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a b s t r a c t

In this paper, we propose a closed queueing network model for performance analysis of electric vehicle
sharing systems with a certain number of chargers in each neighborhood. Depending on the demand
distribution, we devise algorithms to compute the optimal fleet size and number of chargers required
to maximize profit while maintaining a certain quality of service. We show that the profit is concave
with respect to the fleet size and the number of chargers at each charging point. If more chargers are
installed within the city, we show that it can not only reduce the fleet size, but it also improves the
availability of vehicles at all the points within a city. We further show through simulation that two
slow chargers may outperform one fast charger when the variance of charging time becomes relatively
large in comparison to the mean charging time.

© 2022 Elsevier Ltd. All rights reserved.
1. Introduction

Many governments across the world are emphasizing the de-
arbonization of transportation to curb greenhouse gas emissions
nd pollution associated with transportation industry. With the
ise in sharing economy within transportation sector, there is a
hift from personally-owned modes of transportation to shared
ehicles (using ride-hailing services, bikes, and scooters, etc.).
hese service providers are now commonly referred to as trans-
ortation network companies (TNCs). TNCs provide on-demand
ransportation services to the passengers, increases vehicle uti-
ization, and enhances overall convenience to the passengers.
ncorporating electric vehicle within TNCs is widely considered
o be a solution to achieve long-term sustainable transportation
bjectives.
Given the high annual miles traveled by vehicles in shared

leets, Pavlenko, Slowik, and Lutsey (2019) estimates that the per
ile operating cost of all battery electric or hybrid vehicle fleets is
uch lower than that of the conventional ones. Even without the
urrent purchasing incentives, long range battery electric vehicles
BEVs) will become the most economically attractive technology
or ride-hailing operations by 2023–2025 (assuming the cost of
attery packs go down by 35%). Another recent research suggests
hat the operating and ownership expenses of electric vehicles
ith high annual miles driven are significantly lower than those
f conventional vehicles (Weldon, Morrissey, & O’Mahony, 2018).
owever, charging electric vehicles takes a non-trivial amount of
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time (depending on the state of charge of the vehicle). Moreover,
the cost of installing and maintaining charging infrastructure is
substantial (installation of a charging station could cost anywhere
between $ 10–50 thousand and reserving parking spots for elec-
tric vehicles could be costly in high population density areas).
Consequently, for the adoption of electric vehicle sharing system,
it is important to determine based on the demand distribution:

(1) What should be the optimal fleet size, since a large fleet of
EVs results in improved availability, reliability, and better
quality of service, but it also costs more to maintain.

(2) What should be an optimal number of chargers at stations
across the city. A large number of charging infrastructure
would improve availability and quality of service, but it has
high recurring costs.

We formulate these two problems as optimization problems in
which the movement of the vehicles across a city is modeled
using a closed queueing network model. We devise algorithms
to solve these optimization problems. We also shed some light
on the nature of charger (fast vs. slow) needed for improving the
quality of service.

1.1. Literature review

Vehicle sharing systems offer customers to rent car for a
short period of time (Ataç, Obrenović, & Bierlaire, 2021). These
vehicle sharing systems vary in terms of demand type (one-
way Kaspi, Raviv, & Tzur, 2014 vs. round-trip Lee, Quadrifoglio,
Meloni, et al., 2016), parking location (free-floating Weikl & Bo-
genberger, 2015 vs. station-based Lee et al., 2016), reservation

horizon (advanced Kaspi et al., 2014 vs. last-minute Weikl &
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ogenberger, 2015), relocation capability (Illgen & Höck, 2019)
passive vs. active vs. no relocation), and vehicle engine type
internal combustion engine Weikl & Bogenberger, 2015 vs. elec-
ric Boyacı, Zografos, & Geroliminis, 2015). In this paper, we focus
n strategic decisions in the one-way station-based last-minute
lectric vehicle sharing system.
A significant amount of work has focused on the strategic

ecisions for electric vehicle service. We refer the readers to a
urvey (Shen, Feng, Mao, & Ran, 2019) and review (Kumar & Alok,
020) for a comprehensive overview. One important decision is
trategically planning EV charging infrastructures, to meet local
harging demands and reduce social costs. Most works focus
n the flow-based models (Hodgson, 1990), where demand is
roportional to the traffic flow that will pass by the charging
acilities. For example, Huang, Li, and Qian (2015) developed a
ultipath charging infrastructure location model, where travelers
ould deviate from the shortest path in an origin–destination pair
nd EVs with limited range can be charged en route to their
estinations.
Compared with consumer passenger vehicles, charging infras-

ructures for shared taxi fleet is more challenging, due to the
tochastic nature of the problem. e.g., the arrival of demand
EV) is stochastic and the charging time varies from vehicle to
ehicle. Jung, Chow, Jayakrishnan, and Park (2014) proposed a
ew charger location algorithm for shared taxi fleet, which fea-
ures stochastic demand occurring dynamically over time and
harging queueing delay for the service fleet. Yang, Dong, and Hu
2017) presented a data-driven optimization approach to allocate
hargers for BEV taxi. An M/M/x/s queueing model is used to
apture the charging congestion and demand arrivals. However,
hese works are based on open queueing network (EVs arrive at
he queueing network, receive charging, and departure), where
he number of vehicles is ignored and other operations for shared
V are not captured, such as waiting for passengers and traveling
n roads. Such Markov chain based models are also utilized
n car-sharing (Repoux, Kaspi, Boyacı, & Geroliminis, 2019) and
ike-sharing systems (Raviv & Kolka, 2013).
Closed queueing network (Baskett, Chandy, Muntz, & Palacios,

975), overcomes above issues through fixing the number of
V in the system and leveraging the interactivity in the sys-
em, i.e. EVs are modeled as picking up passengers, traveling,
possible) charging, and then picking up new customers. George
nd Xia (2011) first proposed a closed queuing network based
odel for a vehicle rental system, but not for EVs. It considers
ptimal fleet sizing with additional constraints on quality of ser-
ice parameters such as availability. Fanti, Mangini, Pedroncelli,
nd Ukovich (2014) considered three different types of electric
ehicles in a closed queueing network model for EV sharing sys-
em: fully charged, partially charged and out of charge. Iglesias,
ossi, Zhang, and Pavone (2019) cast an autonomous mobility-on-
emand system within the framework of BCMP closed queueing
etworks, which can capture both congestion effects and vehicle
harging. However, they assume that the charging infrastructure
t each site is unlimited, which is not realistic. Unlike the simula-
ion method, we also provide theoretical results on the properties
f the closed queueing EV sharing model, which could provide
igh-level insights for strategic decisions.
.2. Key contributions of this paper

Our research is motivated by the real world constraint of
aving finite number of chargers in the city. First, we model
he one-way station-based EV sharing systems using a closed
CMP queueing network model with finite number of chargers.
hrough this model, we are able to highlight the challenges
n strategic decisions, such as fleet sizing and allocating finite
umber of chargers in the city to maximize profit, as well as
2

charger selection. Secondly, since different neighborhoods may
have different requirements on vehicle availability and may have
different numbers of chargers, we propose optimization formula-
tions to determine the optimal fleet size and charger allocation to
maximize profit. Concavity of profit with respect to fleet size and
the number of chargers is established when the charging time dis-
tribution is exponential. We further devise an algorithm to solve
the charger allocation problem in an iterative fashion. Thirdly, we
show that under a fixed budget, two slow chargers outperform
one fast charger, whose charging time is halved compared with
slow chargers, if the variance of charging time becomes relatively
large. An approximation method is proposed for general passen-
ger inter-arrival time. Finally, large-scale simulations validate our
theorems and approaches.

1.3. Outline of the paper

The rest of the paper is organized as follows. The system
model is presented in Section 2. Section 3 reviews some results
on invariant distribution and throughput of closed queueing net-
works. The optimal fleet sizing problem is formulated and solved
in Section 4. In Section 5, we devise a greedy approach based
heuristic algorithm for charger allocation based on marginal allo-
cation algorithm of Fox (1966). The comparison between one fast
and two slow chargers is discussed in Section 6. To reduce the
computational complexity for large-scale simulations, the mean
value analysis is reviewed in Section 7. We also discuss in this
section an approximation approach for computing the stationary
probability distribution of the system for the case of general
passenger inter-arrival time distribution. Section 8 presents the
numerical results for both optimization problems for a 60-node
city network. Finally, Section 9 concludes the paper and presents
directions for future research.

2. System modeling

In this section, we model an electric vehicle sharing sys-
tem using the framework of Baskett, Chandy, Muntz, and Pala-
cios (BCMP) closed queueing network (Baskett et al., 1975). This
model for vehicle sharing system is adopted in Iglesias et al.
(2019). Suppose there are M ∈ N electric vehicles in one city,
which can offer services to passengers and are routed around to
serve stochastic demands at different places. Similar to George
and Xia (2011), from a virtual service view, we model this sys-
tem as a closed network with respect to vehicles, i.e., vehicles
are routed within this network and receive ‘service’ at different
nodes. The number of vehicles remains constant and there is no
vehicle entering or leaving the network.

