we are left with the task of showing that all the

moments are finite in steady-state. In order to do so, we use Lemma 2. In particular, we choose the Lyapunov function
as V (Z (ϵ)) =

Q(ϵ)
 and then verify the two conditions. In the following, the superscript (ϵ) will be omitted for ease of

notations. To verify condition (C2), we have

|∆V (Z)| = |∥Q(t0 + T)∥ − ∥Q(t0)∥ |I(Z(t0) = Z)
(a)
≤ ∥Q(t0 + T) − Q(t0)∥ I(Z(t0) = Z)

≤

t0+T−1∑
t=t0

∥Q(t + 1) − Q(t)∥ I(Z(t0) = Z)

≤

t0+T−1∑
t=t0

∥A(t) − S(t) + U(t)∥ I(Z(t0) = Z)

(b)
≤

t0+T−1∑
t=t0

(∥A(t)∥ + 2 ∥S(t)∥) I(Z(t0) = Z), (21)

where (a) holds since |∥x∥ − ∥y∥ | ≤ ∥x − y∥ for each x, y in RN . (b) follows from triangle inequality and the fact that
Un(t) ≤ Sn(t) for all t and t . Then, by our assumptions of light-tailed distributions for both total arrival and service
processes, there exists a random variable W such that |∆V (X)| ≺ W for all t0 and all X ∈ X , and E

[
eθW

]
= D is finite for

some θ > 0, which verifies (C2).
For (C1), we have

E [∆V (Z) | Z(t0) = Z]
=E [∥Q(t0 + T)∥ − ∥Q(t0)∥ | Z(t0) = Z]

=E
[√

∥Q(t0 + T)∥2
−

√
∥Q(t0)∥2

| Z(t0) = Z
]

(a)
≤

1
2 ∥Q(t0)∥

E
[
∥Q(t0 + T)∥2

− ∥Q(t0)∥2
| Z(t0) = Z

]
(b)
≤ − ϵ

µmin

µΣ

+
2λΣMNLT + KT

2 ∥Q(t0)∥
,

where (a) follows from the fact that f (x) =
√
x is concave; (b) comes from Eq. (20). Thus, condition (C1) is valid and hence

the proof of Theorem 1 is complete.

5.2. Proof of Theorem 2

In order to prove the result, we need two intermediate results. One is called state-space collapse as stated in
Proposition 2, which is the key ingredient for establishing heavy traffic delay optimality. Roughly speaking, it means that
the multi-dimensional space for the queue length vector reduces to one dimension in the sense that the deviation from
the line (on which all the queue lengths are equal) is bounded by a constant, independent of ϵ. Another intermediate result
is concerned with unused service. Based on these two intermediate results, we can prove heavy-traffic delay optimality.
We omit the time reference t0 for simplicity when necessary.

Proposition 2. Under the conditions in Theorem 2, then we have that Q⊥ is bounded in the sense that in steady state there
xist finite constants {Lr , r ∈ N} independent of ϵ such that

E
[Q(ϵ)

⊥

r] ≤ Lr

for all ϵ ∈ (0, ϵ0) and r ∈ N, where Q⊥ = Q − ⟨Q, c⟩c is the perpendicular component of Q with respect to the line
c =

1
√
N
(1, 1, . . . , 1).
14

X. Zhou, N. Shroff and A. Wierman Performance Evaluation 145 (2021) 102146

P
roof. It suffices to show that V⊥(Z (ϵ)) ≜
Q(ϵ)

⊥

 satisfies the conditions (C1) and (C2) in Lemma 2. Let us first consider
conditions (C2). In particular, we have

|∆V⊥(Z)|
=|∥Q⊥(t0 + T)∥ − ∥Q⊥(t0)∥ |I(Z(t0) = Z)
(a)
≤ ∥Q⊥(t0 + T) − Q⊥(t0)∥ I(Z(t0) = Z)
=
Q(t0 + T) − Q∥(t0 + T) − Q(t0) + Q∥(t0)

