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Abstract—Stealthy attacks have become a major threat
to cybersecurity. Previous works in this direction fail to
capture the practical resource constraints and mainly focus
on one-node settings. In this article, we propose a two-
player game-theoretic model, including a system of multiple
independent nodes, a stealthy attacker, and an observable
defender. In our model, the attacker can fully observe the
defender’s behavior and the system state, whereas the de-
fender has zero feedback information. Furthermore, a strict
resource constraint is introduced to limit the frequency
of the attacks/defenses for both players. We characterize
the best responses for both attacker and defender under
both nonadaptive and adaptive strategies. We then study
the sequential game where the defender first announces
its strategy and the attacker then responds accordingly.
We have designed an algorithm that finds a nearly optimal
strategy for the defender and provides a full analysis of its
complexity and performance guarantee.

Index Terms—Game theory, resource constraints,
stealthy attacks.

I. INTRODUCTION

INCREASINGLY sophisticated cyberattacks constantly push
the evolution of cybersecurity. In recent years, worldwide

organizations and IT companies, e.g., United Nation, Google,
and Amazon, are facing a significantly increasing number of
advanced persistent threats (APT) [8]. The APT attack has
several distinguishing properties that render traditional defense
mechanisms less effective. First, they are often launched by
incentive-driven entities, including government and competitive
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companies with specific targets. Second, the APT attack is
persistent, which usually involves multiple stages and frequent
compromises of the system. Based on the work in [1], half of the
entities suffering APT attacks experienced another successful
compromise within one year. Third, they are highly adaptive
and stealthy, often operating in a “low-and-slow” fashion [14]
in order to maintain a small footprint and avoid being detected.
In fact, some of the past APT attacks have been so effective
because they have gone undetected for months or longer [9],
[13]. Hence, conventional security measures against one-shot
attack and known attack types are not sufficient in the face of
long-lasting and stealthy attacks. Meanwhile, the objective of
APT attacks usually includes key information theft and complete
control over the system, resulting in a much bigger loss than
traditional cyberattacks.

In this article, we study a two-player non-zero-sum game
that explicitly models stealthy attacks with resource constraints,
as an extension of the asymmetric version of the FlipIt game
considered in [21]. We consider a system with N independent
nodes (or components), an attacker, and a defender. Both players
compete for the control of the system by attacking or defending
each node, subject to an instantaneous move cost per node and
a long-term average resource constraint across the entire sys-
tem. The attacker tries to maximize its benefits by successfully
compromising nodes, and the defender aims at minimizing the
total defense cost and value loss incurred by losing control of a
node.

To model the stealthy attacks, we assume that the defender
has no feedback about the node state and the attacker’s behavior
across the entire game, which is reasonable in many security
setups. On the other hand, the attacker is capable of observing
the defender’s each move as well as the node state, and makes
decisions accordingly. In this work, we consider two commonly
adopted solution concepts: 1) Nash equilibrium and 2) sequential
equilibrium, both of which have been applied to cybersecurity.
In the former, the defender and the attacker determine their
strategies at the beginning of the game simultaneously, whereas
in the latter, the defender acts as the leader of the game and
commits to a strategy first, and the attacker as the follower then
responds accordingly.

For tractability and simplifying the analysis, we assume that
the set of nodes is independent in the sense that the proper
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TABLE I
MAIN RESULTS

functioning of one node does not depend on other nodes, which
serves as a first-order approximation of the more general setting
of interdependent nodes to be considered in our future work.
Despite the assumption that each node is independent, the
multinode setting, together with the resource constraints, impose
significant challenges in characterizing the best responses, Nash
equilibria and sequential equilibria of the games.

One example where our game model can be applied is key
rotation. For a system with multiple communication links or
servers that are protected by different keys, an APT attacker
may compromise some of the keys from time to time. A com-
mon practice is to periodically generate fresh keys by a trusted
key-management service, without knowing when they are com-
promised. On the other hand, the attacker can easily detect when
the key expires with a negligible cost and there is a constraint
on the frequency of moves at both sides. There are also other
examples where our model can be useful such as password reset
and virtual machine refreshing [15], [21], [30].

To help reader better understand our main results, we briefly
explain the key concepts ahead. Formal definitions can be found
in Sections III and IV.

1) In a periodic defense strategy: The defender protects each
node periodically. That is, the time interval between two
consecutive defenses is fixed for a given node.

2) In an independent identically distributed (i.i.d.) attack
strategy: The attacker’s waiting time before each attack
(modeled as a random variable) is i.i.d. across time.

3) In a Markovian defense (resp. attack) strategy: The time
interval between two consecutive defenses (resp. the
probability of attacking each node) follows a Markovian
process.

4) Nearly optimal strategy: For arbitrary small positive num-
ber ε, we can always find a strategy that the performance
difference between this strategy and the theoretical opti-
mal strategy is less than ε.

We have made the following contributions in this article with
the main results summarized in Table I.1

1) We propose a two-player game model with multiple inde-
pendent nodes, an overt defender, and a stealthy attacker
where both players have strict resource constraints.

2) We prove that periodic defense is a best response against
i.i.d. attack among all defense strategies, and i.i.d. attack
is a best response against periodic defense among all at-
tack strategies. We further consider Markovian strategies

1In Table I A→ B means that B is a best response against A; A � B means
that B is NOT a best response against A.

and prove that periodic defense is still a best response
against a Markovian attacking strategy, but i.i.d. attack
is not necessarily a best response against a Markovian
defending strategy.

3) For the pair of periodic defense and i.i.d. attack strategies,
we fully characterize the set of Nash equilibria of our
game, and show that there is always one (maybe more)
equilibrium, when the attack times are deterministic.

4) We further consider the sequential game with the defender
as the leader and the attacker as the follower. We design
a dynamic programming based algorithm that identifies a
nearly optimal strategy (in the sense of subgame perfect
equilibrium) for the defender. We also fully characterize
the tradeoff between algorithm performance and its com-
plexity.

This article is the extended version of the work in [34] with the
addition of adaptive strategies and Markovian strategies in Sec-
tion IV and further improvement of Algorithm 1 in Section VI.
The remainder of this article is organized as follows. A summary
of related work is provided in Section II. We present our game-
theoretic model in Section III, and study best-response strategies
of both players in Section IV. Analysis of Nash equilibria of the
game is provided in Section V, and the sequential game is studied
in Section VI. In Section VII, we present numerical results, and
conclude the article in Section VIII.

II. RELATED WORK

Game theory has been extensively applied to cybersecurity
and network security [11], [19], [24], [29]. However, traditional
models mainly focus on known attacks and largely ignore the
budget constraints of both the defender and the attacker.

As mentioned in the introduction, our model is inspired by the
FlipIt game [15], [30] proposed in response to an APT attack
toward RSA Data Security [10], a non-zero-sum dynamic game
that explicitly models the stealthy takeover of a single node. In
the original model, a player obtains control over a component
instantaneously by “flipping” it, and obtains feedback only when
it moves. Dominant strategies or strongly dominant strategies
are characterized for several classes of periodic and renewable
strategies and some simple adaptive strategies. But the full
analysis of Nash equilibrium is only provided when both the
defender and the attacker employ a periodic strategy with a
random starting phase. Several variants of the basic model have
been studied [20], [21]. In particular, a multinode extension is
considered in [20] where the attacker needs to compromise either
all the nodes (AND model) or a single node (OR model) to take
over a system. The authors name such a model as “FlipThem.”
However, only preliminary analytic results are provided. Leslie
et al. extend the “FlipThem” model in [22] and [23] where the
attacker can obtain partial benefits by compromising a certain
number (larger than a threshold) of nodes. An asymmetric
model similar to ours where the attacker is stealthy while the
defender is observable is considered in [21], where a full Nash
equilibrium analysis is provided but only for the single-node
setting. In [26], Nochenson et al. first initiate the effort of
adding player’s characterization information including gender
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and age in the FlipIt game model. In [35], Zheng et al. use
multiarmed bandit model to investigate the optimal timing of
security updates against stealthy attacks. However, none of the
previous works considered an explicit resource constraint on the
players.