As shown in Fig. 1, we use three different queues to model
three processes: departure, charging and travel. To be specific,
each station comprises a single-server queue (SS) node (depar-
ture) and a finite-server queue (FS) node (charging). The travel
between two stations is considered as an infinite-server queue
(IS) node. In the following, we explain the system from view of
the passengers and the electric vehicles, respectively.

2.1. Passenger

Assume that there are several stations within a city. Each
station has a departure point (pick-up node) and a charging point
(drop-off node). We denote the set of departure points as S and
the set of charging points as F . At each departure point i ∈ S,
assengers arrive according to a Poisson arrival process with
ate αi > 0. If there is at least one electric vehicle waiting at
eparture point i, the passenger will take the first electric vehicle
n line and start traveling without any waiting time. If there is no
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Fig. 1. Electric Vehicle Sharing System, in which finite server queues denote
harging stations, single server queues denote the passenger pickup stations,
nd infinite server queues represent road networks.

lectric vehicle at node i, then the passenger leaves the system
mmediately and takes some other mode of transportation. Thus,
here is a ‘‘passenger loss’’ in this situation; the passengers do not
orm a queue at node i.

Before departing from point i ∈ S, each passenger selects
his/her destination as the charging point j ∈ F with probability
pij, where

∑
j∈F pij = 1 for each i ∈ S. We assume that the travel

time from node i and to j follows a general distribution with mean
Tij.

Passengers exit this system as soon as they arrive at the
charging point j. For example, if a passenger wants to travel from
station 1 to station 2, as shown in Fig. 1, he/she will depart from
node 2 and enter node 3. Once the passenger leaves node 3 and
arrives at node 6, then the one-way mobility-on-demand service
is finished. If the vehicle does not need charging (discussed in
Section 2.2.3), it will be parked in lots. If the vehicle needs
to be charged, then one staff at this station will handle the
connection/disconnection procedure and there are two possible
cases. Case I: there is at least one charger available and the staff
will connect it with one empty charger. Case II: all chargers are
occupied and the vehicle will be put in the waiting stage. Once a
vehicle is fully charged, the staff will unplug the vehicle and plug
in one of the waiting vehicles. We assume the charging cable is
long enough and there is sufficient parking space.

2.2. Electric vehicles

Electric vehicles are routed among three types of queues in
the network according to probability rij (defined later by (1)). We
ssume that the transfer from one queue to another is instant.
rom a virtual service view, electric vehicles form queues and
eceive services when they are waiting for passengers (SS), trav-
ling between stations (IS), and charging at charging points (FS).
harging can also be skipped according to a certain probability,
nd in this case, electric vehicles directly go to the departure
oints after leaving the IS nodes.

.2.1. Single Server (SS) queues — Departure
At each departure point, vehicles queue up to wait for the ar-

ival of the next passenger. If there is no vehicle at the departure
oint, then any passenger who arrives would leave immediately.
e view node i ∈ S as a First-Come-First-Serve (FCFS) single

erver (SS) queue, whose service rate is the passenger’s arrival
ate at station i: αi, i.e., the service time is exponentially dis-
ributed with mean 1 , which is the same as the inter-arrival time
αi

3

Fig. 2. Single Server (SS) queue: electric vehicles queue up, waiting for incoming
passengers. Passenger will always pick the first vehicle in line if there are some
vehicles waiting.

of passengers at this point. As shown in Fig. 2, if there are at least
two electric vehicles at the departure node i ∈ S, one vehicle is
being served in the server of the queue and others are waiting in
the queue.

Once there is an arrival of a new passenger, the vehicle in
the server will finish its service and leave this node carrying one
passenger, i.e., the arriving passenger will pick the first vehicle
in the line. When the server is idle, the second vehicle will enter
the server and start its service. This is similar to an airport taxi
service when there is only one line. The first taxi is always on
the server and it departs once a passenger arrives, the second taxi
becomes the first one after the departure following the first-come
first-serve discipline.

2.2.2. Infinite Server (IS) queues — Travel
After departing from node i ∈ S, each vehicle will go towards

its destination j ∈ F selected by passenger with probability pij,
here

∑
j pij = 1 and pii = 0. We use an infinite-server (IS) queue

connecting the origin and destination to model the travel time of
passengers. We assume that the travel time is independent across
all the passengers and follows a general distribution with mean
Tij, which is associated with the distance between departure point
i and charging point j.

2.2.3. Direct path — No charging
After the passenger is dropped off at the destination, the

electric vehicle may need to be charged. Accordingly, we assume
that with probability p̄ij, the vehicle decides to be charged at node
j ∈ F for i ∈ I , and with probability 1− p̄ij, it goes directly to the
following SS queue without waiting or charging.

2.2.4. Finite server (FS) queues — Charging
If the vehicle decides to be charged, we use an FCFS finite

server (FS) queue to model the charging process at charging point
j ∈ F . As both chargers and spaces are limited at each station,
we assume that the maximum number of vehicles charged si-
multaneously is vj at charging point j, i.e. there are vj chargers
t charging point j. All vehicles that decide to be charged at
hat node forms an FCFS queue to wait for charging. To sim-
lify the analysis, we assume that the charging time follows an
xponential distribution with mean tj for j ∈ F . For a general
harging time distribution, the exact solution is still an open
roblem (Gupta, Harchol-Balter, Dai, & Zwart, 2010) in queueing
heory. We provide an insight for approximating it in Section 7.3.
fter the charging process is over, charged electric vehicles will
nter the following single server queue to wait for the passengers.

.3. Closed queueing network

In this network, we have considered three types of nodes:
ingle server queue (S), Infinite server queue (I) and Finite server
ueue (F ). Let N = S ∪ I ∪ F denote the set of all nodes, and
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enote N = |N |. For each node i ∈ N , let Parent(i) be the direct
origin of node i, i.e., as shown in Fig. 1, Parent(7) is node 6 and
Parent(2) is node 1.

The routing matrix of vehicles between nodes can be written
as follows:

rij =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

pil, i ∈ S, j ∈ I, l ∈ F ,

i = Parent(j), j = Parent(l)
p̄ij, i ∈ I, j ∈ F , i = Parent(j)
1− p̄ik, i ∈ I, k ∈ F , j ∈ S,

i = Parent(k), k = Parent(j)
1, i ∈ F , j ∈ S, i = Parent(j)
0, otherwise

(1)

where the first case means that, after selecting the destination
l ∈ F with probability pil, passengers enter the associated roads
and begin traveling at node j ∈ I following departure from node
i ∈ S. The second case indicates that vehicles will choose to
charge at charging point j ∈ F with probability p̄ij for i ∈ I
after exiting the roads i ∈ I . The third case denotes that vehicles
will move directly to the departure point j ∈ S after exiting the
roads i ∈ I with probability 1 − p̄ik, which skips charging at
k ∈ F . The fourth case indicates that all vehicles will move to
the departure points S if they finish the charging process within
the same station.

When there are ni ∈ {0, . . . ,M} vehicles at node i ∈ N ,
he service rate at each node (the average number of vehicles
inishing service and leaving this node per unit time) is as follows:

i(ni) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
αi ni ≥ 1, i ∈ S
0 ni = 0, i ∈ S
ni
Tjl

j ∈ S, i ∈ I, l ∈ F , j = Parent(i), i = Parent(l)
min{ni,vi}

ti
i ∈ F

(2)

where the first and second cases mean that, if there is at least
one vehicles at station, the arrival and departure process of pas-
sengers, with rate αi, and does not depend on the number of
vehicles, ni, at this node. The third case indicates that all travel
times are independent from each other and Tjl is the mean travel
ime from departure point j ∈ S and charging point l ∈ F . The
ourth case means that if the number of vehicles willing to be
harged ni is larger than the number of chargers vi at charging
oint i ∈ F , they need to form a FCFS queue to wait until a vehicle
inishes charging and the charger becomes available, while ti is
he average charging time at charging point i ∈ F .

. Closed queueing network analysis

In this section, we introduce some results in a closed queueing
etwork and in particular, the BCMP network. In our model from
he last section, SS queues and FS queues fall into the type-
queues and IS queues belong to the type-III queue in BCMP
etwork (Gelenbe & Pujolle, 1998). Therefore, this model falls into
he class of closed BCMP network, which has the product-form
olution to the stationary distribution, because these queues are
uasi-reversible (Balsamo, 2000).
Given the fleet size M , i.e. there are M electric vehicles routing

ithin the network and no electric vehicle enters or leaves the
ystem, the associated continuous-time Markov process has the
ollowing space

=

{
(n1, n2, . . . , nN ) :

N∑
ni = M, ni ∈ N

}
,

i=1

4

where ni is the number of vehicles at node i ∈ N . Since the
ransition from one node to another is instant in our model, every
ehicle must be at one node i ∈ N .
Let λ = (λ1, . . . , λN ) denote the relative throughput at node
∈ N , which is defined as the relative average number of vehicles
assing through the node per unit time. Since there are a fixed
umber M of vehicles routing among the nodes, we have the
ollowing constraint (global balance equations):

i

∑
k∈N

rik =
∑
j∈N

λjrji, ∀i ∈ N , (3)

here the probability of vehicle routing from node i to node j is
ij in (1). With another constraint

∑
i∈N λi = 1, we can find the

nique solution to (3) with respect to λ, which is also called visit
atio (Balsamo & Marin, 2007, p.53).