 I(Z(t0) = Z)
(b)
≤ ∥Q(t0 + T) − Q(t0)∥ +

Q∥(t0 + T) − Q∥(t0)
 I(Z(t0) = Z)

(c)
≤2 ∥Q(t0 + T) − Q(t0)∥ I(Z(t0) = Z)

(d)
≤2

t0+T−1∑
t=t0

(∥A(t)∥ + 2 ∥S(t)∥) I(Z(t0) = Z) (22)

where the inequality (a) follows from the fact that |∥x∥ − ∥y∥ | ≤ ∥x − y∥ holds for any x, y ∈ RN ; inequality (b) follows
from triangle inequality; (c) holds due to the non-expansive property of projection to a convex set; (d) follows from
Eq. (21). Then by our assumptions of light-tailed distributions for both total arrival and service processes, there exists a
random variable W such that |∆V⊥(X)| ≺ W for all t0 and all X ∈ X , and E

[
eθW

]
= D is finite for some θ > 0, which

verifies (C2).
Let us turn to condition (C1). By the proof of Lemma 3.6 in [8], it suffices to establish the following result in order to

verify (C1). That is, there exist T > 0, K2 ≥ 0 and η > 0 that are all independent of ϵ, such that for all t0 and Z ∈ Z

E

[t0+T−1∑
t=t0

⟨Q⊥(t),A(t) − S(t)⟩ | Z(t0) = Z

]
≤ −η ∥Q⊥∥ + K2 (23)

holds for all ϵ ∈ (0, ϵ0). Note that

E

[t0+T−1∑
t=t0

⟨Q⊥(t),A(t) − S(t)⟩ | Z(t0) = Z

]

(a)
=

t0+T−1∑
t=t0

E [E [⟨Q⊥(t),A(t)⟩ | Z(t)] | Z(t0) = Z] (24)

−

t0+T−1∑
t=t0

E

[∑
n

µnQ⊥,n(t) | Z(t0) = Z

]
, (25)

where (a) follows from the tower property of conditional expectation and the fact that A(t) is independent of Z(t0) given
Z(t). Moreover, Q⊥,n(t) denotes the nth component of the vector Q⊥(t). Now let us first focus on Eq. (24).

t0+T−1∑
t=t0

E [E [⟨Q⊥(t),A(t)⟩ | Z(t)] | Z(t0) = Z]

=

t0+T−1∑
t=t0

E

[
N∑

n=1

Q⊥,n(t)
M∑

m=1

βm
n (t)λm | Z

]

+

t0+T−1∑
t=t0

E

[
N∑

n=1

Q⊥,n(t)
M∑

m=1

µn

µΣ

(µΣ − ϵ) pm | Z

]
.

Combining the result above with Eq. (25), yields

E

[t0+T−1∑
t=t0

⟨Q⊥(t),A(t) − S(t)⟩ | Z(t0) = Z

]

=

t0+T−1∑
t=t0

E

[
N∑

n=1

Q⊥,n(t)
M∑

m=1

βm
n (t)λm | Z

]
(26)

+

t0+T−1∑
E

[
N∑

Q⊥,n(t)
−ϵµn

µΣ

| Z

]
. (27)
t=t0 n=1

15

X. Zhou, N. Shroff and A. Wierman Performance Evaluation 145 (2021) 102146

N

f
o

E

W
r

ote that by definition Q⊥,n(t) = Qn(t) − Qavg(t), in which Qavg(t) is the average queue length among N queues at the
beginning of time-slot t . Moreover, Q⊥,n(t) can be written as