A different type of security game has also been studied in
the literature mainly for protecting physical infrastructures [12],
[18], [28], [29]. Essentially, a mixed strategy Stackelberg game
is considered, where the defender is the leader and the attacker is
the follower. The key assumption is that the defender first decides
upon a randomized defense policy, and the attacker then observes
the randomized policy of the defender but not its realization
before taking action. While this is a useful assumption under
certain scenarios, it may not hold when the attacker is highly
adaptive. In particular, since the attacker may be able to observe
the defender’s previous actions, it could take an action before the
defender changes its policy to obtain greater benefit. Moreover,
the two-stage game is insufficient to capture the persistent and
stealthy behaviors of advanced attacks. Despite the fundamental
differences of the two models, recent work that extends this
model to multiple defenders and bounded rationality [17], [25]
provides useful insights to our model as well, which will be
studied in our future work.

III. GAME MODEL

In this section, we discuss our two-player game model includ-
ing its information structure, the action spaces of both attacker
and defender, and their payoffs. Our game model extends the
single-node model in [21] to multiple nodes and includes a
resource constraint on each player.

A. Basic Model

In our game-theoretic model, there are two players (the de-
fender and the attacker) and a network ofN independent nodes.2

Each node has a value of ri representing the payoff the attacker
can receive per unit time by successfully compromising node
i. We consider finite time horizon where the game starts at
time t = 0 and goes to any time t = T . We assume that time
is continuous. Every time when the attacker starts an attack for
node i, it incurs a cost of CA

i and takes a random period of
time αi,k to succeed. On the other hand, if the defender makes
a move to protect node i, the node is immediately recovered
and incurring a cost of CD

i . Furthermore, this information is
immediately learned by the attacker. The attacker’s strategy is to
determine Wi,k, the waiting time from the defender’s kth move
to its next attack on node i, for each i and k. On the contrary, the
defender’s strategy is to determine the time intervals between
its (k − 1)th move and kth move for each node i and k, denoted
as Xi,k. The attacker (defender) can attack (defend) multiple
nodes at the same time and maintain their possession until the
other player’s next move, which may or may not change the
node state. It is important to note that when Wi,k ≥ Xi,k, the
attacker actually gives up its kth attack against node i (this is
possible as the attacker can observe when the defender moves).

2The terms “components” and “nodes” are interchangeable in this article.

TABLE II
LIST OF NOTATIONS

It may also happen that the defender makes a defense during
the attack, mathematically Wi,k < Xi,k < Wi,k + αi,k. Under
such circumstances, we assume that the attacker will drop the
attack and may launch another attack after waiting time Wi,k+1.

Both the attacker’s and the defender’s strategies can be ran-
domized and adaptive in general. We define the strategy space
for the attacker (resp. defender) as all possible {Wi,k} (resp.
{Xi,k}) that follow a certain joint distribution. A strategy is
defined as nonadaptive if the values of {Wi,k} (resp. {Xi,k}) are
either predetermined or follow a fixed probability distribution.
An attack strategy is considered adaptive when the attacker’s
decision onWi,k for some i and k depends on the realized values
of Xj,k′ and/or Wj,k′ for some j and k′ with Tj(k

′) < Ti(k),
where Ti(k) refers to the time instance of node i’s kth defense.
In other words, an attack strategy is adaptive if the waiting
time Wi,k depends on previous attack or defense moves. On
the other hand, since the defender cannot observe the attacker’s
behavior and node state, it suffices to consider nonadaptive
defense strategies. That is, the defender’s decisions on {Xi,k}
are independent of the realization of {Wi,k}.

In addition to the move cost, we introduce a strict resource
constraint for each player, which is a practical assumption but
has been ignored in most prior works on security games. In
particular, we place an upper bound on the average amount
of resource that is available to each player at any time (to
be formally defined ahead). As in typical security games, we
assume that ri, CA

i , CD
i , the distribution of αi,k, and the budget

constraints are all common knowledge of the game, that is, they
are known to both players. Without loss of generality, all nodes
are assumed to be protected at time t = 0. Table II summarizes
the notations used in the article and Fig. 1 shows the transition
of node state along timeline.

As in [21], we consider an asymmetric feedback model where
the attacker’s moves are stealthy, whereas the defenders’ moves
are observable. More specifically, at any time, the attacker knows
the full history of the moves made by the defender (the realiza-
tion of {Xi,k}), as well as the state of each node, whereas the
defender does not know whether a node is compromised or not.
This asymmetric information structure is crucial in modeling
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Fig. 1. Game model.

stealthy attacks in cybersecurity. For clarification, our model is
a complete information game setting since we assume that both
players are aware of the distribution of the strategies employed
by the other player.

B. Defender’s Problem

We model the total cost to the defender as the summation
of the total time when nodes are compromised and the total
move cost. The defender aims at maximizing its payoff, which
is defined as the negation of its total loss. Given the attacker’s
strategy {Wi,k}, the defender faces the following optimization
problem:

max
{Xi,k},{Li}

E

[
N∑
i=1

(−(T −∑Li

k=1 min(Wi,k + αi,k, Xi,k)
)
· ri

T

− LiC
D
i

T

)]
(1)

and the optimization variable Xi,k and Li satisfy the following
two constraints:

N∑
i=1

Li

T
≤ B with probability 1

Li∑
k=1

Xi,k ≤ T with probability 1 ∀i (2)

where Li (a random variable) is the total number of defense
applied to node i during time T . In (1), T −∑Li

k=1 min(Wi,k +
αi,k, Xi,k) refers to the total time when node i is compromised
and LiC

D
i is the overall move cost. The first constraint defines

an upper bound B of the average number of nodes that can
be protected at any time. The second constraint in (2) defines
the feasible set of Xi,k. It is worth mentioning that the actual
decision variables of (1) are the joint distribution of Xi,k and
Li for all i and k. For the convenience of notation, we simply
use Xi,k and Li as decision variables. The expectation is with
respect to Xi,k, Li, Wi,k, and αi,k.