It now follows from Baskett et al. (1975) that the stationary
robability distribution of the resulting continuous time Markov
rocess P(n1, n2, . . . , nN ) has the following product form :

(n1, . . . , nN ) =
1

G(M)

N∏
i=1

λ
ni
i∏ni

k=1 ui(k)
, (4)

here G(M) is the normalization constant in order to make its
ummation equal to one. A computational method to compute
(M) is discussed in Section 7.1.
From operational perspective, throughput and availability are

he key performance indicators for the overall system. Through-
ut captures how many passengers are served per unit time.
vailability is defined as the probability that at least one vehicle
s available at the departure point. Due to the product form of
he invariant distribution, these two quantities can be computed
n closed form, and the expressions are given in the following
emma.

emma 1. In a closed BCMP queueing network with M vehicles
nd N nodes, the throughput and availability are as follows

1. The throughput of each node i ∈ N (the average number of
vehicles passing through node i per unit time) is

Λi(M) = λiΛ(M), (5)

where the system throughput of the network is

Λ(M) =
G(M − 1)
G(M)

. (6)

2. The availability at departure points S, i.e., the probability that
node i ∈ S has at least one vehicle is

Ai(M) = P{ni ≥ 1} = 1− P{ni = 0} =
λi

αi
Λ(M). (7)

Proof Sketch: The throughput in closed queue network is given
by Serfozo (2012, p. 27) where λi is the visit ratio defined in (3)
and G(M) is the normalization factor defined in (4) and (17). The
availability is defined as the probability of at least one vehicles
at departure point i ∈ S, which equals to 1 − P{ni = 0}. The
probability of zero vehicles at departure point i ∈ S is computed
in Lavenberg (1983, p. 128). We refer the reader to Appendix A
for further details.

In (7), with a high vehicle arrival rate λi (high supply) and a
ow passenger arrival rate αi (low demand) at departure point i,
he service availability Ai(M) will be relatively high. As defined
efore, we assume that there is a ’passenger loss’ if there is
o electric vehicle at departure point when a passenger arrives,
.e., the passenger leaves this system and try other modes of
ransportation. We show below that the probability of loss of
passenger at any time is related to the notion of availability

ntroduced above.
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emma 2. If the fleet size is M, then the probability that there is a
‘passenger loss’’ at departure point i ∈ S is 1− Ai(M), where Ai(M)
is defined in Eq. (7).

Proof. From Poisson arrival see time average (PASTA) (Wolff,
1982), the probability of the state as seen by an outside random
observer is equal to the probability of the state seen by an
arriving passenger under Poisson arrival. Recall that 1 − Ai(M)
is the probability that an outside observer will find no vehicle at
departure point i ∈ S. Due to PASTA property, this is also the
probability that a newly arrived passenger will find no vehicle at
departure point i. This is precisely the probability of a passenger
loss at node i. □

In the following, we discuss the insensitivity property in the
product form networks (Balsamo, 2000, Section 3.4), which shows
that the stationary distribution of the network P(n1, n2, . . . , nN )
does not depend on the variance of service time distribution at
infinite server nodes (IS), i.e., if the variance of travel time dis-
tribution between stations is changed, the average performance
metrics (throughput, average waiting time, average queue length)
remains the same.

Lemma 3. Consider a closed BCMP network introduced above.
Let ξ = (ξi)i∈I denote the travel time distribution of the vehicles
in the infinite server node i ∈ I , and let t̄ξi be the mean of
the distribution ξi. Let Pξ (n1, n2, . . . , nN ) denote the corresponding
stationary distribution. If ξ ′ is another travel time distribution such
that t̄ξ ′i = t̄ξi , then Pξ = Pξ ′ .

Proof. The result follows from Chandy, Howard, and Towsley
(1977, Corollary 4.1 & Theorem 6) via station balance. This prop-
erty holds because units receive service immediately upon enter-
ing the queue and their wait times are zero. □

A consequence of the above result is that the stationary dis-
tribution is dependent only on the mean of the service time dis-
tribution for infinite server queues; the precise distribution does
not matter. As the average performance metrics (throughput,
average waiting time, average queue length) can be derived from
stationary distribution P , they are also independent of service
time distribution for infinite server queues.

Furthermore, we can extend the insensitivity property to finite
server queues (FS) if the number of vehicles M is less than
or equal to the number of chargers at finite server queues vi.
Intuitively, when the condition M ≤ vi holds, the queue i behaves
as same as an infinite server queue, therefore the stationary state
distribution only depends on the mean service time at finite
server queue i.

Lemma 4. In closed BCMP network, if M ≤ vi, i.e., the number
of vehicles in the network is equal to or less than the number
of charger at node i ∈ F , then the stationary state distribution
P(n1, n2, . . . , nN ) depends on the service time distribution at finite
server queue i only through its mean.

Proof. This lemma follows from Baskett et al. (1975, p.250 Con-
dition 3) and its Section 4.1, where only the mean service times
appear in P(n1, n2, . . . , nN ) and any service time distribution with
the same mean yields the same results as exponential service
time distribution. □

4. Optimal fleet sizing

From the view of a car-sharing operator, one critical variable
is the size of an electric fleet, before launching service in one
city. In this section, we want to develop a profit maximization
5

problem with operating cost, by controlling the fleet size, while
maintaining a certain quality of service. Ref. George and Xia
(2011) considers such a fleet sizing problem for gasoline vehicles
with exponential travel time distribution. We extend it to a
more general case for EVs with any travel time distribution, a
finite number of chargers, convex operating cost function and
location-specific availability requirements.

As service providers can only make money when vehicles are
traveling, we model its total revenue per unit time as∑

i∈I Λi(M)zi, where zi is the revenue per-service (one-way
charge) when vehicles are in IS nodes i ∈ I . Λi(M) is the
throughput of node i, i.e., the average number of service finished
at node i per unit time. Besides, we define the operating cost
(salary, maintenance, etc.) per unit time as a convex (including
linear) increasing function g(M) with respect to the fleet size M .

As there are various requirements of availability at different
places (e.g., high availability at airports and downtown), we de-
fine ϵ = (ϵ1, . . . , ϵs) as the quality of service requirement in
the system. At each departure point i ∈ S, the availability Ai(M)
defined in (7) is greater than or equal to 1− ϵi.

From a steady-state view of the system, we want to maximize
the profit by controlling the fleet size M , while maintaining a
certain quality of service Ai(M). The optimization problem can be
formulated as follows:

max
M∈N

f (M) =
∑
i∈I

ziΛi(M)− g(M) (8)

s.t. Ai(M) ≥ 1− ϵi, ∀i ∈ S (9)

In the next two lemmas, we show that the objective function f is
concave and that the above optimization problem is feasible. For
a function g : N→ ℜ defined over the space of natural numbers,
it is said to be concave (Shanthikumar & Yao, 1988b) if

f (M)+ f (M + 2) ≤ 2f (M + 1) for all M ∈ N.

Lemma 5. The objective function f : N→ R is concave in M.

Proof Sketch: For the system under exponential travel time dis-
tribution without the charging stations, this result is established
in George and Xia (2011, Theorem 2, p. 202). We show that es-
sentially the same argument holds for our case with the charging
stations and any travel time distribution in Appendix B, where
we add the FS queue and extend the travel time distribution from
exponential to any distribution.

In the following lemma, we show that, if there are more
vehicles in the system, the availability at every departure point
will increase.

Lemma 6. The availability function Ai(M) at each departure point
i ∈ S is non-decreasing with M.

Proof. From the first part of proof in Lemma 5 and (7) Ai(M) =
λi
αi

Λ(M), we find that Ai(M) is non-decreasing with M . □

Therefore, if there exists Mϵi such that Ai(M) ≥ 1 − ϵi holds
for M ≥ Mϵi , let Mϵ = maxi∈S Mϵi , we can conclude that the
constraint (9) is satisfied for all M ≥ Mϵ .

Theorem 7. If g(M)→∞ as M →∞, the optimization problem
above either has a unique solution or has multiple adjacent solutions.