Q⊥,n(t) = Qn(t) − Q̃m
n (t) + Q̃m

n (t) − Q̄m(t) + Q̄m(t) − Qavg(t) (28)

or all m and t , in which Q̄m(t) ≜ 1
N

∑N
n=1 Q̃

m
n (t), i.e., the average queue length estimated by dispatcher m at the beginning

f time-slot t . By utilizing Eq. (28), Eq. (26) can be written as

t0+T−1∑
t=t0

E

[
N∑

n=1

Q⊥,n(t)
M∑

m=1

βm
n (t)λm | Z

]

=

t0+T−1∑
t=t0

E

[
N∑

n=1

M∑
m=1

(
Q̃m
n (t) − Q̄m(t)

)
βm
n (t)λm | Z

]
(29)

+

t0+T−1∑
t=t0

E

[
N∑

n=1

M∑
m=1

(
Qn(t) − Q̃m

n (t)
)
βm
n (t)λm | Z

]
(30)

+

t0+T−1∑
t=t0

E

[
N∑

n=1

M∑
m=1

(
Q̄m(t) − Qavg(t)

)
βm
n (t)λm | Z

]
. (31)

Our main task now is to upper bound each term above. Let us start with Eq. (29). In particular, we can bound it by using
the following result.

Lemma 4. There exist finite positive constants η and C such that

t0+T−1∑
t=t0

E

[
N∑

n=1

M∑
m=1

(
Q̃m
n (t) − Q̄m(t)

)
βm
n (t)λm | Z

]
≤ −η ∥Q⊥(t0)∥ + C

holds for all T ≥ 3, in which η =
λΣ δp2
√
N

and C = 3(µΣ)2p2.

Proof. See Appendix B □

For Eqs. (30) and (31), we can bound both of them by using the result in Lemma 3, respectively. In particular, for
q. (30), we have

t0+T−1∑
t=t0

E

[
N∑

n=1

M∑
m=1

(
Qn(t) − Q̃m

n (t)
)
βm
n (t)λm | Z

]

≤ λΣ

t0+T−1∑
t=t0

E

[
N∑

n=1

M∑
m=1

⏐⏐Qn(t) − Q̃m
n (t)

⏐⏐ | Z

]
≤ µΣMNLT . (32)

For Eq. (31), we have

t0+T−1∑
t=t0

E

[
N∑

n=1

M∑
m=1

(
Q̄m(t) − Qavg(t)

)
βm
n (t)λm | Z

]

=

t0+T−1∑
t=t0

E

[
N∑

n=1

M∑
m=1

(
1
N

N∑
n=1

(
Q̃m
n (t) − Qn(t)

))
βm
n (t)λm | Z

]

≤λΣ

t0+T−1∑
t=t0

E

[
N∑

n=1

M∑
m=1

1
N

N∑
n=1

⏐⏐Q̃m
n (t) − Qn(t)

⏐⏐ | Z

]
≤µΣMNLT . (33)

e have obtained bounds for Eqs. (29)–(31). Let us turn to focus on Eq. (27), which can be upper bounded by the following
esult.
16

X. Zhou, N. Shroff and A. Wierman Performance Evaluation 145 (2021) 102146

L

w

P

w

w
η

P

T
b

emma 5. For any t0 and Z,

t0+T−1∑
t=t0

E

[
N∑

n=1

Q⊥,n(t)
−ϵµn

µΣ

| Z(t0) = Z

]
≤ ϵ

√
NT ∥Q(t0)∥ + K3,

here k3 is a finite constant independent of ϵ.

roof. See Appendix C □

Now, we are ready to bound the left-hand-side of Eq. (23) by using the bounds for both Eqs. (26) and (27). In particular,
e have

E

[t0+T−1∑
t=t0

⟨Q⊥(t),A(t) − S(t)⟩ | Z(t0) = Z

]

≤ −
λΣδp2
√
N

∥Q⊥(t0)∥ + C + 2µΣMNLT + ϵ
√
NT ∥Q(t0)∥ + K3

(a)
=

(
Tϵ −

λΣδp2

N

)
√
N ∥Q⊥(t0)∥ + K2

≤ −
µΣδp2

2
√
N

∥Q⊥(t0)∥ + K2, ∀ϵ <
µΣδp2

2NT + 2δp2
(34)

here (a) follows from K2 = C + 2µΣMNLT + K3, which is independent of ϵ. Hence, this verifies condition (C1) with
=

µΣ δp2

2
√
N

, which is also independent of ϵ. Combined with condition (C2), we have finished the proof of Proposition 2. □

Having proved the state-space collapse result, we turn to prove another intermediate result regarding unused service,
as stated in the following lemma. In words, this lemma says that in heavy traffic unused service tends to be zero.

