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Abstract

This paper studies the sample complexity (aka
number of comparisons) bounds for the active
best-k items selection from pairwise comparisons.
From a given set of items, the learner can make
pairwise comparisons on every pair of items, and
each comparison returns an independent noisy re-
sult about the preferred item. At any time, the
learner can adaptively choose a pair of items to
compare according to past observations (i.e., ac-
tive learning). The learner’s goal is to find the (ap-
proximately) best-k items with a given confidence,
while trying to use as few comparisons as possible.
In this paper, we study two problems: (i) finding
the probably approximately correct (PAC) best-k
items and (ii) finding the exact best-k items, both
under strong stochastic transitivity and stochas-
tic triangle inequality. For PAC best-k items se-
lection, we first show a lower bound and then
propose an algorithm whose sample complexity
upper bound matches the lower bound up to a con-
stant factor. For the exact best-k items selection,
we first prove a worst-instance lower bound. We
then propose two algorithms based on our PAC
best items selection algorithms: one works for
k = 1 and is sample complexity optimal up to a
loglog factor, and the other works for all values
of k and is sample complexity optimal up to a log
factor.
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1. Introduction
1.1. Background and Motivation

Ranking from pairwise comparisons (or pairwise ranking)
is a fundamental problem that has been widely applied to
various areas, such as recommender systems, searching,
crowd-sourcing, and social choices. In a pairwise ranking
system, the learner wants to learn the full or partial ranking
(e.g., best-k items) of a set of items from noisy pairwise
comparisons, where items can refer to various things such as
products, posts, choices, and pages; and comparisons refer
to processes or queries that indicate qualities or users’ pref-
erences over the items. In this paper, for simplicity, we use
the terms “item”, “comparison”, and “users’ preference”.

A noisy pairwise comparison is a query over two items that
returns a noisy result about the preferred one. Here, “noisy”
simply means that the comparison could return the less pre-
ferred one, which may be the result of the uncertain nature
of physics, machines, or humans. Since the comparisons
can reveal some information about the users’ preferences,
by repeatedly comparing these items, the learner may find
a reasonable global ranking (e.g., (Hunter, 2004)) or local
ranking (e.g., (Park et al., 2015)) of these items.

Based on when the comparisons are generated, the ranking
problems can be divided into two classes: passive ranking
(e.g., (Park et al., 2015; Shah et al., 2017)) and active rank-
ing (e.g., (Pfeiffer et al., 2012; Chen et al., 2013; Falahatgar
et al., 2017a; Ren et al., 2019)). In passive ranking, the
learner first has all the comparison data and then develops
a reasonable ranking. In active ranking, the learner does
not have all the comparison data at the beginning, and can
adaptively choose items to compare during the learning
process. This paper studies the fully active ranking (or ac-
tive learning), where for each comparison, the learner can
adaptively choose two items to compare according to past
observations. Chen et al. (2013) showed that in a crowd-
sourcing dataset, their active ranking algorithm uses only
3% comparisons and achieves almost the same performance
as passive ranking.

This paper focuses on the best-k-items-selection problem.
For many applications, ranking all the items may be neither
efficient nor necessary. For instance, in a video sharing
website, filters may generate hundreds of candidate videos,
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but the website may only want to present 30 videos to the
user. Thus, it is not necessary to rank all these videos, and a
more efficient way can be to first select the best 30 videos
and then rank them. The best-k items selection can be of
interest to many different applications.

In previous works (e.g., (Yue and Joachims, 2011; Busa-
Fekete et al., 2014; Szörényi et al., 2015; Falahatgar et al.,
2017b; 2018; Saha and Gopalan, 2019a;b)), the problem
of best item selection has been studied in different settings.
However, the problem of best-k items selection has been
less investigated. We note that best-k items selection is
not a naive extension to the best item selection. For in-
stance, in the deterministic case, finding the max number is
easy by sequentially doing n− 1 comparisons and eliminat-
ing the smaller ones, while finding the largest k numbers in
O(n log k) time needs more complex algorithms (e.g., quick
select (Hoare, 1961)). The same is true in non-deterministic
settings. We do not find a method to extend best item selec-
tion algorithms to an efficient best-k one.

This paper studies both the exact and probably approxi-
mately correct (PAC) best-k items selection. Exact selection
simply means finding the exact best-k items. PAC selec-
tion is to find k items that are approximately best or good
enough (see Section 1.2 for details), which can avoid the
cases where the preferences over two items are extremely
close, making exactly ranking them too costly.

In summary, this paper studies the problem of using fully
active ranking (active learning) to find the exact or PAC
best-k items from noisy pairwise comparisons with a certain
confidence and use as few comparisons as possible.

1.2. Problem Formulation and Notations

Assume that there are n items, indexed by 1, 2, 3, ..., n, and
we use [n] = {1, 2, 3, ..., n}1 to denote the set of these items.
For these items, we make the following assumptions:

A1) Time-invariance. For any items i and j in [n], we as-
sume that the distributions of the comparison outcomes over
items i and j are time-invariant, i.e., there is a number pi,j in
[0, 1] independent of time such that for any comparison over
items i and j, item i wins the comparison with probability
pi,j , where “item i wins the comparison” means that the
comparison returns item i as the preferred one.

A2) Tie Breaking. We assume that for every comparison,
exactly one item wins. If a tie does happen, we randomly
assign one item as the winner. Thus, for any items i and j
in [n], pi,j + pj,i = 1.

A3) Independence. We assume that the comparison results
are independent across time, items, and sets.

1For any positive integerm, we define [m] := {1, 2, 3, ...,m}.

We note that assumptions A1) to A3) are common in the
literature (e.g., (Szörényi et al., 2015; Shah and Wainwright,
2017; Falahatgar et al., 2017a;b; 2018; Heckel et al., 2018;
Katariya et al., 2018; Heckel et al., 2019; Saha and Gopalan,
2019a;b; Ren et al., 2019)). In this paper, we make two more
assumptions to restrict our problems to specific conditions.

Before making these two assumptions, we introduce some
notations. For two items i and j in [n], we define ∆i,j :=
|pi,j − 1/2| as the gap of pi,j and 1/2, which can measure
how difficult to order items i and j by comparing them.
Also, we define pi,i := 1/2 for all items i. For real numbers
a, b, we define a∨ b := max{a, b}, and a∧ b := min{a, b}.

A4) Strong stochastic transitivity (SST) (Shah et al., 2017;
Falahatgar et al., 2018). In this paper, the items are said to
satisfy SST if and only if (i) there is a strict order over these
n items, (ii) if i � j2, then pi,j > 1/2,3 and (iii) for any
three items i, j, and l with i � j � l, pi,l ≥ pi,j ∨ pj,l.

A5) Stochastic triangle inequality (STI) (Falahatgar et al.,
2018). The items are said to satisfy STI if for any three
items i, j, and l, ∆i,l ≤ ∆i,j + ∆j,l.

We note that many widely used parametric models such
as the Bradley-Terry-Luce (Bradley and Terry, 1952; Luce,
2012) (BTL) and Thurstone’s model (Thurstone, 1927) sat-
isfy SST and STI, and thus, the algorithms in this paper can
be directly used under these models. In this paper, we do not
restrict our results to specific parametric models. Without
loss of generality, we use r1 � r2 � · · · � rn to denote the
unknown true ranking.

The first problem is the PAC best-k items selection. We
follow the definition of PAC best item of Falahatgar et al.
(2017a;b; 2018) to define the PAC best-k items. We note
that when k = 1, our definition of PAC best items is the
same as that of Falahatgar et al. (2017a;b; 2018).

Definition 1 ((ε, k)-optimal subsets). For a set S, given
k ≤ |S|, and ε ∈ [0, 1], a set U ⊂ S is said to be an (ε, k)-
optimal subset of S if |U | = k and pi,j ≥ 1/2− ε for any
items i in U and j not in U .