Proof. Take the backward discrete derivative as

∆f (M) = f (M)− f (M − 1)

As Λ(M) is upper bounded from (7) and g(M)→∞ as M →
∞, we have f (+∞)→−∞ since f (M) = Λ(M)

∑
z λ − g(M).
i∈I i i
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Since f is concave from Lemma 5, f (M) is decreasing when
is sufficiently large, then there exists at least a critical point,

uch that either (i) ∆f (M1) > 0 and ∆f (M1 + 1) < 0, or (ii)
f (M2) = f (M2 + 1) = · · · = f (M2 + k− 1) = 0 for a constant k.
hen M∗ = M1 in the first case, or M∗ = [M2−1, . . . ,M2+k−1]
n the second case. □

From the solution provided in the proof above, we find that the
ptimal fleet size M∗ is determined by various parameters: rout-
ng probability matrix rij, service rate ui(ni), revenue per service
i, fleet operating cost g(M) and quality of service requirement

ϵ. In Section 8, we show through numerical simulation the effect
of these parameters on the optimal fleet size. We summarize the
procedure to find the optimal fleet size in Algorithm 1.
Algorithm 1: Optimal Fleet Sizing

Input : f (M), Ai(M), and ϵi for all i ∈ S, left offset n = 0,
right offset k = 1

Output: M∗

1 for M ←− 1 to∞ do
2 if Ai(M) ≥ ϵi, ∀i ∈ S then
3 if ∆f (M) = 0 then
4 if Ai(M − 1) ≥ ϵi, ∀i ∈ S then
5 n = 1
6 end
7 for k←− 1 to∞ do
8 if ∆f (M + k) < 0 then
9 return [M − n,M + k− 1]

10 end
11 end
12 end
13 if ∆f (M + 1) < 0 then
14 return M;
15 end
16 end
17 end

Remark 8. This algorithm provides a line search rather than
isection to utilize the efficient mean value analysis in Section 7.2
or availability and avoid large computation for f (M) when avail-
bility condition is not satisfied.

. Charger allocation

In practice, there are usually very limited spaces for charging
n the downtown area (the rent is high) and building charging
nfrastructure takes a non-trivial amount of money and time. As
result, the service provider needs to decide on the location of

he charging stations and the number of chargers to be installed
t each charging station. Intuitively, if more chargers are built,
lectric vehicles will spend less time waiting or driving around
ooking for unoccupied chargers, which leads to more availability.
n the other hand, building and operating more chargers will
ncrease operating costs. Therefore, there is a trade-off between
uality of service and operating cost.
We model it as a profit maximization problem, by controlling

, where V = (v1, v2, . . . , vf )T is the vector of the number of
hargers at each charging point i ∈ F . Throughout this section, we
fix the fleet size toM and consider the throughput and availability
as a function of V , i.e. Λ(V ) and A(V ) are short for Λ(V ,M)
nd A(V ,M). Towards this end, by a slight abuse of notation, we
et the throughput at node i be denoted by Λi(V ), the system
hroughput be denoted by Λ(V ), and the availability by Ai(V ).

Let V̂ = (v̂1, . . . , v̂f ) be the maximum number of chargers
llowed at each point due to limited space or power constraint.
6

We further assume that all chargers are identical and have the
same charging speed in this section, i.e., for mean charging time
defined in (2), we have ti = tj ∀i, j ∈ F .

Let zi be the average revenue per service at node i ∈ I . We
further assume that there is a penalty of βk dollars if there is a
passenger loss, i.e., passenger finds no vehicle at departure point
k ∈ S and leaves the system. From Lemma 2, the penalty per
unit time at node k is βkαk(1− Ak(V )), where αk is the passenger
arrival rate. Let ci be the average cost for maintaining one charger
at charging node i ∈ F per unit time, which captures different rent
and electricity rates at various places. Thus, the operating cost of
chargers is cjvj at charging point j ∈ F . The resulting optimization
problem can be formulated as follows:

max
V∈NF

∑
i∈I

Λi(V )zi −
∑
k∈S

βkαk(1− Ak(V ))−
∑
j∈F

cjvj (10)

s.t. V ≤ V̂ (11)

where the objective function is the revenue minus penalty due to
loss of a passenger and the operating cost. We want to maximize
it by controlling the number of chargers V at various charging
points. The constraint means that the number of chargers at each
charging point i ∈ F is upper bounded by v̂i.

We now simplify the objective function. Similar to (6) in
Lemma 1, we define the system throughput under a fixed M as

Λ(V ) =
G(M − 1, V )
G(M, V )

, (12)

where G is the normalization constant introduced in (4). There-
fore, following (5), the actual throughput of each node i ∈ I
is

Λi(V ) = λiΛ(V ).

Using (7), the above optimization problem can be rewritten as

max
V∈NF

h(V ) := Λ(V )Z̄ −
∑
j∈F

cjvj −
∑
k∈S

βkαk (13)

s.t. V ≤ V̂ (14)

where Z̄ is independent from V and defined as follows,

Z̄ =
∑
i∈I

λizi +
∑
k∈S

λkβk (15)

Let ej ∈ {0, 1}f denote the unit vector with 1 along the jth
dimension and 0 otherwise. In the following theorem, we show
the concavity of objective function with respect to vj, the number
of chargers at charging point j, for all j ∈ F .

Theorem 9. The following holds:

1. The map vj ↦→ Λ(V ) is an increasing concave function for all
j ∈ F .

2. The objective function h(V ) satisfies h(V ) + h(V + 2ej) ≤
2h(V + ej) for all j ∈ F .

3. The map vj ↦→ Ai(V ) is an increasing concave function for all
i, j ∈ F .

Proof Sketch: We first prove the first statement when the travel
time distributions along the infinite server nodes are exponential.
We then invoke Lemma 3 to conclude the first statement. This
immediately yields the other two assertions since both h(V ) and
Ai(V ) are linear with respect to Λ(V ). See Appendix C for more
details.

This third part of the theorem points towards an interesting
property of the network: adding chargers at any charging point
will increase the system throughput and the availability of any
departure point in the system. Therefore, service providers can
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irstly allocate chargers to the charging points which can bring
igh system throughput increment at a low cost.
We now outline an algorithm, proposed in Section 4 of Shan-

hikumar and Yao (1988a), that computes an approximately opti-
al charger allocation in Algorithm 2. This algorithm is inspired
y the marginal allocation algorithm of Fox (1966). The under-
ying idea for this algorithm is to identify the location where
dding one more charger leads to the maximum increment in
he profit. This process is continued until either the increment
ecomes negative or the upper bound is reached.

Algorithm 2: Charger Allocation Algorithm

Input : h(V ), A(V ), V̂
Output: V ∗

1 k = 1, V k
= (1, 1, . . . , 1), F = {1, 2, . . . , f };

2 while V k
≤ V̂ do

3 if vk
j = v̂j then

4 F ←− F − {j};
5 end
6 m = maxj∈F h(V k

+ ej)− h(V k) ;
7 j∗ = argmaxj∈F h(V k

+ ej)− h(V k);
8 if m > 0 then
9 V k+1

←− V k
+ ej∗ ;

10 k←− k+ 1;
11 else
12 return V k;
13 end
14 end
15 return V̂ ;

If there are only two finite-server queues in the system whose
umber of chargers may change, we can guarantee that the
olution found by the above algorithm is optimal. For the general
ase, its optimality remains a conjecture (Shanthikumar & Yao,
988a) and a proof of optimality is not available. In our com-
utational experiments (see Sections 8.2.1 and 8.2.3), we see that
his heuristic always returns optimal solutions in the simple cases
e simulated.

heorem 10. If |F | = 2, then Algorithm 2 generates the optimal
olution.

roof Sketch: Our proof follows the approach developed in Shan-
hikumar and Yao (1988a, Proposition 2, p. 339). We first show
hat our objective function h is concave and supermodular. The
roof of convergence of the algorithm proposed in Shanthikumar
nd Yao (1988a) is for a fixed number of servers. On the other
and, we relax this constraint, since in our case we can put
s many chargers as possible. A detailed proof is presented in
ppendix D.

. Charger selection

For electric vehicles, there are a large amount of chargers such
s slow AC charger, DC fast charger, rapid charger and ultrafast
harger. For example, the rapid chargers can charge the vehicle
ather quickly; it can charge a vehicle from 20% charge to 80%
harge within 30 min. On the other hand, slow AC chargers would
equire over 6–8 h to do the same. In this section, we define the
ast and slow charger relatively: the charging time of fast charger
s halved compared with slow chargers, regardless of types and
echniques. Intuitively, one would conjecture that having one
ast charger is better than two slow chargers. In this section,
e identify the conditions under which it is beneficial to have
wo slow chargers as opposed to one fast charger to improve the
 d

7

verall throughput of the system. The key insight we get here
s that the throughput of the system is dependent on the wait
ime for the vehicles as well as the charging time of the vehicles.
aving one fast charger certainly reduces the charging time, but it
an potentially increase the wait time if the coefficient of variation
of the distribution of charging time of the vehicles is somewhat
larger than a threshold. It should be noted that the installation
cost of a fast charging infrastructure is significantly higher than
installing multiple slow chargers, and we assume that they are
the same in this section to simplify the analysis.

Suppose that the service provider has two possible options:

1. Install one fast charger with mean charging time t0.
2. Install two slow chargers with mean charging time for each

charger 2t0.