Lemma 6. Under any LED policy, we have

lim
ϵ↓0

E
[U(ϵ)

2] = 0.

roof. First, we would like to show that under any LED policy,

E
[U(ϵ)


1

]
= ϵ. (35)

o see this, we consider the Lyapunov function W1(Z(t)) = ∥Q(t)∥1. Since LED is throughput optimal with all the moments
eing finite, we have that the mean drift of W1(Z(t)) in steady-state is zero. Then, we have

0 = E
[A(ϵ)


1 − ∥S∥1 +

U(ϵ)

1

]
,

which directly implies the result in Eq. (35).
Now let us fix n ∈ N , we have for any t ≥ 0 and constant S ′

U2
n (t) ≤ Un(t)Sn(t)

= Un(t)Sn(t)I
(
Sn(t) ≤ S ′

)
+ Un(t)Sn(t)I

(
Sn(t) > S ′

)
≤ Un(t)S ′

+ S2n (t)I
(
Sn(t) > S ′

)
.

In steady state, we have

E
[
U

2
n

]
≤ E

[
Un
]
S ′

+ E
[
S2n (∞)I

(
Sn(∞) > S ′

)]
(a)
≤ ϵS ′

+ E
[
S2n (0)I

(
Sn(0) > S ′

)]
(b)
≤ ϵS ′

+ β,

where (a) follows from the fact that E
[U(ϵ)1] = ϵ and service process is i.i.d.; in (b), we choose S ′ such that

E
[
S2(0)I

(
S (0) > S ′

)]
≤ β , which is possible by the exponential decay rate of S (0) under the light-tailed assumption.
n n n

17

X. Zhou, N. Shroff and A. Wierman Performance Evaluation 145 (2021) 102146

T

t

t

a

hus, we have

lim
ϵ↓0

E
[
U

2
n

]
≤ β,

for any β > 0. Hence, we have limϵ↓0 E
[
U

2
n

]
= 0 for each n, which directly implies our result. □

Now, we are prepared to show that under the conditions in Theorem 2, the system achieves optimal delay in heavy
raffic. More specifically, by Lemma 3 in [28], we need only to verify the following condition.

lim
ϵ↓0

E
[Q(ϵ)

(t + 1)

1

U(ϵ)
(t)

1

]
= 0. (36)

Let us define B
(ϵ)

≜ E
[Q(ϵ)

(t + 1)

1

U(ϵ)
(t)

1

]
. We can bound it as follows:

B
(ϵ) (a)

= NE
[
⟨U

(ϵ)
(t), −Q

(ϵ)
⊥
(t + 1)⟩

]
(b)
≤ N

√
E
[U(ϵ)

2]E[Q(ϵ)
⊥
(t + 1)

2]
(c)
= N

√
E
[U(ϵ)

2]E[Q(ϵ)
⊥
(t)
2]

(d)
≤ N

√
E
[U(ϵ)

2] L2,
where the equality (a) comes from the property Q (ϵ)

n (t +1)U (ϵ)
n (t) = 0 for all n ∈ N and all t ≥ 0 and the definition of Q⊥;

he inequality (b) holds due to Cauchy–Schwartz inequality; the equality (c) is true since the distributions of Q
(ϵ)
⊥
(t+1) and

Q
(ϵ)
⊥
(t) are the same in steady state; (d) follows from the state-space collapse result in Proposition 2. Finally, by Lemma 6

nd the fact that L2 is independent of ϵ, we have limϵ→0 B
(ϵ)

= 0, which finishes our proof.