If ε < mini∈[n]:rk�i ∆i,rk , an (ε, k)-optimal subset of S is
exactly the set of the best-k items of S. However, if we
do not have a priori knowledge about the gaps, we cannot
use the PAC algorithms to find the exact best items. The
number ε is called the error tolerance. We note that in an
(ε, k)-optimal subset, every item i has pi,rk ≥ 1/2− ε.
Problem 1 (PAC best-k items selection (PAC k-selection)).
Given n items [n], k ≤ n/2, and δ, ε ∈ (0, 1/2), we want to
find an (ε, k)-optimal subset of S with probability at least

2Term i � j means that i ranks higher than j in the true order.
3In some works, we may have pi,j = 1/2 for items i 6= j.

However, in this paper, we do not allow pi,j = 1/2 to avoid the
case where the term “best-k items” is not well defined.
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1− δ, and use as few comparisons as possible.

The second problem is the exact best-k items selection. Un-
der SST, since there is a strict order over these n items, the
best-k items are unique. The best-k items are r1, r2, ..., rk,
and finding the best-k items is to find the set {r1, r2, ..., rk}.
We do not need to order these best-k items but only need to
find a k-sized set that contains all the best-k items.
Problem 2 (Exact best-k items selection (exact
k-selection)). Given n items, k ≤ n/2, and δ ∈ (0, 1/2),
we want to find the best-k items with probability at least
1− δ, and use as few comparisons as possible.

We define the gap of item i as

∆i = 1i�rk+1
·∆i,rk+1

+ 1rk�i ·∆rk,i, (1)

and our sample complexity (aka number of comparisons)
bounds for the exact k-selection depends on these gaps.

1.3. Main Contributions

For the PAC k-selection problem, we first prove an
Ω(nε−2 log(k/δ)) lower bound on the expected number
of comparisons, and then propose an algorithm with sample
complexity O(nε−2 log(k/δ)), which implies that our up-
per bound matches the lower bound up to a constant factor.

For the exact k-selection problem, we first prove
a worst-instance sample complexity lower bound
Ω(
∑
i∈[n][∆

−2
i log δ−1] + log log ∆−1

rk
). We then pro-

pose an algorithm for k = 1 with sample complexity
O(
∑
i 6=r1 [∆−2

i (log δ−1 + log log ∆−1
i )]) based on our

PAC k-selection algorithm, which is optimal up to
a loglog factor. Finally, we propose another algo-
rithm for general values of k with sample complexity
O(
∑
i∈[n][∆

−2
i (log(n/δ) + log log ∆−1

i )]), which is
optimal up to a log factor.

2. Related Works
An early work that has studied the exact k-selection was
done by Feige et al. (1994). Feige et al. (1994) have shown
that if ∆i,j ≥ ∆ > 0 for all items i and j where ∆ > 0
is a priori known, then to find the best-k items of [n] with
probability at least 1 − δ, Θ(∆−2 log(k/δ)) comparisons
are sufficient and necessary for worst instances. However,
the work of Feige et al. (1994) requires a priori knowledge
of a lower bound of the values of ∆i,j’s to run, which may
not be possible in practice. This paper does not assume
this knowledge. Further, the sample complexity in Feige
et al. (1994) depends on the minimal gaps, i.e., mini 6=j ∆i,j ,
while the sample complexity in this paper depends on ∆ri,rk

or ∆ri,rk+1
, which exploits unequal gaps better.

Chen and Suh (2015); Negahban et al. (2017); Chen et al.
(2019) studied the exact k-selection problem under the

Plackett-Luce (Plackett, 1975; Luce, 2012) (PL) model4,
which is a parametric model that satisfies SST and STI.
They proposed algorithms with adaptivity5 one, which
can find the best-k items of [n] with high probability6 by
O(n∆−2

rk,rk+1
log n) comparisons. In contrast, this paper

focuses on fully active algorithms (i.e., the number of adap-
tivity is unlimited) and the algorithms are not restricted to
parametric models. Another work that has focused on the ex-
act k-selection problem under the MNL model is Chen et al.
(2018). Chen et al. (2018) proposed an exact k-selection al-
gorithm from pairwise comparisons with sample complexity
O(n log14(n)). They also studied ranking from multi-wise
comparisons, which is beyond the scope of this paper.

Busa-Fekete et al. (2014) studied the best item selection
problem under Mallows model, and proposed an algorithm
with samples complexityO(n log(n/δ)). Saha and Gopalan
(2019b) studied the exact best item selection problem under
the PL model with subset-wise feedbacks, and proposed
an algorithm withO(

∑
i∈[n][∆

−2
i (log δ−1 +log log ∆−1

i )])
sample complexity for confidence 1 − δ, which is of the
same order as the algorithm in this paper. Compared to the
work of Saha and Gopalan (2019b), our algorithms work for
all instances satisfying SST and STI, while the PL model is
a special case in our setting.

Another focus of this paper is the PAC k-selection problem.
To the best of our knowledge, we are the first to propose
PAC k-selection algorithms. Prior to this paper, there are
works that focused on the PAC best item selection problem.
Falahatgar et al. (2017a;b) proved that under SST, to find
an item i from [n] with pi,r1 ≥ 1/2 − ε with probability
at least 1− δ, Θ(nε−2 log δ−1) comparisons are sufficient
and necessary. Earlier to this, Yue and Joachims (2011)
proved the same result for cases under the SST and the
STI. The works of Saha and Gopalan (2019a) also proved
the same sample complexity bounds under the PL model.
When k = 1, our upper bound and lower bound for the PAC
k-selection problem is the same as that of Falahatgar et al.
(2017a;b) (ignoring constant factors).

There are also many works that studied the ranking prob-
lems under other models, which are beyond the scope of this
paper. Shah and Wainwright (2017); Heckel et al. (2018);
Katariya et al. (2018); Heckel et al. (2019) studied the active
ranking problems under the Borda-Score (BS) model, which
can be viewed as a superset of SST and STI in some sense.
However, we note that, for instances satisfying SST and STI,
BS ranking algorithms may not be as efficient as their perfor-

4We note that the PL model, the BTL model, and the multi-
nomial logit (MNL) model (McFadden, 1973; Luce, 2012) share
equivalent mathematical formula for pairwise comparisons.

5See Agarwal et al. (2017); Braverman et al. (2019) for details
about learning with limited adaptivity.

6In this paper, “with high probability” means that with proba-
bility at least 1−n−p, where p > 0 is a sufficiently large constant.
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mance on BS problems7. Agarwal et al. (2017); Braverman
et al. (2019) studied the problem of ranking (or finding) the
best-k items with limited adaptivity. Feige et al. (1994);
Szörényi et al. (2015); Falahatgar et al. (2017a;b; 2018);
Ren et al. (2019) studied the (PAC) full ranking problems in
various settings, which is less related to this paper.

3. PAC k-Selection
This section studies the sample complexity lower bound and
upper bound for PAC k-selection. We first prove that for the
worst instances, to find an (ε, k)-optimal subset of [n] needs
Ω(nε−2 log(k/δ)) number of comparisons in expectation.
Then, we design an algorithm that solves all instances with
at most O(nε−2 log(k/δ)) number of comparisons in ex-
pectation, which shows that both our lower bound and upper
bounds are tight (up to a constant factor).

3.1. Lower Bound

We first analyze the lower bound for PAC k-selection, which
is stated in Theorem 2. We prove this bound by reducing
the pure exploration multi-armed bandit (PEMAB) problem
(e.g., (Mannor and Tsitsiklis, 2004; Kalyanakrishnan et al.,
2012)) to the PAC k-selection problem under the MNL
model and using the lower bounds for the PEMAB problem
of Mannor and Tsitsiklis (2004); Kalyanakrishnan et al.
(2012) to get the desired lower bound for PAC k-selection.
We note that Ren et al. (2018) used a similar method and
proved a similar lower bound. However, its definition of
PAC k-selection is different from that in this paper. Thus,
we need to independently find a lower bound in this paper.8

Later in subsection 3.2, we show that the lower bound stated
in Theorem 2 is tight up to a constant factor.