For ease of analysis, we discuss the charger selection problem
by comparing individual queues under Poisson arrival. Let α0
denote the Poisson arrival rate of vehicles that need to be charged.
The mean charging rate (number of vehicles charged per unit
time) for option 1 is µ1(n) = 1

t0
. For option 2, the mean charging

rate becomes

µ2(n) =

⎧⎪⎪⎨⎪⎪⎩
1
2t0

, n = 1

1
t0

, n ≥ 2
(16)

here n is the number of vehicles at this charging point.
According to the model we assume in Section 2.2.4, we assume

that upon arriving at a charging node, all the vehicles form an
FCFS queue to wait for charging. Let γ1 =

α0
µ1

and γ2 =
α0

2µ2(1)

denote the utilization of the queue for two options respectively,
then both options have the same utilization, γ1 = γ2 = α0t0.

Let D1 and D2 denote the average time delay of a vehicle at this
ode for both options (including waiting time and charging time).
e show in the next section (see (24) and following discussion)

hat a smaller delay increases the system throughput of the closed
ueueing network. We want to find which option has a lower
elay, thus it will have higher throughput, and as a consequence,
higher profit and better quality of service.
Intuitively, one fast charger outperforms two slow chargers

ecause µ1(1) > µ2(1). In the following lemma, we show that
t is true for exponential charging time, however, it may not hold
or some general charging time distribution, which is proved in
he following theorem.

emma 11. If charging time distribution is exponential, then D1 <

2, ∀ γ ∈ (0, 1),

roof. For M/M/1 queue with arrival rate α0, service rate µ1
nd utilization γ1 =

α0
µ1

, the average waiting time in queue is
w1 =

γ1
µ1(1−γ1)

from Smith (2018, p.82). Therefore, the average
delay for option 1 is D1 = w1 + t0 =

t0
1−γ1

.
For M/M/2 queue with arrival rate α0, service rate µ2(n) and

utilization γ2 =
α0

2µ2(1)
, the average waiting time in queue is

w2 =
γ 2
2

µ2(1)(1−γ 2
2 )
, Smith (2018, p.87). Thus the average delay for

ption 2 is D2 = w2 + 2t0 =
2t0

1−γ 2
2
.

As γ1 = γ2 ∈ (0, 1), we can conclude that D1 < D2, ∀γ ∈
0, 1). □

Let c2 = Variance
Mean2

denote the squared coefficient of variance
f charging time, which measures the dispersion of the charging
ime distribution.

heorem 12. For any γ ∈ (0, 1), there exists a charging time
istribution such that D′ > D′ for all c2 > 1+ 2 .
1 2 γ
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roof. We prove this theorem by providing an extreme case of
harging time distribution. For option 1, called M/T1/1 queue, the
harging time follows the distribution

1 =

{
exp(p0/t0) w.p. p0
0 w.p. 1− p0

where exp(p0/t0) denotes the exponential distribution with mean
t0/p0. Then the mean of T1 is t0 and squared coefficient of variance
is c21 =

2
p0
− 1. From P-K formula, we have D′1 =

t0
p0

γ1
1−γ1
+ t0.

For option 2, M/T2/2 queue, its charging time for each charger
ollows the same distribution of option 1 with double mean, i.e.

2 =

{
exp(p0/2t0) w.p. p0
0 w.p. 1− p0

o the mean of T2 is 2t0 and squared coefficient of variance is
2
2 =

2
p0
− 1, same as c21 .

In the following, we calculated the average delay D′2 = ω′2+2t0
or option 2: M/T2/2 queue, where ω′2 is the averaging waiting
ime and 2t0 is the average service time.

First, we show that ω′2 is equivalent to the average waiting
time ω′3 in M/M/2 system with arrival rate λ′3 = p0α0 and
unit service rate µ′3(1) =

p0
2t0

. Since the scheduling discipline is
ndependent of the service time, the waiting time experienced by
on-zero jobs and zero-sized jobs in T2 is the same. Further, to

find the waiting time of non-zero jobs, we can ignore the zero-
sized jobs, since adding/removing zero-sized jobs will have no
impact on the waiting time of non-zero jobs. According to the
definition of T2, this M/T2/2 queue will have the same behavior
with such M/M/2 queue when considering non-zero jobs, with
arrival rate λ′3 = p0α0 and unit service rate µ′3(1) =

p0
2t0

. Therefore
e can conclude that ω′2 = ω′3.
Second, we calculate ω′3 similar to M/M/2 queue in

emma 11. As the utilization is defined as γ3 =
λ′3

2µ′3(1)
= α0t0, the

verage waiting time in queue is w′3 =
γ 2
3

µ′3(1)(1−γ 2
3 )
, Smith (2018,

p.87). As γ2 = γ3 = α0t0, we have w′3 =
2t0γ 2

2
p0(1−γ 2

2 )
.

Finally, we have the average delay D′2 = w′2+2t0 =
2t0γ 2

2
p0(1−γ 2

2 )
+

t0.
As γ1 = γ2, we have D′1 > D′2 is equivalent to γ

1+γ
> p0 > 0.

s c21 = c22 =
2
p0
− 1, we have c2 > 1+ 2

γ
. □

The above theorem indicates that two slow chargers can result
n a lower overall delay than one fast charger, especially when the
ariance in charging time is relatively larger than the mean charg-
ng time. As stated previously, this happens because the large
ariance in charging time leads to a long waiting time, which
educes the waiting time by adding one more charger. Although
he average charging time is doubled due to slow chargers, the
ecrease in waiting time is more significant than the increase of
harging time, thus the total delay may decrease with two slow
hargers.
Admittedly, the distribution constructed in the proof of The-

rem 12 is not representative of the actual charging time dis-
ribution. Nonetheless, we have found through simulations that
or various distributions of charging time, there is a distribu-
ion dependent threshold for c2, beyond which two slow charg-
rs have lower delay (wait time plus charging time) than one
ast charger. Indeed, in Section 8.3, we show numerically the
ase for gamma distributed charging times and Inverse Gaussian
istributed charging times.

. Computational algorithms

In this section, we introduce some efficient algorithms for
erformance analysis, especially for large-scale networks.
8

.1. Convolution algorithm

In order to compute the stationary state probability, the nor-
alizing constant G(M) is required as stated in (4). Explicitly,
(M) has the following expression.

(M) =
∑

n1+···+nN=M

N∏
i=1

λ
ni
i∏ni

k=1 ui(k)
(17)

Direct computation of G(M) as a summation over all possible
tates, which has a cardinality of

(N+M−1
N−1

)
, takes an exponential

time to compute. However, we can use a convolution algorithm,
which significantly reduces the complexity by developing an
iterative algorithm.

Following the definition in Section 3, we assume that there
are M vehicles and N nodes in the system. For the case where ni
vehicles at node i ∈ N , we define

ki(ni) =
λ
ni
i∏ni

k=1 ui(k)
(18)

et GN (M) denote the normalizing constant of network with M
vehicles and N nodes, then we have (Buzen, 1973)

G(M) := GN (M) = k1 ∗ k2 ∗ . . . ∗ kN (M) (19)

where the convolution k1 ∗ k2(m) of two functions k1 and k2 is
efined by

1 ∗ k2(m) =
m∑
i=0

k1(i)k2(m− i), m ≥ 0 (20)

e can write the recursive relation in another way, for each
= 1, 2, . . . ,N , we have

j(m) = kj ∗ Gj−1(m), 0 ≤ m ≤ M (21)

Therefore, we can get the stationary probability distribution
from (4), the throughput Λ(M) from (6), and the marginal

robability pi(ni) for each node from (A.1).

.2. Mean value analysis

As M becomes larger, the convolution still takes a large
mount of time, especially when the network has several load-
ependent queues. If we are only interested in the average perfor-
ance metrics, we can utilize the Mean-Value analysis of closed
ueueing networks (Akyildiz & Bolch, 1988; Reiser & Lavenberg,
980) in order to compute the outcome easier.
Let Di(M) denote the average system time (waiting time and

harging time) of a passenger at node i ∈ N . According to three
ifferent scheduling schemes (infinite, single, finite server), we
ave

i(M) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1
ui(1)

, i ∈ I

1+ Li(M − 1)
ui(1)

, i ∈ S

1+ Li(M − 1)+ si(M − 1)
viui(1)

, i ∈ F ,

(22)

where Li(M) is the average number of vehicles (including the one
in service) at node i when fleet size is M , and vi is the number of
chargers at finite-server nodes F .

We further define si(M − 1) as follows, which is the average
number of idle chargers at node i ∈ F , then we have

si(M − 1) =
vi−1∑

(vi − ni)pi(ni − 1,M − 1) (23)

ni=1
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here pi(ni,M) is the marginal probability of ni vehicles at node
∈ F when the fleet size is M .
Therefore, we have the system throughput as follows where

i is defined in (3).