C. Attacker’s Problem

Given the defender’s strategy {Xi,k}, the total cost of
attacking node i is then (

∑Li

k=1 φ(Wi,k, Xi,k)) · CA
i , where

φ(Wi,k, Xi,k) = 1 if Wi,k < Xi,k and φ(Wi,k, Xi,k) = 0 oth-
erwise. The attacker’s problem can be formulated as follows,

where M is an upper bound on the average number of nodes
that the attacker can attack at any time instance

max
{Wi,k}

E

[ N∑
i=1

(T −∑Li

k=1 min(Wi,k + αi,k, Xi,k)) · ri
T

− (
∑Li

k=1 φ(Wi,k, Xi,k)) · CA
i

T

]
(3)

and the attacker needs to satisfy the following constraint:

E

[
N∑
i=1

1

T

∫ T

0

vi(t)dt

]
≤M (4)

where vi(t) = 1 if the attacker is attacking node i at time t and
vi(t) = 0 otherwise. Note that we make the assumption that the
attacker has to keep consuming resources when the attack is in
progress. We further have the following equation:∫ T

0

vi(t)dt

=

Li∑
k=1

(min(Wi,k + αi,k, Xi,k)−min(Wi,k, Xi,k)) . (5)

Putting (5) into (3) and (4), and moving the expectation inside,
the attacker’s problem becomes

max
{Wi,k}

N∑
i=1

[
T · ri − E[

∑Li

k=1 min(Wi,k + αi,k, Xi,k)] · ri
T

− E[
∑Li

k=1 P (Wi,k < Xi,k)] · CA
i

T

]
(6)

with resource constraints
N∑
i=1

[
E[
∑Li

k=1(min(Wi,k + αi,k, Xi,k)−min(Wi,k, Xi,k))]

T

]

≤M. (7)

IV. BEST RESPONSES

In this section, we analyze the best-response strategies for
both players. Our main result is that when the attacker employs
an i.i.d. strategy; a periodic strategy is a best response for the
defender, and vice versa. To prove this result, however, we have
provided characterization of best responses in more general
settings.

A. Defender’s Best Response

We first show that an optimal deterministic defense strategy is
always optimal in general for (1). We then prove that the periodic
defense is optimal against i.i.d. attacks.

Lemma IV.1: Suppose x�
i,k and l�i are the optimal solutions

of (1) among all deterministic strategies, then they are also
optimal among all the strategies (including both adaptive and
nonadaptive strategies).

Proof sketch: For a general defense strategy Xi,k, we can
achieve the same expected payoff for defender by assigning
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Xi,k = x�
i,k with probability 1 and the same for Li. Thus,

the deterministic strategy is also optimal among all random
strategies. For detailed proof, see [33].

According to the lemma, it suffices to consider defender’s
strategies where both Xi,k and Li,k are deterministic. It is also
worth mentioning that the order in which nodes are defended
makes no difference since the nodes are independent of each
other. We then define the set of i.i.d. attack strategies and show
that periodic defense is a best response against i.i.d. attacks.

Definition IV.1: An attack strategy is called i.i.d. if it is
nonadaptive, and Wi,k is independent across i and is i.i.d. across
k.

Theorem IV.1: Assume that for any node i, the attacking
time αi,k is i.i.d. across k. Then periodic defense is a best
response among all defense strategies if the attacker employs
an i.i.d. strategy.

To prove this result, we need the following definition.
Definition IV.2: For a given Li, we define a set Xi that

includes all deterministic defense strategies for node i with the
following properties:

1)
∑Li

k=1 Xi,k = T ;
2) FWi,k+αi,k

(Xi,k) = FWi,j+αi,j
(Xi,j) ∀k, j

where FWi,k+αi,k
(·) is the marginal cumulative distribution

function of Wi,k + αi,k. Let X denote the set of defense strate-
gies where for each node i, a strategy in Xi is adopted.

Note that 1) Xi can be an empty set in general due to the
randomness of Wi,k + αi,k; 2) for deterministic Xi,k, Wi,k

is independent of any Xj,τ s.t. Tj(τ) ≥ Ti(k). The following
lemma shows that whenXi is nonempty for all i, any strategy that
belongs to X is a defender’s best deterministic strategy against
a nonadaptive attacker.

Lemma IV.2: Consider a nonadaptive attack strategy. For
any given set of {Li} with

∑N
i=1

Li

T ≤ B, if Xi �= ∅ for any i,
then any strategy in X is a best deterministic strategy for the
defender.

Proof: We first define the defender’s payoff for node i as

UD
i ({Xi,k})

=

−
(
T −∑Li

k=1 E[min(Wi,k + αi,k, Xi,k)]

)
· ri

T

− LiC
D
i

T
. (8)

Since {Li} are fixed, Problem (1) can be divided into N inde-
pendent subproblems as follows:

max
{Xi,k}

UD
i ({Xi,k})

s.t.
Li∑
k=1

Xi,k ≤ T. (9)

We first assume that FWi,k+αi,k
(·) is continuous for any i

and k. Since any deterministic Xi,k is independent of Wi,k,
we can prove that the objective function is concave by show-
ing that the Hessian matrix of UD

i ({Xi,k}), with respect to
Xi,k (1 ≤ k ≤ Li), is negative semidefinite. We note that even

when FWi,k+αi,k
(·) is not continuous, the concavity can still be

proved using the subgradient concept. The details are omitted to
save space.

Since UD
i ({Xi,k}) is concave and continuously differen-

tiable, the optimal solution{Xi,k} should satisfy the KKT condi-
tions, that is, ν�(

∑Li

k=1 Xi,k − T ) = 0 andFWi,k+αi,k
(Xi,k) =

FWi,j+αi,j
(Xi,j) ∀k, j by taking the derivative of Lagrangian

function and setting it equal to zero, where ν� is the optimal
Lagrangian multiplier. It is clear that UD

i ({Xi,k}) is maximized
when the constraint is tight, that is,

∑Li

k=1 Xi,k = T . Note that
there may exist a set of Xi,k with

∑Li

k=1 Xi,k < T that is also
optimal for (9). Thus, the two conditions in Definition IV.2 are
sufficient but not necessary. �

We now prove Theorem IV.1.
Proof: For any fixed {Li}, letXi � [ TLi

T
Li
· · · T

Li
]. It is easy

to check that {Xi} satisfies the first property in Definition IV.2
and will satisfy the second property ifαi,k is i.i.d. with respect to
k. According to Lemma IV.2, {Xi} is an optimal (deterministic)
solution given {Li}. It follows that if we let {L�

i } denote the
optimal solution of

max
{Li}

N∑
i=1

−
(
T −∑Li

k=1 E[min(Wi,k + αi,k,
T
Li
)]
)
· ri − LiC

D
i

T

with resource constraint
∑N

i=1
Li

T ≤ B. Then X�
i �

[ T
L�

i

T
L�

i
· · · T

L�
i
] is an optimal solution to the defender’s problem.

Hence, a periodic strategy with periods of X�
i for all i is a

best-response strategy for the defender. �
According to Theorem IV.1, the defender uses periodic strat-

egy to keep the system stable, in the sense of the same total
loss between two defenses. Since the distribution of attacker’s
waiting time Wi,k does not change with time, a fixed defense
interval provides the same expected payoff between every two
consecutive moves. Moreover, the convexity of the defender’s
optimization problem guarantees an optimal solution under a
given attack strategy.

B. Attacker’s Best Response

We first analyze the attacker’s best response against any
deterministic defense strategy, then show that the i.i.d. strategy
is the best response against periodic defense.

Definition IV.3: An attack strategy is called independent
nonadaptive if it is nonadaptive, andWi,k are independent across
i and k.

Lemma IV.3: When the defense strategy is deterministic and
αi,k is i.i.d. across k, for any attacking strategy (adaptive or
nonadaptive), there always exists an independent nonadaptive
strategy that gives the attacker the same payoff.

Proof: When the defense strategies are deterministic, we
can move the expectation in (6) after the summation over k and
the expectation is with respect to αi,k and Wi,k. The same for
constraint (7). Then, the proof is done as long as we can construct
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an independent nonadaptive strategy W ′
i,k such that for all i and

k, we have the following:
1) E[min(Wi,k + αi,k, Xi,k)] = E[min(W ′

i,k +
αi,k, Xi,k)];

2) E[min(Wi,k, Xi,k)] = E[min(W ′
i,k, Xi,k)];

3) P (Wi,k < Xi,k) = P (W ′
i,k < Xi,k).