Theorem 2 (Lower bound for PAC k-selection). Given ε ∈
(0, 1/128), δ ∈ (0, e−4/4), n ≥ 2, and 1 ≤ k ≤ n/2, there
is an n-sized instance satisfying SST and STI such that to
find an (ε, k)-optimal subset of [n] with probability 1 − δ,
any algorithm needs to conduct Ω(nε−2 log(k/δ)) number
of comparisons in expectation.

3.2. Upper Bound and the Algorithm

We develop an optimal algorithm in two steps. Step one is to
design a PAC k-selection algorithm with O(nε−2 log(n/δ))
sample complexity. Step two is to develop another algo-
rithm with O(nε−2 log(k/δ)) sample complexity through
the above algorithm. We note that Falahatgar et al. (2018)

7The BS of an item i is 1
n−1

∑
j 6=i pi,j . When pi,j = 2/3

for all i � j, the gap of the BSs between the best two items is
Θ(n−1), and thus, the sample complexity to order them by BS
algorithms (e.g., Active Ranking (Heckel et al., 2019) is Ω(n2).

8Due to space limitation, all proofs in this paper are relegated
to the supplementary material.

proposed an algorithm for finding the PAC full ranking with
high probability, and has sample complexity O(nε−2 log n).
In a PAC ranking, the top-k items form an (ε, k)-optimal
subset of [n], and thus, this PAC full ranking algorithm can
be used as a PAC k-selection algorithm. However, the al-
gorithm of Falahatgar et al. (2018) can only guarantee to
return correct results with confidence 1− 1/n, while in the
construction of the k-selection algorithm with sample com-
plexity O(nε−2 log(k/δ)), we need the confidence to be
larger than 1−1/n. Thus, this algorithm is not sufficient for
us to obtain the O(nε−2 log(k/δ)) sample complexity. In
this paper, we propose a k-selection algorithm with sample
complexity O(nε−2 log(n/δ)) to achieve this purpose.

3.2.1. STEP ONE: EPSILON-QUICK-SELECT

Our first PAC k-selection algorithm is similar to a classical
deterministic k-selection algorithm, Quick Select (Hoare,
1961). In each round, Quick Select randomly picks (some
versions may have different picking strategies) an item as a
pivot and splits the other items into two piles: one contains
items no less than the pivot and the other contains items
less than the pivot. After the splitting, according to the sizes
of these two piles, we do Quick Select again on one pile.
This will be repeated until we find the k-th best item. The
expected time complexity of Quick Select is O(n).

When the comparisons are noisy, we need more effort to
find the (PAC) best-k items, but the basic idea is similar
to Quick Select. For each round t, we randomly pick an
item vt as the pivot, and compare every other item with the
pivot for certain times. According to these comparisons, we
distribute each item i into one of the following three piles: (i)
Sup:={item i is “sure” to be better than vt, i.e., pi,vt > 1/2
with a large probability}; (ii) Smid:={item i is “close to” vt,
i.e., 1/2 − ε ≤ pi,vt ≤ 1/2 + ε with a large probability};
and (iii) Sdown:={item i is “sure” to be worse than vt, i.e.,
pi,vt < 1/2 with a large probability}. After the splitting,
there can be three cases. If Sup contains at least k items,
then we run our algorithm again on Sup. If Sup contains less
than k items, and Sup ∪ Smid contains at least k items, then
the items in Sup along with (k − |Sup|) arbitrary items in
Smid form an (ε, k)-optimal subset. If Sup ∪ Smid contains
less than k items in total (say the number is k′), then we
run the algorithm on Sdown to find the PAC best (k − k′)
items, and the returned items along with Sup and Smid form
an (ε, k)-optimal subset. The properties of SST and STI
guarantee the correctness, and the choice of input confidence
for each round guarantees the sample complexity.

The “Quick-Select-like” algorithm is described in Al-
gorithm 2 Epsilon-Quick-Select (EQS). Subroutine 1
Distribute-Item (DI) is a subroutine, which splits the items
into three piles. DI is called by EQS with two shifts su
and sd being equal to zero, and later in Section 4, the algo-
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Subroutine 1 Distribute-Item (DI)
(i, v, ε, su, sd, δ, Sup, Smid, Sdown)

1: Set tmax := d 2
ε2 log 4

δ e, ∀t ∈ Z, bt :=
√

1
2t log π2t2

3δ ;
2: t← 0, and w0 ← 0;
3: repeat
4: t← t+ 1 and compare i and v once;
5: if i wins, wt ← wt−1 + 1; otherwise wt ← wt−1;
6: if wtt − bt >

1
2 + su then

7: Add i to Sup and return;
8: else if wtt + bt <

1
2 − sd then

9: Add i to Sdown and return;
10: end if
11: until t = tmax;
12: if wtmaxtmax

> 1
2 + 1

2ε+ su then
13: Add i to Sup;
14: else if wtmaxtmax

< 1
2 −

1
2ε− sd then

15: Add i to Sdown;
16: else
17: Add i to Smid;
18: end if

Algorithm 2 Epsilon-Quick-Select(S, k, ε, δ) (EQS)
1: Randomly pick an item from S and denote it by v;
2: Sup, Sdown ← ∅; Smid ← {v}; δ1 ← δ

|S|(|S|−1) ;
3: for item i in S and i 6= j do
4: DI(i, v, ε2 , 0, 0, δ1, Sup, Smid, Sdown).
5: end for
6: if |Sup| > k then
7: return EQS(Sup, k, ε,

(n−1)δ
n ); # n = |S|.

8: else if |Sup|+ |Smid| ≥ k then
9: return Sup ∪ (k − |Sup|) random items of Smid;

10: else
11: k′ ← k − |Sup| − |Smid|;
12: return Sup ∪ Smid∪ EQS(Sdown, k

′, ε, (n−1)δ
n );

13: end if

rithms for exact k-selection will also call DI as a subroutine.
Lemma 3 states the theoretical performance of DI, and The-
orem 4 states the theoretical performance of EQS.

Lemma 3 (Theoretical Performance of DI). DI terminates
after at most O(ε−2 log δ−1) comparisons, and with proba-
bility at least 1− δ, one the following five events happens:
(i) pi,v ≥ 1/2 + ε + su and item i is added to Sup; (ii)
pi,v ∈ (1/2 + su, 1/2 + ε+ su) and item i is not added to
Sdown; (iii) pi,v ∈ [1/2− sd, 1/2 + su] and item i in added
to Smid; (iv) pi,v ∈ (1/2− ε− sd, 1/2− sd) and item i is
not added to Sup; and (v) pi,v ≤ 1/2− ε− sd and item i is
added to Sdown.

Theorem 4 (Theoretical Performance of EQS). Given an
input set S with |S| = n, 1 ≤ k ≤ n/2, and ε, δ ∈ (0, 1/2),
EQS(S, k, ε, δ) terminates after O(nε−2 log(n/δ)) number

of comparisons in expectation, and with probability at least
1− δ, returns an (ε, k)-optimal subset of S.

3.2.2. STEP TWO: TOURNAMENT-k-SELECTION

In this section, we use EQS to develop a PAC k-selection
algorithm with sample complexity O(nε−2 log(k/δ)). The
algorithm runs like a tournament and consists of rounds.
At each round t, we split the remaining items (use Rt to
denote the set of the remaining items at the beginning of
round t) into subsets with size around 2k, and for each
subset we use EQS to find an (εt, k)-optimal subset with
confidence 1−δt/k. We then keep the items in these (εt, k)-
optimal subsets, and remove all the other items. We can
show that with probability at least 1− δt, the items kept in
round t (i.e., Rt+1) contain an (εt, k)-optimal subset of Rt,
which implies that for any t, Rt+1 contains a subset Ut+1

such that for any item i in Ut+1 and item j in Rt − Ut+1,
pi,j ≥ 1/2 − εt. We can also show that with probability
at least 1 − δt − δt−1, for any item i in Ut+1 and j in
Rt−1−Ut+1, pi,j ≥ 1/2−εt−εt−1. Repeating this, we can
show that with probability at least 1−

∑t
r=1 δr, for any item

i in Ut+1 and item j in [n]− Ut+1, pi,j ≥ 1/2−
∑t
r=1 εr.