6. Conclusion

We have introduced the Local-Estimation-Driven (LED) framework for load balancing policies in possibly hetero-
geneous systems with multiple dispatchers. Under this framework, each dispatcher keeps local and possibly outdated
estimates of the queue lengths for all the servers, and makes its dispatching decision only based on these local estimates.
Communication between dispatchers and servers is only used to update the local estimates. We have established sufficient
conditions for LED policies to achieve both throughput optimality and delay optimality in heavy traffic. These sufficient
conditions not only establish delay optimality for many previous local-memory based policies, but also enable us to tailor
the design of new delay optimal policies based on different application requirements. The heavy-traffic delay optimality
of LED policies also resolves a recent open problem on the development of load balancing schemes that have only access
to delayed information.

In future work, it will be interesting to investigate LED framework in other asymptotic regimes, e.g., the large-system
regime and the many-server heavy-traffic regime.

Declaration of competing interest

The authors declare the following financial interests/personal relationships which may be considered as potential
competing interests: S. Theja Maguluri, Georgia Institute of Technology, Atlanta, Georgia, United States C.H. Xia, OHIO
STATE UNIVERSITY, Columbus, Ohio, United States.

Appendix A. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.peva.2020.102146.

References

[1] R.R. Weber, On the optimal assignment of customers to parallel servers, J. Appl. Probab. (1978) 406–413.
[2] G.J. Foschini, J. Salz, A basic dynamic routing problem and diffusion, IEEE Trans. Commun. 26 (3) (1978) 320–327.
[3] A. Eryilmaz, R. Srikant, Asymptotically tight steady-state queue length bounds implied by drift conditions, Queueing Syst. 72 (3–4) (2012)

311–359.
[4] M. Mitzenmacher, The power of two choices in randomized load balancing, IEEE Trans. Parallel Distrib. Syst. 12 (10) (2001) 1094–1104.
18

https://doi.org/10.1016/j.peva.2020.102146
http://refhub.elsevier.com/S0166-5316(20)30066-3/sb1
http://refhub.elsevier.com/S0166-5316(20)30066-3/sb2
http://refhub.elsevier.com/S0166-5316(20)30066-3/sb3
http://refhub.elsevier.com/S0166-5316(20)30066-3/sb3
http://refhub.elsevier.com/S0166-5316(20)30066-3/sb3
http://refhub.elsevier.com/S0166-5316(20)30066-3/sb4

X. Zhou, N. Shroff and A. Wierman Performance Evaluation 145 (2021) 102146
[5] S.T. Maguluri, R. Srikant, L. Ying, Heavy traffic optimal resource allocation algorithms for cloud computing clusters, Perform. Eval. 81 (2014)
20–39.

[6] Y. Lu, Q. Xie, G. Kliot, A. Geller, J.R. Larus, A. Greenberg, Join-idle-queue: A novel load balancing algorithm for dynamically scalable web services,
Perform. Eval. 68 (11) (2011) 1056–1071.

[7] A.L. Stolyar, Pull-based load distribution in large-scale heterogeneous service systems, Queueing Syst. 80 (4) (2015) 341–361.
[8] X. Zhou, F. Wu, J. Tan, Y. Sun, N. Shroff, Designing low-complexity heavy-traffic delay-optimal load balancing schemes: Theory to algorithms,

Proc. ACM Meas. Anal. Comput. Syst. 1 (2) (2017) 39.
[9] X. Zhou, J. Tan, N. Shroff, Heavy-traffic delay optimality in pull-based load balancing systems: necessary and sufficient conditions, Proc. ACM

Meas. Anal. Comput. Syst. 2 (3) (2018) 1–33.
[10] M. Mitzenmacher, Analyzing distributed join-idle-queue: A fluid limit approach, in: Communication, Control, and Computing (Allerton), 2016