Since Xi,k is deterministic and αi,k is i.i.d. across k, the
expectation above is with respect to the marginal distribution of
Wi,k only. Thus, we can constructW ′

i,k whose distribution is the
same as Wi,k’s marginal distribution, which does not depend on
any realization ofXj,τ andWj,τ s.t.Tj(τ) < Ti(k). Meanwhile,
W ′

i,k is independent across i and k. �
According to Lemma IV.3, it suffices to consider independent

nonadaptive strategies when the defender uses deterministic
strategies.

Lemma IV.4: When the defense strategy is deterministic, the
attacker’s best response (among nonadaptive strategies) must
satisfy the following condition:

W �
i,k =

{
0, w.p. pi,k

≥ Xi,k, w.p. 1− pi,k
. (10)

Refer to the proof in Section VIII-A. Lemma IV.4 implies that
for each node i, the attacker’s best strategy is to either attack node
i immediately after it realizes the node’s recovery, or gives up the
attack until the defender’s next move. There is no incentive for
the attacker to wait a small amount of time to attack a node before
the defender’s next move. The constraint M actually determines
the probability that the attacker will attack immediately. If M
is large enough, the attacker will never wait after defender’s
each move. We then find the attacker’s best response when the
defender employs the periodic strategy.

Theorem IV.2: Assume that for any i, the attacking times
αi,k’s are i.i.d. across k. When the defender employs a periodic
strategy, the i.i.d. strategy is the attacker’s best response among
all strategies.

Proof: Suppose that the defender uses a periodic strategy,
where for any i, Xi,k = T

Li
for any k. With (10), the attacker’s

problem (6) can be simplified to a fractional knapsack problem
with decision variables {pi,k}. For any given node i, pi,k’s unit
rewards (payoff in the target function divided by weight in the
constraint) across k are all equal when αi,k’s are i.i.d. across k.
Thus, setting all pi,k in (10) equal is one of the optimal solutions.
Therefore, the i.i.d. strategy is a best solution for attacker when
the defender uses a periodic strategy. �

C. Simplified Optimization Problems

We put particular emphasis on the case where the defender
employs a periodic strategy and the attacker uses an i.i.d. strat-
egy. We assume that all the attacking timesαi,k are i.i.d. across k
and omit the subscript k inαi,k. According to Theorems IV.1 and
IV.2, periodic defense and i.i.d. attack can form a pair of best-
response strategies with respect to each other. Consider such
pairs of strategies. Let mi � Li

T = 1
Xi,k

, and let pi denote the
probability that Wi,k = 0 for all k. The optimization problems
to the defender and the attacker can then be simplified as follows.

Defender’s problem

max
{mi}

N∑
i=1

[(
E

[
min

(
αi,

1

mi

)]
piri − CD

i

)
·mi − piri

]

s.t.
N∑
i=1

mi ≤ B. (11)

Attacker’s problem

max
{pi}

N∑
i=1

pi ·
(
ri

(
1− E

[
min

(
αi,

1

mi

)]
·mi

)
− CA

i mi

)

s.t.
N∑
i=1

E

[
min

(
αi,

1

mi

)]
·mi · pi ≤M. (12)

We observe that the defender’s problem is a continuous
convex optimization problem, whereas the attacker’s problem
is a fractional knapsack problem. Therefore, the best response
strategy of each side can be easily determined. Also, the time
periodT disappears in both problems. It is worth mentioning that
finding the Nash equilibrium of (11)–(12) is very challenging
since the constraint of (12) is nonconvex with respect tomi, thus
the strategy space of this generalized Nash equilibrium problem
is not jointly convex.

D. Markovian Strategies

Based on Theorems IV.1 and IV.2, the defender’s periodic
strategy and attacker’s i.i.d. strategy form a Nash equilibrium
among all adaptive and nonadaptive strategies. However, it
remains unclear what is the best response if one of the players
uses an adaptive strategy. To the best of our knowledge, there
has been virtually no discussion about adaptive strategies in
the field of stealthy attacks. Furthermore, even though a de-
terministic strategy is always optimal for the defender based on
Lemma IV.1, there may still exist nondeterministic strategies
that are also optimal. Meanwhile, Nash equilibria under more
general strategies from both players may exist. In this section, we
provide some preliminary results in this direction by considering
Markovian strategies from both the defender’s and the attacker’s
perspectives. We assume that the attacker’s waiting times Wi,k

follow (10) and define a Markovian attacking strategy as follows.
Definition IV.4: An attacking strategy is a Markovian strat-

egy if the attack probabilities {pi,k} for node i follow a dis-
crete Markov chain over K states v1, v2, . . . , vK with transition
matrix MA

i . That is, Pr(pi,k+1 = vs|pi,k = vt) = MA
i (s, t) for

any s and t.
A Markovian defense strategy is defined similarly by consid-

ering {Xi,k} instead of {pi,k}. For tractability, we only consider
the expected payoffs for the defender in a steady state. We show
our main results about Markovian strategies in the following.

Theorem IV.3: If the attacker employs an ergodic Markovian
strategy, the periodic strategy is the defender’s best response.

The proof can be found in Section VIII-B. Theorem IV.3 tells
us that the defender still prefers using a periodic strategy when
the attacker’s strategy space includes Markovian strategies.
Consequently, the pair of periodic strategy and i.i.d. strategy
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naturally forms the Nash equilibrium in this case. However, the
i.i.d. attack strategy may not be optimal against a Markovian
defending strategy as shown in the following theorem.

Theorem IV.4: If the defender employs a Markovian strat-
egy, the i.i.d. attack strategy is not optimal in general.

Proof sketch: The main idea is to construct a counter example
where the defender uses a Markovian strategy to defend a single
node and the defense interval Xk (we omit i since there is only
one node) takes one of the two values x1 and x2. The probability
of Xk = x1 only depends on the value of Xk−1. We then find
the steady-state probability of the node being compromised. The
total expected payoff for the attacker can then be written in a
similar form as (12) with decision variables p1 and p2, referring
to the probabilities of launching an attack when Xk−1 = x1 and
Xk−1 = x2, respectively. Since the optimal values of p1 and p2
for solving the knapsack problem are not equal in general, the
i.i.d. attack is not optimal. A detailed proof is given in [33].

Theorem IV.4 tells us that the attacker may use an adaptive
strategy against the Markovian defending strategy. Compared to
the defender, since the attacker is able to observe the defending
periods and the node states, the attacking strategy may become
state-dependent. Therefore, Nash equilibria beyond periodic
defense and i.i.d. attack can exist in the space of both adaptive
and nonadaptive strategies.

E. Discussion on Security Games in Networks

In this work, we focus on protecting a set of independent
nodes where the payoff functions are additive, that is, the total
payoff to a player is a weighted summation of the payoffs from
each node. Even in this case, finding the equilibrium solutions of
the game (11)–(12) is already very challenging as we mentioned
in Section IV-C. Solving a security game in a general network
setting that yields nonadditive utility is even harder. Because
of that, existing security game work typically assumes additive
utility as we did.

To extend our solutions discussed in Sections V and VI to
a network setting, a promising direction is to introduce non-
additive payoff functions to the defender and the attacker to
capture the dependencies of node values. There are several
recent works [16], [31], [32] that consider security games in
network settings. In particular, Wang et al. [32] developed a
general framework to convert a security game with nonaddi-
tive utility to a combinatorial optimization problem over a set
system, and characterized the complexity of finding the Nash
equilibrium. However, efficient algorithms are only known for
some special cases and none of them apply to our setting
directly. Furthermore, most previous work on security games
including [32] considers a static setting (or the steady state in
a repeated setting) where the game is played only once, which
cannot faithfully model the joint spatial and temporal decisions
in dynamic stealthy games as we consider in this article.