Thus, by repeating the rounds until only k items remain, we
have that with probability at least 1−

∑∞
t=1 δt, for any item

i in the returned set and j not in the returned set, pi,j ≥
1/2 −

∑∞
t=1 εt, which implies that the returned set is a

(
∑∞
t=1 εt, k)-optimal subset of [n]. Choosing

∑∞
t=1 εt ≤ ε

and
∑∞
t=1 δt ≤ δ, we can get that with probability at least

1− δ, the returned set is an (ε, k)-optimal subset of [n]. The
algorithm is described in Algorithm 3, and its theoretical
performance is stated in Theorem 5.

Algorithm 3 Tournament-k-Selection([n], k, ε, δ) (TKS)

1: For any t ∈ Z+, set εt := 1
4 ( 4

5 )t and δt := 6δ
π2t2 ;

2: Initialize t← 0, R1 ← [n];
3: repeat
4: t← t+ 1;
5: Split Rt into mt = d |Rt|2k e sets (St,i, i ∈ [mt]),

where ∀i ∈ [mt], |St,i| ≤ 2k;
6: for i ∈ [mt] do
7: At,i ←EQS(St,i,min{k, |St,i|}, εt, δtk );
8: end for
9: Rt+1 ← At,1 ∪At,2 ∪ · · · ∪At,mt ;

10: until |Rt+1| = k;
11: return Rt+1;

Theorem 5 (Theoretical Performance of TKS). Given input
1 ≤ k ≤ n/2, and ε, δ ∈ (0, 1/2), TKS terminates after
O(nε−2 log(k/δ)) number of comparisons in expectation,
and with probability at least 1− δ, returns an (ε, k)-optimal
subset of [n].

Remark. i) The sample complexity upper bound of TKS
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matches the lower bound stated in Theorem 2 up to a con-
stant factor. Thus, in order sense, our upper and lower
bounds for PAC k-selection are tight. ii) When k = 1,
our upper bound is the same as that of Falahatgar et al.
(2017a;b). We note that the algorithms given by Falahatgar
et al. (2017a;b) only work for k = 1, and it is not obvious
how to generalize them to cases with general k-values.

4. Exact k-Selection
4.1. Lower Bound

In this subsection, we prove a lower bound for the exact
k-selection problem. We note that the sample complex-
ity lower bound not only depends on the gaps between
items i and items rk or rk+1 as in PEMAB problems (e.g.,
(Jamieson et al., 2014; Chen et al., 2017)), but also depends
on other comparisons probabilities. In fact, even if the val-
ues of ∆i’s are the same, different instances may have differ-
ent lower bounds on the sample complexity for finding the
best-k items. For some instances, even the Ω(∆−2

i ) lower
bound for ordering two items stated in Theorem 6 and Ren
et al. (2019) may not hold if there are more than two items.
For instance, Example 13 in Ren et al. (2019) states an in-
stance with three items such that O(∆−1

r1,r2 log(∆−1
r1,r2δ

−1))
comparisons are sufficient to find the best item with prob-
ability 1 − δ, which indicates the difficulty in finding an
instance-wise lower bound for all instances.

Thus, in this paper, we prove a lower bound for a specific
model: Thurstone’s model. In Thurstone’s model, each item
i holds a real number θi representing the users’ preference
for this item. We name these numbers as scores. The higher
the score, the more preferred the item, and thus, the scores
imply a true order of these items. Under Thurstone’s model
with variance σ2, for any two items i and j, we have

pi,j=P{θi + Z1 > θj + Z2}=
1√

4πσ2

∫ θi−θj

−∞
e−

x2

4σ2 dx,

where Z1 and Z2 are two independent Gaussian(0, σ2) ran-
dom variables. The definitions of the gaps ∆i,j’s and ∆i’s
remain the same as in Section 1.2. It can be verified that
Thurstone’s model satisfies SST and STI. Under Thurstone’s
model, we prove the following lower bound for exact k-
selection, which can be viewed as a worst-instance lower
bound. Here, the worst-instance lower bound means that
under the same values of gaps δi’s, the lower bound for
the Thurstone’s model is no higher than the actual worst-
instance lower bound. In the proof, we invoke the results
shown by Jamieson et al. (2014); Chen et al. (2017).
Theorem 6 (Lower bound for exact k-selection under Thur-
stone’s model). Under Thurstone’s model with variance one,
given δ ∈ (0, 1/100), n items with scores θ1, θ2, ..., θn ∈
[0, 1], and 1 ≤ k ≤ n/2, to find the best-k items with prob-
ability at least 1− δ, any algorithm must conduct at least

Ω(
∑
i∈[n][∆

−2
i log δ−1] + log log ∆−1

rk
) number of compar-

isons in expectation.

4.2. Algorithm for Best Item Selection

We first use the PAC algorithm TKS to establish a best item
selection algorithm called Sequential-Elimination-Exact-
Best-Selection (SEEBS). SEEBS runs in rounds. In each
round t, it chooses a threshold αt, uses TKS to choose a
PAC best item vt with error tolerance αt/3, and uses DI
to identify items i with pi,r1 ≤ 1/2 − αt and removes
them. By choosing a proper confidence δt for each round
t, the properties of DI and TKS stated in Lemma 2 and
Theorem 3 guarantee that with probability at least 1− δ, the
best item r1 will not be removed. If αt is diminishing so that
limt→∞ αt = 0 and the confidences satisfy

∑∞
t=1 δt ≤ δ,

the algorithm will, with probability at least 1− δ, discard
all items other than r1 and keep the best item r1. TKS is
described in Algorithm 4, and its theoretical performance is
stated in Theorem 7.

Algorithm 4 Sequential-Elimination-Exact-Best-Selection
([n], δ) (SEEBS)

1: For all t ∈ Z+, set αt := 2−t and δt := 6δ
π2t2 ;

2: Initialize t← 1, R1 ← [n];
3: repeat
4: {vt} ←TKS(Rt, 1,

αt
3 ,

2δt
3 );

5: Sup ← ∅, Smid ← {vt}, Sdown ← ∅;
6: for items i in Rt − {vt} do
7: DI(i, vt, αt3 , 0,

αt
3 ,

δt
3 , Sup, Smid, Sdown);

8: end for
9: Rt+1 ← Rt − Sdown;

10: t← t+ 1;
11: until |Rt| = 1
12: return the only item in Rt;

Theorem 7 (Theoretical Performance of SEEBS). With
probability at least 1 − δ, SEEBS terminates after
O(
∑
i 6=r1 [∆−2

i (log δ−1 + log log ∆−1
i )]) number of com-

parisons in expectation and returns the best item in [n].

Remark. i) According to the lower bound stated in The-
orem 6, SEEBS is worst-instance optimal up to a loglog
factor. If ∆i’s are not too small, the term log log ∆−1

i will
be dominated by log δ−1, i.e., if ∆−1

i ≤ e1/δ, then our
upper bound is worst-instance optimal up to a constant fac-
tor. ii) The phrase “in expectation” in Theorem 7 does
not only come from the sample complexity of TKS, but
also comes from the choice of input confidences of DI. At
each round t, by inputting δt/3 to DI, one cannot guaran-
tee that the executions of DI correctly assign all non-best
items i with pi,r1 ≤ 1/2 − αt to Sdown with probabil-
ity 1 − δt, and thus, more rounds may be needed to re-
move these non-best items. Therefore, in expectation, the
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number of comparisons over item i is upper bounded by
O(∆−2

i (log δ−1 + log log ∆−1
i )).