54th Annual Allerton Conference on, IEEE, 2016, pp. 312–318.
[11] A.L. Stolyar, Pull-based load distribution among heterogeneous parallel servers: the case of multiple routers, Queueing Syst. 85 (1–2) (2017)

31–65.
[12] R. Govindan, I. Minei, M. Kallahalla, B. Koley, A. Vahdat, Evolve or die: High-availability design principles drawn from googles network

infrastructure, in: Proceedings of the 2016 ACM SIGCOMM Conference, 2016, pp. 58–72.
[13] P. Shuff, Building a billion user load balancer, 2016.
[14] S. Vargaftik, I. Keslassy, A. Orda, Lsq: Load balancing in large-scale heterogeneous systems with multiple dispatchers, IEEE/ACM Trans. Netw.

(2020).
[15] D. Lipshutz, Open problem—load balancing using delayed information, Stoch. Syst. 9 (3) (2019) 305–306.
[16] W. Winston, Optimality of the shortest line discipline, J. Appl. Probab. 14 (1) (1977) 181–189.
[17] M. van der Boor, S. Borst, J. van Leeuwaarden, Load balancing in large-scale systems with multiple dispatchers, in: IEEE INFOCOM 2017-IEEE

Conference on Computer Communications, IEEE, 2017, pp. 1–9.
[18] J. Anselmi, F. Dufour, Power-of-d-choices with memory: Fluid limit and optimality, 2018, arXiv preprint arXiv:1802.06566.
[19] M. van der Boor, S. Borst, J. van Leeuwaarden, Hyper-scalable JSQ with sparse feedback, Proc. ACM Meas. Anal. Comput. Syst. 3 (1) (2019)

1–37.
[20] W. Wang, K. Zhu, L. Ying, J. Tan, L. Zhang, Maptask scheduling in mapreduce with data locality: Throughput and heavy-traffic optimality,

IEEE/ACM Trans. Netw. 24 (1) (2016) 190–203.
[21] Q. Xie, A. Yekkehkhany, Y. Lu, Scheduling with multi-level data locality: Throughput and heavy-traffic optimality, in: Proceedings of IEEE

International Conference on Computer Communications (INFOCOM), 2016, pp. 1–9.
[22] Q. Xie, Y. Lu, Priority algorithm for near-data scheduling: Throughput and heavy-traffic optimality, in: Proceedings of IEEE International

Conference on Computer Communications (INFOCOM), 2015, pp. 963–972.
[23] D. Hurtado-Lange, S.T. Maguluri, Throughput and delay optimality of power-of-d choices in inhomogeneous load balancing systems, 2020, arXiv

preprint arXiv:2004.00538.
[24] L. Suresh, M. Canini, S. Schmid, A. Feldmann, C3: Cutting tail latency in cloud data stores via adaptive replica selection, in: Proceedings of the

2015 USENIX NSDI Conference, 2015, pp. 513–527.
[25] M. Mitzenmacher, How useful is old information?, IEEE Trans. Parallel Distrib. Syst. 11 (1) (2000) 6–20.
[26] X. Zhou, F. Wu, J. Tan, K. Srinivasan, N. Shroff, Degree of queue imbalance: Overcoming the limitation of heavy-traffic delay optimality in load

balancing systems, Proc. ACM Meas. Anal. Comput. Syst. 2 (1) (2018) 1–41.
[27] B. Hajek, Hitting-time and occupation-time bounds implied by drift analysis with applications, Adv. Appl. Probab. (1982) 502–525.
[28] X. Zhou, J. Tan, N. Shroff, Flexible load balancing with multi-dimensional state-space collapse: throughput and heavy-traffic delay optimality,