V. NASH EQUILIBRIA

In this section, we study the set of Nash equilibria of the
game where the defender employs a periodic strategy, and the
attacker employs an i.i.d. strategy. For tractability, we further
assume that the attacking time αi,k is deterministic for all i and

we omit the subscript k. We show that this game always has a
Nash equilibrium and may have multiple equilibria of different
values.

We first observe that for deterministic αi, when mi ≥ 1
αi

, the
defender’s payoff becomes−miC

D
i , which is maximized when

mi =
1
αi

. Therefore, it suffices to consider mi ≤ 1
αi

. Thus, the
optimization problems to the defender (11) and the attacker (12)
can be simplified as follows.

For a given p, the defender aims at maximizing its payoff

max
{mi}

N∑
i=1

[mi(riαipi − CD
i )− piri]

s.t.
N∑
i=1

mi ≤ B

0 ≤ mi ≤ 1

αi
∀i.

(13)

On the other hand, for a given m, the attacker aims at maxi-
mizing its payoff

max
{pi}

N∑
i=1

pi[ri −mi(riαi + CA
i )]

s.t.
N∑
i=1

miαipi ≤M

0 ≤ pi ≤ 1 ∀i.

(14)

For a pair of strategies (m, p), the payoff to the defender
is Ud(m, p) =

∑N
i=1[mi(piriαi − CD

i )− piri], whereas the
payoff to the attacker is Ua(m, p) =

∑N
i=1 pi[ri −mi(riαi +

CA
i )]. A pair of strategies (m∗, p∗) is called a (pure strategy)

Nash equilibrium (NE) if for any pair of strategies (m, p), we
have Ud(m

∗, p∗) ≥ Ud(m, p∗) and Ua(m
∗, p∗) ≥ Ua(m

∗, p).
Let μi(p) � piriαi − CD

i denote the coefficient of mi

in Ud, and ρi(m) � ri−mi(riαi+CA
i )

miαi
. Note that for a given

p, the defender tends to protect more a component with
higher μi(p), whereas for a given m, the attacker will at-
tack a component more frequently with higher ρi(m). When
m and p are clear from the context, we simply let μi

and ρi denote μi(p) and ρi(m), respectively. For a given
strategy (m, p), we define μ∗(p) � maxi μi(p), ρ∗(m) �
mini ρi(m), F (p) � {i : μi(p) = μ∗(p)}, and D(m, p) � {i ∈
F : ρi(m) = ρ∗(m)}. We omit m and p when they are clear
from the context.

Theorem V.1: Any pair of strategies (m, p) with F (p) = F
and D(m, p) = D is an NE iff it is a solution to one of the
following sets of constraints:

1)
∑

i∈F mi = B; ρ∗ = 0;
2)
∑

i∈F mi = B; ρ∗ > 0;
∑

i∈F miαipi = M ;
3)
∑

i∈F mi = B; ρ∗ > 0; pi = 1 ∀i ∈ F ;
4)
∑

i∈F mi < B; μ∗ = 0; F = N ; ρ∗ = 0;
5)
∑

i∈F mi < B; μ∗ = 0; F = N ; ρ∗ > 0;∑
i∈F miαipi = M ;

6)
∑

i∈F mi < B; μ∗ = 0; F = N ; ρ∗ > 0; pi = 1
∀i ∈ F .
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In the following, NEs that fall into each of the six cases con-
sidered earlier are named as Type 1–Type 6 NEs, respectively.
Among the six types of NE, Types 1–3 character the NEs that the
defending budgetB is fully utilized. Type 1 NE indicates that the
attacker’s benefit from all the nodes are zero due to full defense
(all nodes are protected in the way that the expected payoffs of
each node are zero). Type 2 NE characterizes the case that both
attacker and defender fully use their budget, whereas Type 3 NE
refers to a special case that the attacker attacks all the nodes in F
with probability 1. Cases 4–6 then follow from a similar pattern
for Cases 1–3 with underutilized defending budget. Since B is
not fully used, the defender has no incentive to use more budget
only if μ� = 0, meaning that protecting more nodes will not
bring more benefits.

The next theorem shows that our game has at least one
equilibrium and may have more than one NE.

Theorem V.2: The attacker–defender game always has a
pure strategy Nash equilibrium, and may have more than one
NE of different payoffs to the defender.

The detailed proofs of Theorems V.1 and V.2 can be found
in our technical report [33].

VI. SEQUENTIAL GAME

In this section, we study the subgame perfect equilibrium [27]
of the Stackelberg game when the defender employs a periodic
strategy and the attacker employs an i.i.d. strategy. In the sequen-
tial game, the defender first commits to a strategy and makes
it public, the attacker then responds accordingly. We assume
that at t = 0, the leader (defender) has determined its strategy
and the follower (attacker) has learned the defender’s strategy
and determined its own strategy in response. In addition, the
players do not change their strategies thereafter. Our objective
is to identify the best sequential strategy for the defender. As
mentioned in Section III, we consider the sequential game under
full information. We adopt the same assumption in Section V and
then define the subgame perfect equilibrium as follows.

Definition VI.1: A pair of strategies (m�, p�) is a subgame
perfect equilibrium of the sequential game if m� is the optimal
solution of

max
{mi}

N∑
i=1

[mi(riαip
�
i − CD

i )− p�i ri]

s.t.
N∑
i=1

mi ≤ B

0 ≤ mi ≤ 1

αi
∀i

(15)

where p� is the optimal solution of

max
{pi}

N∑
i=1

pi[ri −mi(riαi + CA
i )]

s.t.
N∑
i=1

miαipi ≤M

0 ≤ pi ≤ 1 ∀i.

(16)

Note that in a subgame perfect equilibrium (m�, p�), p� is the
optimal solution of (16) with respect to m�, but the defender’s
best strategy m� is not necessarily optimal in (15) with respect
to a fixed set of p�. Due to the multinode setting and the resource
constraints, it is very challenging to identify an exact subgame
perfect equilibrium strategy for the defender. We first establish
several properties about the optimal defense strategy and then
propose a dynamic programming-based algorithm that finds a
nearly optimal defense strategy.

To clearly state the properties, we partition all the nodes into
four disjoint sets defined in the following:

1) F = {i|mi > 0, pi = 1};
2) D = {i|mi > 0, 0 < pi < 1};
3) E = {i|mi > 0, pi = 0};
4) G = {i|mi = 0, pi = 1}.

We observe that the set D has at most one element since (16)

is a fractional knapsack problem. Let ρi(mi) � ri−mi(riαi+CA
i )

miαi

represent the attacker’s reward normalized by miαi [the coeffi-
cient of pi in the constraint of (16)] from attacking node i, which
is a key factor in finding the optimal solution for the knapsack
problem. We use md to represent mi, i ∈ D for simplicity and
denote ρd = ρd(md). If D is empty, we pick any node i in F
with minimum ρi and treat it as a node in D.

Lemma VI.1: For all optimal solutions of (15)–(16), we
always have ρd ≥ 0.