4.3. Algorithm for Best-k Items Selection

In this subsection, we develop an exact best-k items se-
lection algorithm called Sequential-Elimination-Exact-k-
Selection (SEEKS). The basic idea of SEEKS is similar to
SEEBS. SEEKS runs in rounds. At each round t, it calls
TKS and TKS2 (where TKS2 is almost the same as TKS
except that it finds the PAC worst items) to find a pivot vt
such that ∆vt,rk ≤ αt/3. Then it uses DI to distribute the
items such that with probability at least 1− δt, (i) all items
i with pi,rk ≥ 1/2 + αt are added to St+1; (ii) all items
i with pi,rk ≤ 1/2 − αt are discarded (i.e., not added to
St+1 or Rt+1); (iii) none of the items with pi,rk ≥ 1/2
is discarded; and (iv) all items added to St+1 are of the
best-k items. By choosing proper confidence δt for each
round t, we guarantee that with probability at least 1 − δ,
none of the best-k items is discarded, and all items added to
St+1 are of the best-k items. Thus, with probability at least
1−

∑∞
t=1 δt = 1− δ, in all rounds, none of the best items

is discarded, and St only contains the best-k items. When
|St| ≤ k or |St ∪ Rt| ≤ k, the algorithm terminates, and
thus, if the algorithm returns, with probability at least 1− δ,
it returns the set of the best-k items. Since limt→∞ αt = 0,
there is a large enough t such that either all of the best-k
items have been added to some St, or all items except the
best-k are discarded. Therefore, the algorithm terminates in
finite time. The sample complexity follows from the choice
of αt’s and δt’s. SEEKS is described in Algorithm 5. Its
theoretical performance is stated in Theorem 8.

Algorithm 5 Sequential-Elimination-Exact-k-Selection
([n], k, δ) (SEEKS)

1: For all t ∈ Z+, set αt := 2−t and δt := 6δ
π2t2 ;

2: Initialize t← 1, R1 ← [n], S1 ← ∅, k1 ← k;
3: repeat
4: At ←TKS(Rt, kt,

αt
3 ,

δt
3 );

5: {vt} ←TKS2(At, 1,
αt
3 ,

δt
3 )

6: Sup ← ∅, Smid ← {vt}, Sdown ← ∅;
7: for items i in Rt − {vt} do
8: DI(i, vt, αt3 ,

αt
3 ,

αt
3 ,

δt
3(|Rt|−1) , Sup, Smid, Sdown);

9: end for
10: St+1 ← St ∪ Sup;
11: Rt+1 ← Rt − Sup − Sdown;
12: kt+1 ← kt − |Sup|;
13: t← t+ 1;
14: until |St| ≥ k or |St ∪Rt| ≤ k
15: return St∪ {k − |St| items in Rt};

Theorem 8 (Theoretical Performance of SEEKS). With
probability at least 1 − δ, SEEKS terminates after
O(
∑
i∈[n][∆

−2
i (log(n/δ) + log log ∆−1

i )]) number of com-

parisons in expectation, and returns the best-k items.

Remark. i) According to the lower bound stated in The-
orem 6, SEEKS is worst-instance optimal up to a log fac-
tor. We conjecture that the true lower bound and upper
bound of the exact k-selection depend on log(k/δ), just as
that of the PAC k-selection, but it remains an open prob-
lem for future studies. ii) Different from Theorem 4, the
phrase “in expectation” in Theorem 8 comes from the sam-
ple complexity of TKS (stated in Theorem 5). If one can
find a PAC k-selection algorithm that uses no more than
O(nε−2 log(n/δ)) comparisons with probability 1−δ, then
by replacing TKS and TKS2 with this algorithm, we can
remove “in expectation” in Theorem 8.

5. Numerical Results
In this section, we perform experiments on the synthetic
dataset with equal noise-levels (i.e., ∆i,j is a constant) and
public election datasets provided by PrefLib (Mattei and
Walsh, 2013). In the supplementary material, we present
the results of the synthetic dataset with unequal noise-levels
and the numerical illustrations of the growth rates of the
exact best-k items selection bounds. The codes and datasets
can be found in the supplementary material as well as our
GitHub page.9

5.1. Numerical Results on Synthetic Data

In this subsection, we provide numerical simulations for
our algorithms and those in related works under equal noise
levels, i.e., we set pi,j = 0.6 for all items i and j with i � j.
This dataset has also been used in previous works (Yue and
Joachims, 2011; Busa-Fekete et al., 2014; Falahatgar et al.,
2017a;b; 2018). The results are presented in Figure 1, and
every data point of it is averaged over 100 independent trials.

5.1.1. PAC BEST ITEM SELECTION

For PAC best item selection, the algorithms we compare
with our EQS and TKS algorithms are: i) Knockout (Fala-
hatgar et al., 2017b), ii) Seq-Eliminate (Falahatgar et al.,
2017a), iii) Opt-Maximize (Falahatgar et al., 2017a), iv) Ac-
tive Ranking (Heckel et al., 2019), v) Beat-the-Mean (Yue
and Joachims, 2011), and vi) MallowsMPI (Busa-Fekete
et al., 2014). Knockout and Opt-Maximize are two PAC best
item selection algorithms, and their sample complexities are
upper bounded by O(nε−2 log δ−1), which is of the same
order as TKS. Seq-Eliminate and Beat-the-Mean are also
PAC best item selection algorithms, but their sample com-
plexities are O(nε−2 log(n/δ)), higher than that of TKS
by a log factor. Active Ranking (Heckel et al., 2019) and

9https://github.com/WenboRen/Topk-Ranking-from-Pairwise-
Comparisons.git
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(a) PAC best one selection with
ε = 0.08 and δ = 0.01.
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(b) PAC best one selection with
ε = 0.001 and δ = 0.01.
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(c) PAC k-selection with k = 2,
ε = 0.08, and δ = 0.01.
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(d) PAC k-Selection with k =
4, ε = 0.08, and δ = 0.01.
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(e) PAC k-selection with n =
1000, ε = 0.08, and δ = 0.01.
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(f) Exact k-selection with k =
1 and δ = 0.01.
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(g) Exact k-selection with k =
50 and δ = 0.01.
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(h) Exact k-selection with n =
1000 and δ = 0.01.

Figure 1. Numerical results on the equal noise-level dataset, i.e., pi,j = 0.6 for any items i � j.

MallowsMPI are exact selection algorithms with sample
complexity O(n log(n/δ)).

The numerical results are summarized in Figure 1 (a) (b).
We set δ = 0.01, and examine how the number of compar-
isons conducted increases with n. In Figure 1 (a), we set
ε = 0.08, and in Figure 1 (b), we set ε = 0.001.

According to the illustrated results, we can see that when
ε is small (i.e., ε = 0.001), the performance of our algo-
rithm TKS is almost the same as those of Knockout and
MallowsMPI, the best of previous works. We note that
Knockout and MallowsMPI are only designed for best item
selection and it is not obvious how to extend them to cases
with k > 1. Thus, although our TKS works for all values of
k, its performance is close to the best of the state-of-the-art
when k = 1.

5.1.2. PAC k-SELECTION

For the PAC k-selection, we provide the simulation results
for EQS, TKS, and Active Ranking.

The results are summarized in Figure 1 (c)-(e). In Fig-
ure 1 (c)-(d), we set ε = 0.08 and δ = 0.01, vary the values
of n, and compare EQS of TKS with k = {2, 4}. In Fig-
ure 1 (e), we set ε = 0.08, δ = 0.01, and n = 1000, and
compare EQS and TKS with different values of k.

As presented in Figure 1 (c)-(e), we can see that when k is
small (i.e., k ≤ 2), TKS outperforms EQS, but when k is not
too small, EQS uses fewer comparisons. The sample com-
plexity upper bound of TKS is O(nε−2 log(k/δ)), which
is lower than the O(nε−2 log(n/δ)) complexity of EQS.
However, in practice, for most values of k, EQS consumes
fewer comparisons. One explanation is that the constant
factor of TKS is larger than that of EQS. There may be two
reasons: First, in each call of EQS on S, the sub-call of EQS
is executed on Sup or Sdown, whose expected sizes are less
than |S|/2, while in TKS, each iteration removes no more
than a half of the items. Second, in TKS, the value εt input
to DI is less than ε, which is used in EQS.