(M) =
M∑N

i=1 λiDi(M)
(24)

Applying Little’s Law, we can compute the queue length Li(M)
y iteration without computing the normalization constant G(M)

as follows:

Li(M) = λiΛ(M)Di(M) (25)

Therefore, we can iterate over M to compute the throughput
Λ(M) from (24), where Di(M) only requires the information of
last stage Li(M − 1) and si(M − 1). One more expression pi(ni,M)
in (23) needs to be specified.

In order to compute the marginal distribution pi(ni,M) in (23),
for i ∈ F , we have to run another iteration with respect to ni.

For ni = 1, 2, . . . ,M , from local balance we have

pi(ni,M) =
λiΛ(M)pi(ni − 1,M − 1)

niui(1)
(26)

and

pi(0,M) = 1−
1
vi

(λiΛ(M)
ui(1)

+

vi−1∑
ni=1

(vi − ni)pi(ni,M)
)

(27)

In this way, we can compute the throughput and availability
faster than the convolution algorithm.

7.3. General passenger inter-arrival time approximation

In practice, passengers may not follow a Poisson arrival, that
is, the distribution of passenger inter-arrival time may not follow
the exponential distribution. In this subsection, we show that
we can approximate the passenger arrival process through a
modification of the system equation in the Mean Value Analysis
algorithm.

If the inter-arrival time is exponentially distributed, then it
enjoys the memoryless property: We do not need to consider
the remaining service time for vehicles at i ∈ S. If the inter-
arrival time follows a general distribution with mean 1

ui(1)
and

ariance σ 2, we need to consider the remaining service time. Let
2
τ = σ 2ui(1)2 denote the squared coefficient of variance of the
nter-arrival time. Use γi =

λi
ui(1)

denote the relative utilization
nd the true utilization ρ(M − 1) = γiΛ(M − 1) for the case

of M − 1 vehicles in the system. If the service time of single
server nodes (SS) becomes general, then for each i ∈ S, the system
time can be approximated by Curry and Feldman (2010, p. 253)
and Smith (2018, p. 291)

Di(M) =
1

ui(1)

(
1+Li(M−1)−ρ(M−1)+ρ(M−1)

1+ c2τ
2

)
, ∀i ∈ S

(28)

By replacing the second item in (22) with the above equation,
we can approximate the stationary distribution if the inter-arrival
time has a general distribution. If c2τ = 1 holds, the above equa-
tion goes back to the previous system time under exponential
service time distribution in (22). Similar approximating methods
could be extended to the case with a general charging time
distribution, where c2τ is the squared coefficient of variance for
charging time (Gupta et al., 2010).
9

Fig. 3. Profit as a function of fleet size under 60 stations.

. Numerical simulation

In this section, we run some large-scale simulations to validate
ur results. The first part develops a large-scale symmetric net-
ork and studies the asymptotic properties proved before. The
econd part focuses on the charger allocation on an asymmet-
ic network capturing different characteristics of downtown and
uburban areas. The third part shows the effect of one fast charger
nd two slow chargers.

.1. A symmetric network with 60 nodes

Firstly, we consider one symmetric network with 60 stations
ith pij = 1

59 , i.e. after departure from one station, customers
hoose their destination equally between other stations. We fur-
her assume that one-third of EVs arriving at node j decide to
harge, while others choose to go to departure point directly
ithout charging, i.e., p̄i = 1

3 , ∀i ∈ F .
In this network, we have 60 single server nodes (departure),

60 finite server nodes (charging) and 3540 infinite server nodes
(traveling). From (3), we have the relative throughput as λi =

1
420

for i ∈ F , λi =
1

140 for i ∈ S and λi =
1

8260 for i ∈ I . The arrival rate
of customers at each departure point i ∈ S is αi = 10 person per
hour. The average time of traveling is Tjl = 1

3 hour per service
(service rate: 3 per hour), which follows a general distribution.
The average time of charging is ti = 0.5 hour per charger i ∈ F
(service rate: 2 per hour) and there are vi = 2 chargers at each
charging station.

8.1.1. Fleet sizing
We assume the average revenue per service is zi = $30 and

the operating cost per vehicle is $4 per hour g(M) = 4M . Let
ϵi = 20% for i ∈ S, which means there is a minimal requirement
of 80% availability at each departure point.

Under above assumptions, the simulations at Figs. 3 and 4
validate the concavity proved in Lemma 5 and Theorem 7 it also
shows that the optimal fleet size is 763, with availability 87.2%.

If the number of chargers is one at each station, the availability
requirement is not satisfied (only 54.47%), thus we start from
two chargers per station. As shown in Fig. 5, the optimal fleet
size increases as the availability requirements increases. On the
other hand, the optimal fleet size decreases as more chargers are
provided at each charging point, as shown in Fig. 6, and the curve
remains stable when chargers are relatively high. This is because
more chargers will decrease the waiting time before charging and
provide more availability as less time is spent at charging points.
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Fig. 4. Availability at departure points as a function of fleet size under 60
tations.

Fig. 5. Optimal fleet size increases dramatically with higher availability
equirements.

Fig. 6. Optimal fleet size decreases dramatically as number of chargers increases
and it keeps flat when chargers are relatively large, with same availability
requirement 80%.

8.1.2. Charger allocation
We now study the effect of number of chargers on the

hroughput, availability, and profit numerically for the example
ntroduced above. We fix the fleet size to be M = 763. Other
arameters remain the same as in the last subsection such as
ransition probability, charging probability, arrival rate, charging
ime, travel time, and revenue per service. Suppose that the
perating cost per charger is cj = 2 for all j ∈ F . The penalty
or one passenger loss is β = 1 for all k ∈ S.
k

10
Fig. 7. Profit is a concave function of number of charger per station under
charger operating costs and fixed fleet size.

Fig. 8. Throughput increases as the increase of number of charger.

As established in Theorem 9, the profit is a concave function
of the number of chargers. This can be seen in Fig. 7. Moreover,
we observe that the profit maximizing point is to have 3 chargers
per station for the numerical example considered here.

Fig. 8 depicts the system throughput as a function of the
number of chargers at each node. We observe that the system
throughput increases as we increase the number of chargers. This
is because the vehicles spend less time waiting for charging at
charging points. When the number of chargers at each node is
larger than a threshold, then the system throughput does not
increase as we increase the number of chargers. For the current
numerical example, this threshold is 4 charger per station.

We now focus on the availability at one departure point as
shown in Fig. 9. As more chargers become available, electric
vehicles spend less time at charging points and more time at
departure points. Therefore, the availability increases at single
server queues.

Leveraging the Mean Value Analysis in Section 7.2, the average
queue length of each node (average number of vehicles at this
node) is depicted in Fig. 10. As the number of chargers increases,
the delay at charging points (Finite Server nodes) decreases be-
cause of less waiting time, and the vehicles move to the departure
points (Single Server nodes), which increases their availability.

8.2. Asymmetric network capturing the relation between downtown
and suburban areas

In this subsection, we allocate chargers when the network
is not symmetric. We use a three-station network in which the
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Fig. 9. Availability of vehicle increases if more chargers are installed at charging
points.

Fig. 10. Average number of vehicles at finite server nodes (FS:charging), single
server nodes (SS:departure) and infinite server nodes (IS;travel) changes, with
respect to number of chargers.

first station denotes the downtown and the second and the third
station denote suburban areas.

As shown in Fig. 11, we have the routing matrix rij from
1), where the orange part denotes that every vehicle will enter
he departure point after finishing charging. The green part de-
otes the asymmetric transition probability pij between stations,
.e., passengers departing from station 1 (downtown) will choose
heir destination equally between station 2 and 3 (suburb), while
assengers departing from station 2 or 3 (suburb) will choose
tation 1 (downtown) as their destination with probability 60%
hile station 3 or 2 (suburb) with probability 40%. The blue part
enotes that statistically one-third of EVs arriving at node i ∈ F
ecide to be charged, while others choose to go to departure point
irectly without charging, i.e., p̄i = 1

3 , ∀i ∈ F . Other parts in this
outing matrix are zero.

According to global balance (3), we have the relative through-
ut as follows, where the order of nodes is the same as the
outing matrix.

=

[
3
56

,
5

112
,

5
112

,
9
56

,
15
112

,
15
112

,
9

112
,

9
112

,
9

112
,

9
112

,
3
56

,
3
56

]
(29)

8.2.1. Charger allocation
With a fixed number of vehicles 40 in the system, we follow

the Algorithm 2 in order to find the optimal charger allocation in
this network.
11
Fig. 11. Routing matrix rij between nodes under asymmetric three-station
network, where station 1 denotes downtown and station 2&3 denote suburban
areas. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

Table 1
Charger allocation algorithm.
Step V Profit Revenue Cost Penalty

1 (1,1,1) 458.16 478.25 8 12.09
(1,2,1) 457.53 479.56 10 12.03

2 (2,1,1) 533.58 554.79 12 9.21
(3,1,1) 530.05 555.23 16 9.18

3 (2,2,1) 553.46 575.89 14 8.43
(3,2,1) 549.53 575.93 18 8.40

4 (2,2,2) 766.58 783.21 16 0.63
(2,3,2) 766.98 785.55 18 0.57

5∗ (3,2,2) 769.61 790.00 20 0.39
(3,3,2) 769.52 791.85 22 0.33
(4,2,2) 766.15 790.51 24 0.36

Distinguishing the difference of rent between downtown and
suburb, we assume that the operating cost per charger is $2 per
hour at station 2 and 3 (suburb) while $4 per hour at station 1
(downtown). We further assume the average revenue per service
is $30 and the penalty is $ 1 per loss.