Lemma VI.2: For any given non-negative ρd, an optimal
solution for (15)–(16) satisfies the following properties:

1) riαi − CD
i > 0 ∀i ∈ F ∪ E ∪D;

2) mi ≤ mi ∀i ∈ F ;
3) mj = mj ∀j ∈ E;
4) mi ≤ 1

αi
∀i;

5) B −∑i∈E mi −md > 0
where mi = ρ−1i (ρd).

Lemma VI.3: For any non-negative ρd, there exists an op-
timal solution for (15)–(16) such that ∀i ∈ F , there is at most
ONE mi < mi and all the other mi = mi.

The proof of Lemma VI.3 is in Section VIII-C. Lemmas VI.1–
VI.3 establish the foundation for the following key result about
the optimal defense strategy of (15)–(16).

Proposition VI.1: For any non-negative ρd, there exists an
optimal solution {mi}ni=1 such that the following statements
hold:

1) ∀i ∈ F , there is at most one mi < mi and all the other
mi = mi;

2) md = md

3) ∀i ∈ E, mi = mi;
4) ∀i ∈ G, mi = 0.

We denote the node whose mi < mi in the first property of
Proposition VI.1 as node f and its defending frequency as mf .
Based on Proposition VI.1, we can easily compute the value of
mi for each node (except mf ) after the set allocation is fixed.
Also, we can explicitly list the defender’s payoff, defender’s
budget usage, and attacker’s budget usage by putting each node
into different sets, as shown in Table III. For the fractional node,
its mi can be computed using linear programming when all the
other mi have been determined. We use dynamic programming
to determine the optimal set allocation.
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TABLE III
NODES IN DIFFERENT SETS WITH GIVEN ρd

From the earlier discussion, we propose the following algo-
rithm to the defender’s problem (see Algorithm 1). The algo-
rithm iterates over all possible node d in set D and all possible
node f with fractional assignment in set F . We first compute
a special case when set G is empty (line 2). In this case, the
defender’s optimal strategy can be obtained by solving (17)
based on Proposition VI.1

Val(d, f) = max
ρd,{pi},mf

∑
i�=f

mi(piriαi − CD
i )

− piri +mf (rfαf − CD
f )− rf

s.t.
∑
i �=f

mi +mf ≤ B,
∑
i�=f

pimiαi +mfαf ≤M

ρd =
ri −mi(riαi + CA

i )

miαi
≥ 0, 0 ≤ pi ≤ 1, mf ≥ 0

.

(17)

The algorithm then iterates over non-negative ρd with a step
size ρstep (line 4). Given ρd, d, f , the best set allocation (together
with mi for all i) are determined using dynamic programming
as explained before.

For any given ρd, d and f , we compute mi for all i (line 5).
Let SEQ(i, b,m, d, f, ind) denote the maximum payoff of the
defender considering only node 1 to node i (excluding nodes d
and f ), for a given defender’s budget b ∈ [0, B] and an attacker’s
budget m ∈ [0,M ]. The parameter ind is a Boolean variable
that indicates whether we can put nodes in set E arbitrarily.
If ind is True, any node (except nodes d and f ) can be in
set E. Otherwise, a node i can be allocated to set E only if
ri −mi(riαi + CA

i ) ≤ 0. The value of SEQ(i, b,m, d, f, ind)
is determined recursively. If node i is either d or f , we simply
set SEQ(i, b,m, d, f, ind) = SEQ(i− 1, b,m, d, f, ind). Other-
wise, we have the following recurrence equation, where the three
cases refer to putting node i in sets F , E, and G, respectively:

SEQ(i, b,m, d, f, ind)

= max

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

SEQ(i− 1, b−mi,m− αimi, d, f, ind)

+mi(riαi − CD
i )− ri

SEQ(i− 1, b−mi,m, d, f, ind)−miC
D
i

SEQ(i− 1, b,m, d, f, ind)− ri.

(18)

We have the following boundary conditions:
1) The recursion SEQ will return −∞ when i > 0 and i)

m < 0, or ii) b < 0, or iii) m = 0 and ind = False;

Algorithm 1: Sequential Strategy for Defender.
1: for d, f ← 1 to n do
2: Solve (17) to obtain Val(d, f)
3: ρmax ← ρ :

∑n
i=1 αimi(ρ) = M

4: for ρd ← 0 to ρmax with step size ρstep do
5: mi ← mi(ρd) for all i
6: val′d,f,ρd

← SEQ(n,B,M, d, f,True)
7: val′′d,f,ρd

← SEQ(n,B,M, d, f,False)
8: end for
9: Pdp(d, f)← maxρ{val′d,f,ρd

, val′′d,f,ρd
}

10: end for
11: Palg ← maxd,f{Pdp(d, f),Val(d, f)}

Algorithm 1 computes the optimal solution by searching over
all combinations of d, f, and ρd. For any given combination,
the dynamic program actually finds all the solutions that satisfy
Proposition VI.1, meaning that Pdp(d, f) returns the optimal
defense strategy under given d, f, and ρd (line 9). Therefore,Palg

is the maximum payoff that the defender can achieve (line 11).
For the dynamic program, we round the input before running
SEQ(n,B,M, d, f, ind), since the recursion may never stop
without rounding. Denote δ as the rounding parameter, we have
mi ←

⌊
mi

δ

⌋
, αi ←

⌊
αi

δ

⌋
for all i and B ← ⌊

B
δ

⌋
, M ← ⌊

M
δ

⌋
.

By setting δ small enough, Algorithm 1 can find a strategy that
is arbitrarily close to the subgame perfect equilibrium strategy
of the defender. Formally, we can establish the following result.

Theorem VI.1: Let |Palg| denote the defender’s cost ob-
tained by Algorithm 1 and |P �| the optimal cost. Given ρstep

and the rounding parameter δ, we have |Palg |
|P�| ≤ 1 + (ρstep +

δ)O(N).
Proof sketch: If the set G is empty in the optimal solution P �,

Algorithm 1 computes the optimal payoffs for the defender by
solving (17). Then, we have maxd,f Val(d, f) = P �. Therefore,
|Palg |
|P�| = 1. If the set G is not empty in the optimal solution P �,

we first bound the performance loss due to ρstep. Denote ρ� as the
optimal ρd for computing P � and ρ′ the first ρd that is greater
than ρ� in Algorithm 1. Let m�

i = mi(ρ
�) and m′i = mi(ρ

′).
Let |Pρ′ | refer to the total cost when ρ� increases to ρ′ for the
optimal solution P �. By increasing ρ� to ρ′, each m�

i decreases
to m′i and the total cost increases in two parts. The first part
is due to the decrease of m�

i for all i in F . The second part
comes from sets E and D. Since m�

i decreases, the attacker has
extra budget to attack the nodes in sets E and D, moving these
nodes to sets F and D. For all sets F , D, E, and G above,
we refer to the set allocation in optimal solution P �. Let HF

and HE denote the increase of total cost from the two parts,
respectively. We can bound these two cost differences as HF =∑

i∈F �mi(riαi − CD
i ) and

HE ≤
N∑
i=1

�miαi ·max
i

{
ri(1− αim

′
i)

αim
′
i

}
.

Then, we can bound the total cost as |Palg |−|P�|
|P�| ≤ |Pρ′ |−|P�|

|P�| =
HF+HE

|P�| ≤ ρstepO(N). Find the detailed proof in [33].
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Fig. 2. Effects of varying resource constraints on payoffs. In
both figures, r1 = 2, r2 = 1, w1 = 1.7, w2 = 1.6, CD

1 = 0.5, CD
2 =

0.6, CA
1 = 1, CA

2 = 1.5, B = 0.3 in (a), and M = 0.1 in (b). (a) Payoffs
with varying M . (b) Payoffs with varying B.