5.1.3. EXACT k-SELECTION

For the exact k-selection algorithm, we only provide nu-
merical results for the algorithms proposed in this paper:
SEEBS, SEEKS, and SEEKS-v2, a variation of SEEKS.
Here, SEEKS-v2 is almost the same as SEEKS. But in
Line 4, TKS is replaced with EQS, since EQS has a better
empirical performance than TKS when k is not too small.
We note that the sample complexity upper bound of SEEKS-
v2 is of the the same order as SEEKS (ignoring constant
factors). We do not compare the algorithm proposed by
Chen et al. (2018) because it is unclear how to choose the
parameters to let the confidence be 1−δ. We do not compare
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Figure 2. Numerical results on public election datasets. MallowsMPI is not in (1) because its correct probability does not reach 1− δ for
the Irish election dataset. Beat-the-mean and Active Ranking are not in some subfigures because they do not return in a reasonable time.

the algorithm given by Saha and Gopalan (2019b) since it
requires the system to be able to conduct comparisons over
more than two items, which is not assumed in this paper.

In Figure 1 (f), we compare SEEBS, SEEKS, and SEEKS-
v2 with k = 1 and δ = 0.01. In Figure 1 (g), we fix k = 50
and δ = 0.01, vary n, and compare the two versions of
SEEKS. In Figure 1 (h), we fix n = 1000 and δ = 0.01,
vary k, and compare the two versions of SEEKS.

From Figure 1 (f), we can see that SEEBS is slightly better
than SEEKS, which is due to the choices of confidences
input to the calls of DI in these two algorithms. Also, we
can see that SEEBS and SEEKS are better than SEEKS-v2,
especially when n is large. This is because the empirical
performance of EQS is worse than TKS when k = 1. Ac-
cording to Figure 1 (g) and (h), SEEKS-v2 consumes fewer
comparisons when k is not too small. An explanation is that
in practice, EQS uses fewer comparisons than TKS when k
is not too small.

5.2. Numerical Results on Public Election Data

In this subsection, we perform numerical experiments
on public election datasets provided in PrefLib (Mattei
and Walsh, 2013). To be specific, we use the Irish elec-
tion dataset “ED-00001-00000001.pwg” (Lu and Boutilier,
2011) and the clean web search dataset “ED-00015-
00000047.pwg” (Betzler et al., 2014). Both datasets are
included in the supplementary material.

The Irish Election dataset contains n = 12 candidates and
43,942 votes on them. The web search dataset contains
n = 28 pages and 1134 samples of pairwise preferences on
them. For every pair of items i and j in each dataset, the
dataset records the number of votes or samples Ni,j that
show preference on item i to item j. From these records,
we extract pi,j := Ni,j/(Ni,j + Nj,i) for any two items i
and j. We note that these two dataset do not satisfy the SST
or the STI and do not imply a strict order. Thus, we use the

Borda-Scores for them to get the true rankings.

In the experiments, we set ε = 0.001, δ = 0.01, and
k = {1, 4}. Surprisingly, although these two datasets do
not satisfy SST or STI, our algorithms EQS, TKS, SEEBS,
and SEEKS can still return correct results with correct prob-
ability at least 1 − δ (in the experiments, all runs of them
return correct results). In fact, we have done experiments
on more datasets and find that if there is a small num-
ber γ > 1 (e.g., γ < 5) such that for any i � j � k,
pi,k ≥ γ−1 max{pi,j , pj,k} and ∆i,k ≤ γ(∆i,j + ∆j,k),
then our algorithms can guarantee at least 1 − δ correct
probability.

From the results presented in Figure 2, we can see that
for the Irish election dataset, the performances of our algo-
rithms EQS and TKS are close to the best of the previous
works, which indicates that even if they are not designed for
k = 1 and these types of datasets, they still have promising
performances on some real-world datasets. The results also
show positive evidence on our theoretical results, i.e., TKS
(SEEKS) performs better than EQS (SEEKS-v2) when k is
small (k = 1) and performs worse when k is large (k = 4).

6. Conclusion
This paper studied the sample complexity bounds for
selecting the PAC or exact best-k items from pairwise
comparisons. For PAC k-selection, we first proved an
Ω(nε−2 log(k/δ)) lower bound, and then proposed an algo-
rithm with expected sample complexity O(nε−2 log(k/δ)),
which implies that both our upper bound and lower bound
are tight up to a constant factor. For exact k-selection, we
first proved a worst-instance lower bound, and then pro-
posed an algorithm for k = 1 that is optimal up to a loglog
factor. Finally, we proposed an algorithm for general k-
values that is optimal up to a log factor. The numerical
results in this paper also confirm our theoretical results.



The Sample Complexity of Best-k Items Selection from Pairwise Comparisons

Acknowledgements
This work has been supported in part by NSF grants
CAREER CNS-1943226, CNS-1901057, CNS-1758757,
CNS-1719371, CNS-1717060, ECCS-1818791, and CCF-
1758736, a Google Faculty Research Award, and an IITP
grant (No. 2017-0-00692).

We express our sincere gratitude to those who fought or are
fighting against COVID-19.

References
Agarwal, A., Agarwal, S., Assadi, S., and Khanna, S. (2017).

Learning with limited rounds of adaptivity: Coin tossing,
multi-armed bandits, and ranking from pairwise compar-
isons. In Conference on Learning Theory, pages 39–75.

Betzler, N., Bredereck, R., and Niedermeier, R. (2014).
Theoretical and empirical evaluation of data reduction for
exact kemeny rank aggregation. Autonomous Agents and
Multi-Agent Systems, 28(5):721–748.

Bradley, R. A. and Terry, M. E. (1952). Rank analysis
of incomplete block designs: I. the method of paired
comparisons. Biometrika, 39(3/4):324–345.

Braverman, M., Mao, J., and Peres, Y. (2019). Sorted top-
k in rounds. In Conference on Learning Theory, pages
342–382. PMLR.
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Supplementary Material

A. Additional Numerical Results
A.1. Additional Numerical Results on Synthetic Data

In this subsection, we provide numerical results of our al-
gorithms and related previous works on another synthetic
dataset, where the noise levels are not equal. To be specific,
for any two items i and j with i � j, the value of pi,j is inde-
pendently randomly drawn from the Uniform(0.5∆, 1.5∆)
distribution, where ∆ = 0.1. The results are presented in
Figure 3. Every data point in every figure is averaged over
100 independent trials.

Other than the dataset, the experiment setup and involved
algorithms are the same as that in Section 5.1. From the
results in Figure 3, we can see that the performances of the
algorithms are similar to that presented in Section 5.1. We
omit the detailed descriptions for brevity.

A.2. Growth Rates of the Exact Best-k Selection
Bounds

In this subsection, we use figures to illustrate the growth
rates of the exact best-k selection bounds. The lower bound
refers to that of the Thurstone’s model stated in Theo-
rem 6, i.e., Ω(

∑
i∈[n][∆

−2
i log δ−1] + log log ∆−1

rk
); the

upper bound for k = 1 refers to that of SEEBS stated in The-
orem 7, i.e., O(

∑
i6=r1 [∆−2

i (log δ−1 + log log ∆−1
i )]); and

the upper bound for k > 1 refers to that of SEEKS stated in
Theorem 8, i.e.,O(

∑
i∈[n][∆

−2
i (log(n/δ)+log log ∆−1

i )]).
In this subsection, we ignore the constant factors (the con-
stant factors are also unclear) and show the growth rates of
these bounds.