Perform. Eval. 127 (2018) 176–193.
19

http://refhub.elsevier.com/S0166-5316(20)30066-3/sb5
http://refhub.elsevier.com/S0166-5316(20)30066-3/sb5
http://refhub.elsevier.com/S0166-5316(20)30066-3/sb5
http://refhub.elsevier.com/S0166-5316(20)30066-3/sb6
http://refhub.elsevier.com/S0166-5316(20)30066-3/sb6
http://refhub.elsevier.com/S0166-5316(20)30066-3/sb6
http://refhub.elsevier.com/S0166-5316(20)30066-3/sb7
http://refhub.elsevier.com/S0166-5316(20)30066-3/sb8
http://refhub.elsevier.com/S0166-5316(20)30066-3/sb8
http://refhub.elsevier.com/S0166-5316(20)30066-3/sb8
http://refhub.elsevier.com/S0166-5316(20)30066-3/sb9
http://refhub.elsevier.com/S0166-5316(20)30066-3/sb9
http://refhub.elsevier.com/S0166-5316(20)30066-3/sb9
http://refhub.elsevier.com/S0166-5316(20)30066-3/sb10
http://refhub.elsevier.com/S0166-5316(20)30066-3/sb10
http://refhub.elsevier.com/S0166-5316(20)30066-3/sb10
http://refhub.elsevier.com/S0166-5316(20)30066-3/sb11
http://refhub.elsevier.com/S0166-5316(20)30066-3/sb11
http://refhub.elsevier.com/S0166-5316(20)30066-3/sb11
http://refhub.elsevier.com/S0166-5316(20)30066-3/sb13
http://refhub.elsevier.com/S0166-5316(20)30066-3/sb14
http://refhub.elsevier.com/S0166-5316(20)30066-3/sb14
http://refhub.elsevier.com/S0166-5316(20)30066-3/sb14
http://refhub.elsevier.com/S0166-5316(20)30066-3/sb15
http://refhub.elsevier.com/S0166-5316(20)30066-3/sb16
http://refhub.elsevier.com/S0166-5316(20)30066-3/sb17
http://refhub.elsevier.com/S0166-5316(20)30066-3/sb17
http://refhub.elsevier.com/S0166-5316(20)30066-3/sb17
http://arxiv.org/abs/1802.06566
http://refhub.elsevier.com/S0166-5316(20)30066-3/sb19
http://refhub.elsevier.com/S0166-5316(20)30066-3/sb19
http://refhub.elsevier.com/S0166-5316(20)30066-3/sb19
http://refhub.elsevier.com/S0166-5316(20)30066-3/sb20
http://refhub.elsevier.com/S0166-5316(20)30066-3/sb20
http://refhub.elsevier.com/S0166-5316(20)30066-3/sb20
http://arxiv.org/abs/2004.00538
http://refhub.elsevier.com/S0166-5316(20)30066-3/sb25
http://refhub.elsevier.com/S0166-5316(20)30066-3/sb26
http://refhub.elsevier.com/S0166-5316(20)30066-3/sb26
http://refhub.elsevier.com/S0166-5316(20)30066-3/sb26
http://refhub.elsevier.com/S0166-5316(20)30066-3/sb27
http://refhub.elsevier.com/S0166-5316(20)30066-3/sb28
http://refhub.elsevier.com/S0166-5316(20)30066-3/sb28
http://refhub.elsevier.com/S0166-5316(20)30066-3/sb28

	Asymptotically optimal load balancing in large-scale heterogeneous systems with multiple dispatchers
	Introduction
	System model and preliminaries
	System model
	Arrivals
	Service
	Queue dynamics

	Local-estimation-driven (LED) framework
	Dispatching preference

	Main results
	Sufficient conditions
	Examples
	Dispatching strategy
	Update strategy

	Discussion
	Key features of LED
	Useful insights from LED
	Refinements on LED

	Proofs
	Proof of Theorem 1
	Proof of Theorem 2

	Conclusion
	Declaration of competing interest
	Appendix A. Supplementary data
	References