Following the Charger Allocation Algorithm (Algorithm 2), we
can compute the allocation solution without listing all the candi-
dates. As shown in Table 1, the algorithm reduces the candidate
size and computing complexity by leveraging the concavity prop-
erty. After step 5, the algorithm terminates and we can claim that
(3, 2, 2) is the optimal solution in our setting, i.e., the number of
chargers at (FS1,FS2,FS3) is (3, 2, 2), without analyzing any other
candidates.

If the constraint is active, i.e., V is upper bounded by V̂ as in
(14), this algorithm can still work. For example, if V̂ = (2, 5, 5) is
the upper bound of V , then the algorithm terminates at (2, 3, 3),
indicating this is an approximate solution to the optimization
under this constraint.

8.2.2. Convolution
Under the fleet size M = 40 and V = (3, 2, 2), we can use

convolution algorithm in Section 7.1 and (A.1) to compute the
distribution of electric vehicles, through the marginal distribution
of each node, i.e., the probability of ni vehicles at node i ∈ N in
the closed queueing system.

For example, the Figs. 12 and 13 present the marginal distri-
bution in the departure and charging points of suburban areas.
The first figure shows that there is no vehicle waiting at SS2
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Fig. 12. Marginal Distribution of vehicles at SS2 (suburb-departure) under M =
0 and v = {3, 2, 2}.

Fig. 13. Marginal Distribution of vehicles at FS2 (suburban charging station)
nder M = 40 and v = {3, 2, 2}.

ith a probability 18%, which means that the availability at SS2
s 82%. The second figure shows that there is no vehicle charging
t FS2 with probability 18%, which indicates that the utilization
f charging infrastructure is high.

.2.3. Large-scale charger allocation
We assess the charger allocation algorithm with a larger-scale

etwork, where the number of stations increases from 3 to 10
nd the number of vehicles is 50. Station 1 is the downtown
nd station 2–10 are suburb. Vehicles departing from downtown
ill choose other stations equally with probability 1/9, while
assengers departing from suburb choose station 1 (downtown)
ith probability 20% and other stations equally with probability
0%. The operating cost per station is $4 per hour at station 1, $3
er hour at station 2–5 and $2 per hour at station 6–10. Other
arameters are the same as Section 8.2.1.
As shown in Fig. 14, the profit at initial stage with V =

1, 1, 1, 1, 1, 1, 1, 1, 1, 1} is $986 per hour. After 16 iterations
in Algorithm 2, the profit increases to $1634 per hour with
V ∗ = {3, 2, 2, 2, 2, 3, 3, 3, 3, 3}. We further compare it with 510

candidates of charger allocation, where the number of chargers
varies from 1 to 5 at each station. V ∗ turns to be the optimal
solution in this problem, i.e. we do not find the situation when
Algorithm 2 achieves a sub-optimal solution.

8.3. One fast vs. Two slow

In this section, we show the result in Section 6 about one
fast server vs. two slow servers. We test them in a simple closed
12
Fig. 14. Profit increases with iteration in Algorithm 2, the number of chargers
at various stations increases from V = {1, 1, 1, 1, 1, 1, 1, 1, 1, 1} to V =
3, 2, 2, 2, 2, 3, 3, 3, 3, 3}.

Fig. 15. Throughput comparison of one fast charger and two slow chargers
under gamma distributed charging time in a closed queueing system.

queuing network of two queues, where the output of one queue
is the input of another queue. The first queue is a single server
queue with exponential service time, whose mean service time is
1/2. The second queue has two choices, as shown in Section 6
with t0 = 1/2. i.e., one fast charger with mean time 1/2 vs.
two slow charges with mean time 1 We compare the system
throughput of two choices.

Assume that there are only 10 vehicles in this closed queue-
ing network, we use Monte-Carlo simulation to find the system
throughput under gamma distribution.

As shown in Fig. 15, when squared coefficient of variance c2 is
small, D1 < D2 and thus one fast server has larger throughput.
As c2 increases, the gap between two choices closes. When c2
becomes large, two slow servers outperform one fast server,
i.e., D1 > D2 and the throughput under two slow servers is larger.

If we keep increasing the number of chargers, the curve will be
flatter, where the mean charging time for each charger is n/2 and
n is the number of slow chargers. If the number of chargers ex-
ceeds the number of vehicles in the system, the throughput does
not change with respect to the squared coefficient of variance, as
shown in Lemma 4.

As shown in Fig. 16, the threshold of c2 where one server
outperform five servers is around 4, which is larger than 1.9, the
threshold where one server outperform two servers in Fig. 15.
When number of server is 10, which is the same as number
of vehicles in the system, the throughput does not change with
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Fig. 16. Throughput comparison of one, five and ten servers under Gamma
istributed charging time.

Fig. 17. Throughput comparison of one fast server and two slow servers under
nverse Gaussian distributed charging time.

espect to the variance of charging time. Fig. 17 shows that similar
esults hold for Inverse Gaussian distributed charging time and
he threshold for c2 is distribution dependent.

.4. SoC-dependent charging

We use Monte Carlo simulation to evaluate the impact of
oC independent charging time assumption. Similar to simulation
n Section 8.2, we use a small closed queueing network with 3
tations. The routing between stations is symmetric and the travel
ime is 0.3 between station A and B, 0.4 between B and C, 0.5
etween A and C. After finishing one ride at IS node, EV will be
harged at the following charging point at FS node, with proba-
ility 30%, 40%, 50%, respectively. The associated mean charging
ime has two options (i) Soc-consumption dependent, i.e., 0.3, 0.4,
.5 for three types of travels. In this case, larger consumption
f energy on ride will incur a larger probability for charging
nd a larger charging time. (ii) Soc-consumption independent,
.e. 0.357 for charging point FS1, 0.425 for FS2, 0.455 for FS3. In
his case, the mean time is the average of different charging time
eighted by their throughput (demand). We compare these two
ptions on cases with different number of chargers. As shown
n Fig. 18, the approximation error is less than 1 percent and
e believe this error is acceptable. The seven charge vectors are
1 = [1, 1, 1], V2 = [1, 1, 2], V3 = [2, 1, 2], V4 = [2, 2, 2], V5 =

[2, 2, 3], V = [3, 2, 3], V = [3, 3, 3].
6 7

13
8.5. Real distribution for charging time

We first download the real data for charging time at Adaptive
Charging Network (ACN-Data) 2021 and plot it in Fig. 19. In
this dataset, charge time is calculated as the difference between
‘connectionTime’ and ‘disconnectTime’, regardless of whether the
charge is complete or not. The mean charge time is 2.92 h
(10508 s) with maximum 13.84 h and minimum 0.03 h.

Although the charging time distribution is not exactly the
same as exponential distribution, we use a simulation to show
that the approximation error is acceptable, if we approximate the
real charging time distribution with an exponential distribution
with mean 2.92. Similar to the simulation in Section 8.3, we use
a simple closed queueing network with 10 vehicles, where the
output of one queue is the input of another queue. The first
queue is a single server queue (SS) with exponential service time
(mean 0.5), which indicates vehicle arrive at the charging point
according to the Poisson process with a mean arrival rate 2 per
hour. The second queue is a finite server queue (FS) with number
of chargers spanning from 1 to 10. The charge time in each
charger has two cases, (i) it follows the exponential distribution
with mean 2.92, (ii) it is randomly drawn from the real charg-
ing time dataset mentioned above. The throughput is calculated
through Monte Carlo simulation and the approximation error is
defined as the difference between two throughputs over the real
throughput. As shown in Fig. 20, the approximation error is less
than 2 percent when the number of chargers increases from 1 to
10. We believe that this error is acceptable. We also note that the
same approximation is used in Jung et al. (2014) and Yang et al.
(2017).

9. Conclusion

In this paper, we developed a closed queueing model for mod-
eling a fleet of electric vehicles providing transportation service
in a city. We considered the fleet sizing problem to maximize the
profit of the system and the number of charges allocated within
each charging station to maximize the total operational cost. We
proved that the two problems lead to convex integer optimization
problems. We developed a greedy algorithm for charger alloca-
tion and established its optimality if there are only two charging
stations. When the variance of charging time becomes larger than
the mean charging time, we showed using a stylized example
that two slow chargers outperform one fast charger in terms of
the total delay (waiting time plus the charging time). We further
developed an approximation method for general passenger inter-
arrival time distributions and the mean value analysis algorithm
is provided for the performance analysis of the overall system.