We fix k = 1, vary n from 10 to 1000, and set ∆i = ∆
for all items. The results are illustrated in Figure 4. In
Figure 4 (a), we set ∆ = 0.1 and δ = 0.01, in Figure 4 (b)
we set ∆ = 10−10 and δ = 0.1, in Figure 4 (c) we set ∆ =
0.1 and δ = 10−10, and in Figure 4 (d) we set ∆ = 10−10

and δ = 10−10.

In all subfigures of Figure 4, we can see that the upper bound
for k > 1 is always larger and grows faster than the upper
bound for k = 1 and the lower bound. This is because the
upper bound for k > 1 depends on log(n/δ) while the other
two bound depend on log δ−1.

From Figure 4 (a) and (b), we can see that the upper bound
for k = 1 is larger than the lower bound and this gap is
larger for smaller values of ∆, which is because the up-
per bound depends on ∆−2n log log ∆−1 while the lower
bound depends on ∆−2(n+ log log ∆−1). Another finding
is that the growth rates of these two bounds have no obvious
difference. The reason is that the terms multiplied to n in

these two bounds are ∆−2 and ∆−2 log log ∆−1, respec-
tively, which are extremely close even for large values of
∆.

Based on Figure 4 (c) and (d), we see that when δ is small,
especially when δ is far smaller than ∆, the gap between the
upper bound for k = 1 and the lower bound is close to zero.
The reason is that when δ is small, the terms n log log ∆−1

or log log ∆−1 are both dominated by log δ−1. From a
mathematical perspective, log δ−1 is exponentially higher
than log log ∆−1, which implies that when δ and ∆ both
approach zero with comparable rates, the influence of the
log log ∆−1 term will vanish compared to the log δ−1 term.

B. Proofs
B.1. Proof of Theorem 2

Theorem 2 (Lower bound for PAC k-selection). Given ε ∈
(0, 1/128), δ ∈ (0, e−4/4), n ≥ 2, and 1 ≤ k ≤ n/2, there
is an n-sized instance satisfying SST and STI such that to
find an (ε, k)-optimal subset of [n] with probability 1 − δ,
any algorithm needs to conduct Ω(nε−2 log(k/δ)) number
of comparisons in expectation.

Proof of Theorem 2. A possible way to prove this lower
bound is by reducing the pure exploration multi-armed ban-
dit (PEMAB) problem (e.g., (Mannor and Tsitsiklis, 2004))
to the k-selection problem under the MNL model, which
has been adopted by Ren et al. (2018; 2019); Saha and
Gopalan (2019a). We note that the definition of PAC best-k
items given by Ren et al. (2018) is different from that in
this paper, and thus, we need to independently find a lower
bound in this paper. We first show the reduction procedure
given by Ren et al. (2019), then show how to reduce the
PEMAB problem to the best-k items selection problem, and
finally prove the lower bound by invoking the results shown
by Mannor and Tsitsiklis (2004); Kalyanakrishnan et al.
(2012).

Step 1 is to introduce the PEMAB problem with Bernoulli
arms as well as the MNL model. In the PEMAB prob-
lem with Bernoulli arms, there are n arms denoted by
a1, a2, ..., an. For each arm ai, it holds a real number
µi ∈ [1/4, 3/4] denoting its mean reward. The t-th sample
of arm ai returns an independent random reward Rti accord-
ing to the Bernoulli(µi) distribution. We further assume
that (Rti, i ∈ [n], t ∈ Z+) are independent. For positive
integer k with k ≤ n, we use µ[k] to denote the k-largest
mean reward of these n Bernoulli arms.

Given k ∈ {1, 2, 3, ..., bn/2c}, δ ∈ (0, 1/2) and ε ∈
(0, 1/2), the PAC PEMAB problem is to find k distinct
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(a) PAC best one selection with
ε = 0.08 and δ = 0.01.
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(b) PAC best one selection with
ε = 0.001 and δ = 0.01.
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(c) PAC k-selection with k = 2,
ε = 0.08, and δ = 0.01.
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(d) PAC k-Selection with k =
4, ε = 0.08, and δ = 0.01.
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(e) PAC k-selection with n =
1000, ε = 0.08, and δ = 0.01.
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(f) Exact k-selection with k =
1 and δ = 0.01.

102 103

n

106

107

nu
m

be
r 

of
 c

om
pa

ris
on

s
SEEKS
SEEKS-v2

(g) Exact k-selection with k =
50 and δ = 0.01.
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(h) Exact k-selection with n =
1000 and δ = 0.01.

Figure 3. Numerical results on the unequal noise-level dataset, i.e., for any items i � j, probability pi,j is independently drawn from the
Uniform(0.55, 0.7) distribution. Every point is averaged over 100 independent trials.
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Figure 4. The growth rates of the exact best-k selection bounds (ignoring constant factors).

arms with mean rewards no less than µ[k] − ε by adaptively
sampling the arms, where the error probability is no more
than δ.

Under the MNL model, each item i is assumed to hold a real
number γi representing the users’ preference of this item.
The larger the number, the more preferred this item. For
any two items i and j, a comparison over them returns item
i with probability pi,j = eγi/(eγi + eγj ), and returns item
j with probability pj,i = eγj/(eγi + eγj ). To simplify the
notation, for any item i, we define θi = exp(γi), and name
θi as the preference score of item i. Thus, for any two items

i and j, we have pi,j = θi/(θi + θj).

Step 2 is to introduce the reduction procedure. To do the
reduction, we introduce Procedure P1, which is described
in Procedure 6.

Claim 18 proved by Ren et al. (2019) states that Proce-
dure P1 returns arm ai with probability µi/(µi + µj), and
returns arm aj with probability µj/(µi + µj).

Let A be a PAC best-k items selection algorithm. Now for
each arm ai, we create an artificial item i, and input items
1, 2, 3, ..., n to Algorithm A. Whenever Algorithm A wants
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Procedure 6 P1(ai, aj) (Ren et al., 2019)
Input: Two Bernoulli arms ai and aj with unknown mean
rewards µi and µj , respectively;

1: repeat
2: Randomly choose an arm aX and sample it;
3: Let s← the sample result;
4: until s = 1
5: return aX ;

to compare artificial items i and j, we call Procedure P1

on arms ai and aj . If Procedure P1 returns ai, then we
tell Algorithm A that i wins this comparison. Otherwise,
we tell Algorithm A that j wins this comparison. Observe
that the probabilities that Procedure P1 returns an arm ai is
µi/(µi + µj), which is of the same formula as the compari-
son probabilities under the MNL model.

Thus, if for n items with preference scores θ1 = µ1, θ2 =
µ2, ..., θn = µn, AlgorithmA can find k distinct items with
preference scores no less than µ[k] − ε with probability at
least 1− δ by conducting M comparisons, there exists an
algorithm that solves the above PEMAB problem by calling
Procedure P1 for M times without additional samples of
these n arms.

Since for any arm ai, the mean reward µi is in [1/4, 3/4],
any call of Procedure P1 returns after at most 4 samples
in expectation. Thus, by substituting the comparisons in
AlgorithmA with Procedure P1, one can solve the PEMAB
problem by 4M samples of arms in expectation.

Step 3 is to prove a related lower bound for the PAC k-
selection problem.

For k = 1, ε < 1/8, and δ < e−4/4, Mannor and Tsit-
siklis (2004) proved that there is an instance such that
to solve the PEMAB problem, at least Ω(nε−2 log δ−1)
number of comparisons are needed in expectation. For
6 ≤ k ≤ n/2, ε ≤

√
1/32, and δ ≤ 1/4, Kalyanakrish-

nan et al. (2012) proved that there is an instance such that
to solve the PEMAB problem, at least Ω(nε−2 log(k/δ))
number of comparisons are needed in expectation.

For 2 ≤ k ≤ 5 with additional knowledge about (k − 1)
arms with mean rewards no less than µ[k] − ε, to solve the
PEMAB problem with k > 1 and n arms is equivalent
to solve the PEMAB problem with k = 1 and (n − k +
1) arms. Thus, the expected sample complexity of any
algorithm is lower bounded by Ω((n−k+1)ε−2 log δ−1) =
Ω(nε−2 log(k/δ)).