Theorem VI.1 provides the performance guarantee of Algo-
rithm 1 showing the tradeoff between performance and the time
complexity. Based on Theorem VI.1, we have the following
corollary.

Corollary VI.1: By setting both ρstep and δ with O( 1
N ), Al-

gorithm 1 can achieve a near-optimal solution and its complexity
is O(N5 BM).

VII. NUMERICAL RESULTS

In this section, we present numerical results for our game
models. For the illustrations, we assume that all the attacking
timesαi are deterministic as in Section VI. We study the payoffs
of both the attacker and the defender and their strategies in
both Nash equilibrium (two-node setting) and subgame perfect
equilibrium (both two-node and five-node settings), and study
the impact of various parameters including resource constraints
B, M , and the unit value ri.

A. Simulations With Selected Parameters

We first study the impact of the resource constraints M and
B on the player’s payoffs in a two-node setting. The results are
given in Fig. 2, where we have plotted both Type 1 and Type 5
NEs3 and subgame perfect equilibria. A Type 5 NE only occurs
when M is small as shown in Fig. 2(a), whereas Type 1 NE
appears whenB is small as shown in Fig. 2(b), which is expected
since B is fully utilized in a Type 1 NE while M is fully utilized
in a Type 5 NE. When the defense budget B becomes large,
the summation of mi does not necessarily equal to B and thus
Type 1 NEs disappear. Similarly, Type 5 NEs disappear for large
attack budget M . In both figures, the subgame perfect equilibria
always bring the defender higher payoffs compared with Nash
equilibria, which is expected.

B. Simulations With Real-World Data

To have a better understanding of the performance of Algo-
rithm 1, we consider a five-node setting and use real-word data
from the National Vulnerability Database [2]. We pick five vul-
nerability incidents about IoT devices revealed by the database.

3There are also Type 2 NEs, which are omitted for the sake of clarify.

Fig. 3. Effects of varying resource constraint M and unit value ri,
where B = 0.2 in (a), B = 0.5 and M = 0.3 in (b). In (b), a random
noise level is added to r1 and r2. (a) Payoffs and strategies with varying
M . (b) Payoffs and strategies with varying noise level.

For each incident, we use their impact score (the potential impact
of the vulnerability), exploitability score (how vulnerable the
thing itself is to attack), vulnerability base score (how critical
the vulnerability is), and attack complexity (low or high) [3]–[7]
as an approximation of the node value, attacking time, defending
cost, and attacking cost, respectively. Specifically, we set node
values as r = [5.9 3.6 5.9 5.2 3.6]. For the attacking times, since
higher exploitability score means easier attack, we take the recip-
rocal and set α = [10/3.9 10/2.8 10/2.8 10/2.8 10/3.9] where
the constant 10 is used for normalization. The vulnerability base
score is utilized to approximate the defending cost by setting
CD = [9.8 6.5 8.8 8.1 7.5]/3, whereas the attacking cost is set
to 2 if the attack complexity is high and 1 otherwise. We study
the effects of varying M and r in Fig. 3(a).

In Fig. 3(a), the attacker’s budget M varies from 0 to 1 and
the defending budget B = 0.2. When M = 0, the defender can
set mi for all i to arbitrary small (but positive) values, so that
the attacker is unable to attack any node, leading to a zero
payoff for both players. As M becomes larger, the attacker’s
payoff increases, whereas the defender’s payoff decreases, and
the defender tends to defend the nodes with higher values more
frequently, as shown in Fig. 3(a)(lower). The defender gradually
stop protecting low-value nodes and move all the resources to
defend node 3. Note that the defending frequency for node 3 is
smaller than that for node 1 at the beginning. This is because
when M is small, the attacker attacks each node with a very
small probability, thus the defender can protect all the nodes at
the same time to prevent big loss. Since r1 = r3 but α1 < α3,
the defender protects node 1 more frequently. However, when
the attacker has enough resources to attack each node with a
much higher probability, it is not beneficial for the defender to
protect other nodes except node 3 since it has the highest node
value and attacking time.
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TABLE IV
RUNNING TIME IMPROVEMENT

In Fig. 3(b), we fixed r3 through r5 and increase r1 and
r2 by adding a random noise uniformly distributed between
[noise_level− 1, noise_level] ∗ 0.1. We vary the noise_level
from 1 to 10. As shown in the figure,m1 andm2 keep increasing
when the noise level becomes larger, whereas the defending
frequencies for all other three nodes decrease due to limited
defending resources, which indicates that the defender should
protect the nodes with higher values more frequently in the
subgame perfect equilibrium. Table IV compares the running
time of Algorithm 1 and that of the corresponding algorithm
in our conference paper [34]. All experiments are conducted
on a desktop with 4-Core Intel i5-4670 K CPU @ 3.40 GHz
and MATLAB R2019a. The same simulation setting, as shown
in Fig. 3(a), is applied with fixed M = 0.2. We observe that
Algorithm 1 is much faster than the original algorithm in our
conference paper and the improvement is more significant in a
larger setting.

VIII. CONCLUSION

In this article, we proposed a two-player non-zero-sum game
for protecting a system of multiple components against a stealthy
attacker where the defender’s behavior is fully observable and
both players have strict resource constraints. We proved that
periodic defense and nonadaptive i.i.d. attack are a pair of best-
response strategies with respect to each other in the space of both
adaptive and nonadaptive strategies. For this pair of strategies,
we characterize the set of Nash equilibria of the game, and show
that there is always one (and maybe more) equilibrium, for the
case when the attack times are deterministic. We further study the
sequential game where the defender first publicly announces its
strategy and design an algorithm that can identify a strategy that
is arbitrarily close to the subgame perfect equilibrium strategy
for the defender. We also provide a full analysis of the algorithm
performance and its complexity guarantee.

APPENDIX

A. Proof of Lemma IV.4

Proof: In order to get the attacker’s best responses against
any defender’s deterministic strategies, we can divide (6) into
N ∗ L suboptimization problems

min
Wi,k

E[min(Wi,k + αi,k, Xi,k)]ri + P (Wi,k < Xi,k)C
A
i

T

s.t.
E[min(Wi,k + αi,k, Xi,k)]− E[min(Wi,k, Xi,k)]

T
≤Mi,k (19)

where
∑N

i=1

∑Li

k=1 Mi,k = M and Mi,k can be arbitrary posi-
tive number. Note that we consider the equivalent minimization
problem by taking the negative of the target function of (3) and
omitting the constant part. We claim that the optimal solution to
(19) is to allocate as much budget as possible to P (Wi,k = 0),
that is

W ∗
i,k =

{
0, w.p. p∗i,k
≥ Xi,k, w.p. 1− p∗i,k

(20)

where p∗i,k equals min
(
1,

Mi,kT
E[min(αi,k,Xi,k)]

)
if

ri(E[min(αi,k, Xi,k)]−Xi,k) + CA
i < 0, and 0 otherwise.

Since Mi,k is any number such that
∑N

i=1

∑Li

k=1 Mi,k = M ,
the optimal solution of (6) also satisfies the same structure
of (20). We then prove our claim. For simplicity, we assume
that Wi,k is a discrete random variable (r.v.), and without loss
of generality, it has the following probability mass function
(p.m.f.):

Wi,k =

⎧⎪⎨
⎪⎩
0, with probability (w.p.) p0
vi, w.p. pi, i = 1 · · ·n
≥ Xi,k, w.p. 1−∑n

j=0 pj

(21)

where n ∈ N such that 0 < v1 < v2 < · · · < vn < Xi,k. The
following proof can be adapted to the continuousWi,k as well by
replacing sums with integrals and p.m.f with probability density
function.