Through this analysis, we gained many insights about fleet
sizing, charger allocation, and charger selection.

1. As shown in Fig. 6, the optimal fleet size can be reduced by
adding more chargers.

2. Theorem 9 shows that adding chargers at any charging
point will increase the system throughput and the avail-
ability of any departure point in the system.

3. We posit that chargers should be allocated to the charging
points that can bring high system throughput increment
with a low cost, which is usually the areas with high
visit ratios. This idea is inspired by the marginal allocation
scheme studied in operations research (Fox, 1966).

4. Fast chargers may be replaced by multiple slow chargers,
if the standard variance of charging time is relatively large
compared with mean charging time. We show this insight
to be useful through a numerical simulation Section 8.3
(see Fig. 15).

Future research will address the rebalancing policy, more general
charging time distributions and state-dependent routing strate-
gies.
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Fig. 19. Histogram of real charging time based on ACN-Data 2021 dataset
https://ev.caltech.edu/dataset).
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Appendix A. Proof of Lemma 1

1. For a product form closed queueing network with M ve-
hicles, Eqs. (5) and (6) are given by Serfozo (2012, p.27)
where λi is the visit ratio defined in (3) and G(M) is the

normalization factor defined in (4) and (17).

14
2. The idea comes from George and Xia (2011) and we rewrite
the equations with our notations as follows. The marginal
distribution, i.e., the probability of ni vehicles at node i ∈ N
is:

pi(ni) =
λ
ni
i∏ni

k=1 ui(k)
Gi(M − ni)

G(M)
(A.1)

where Gi(M − ni) is the normalizing constant when node i
is removed and only M−ni vehicles remains in the system
by Lavenberg (1983, p.128.). For nodes i ∈ S, the special
case when the node is a single server node (SS), we can
compute the probability without computing Gi(M−ni) We
define the relative utilization for single server node i ∈ S
as

γi =
λi

ui(1)
=

λi

αi

Then the probability of ni vehicles at departure point i ∈ S
can be simplified by Lavenberg (1983, p.128) as follows.

pi(ni) =
γ

ni
i [G(M − ni)− γiG(M − ni − 1)]

G(M)

The availability is defined as the stationary state probability
that node i has at least one vehicle and has the expression
as follows.

Ai(M) = 1− pi(0) = γiΛ(M) =
λi

αi
Λ(M) (A.2)

Appendix B. Proof of Lemma 5

As shown in Shanthikumar and Yao (1988b, Theorem 1), in
a closed Jackson network (exponential service time), the system
throughput Λ(M), is nondecreasing concave with job population
M , if the service rate ui(ni) is nondecreasing concave with local
ueue length ni, ∀i ∈ N .
We first consider the situation that the service time of the in-

finite server (IS) follows exponential distribution in our problem,
then our network falls into the Jackson network. In our setting,
ui(ni) defined in (2) is constant (Single Server), linear (Infinite
erver) and nondecreasing concave (Finite Server) with respect
o ni, i.e., all the service rates satisfy the nondecreasing concavity
ondition. Therefore, the system throughput Λ(M) defined in (6)
s also non-decreasing concave with M .

Secondly, if we change the service distribution of infinite
erver queues (IS) into a general distribution with the same mean,

https://ev.caltech.edu/dataset
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by Lemma 3, the throughput Λ(M) does not change and the
on-decreasing concave property remains.
Finally, applying (6), we have

i∈I

ziΛi(M) = Λ(M)
∑
i∈I

ziλi

where both zi and λi are independent of M , which means the first
art of objective function is concave.
As g(M) is convex, then the second part of f (M) is concave.

As a conclusion, f (M) is concave since the sum of two concave
functions yields a concave function.

Appendix C. Proof of Theorem 9

Let us first prove the first statement when the travel time
distributions along the infinite server nodes are exponential. We
then invoke Lemma 3 to conclude the first statement. This imme-
diately yields the other two assertions.

1. Firstly, assume that all the service time are exponentially
distributed in our problem. From (2), we find that for all
queues i ∈ N , the service time ui(ni) is increasing concave
with ni. From Shanthikumar and Yao (1987, Theorem 1),
in such closed queueing network, if there is a finite server
node j ∈ F with vj servers, i.e. service rate uj(nj) =
uj(1)min{nj, vj}, then the system throughput function Λ(V )
is increasing concave with vj, i.e. Λ(V ) + Λ(V + 2ej) ≤
2Λ(V + ej).
Next, we change the service time distribution of infinite-
server queues (IS) from exponential distribution to a gen-
eral distribution without changing the mean. From insen-
sitivity property in Lemma 3, Λ(V ) for the general dis-
tribution travel time case remains the same as that of
the exponentially distributed travel time. Therefore, we
conclude that Λ(V ) + Λ(V + 2ej) ≤ 2Λ(V + ej) holds for
closed queueing network in our setting.

2. As a result of Part 1 above, the first part of h(V ) is increasing
concave with vj, as Z̄ is independent from V . Now, as
−

∑
j∈F cjvj is linear with vj and the concavity is preserved

under addition, the second part is concave with vj. More-
over, −

∑
k∈S βkαk does not depend on V . Therefore, h(V )

is concave with vj.
3. We now prove the second statement. From the first part

of proof above, we know that Λ(V ) is increasing with vj,
∀j ∈ F . Since Ai(V ) = λi

αi
Λ(V ), we conclude that Ai(V ) is

increasing concave function in v for all i, j ∈ F .
j

15
ppendix D. Proof of Theorem 10

We first establish the supermodularity property (Topkis, 1998,
. 43) of the objective function below.

emma 13. If |F | = 2, V = (v1, v2), the objective function is
upermodular, i.e., h(v1 + 1, v2 − 1) + h(v1, v2) ≤ h(v1 + 1, v2) +
(v1, v2 − 1).

roof. From Shanthikumar and Yao (1988a, Lemma 6 (ii)), the
hroughput is super modular in the case of exponential service
ime, i.e.

(v1 + 1, v2 − 1)+Λ(v1, v2) ≤ Λ(v1 + 1, v2)+Λ(v1, v2 − 1)

From Lemma 3, it also hold for any general travel time distribu-
ion. Multiplied it with the constant Z̄ , and minus c1(2v1 + 1) +
2(2v2− 1)+ 2

∑
k∈S βkαk on both sides of the inequality, we can

onclude that the supermodular property also holds for function
(v1, v2). □

We now prove Theorem 10 by transforming the problem and
hen using induction. Let |V | = v1 + v2. Consider the following
ransformed optimization problem:

max
V∈N2

h(V ) such that V ≤ V̂ , |V | = n.

e exploit the supermodularity of h, proved in Lemma 13, and
se induction on n to establish that for every n, Algorithm 2 out-
uts the optimal solution for the new constrained optimization
roblem above.
If |V ∗| = 3, which means there is only one extra charger

eeded to be allocated on V 1
= (1, 1). As the algorithm evaluates

oth V = (2, 1) and V = (1, 2) allocations and there is no other
llocation, Algorithm 2 achieves the optimal solution.
Suppose the algorithm generates the optimal solution when

V ∗| = n, denoted as (a, n− a). For any b < a, we have

(b, n− b) ≤ h(a, n− a) (D.1)

In order to prove the result, we only need to show that, when
V ∗| = n + 1, the optimal solution is either (a + 1, n − a) or
a, n + 1 − a), which are evaluated in the algorithm. It suffices
o show that any other allocation not evaluated by the algorithm
b, n+1−b) cannot achieve a higher profit than either (a+1, n−a)
r (a, n+1−a). We show the case with b < a, and the other case
ith b > a+ 1 can be proved similarly.
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As h(v1, v2) is concave in v2 from Theorem 9, we conclude

(b, n+ 1− b)+ h(b, n− a) ≤ h(b, n− b)+ h(b, n+ 1− a) (D.2)

since n− a < n+ 1− a ≤ n− b < n+ 1− b. From Lemma 13,
(v1, v2) is supermodular. This implies

(b, n+ 1− a)+ h(a, n− a) ≤ h(a, n+ 1− a)+ h(b, n− a) (D.3)

since b < a and n − a < n + 1 − a. Adding up Eqs. (D.1), (D.2),
nd (D.3), we have

(b, n+ 1− b) ≤ h(a, n+ 1− a) (D.4)

which concludes the result for case b < a and finishes the
nduction.

Finally, we discuss the constraint v1 ≤ v̂1 and v2 ≤ v̂2 in
14). (i) If neither of the constraint is active, then the global
aximum V ∗ found in Algorithm 2 is the optimal solution to the
ptimization problem. (ii) If only one constraint is activated, say
1 = v̂1, then the optimization becomes univariate and Algorithm
generates the optimal solution, since the iteration continues as

ong as h(v1, v2 + 1) > h(v1, v2). (iii) If both are active, then
he upper bound V̂ becomes the solution, from the last line in
lgorithm 2.
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