Putting (21) into (19), attacker’s problem can then be con-
verted to the following form:

min
n∑

j=0

pj(ri[E[min(vj+αi,k, Xi,k)]−Xi,k]+CA
i ) +Xi,kri

(22)

with two constraints:
∑n

j=0 pjE[min(αi,k, Xi,k − vi)] ≤
Mi,kT and

∑n
j=0 pj ≤ 1. where v0 = 0.

Let J({p0, . . ., pn}) denote the objective function in (22).
Since ri(E[min(αi,k, Xi,k)]−Xi,k) + CA

i < ri(E[min(vj +
αi,k, Xi,k)]−Xi,k) + CA

i , if ri(E[min(αi,k, Xi,k)]−
Xi,k) + CA

i ≥ 0, J({p0, . . ., pn}) is minimized by setting
pj = 0, ∀j = 0, . . ., n, which implies Wi,k ≥ Xi,k w.p.1.
Such condition describes the case that even if the attacker
attacks the node immediately after it is recovered, its reward
is still less than 0. Therefore, the attacker never attacks.
If ri(E[min(αi,k, Xi,k)]−Xi,k) + CA

i < 0, we claim that
the optimal solution is to allocate as much budget Mi,kT
as possible to p0, that is, we set all pj = 0, 1 ≤ j ≤ n,
and p0 = min(1,

Mi,kT
E[min(αi,k,Xi,k)]

). This is clearly true if

ri(E[min(vj + αi,k, Xi,k)]−Xi,k) + CA
i ≥ 0. Therefore, it

suffices to consider the case when ri(E[min(αi,k, Xi,k)]−
Xi,k)+CA

i <ri(E[min(vj + αi,k, Xi,k)]−Xi,k)+CA
i <0.

To prove the claim, consider an optimal solu-
tion {p0, p1, . . ., pn} to (22). We show that if p0 <

min(1,
Mi,kT

E[min(αi,k,Xi,k)]
), then we can find another optimal

solution {p′0, p′1, . . ., p′n} such that p′0 > p0. We distinguish the
following two cases.

Case 1: p0E[min(αi,k, Xi,k)] +
∑n

j=1 pjE[min(αi,k, Xi,k

− vi)] < Mi,kT . Then by the optimality of {p0, p1, . . ., pn}
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and the assumption that ri(E[min(vj + αi,k, Xi,k)]−Xi,k) +
CA

i < 0, we must have
∑n

j=0 pj = 1. Let j ≥ 1 denote an index
such that pj > 0. Then there must exist a small amount�p > 0
such that p′0 = p0 +�p, p′j = p′j −�p, p′k = pk, ∀k �= 0 and
k �= j is again a feasible solution to (22). We further have

J({p0, . . ., pn})− J({p′0, . . ., p′n})
= �p(ri[E[min(vj + αi,k, Xi,k)]−Xi,k] + CA

i )

−�p(ri[E[min(αi, Xi,k)]−Xi,k] + CA
i )

= �pri(E[min(vj + αi,k, Xi,k)]− E[min(αi,k, Xi,k)]) ≥ 0.

Case 2: p0E[min(αi,k, Xi,k)] +
∑n

j=1 pjE[min(αi,k, Xi,k −
vi)] = Mi,kT . Again let j ≥ 1 denote an index such
that pj > 0. Then there must exist a small amount
�M > 0 such that p′0 = p0 +

�M
E[min(αi,k,Xi,k)]

, p′j = pj −
�M

E[min(αi,k,Xi,k−vj)]
, p′k = pk, ∀k �= 0 and k �= j is a feasible

solution to (22). We further have

J({p0, . . ., pn})− J({p′0, . . ., p′n})

=
�M(ri[E[min(vj + αi,k, Xi,k)]−Xi,k] + CA

i )

E[min(αi,k, Xi,k − vj)]

− �M(ri[E[min(αi,k, Xi,k)]−Xi,k] + CA
i )

E[min(αi,k, Xi,k)]

=
�M

E[min(αi,k, Xi,k − vj)]
(rivj − riXi,k + CA

i )

− �M

E[min(αi,k, Xi,k)]
(−riXi,k + CA

i ) ≥ 0.

�

B. Proof of Theorem IV.3

Proof: When the attacker’s strategy is an ergodic Markov
chain, the pi,k’s time-average distribution is the same as its
steady-state distribution. Therefore, the defender’s problem (1)
can be transferred to the following:

max
{Xi,k},Li

lim
T→∞

E

[ N∑
i=1

(
− LiC

D
i + Tri
T

+

(
∑Li

k=1 E[pi,k] min(αi,k, Xi,k) + (1− E[pi,k])Xi,k) · ri
T

)]
(23)

with the same resource constraint in (2) where the expectation in
the numerator is with respect to the steady-state distribution of
pi,k. We find that (23) is the same as (1) if we set W �

i,k = 0 with
probability E[pi,k] and Wi,k =∞ elsewhere. Here, E[pi,k] is
the expected value of pi,k’s steady-state distribution. Therefore,
based on Lemma IV.1 and Theorem IV.1, we know that the
periodic strategy is defender’s best response. �

C. Proof of Lemma VI.3

Proof: Suppose the set allocation and ρd are fixed, which
means md and mi ∀i are also fixed. According to Lemma VI.2,

we can now convert (15)–(16) to the following problem:

max
mi,i∈F

∑
i∈F

[mi(riαi − CD
i )− ri]−

∑
i∈G

ri −
∑
i∈E

miC
D
i

+md(prdαd − CD
i )− prd (24)

with constraints:
∑

i∈F mi ≤ B −∑i∈E mi −md,∑
i∈F αimi + pαdmd ≤M and 0 ≤ mi ≤ mi ∀i ∈ F , where

p = min{1, M−∑i∈F αimi

αdmd
}.

Case 1: If M−∑i∈F αimi

αdmd
≤ 1, we put p =

M−∑i∈F αimi

αdmd
back

into the target function of (24) and convert it to

max
mi,i∈F

∑
i∈F

[mi(riαi − CD
i )− ri]−

∑
i∈G

ri −
∑
i∈E

miC
D
i

+
M −∑i∈F αimi

αdmd
rd(αdmd − 1)−mdC

D
d (25)

with constraints:
∑

i∈F mi ≤ B −∑i∈E mi −md and 0 ≤
mi ≤ mi ∀i ∈ F . It is easy to see that (25) is a fractional
knapsack problem. Thus, there is at most one fractional variable,
which means at most one mi < mi.

Case 2: If M−∑i∈F αimi

αdmd
> 1, the attacker’s budget is not fully

utilized and all p�i in (15) equals 1. Thus, the sets D and E
are empty. Now suppose there exist two nodes j and k in F
with mj < mj and mk < mk. Without loss of generality, by
assuming rjαj − CD

j ≥ rkαk − CD
k , we can always increase

the defender’s payoff by decreasing mk and increasing mj until
either mj = mj or mk = 0. If mk = 0, node k is in set G. If
the attacker’s budget is fully utilized (as in Case 1), we cannot
guarantee the new payoff by decreasing mk and increasing mj

is always bigger, sinceαk may be much smaller thanαj , making
the increase of mj is very small due to limited attacker’s budget.

Above all, we can claim that there exists an optimal solution
with at most one node in set F with mi < mi. �
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