Thus, for 1 ≤ k ≤ n/2, ε < 1/8, and δ < e−4/4, we
conclude that 4M = Ω(nε−2 log(k/δ)), i.e., there is an
instance such that to find k distinct items with preference
scores no less than µ[k] − ε, any algorithm needs to conduct
Ω(nε−2 log(k/δ)) number of comparisons in expectation.

Step 4 is to conclude the lower bound for PAC k-selection.
We assume that Algorithm A can find an (ε, k)-optimal
subset of [n] with probability at least 1− δ by conducting
o(nε−2 log(k/δ)) number of comparisons in expectation,
and we will show a contradiction to Step 3 to complete the
proof of the desired lower bound.

Let R be an (ε, k)-optimal subset of [n] returned by Algo-
rithm A. Let item i be an item in R and item j be an item
in [n]−R. By the definition of (ε, k)-optimality, we have
pi,j ≥ 1/2 − ε. Let rk be the item with the k-th largest
preference score. If R is the set of the best-k items, then
for any item i in R, we have i � rk, i.e., pi,rk ≥ 1/2. If R
is not the set of the best-k items, then there exists an item
j not in R such that j � rk, and thus, for any item i in R,
pi,rk ≥ pi,j ≥ 1/2− ε. Hence, in any case, for any item i
in R, pi,rk ≥ 1/2− ε.

For any item i in R, since pi,rk = µi/(µi + µrk), either
µi ≥ µ[k] = µrk ; or µi < µrk and

−ε ≤ µi
µi + µrk

− 1

2
=

µi − µrk
2(µi + µrk)

≤ µi − µrk
4

.

Thus, every item i in R has µi ≥ µ[k] − 4ε. This indicates
that Algorithm A can find k distinct items with preferences
no less than µ[k]−4ε by conducting o(nε−2 log(k/δ)) num-
ber of comparisons in expectation.

However, in Step 3, we have shown that for ε < 1/128,
to find k distinct items with preference scores no less than
µ[k]−4ε, at least Ω(nε−2 log(k/δ)) number of comparisons
in expectation are needed, which leads to a contradiction to
the assumption. Hence, Algorithm A with sample complex-
ity o(nε−2 log(k/δ)) assumed in this step does not exist.
This completes the proof of Theorem 2.

B.2. Proof of Lemma 3

Lemma 3 (Theoretical Performance of DI). DI terminates
after at most O(ε−2 log δ−1) comparisons, and with proba-
bility at least 1− δ, one the following five events happens:
(i) pi,v ≥ 1/2 + ε + su and item i is added to Sup; (ii)
pi,v ∈ (1/2 + su, 1/2 + ε+ su) and item i is not added to
Sdown; (iii) pi,v ∈ [1/2− sd, 1/2 + su] and item i in added
to Smid; (iv) pi,v ∈ (1/2− ε− sd, 1/2− sd) and item i is
not added to Sup; and (v) pi,v ≤ 1/2− ε− sd and item i is
added to Sdown.

Proof of Lemma 3. DI terminates after at most tmax =
d2ε−2 log(4/δ)e comparisons, and the sample complexity
follows from the choice of tmax. Now we focus on the proof
of the correctness, i.e., with probability at least 1− δ, one
of the five stated events happens.

For any t ∈ Z+, we define a bad event that we do not want
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to happen,

Et := {|wt/t− pi,v| ≥ bt}.

By the Chernoff-Hoeffding inequality (Hoeffding, 1994),
we have that for all t in Z+,

P{Et} ≤ 2 exp{−2tb2t} ≤
3δ

π2t2
.

We define another bad event

Eout :=
{∣∣∣wtmax

tmax
− pi,v

∣∣∣ ≥ ε

2

}
,

whose probability, by Chernoff-Hoeffding inequality, is up-
per bounded by

P{Eout} ≤2 exp{−2tmax(ε/2)2} ≤ δ/2.

Thus, by the union bound, the probability that some bad
event happens is at most

P
{
Eout ∪

( ∞⋃
t=1

Et
)}
≤ δ

2
+

∞∑
t=1

3δ

π2t2
= δ.

In the rest of the proof, we assume that no bad event happens,
which has probability at least 1− δ. We split the rest of our
proof in five cases, each for an event.

Case 1: pi,v ≥ 1/2 + ε+ su. Since none of Et happens, for
any round t, we havewt/t > pi,v−bt ≥ 1/2−bt−sd, which
implies that item i will not be added to Sdown by Line 9. If
DI proceeds to Line 12, since Eout does not happen, we will
have wtmax/tmax > pi,v − ε/2 ≥ 1/2 + ε/2 + su, which
implies that item i will be added to Sup by Line 13.

Case 2: pi,v ∈ (1/2 + su, 1/2 + ε + su). Since none of
Et happens, for any round t, we have wt/t > pi,v − bt >
1/2− bt − sd, which implies that item i will not be added
to Sdown by Line 9. If DI proceeds to Line 12, since Eout
does not happen, we will have wtmax/tmax > pi,v − ε/2 >
1/2− ε/2− sd, which implies that item i will not be added
to Sdown by Line 15.

Case 3: pi,v ∈ [1/2 − sd, 1/2 + su]. Since none of Et
happens, for any round t, we have |wt/t−pi,v| ≤ bt, which
implies that wt/t+ bt > pi,v ≥ 1/2− sd and wt/t− bt <
pi,v ≤ 1/2 + su. Thus, item i will not be added to Sup or
Sdown by Lines 7 or 9. If DI proceeds to Line 12, since Eout
does not happen, we will have wtmax/tmax < pi,v + ε/2 ≤
1/2 + ε/2 + su and wtmax/tmax > pi,v − ε/2 ≥ 1/2 −
ε/2 − sd. Thus, item i will not be added to Sup or Sdown
by Lines 13 or 15. Therefore, item i will be added to Smid.

Case 4: pi,v ∈ (1/2 − ε − sd, 1/2 − sd). Since none of
Et happens, for any round t, we have wt/t < pi,v + bt <
1/2 + bt + su, which implies that item i will not be added

to Sup by Line 7. If DI proceeds to Line 12, since Eout
does not happen, we will have wtmax/tmax < pi,v + ε/2 <
1/2 + ε/2 + su, which implies that item i will not be added
to Sup by Line 13.

Case 5: pi,v ≤ 1/2− ε− sd. Since none of Et happens, for
any round t, we have wt/t < pi,v + bt ≤ 1/2 + bt + su,
which implies that item i will not be added to Sup by Line 7.
If DI proceeds to Line 12, since Eout does not happen, we
will havewtmax/tmax < pi,v+ε/2 ≤ 1/2−ε/2−sd, which
implies that item i will be added to Sdown by Line 15.

The correctness follows from the above five cases, and the
proof of Lemma 3 is complete.

B.3. Proof of Theorem 4

Theorem 4 (Theoretical Performance of EQS). Given an
input set S with |S| = n, 1 ≤ k ≤ n/2, and ε, δ ∈ (0, 1/2),
EQS(S, k, ε, δ) terminates after O(nε−2 log(n/δ)) number
of comparisons in expectation, and with probability at least
1− δ, returns an (ε, k)-optimal subset of S.

Proof of Theorem 4. The proof consists of two parts: the
proof of the correctness and the proof of the sample com-
plexity. To avoid ambiguity, we use EQS to denote the
algorithm and subEQS to denote the EQS function called
by the algorithm.

Let E be the event that all calls of DI return correct results,
i.e., for each call of DI, one of the five events stated in
Lemma 3 happens. By Lemma 3 and the union bound, E
happens with probability at least 1− δ/n.

Proof of the correctness. We prove the correctness by
induction. First let n = 1. In this case, k must be one. Since
the only item is chosen as the pivot, and the pivot is added
to Smid, EQS simply returns {1} as the answer, which is
correct with probability 1. Thus, when n = 1, EQS returns
an (ε, 1)-optimal subset of S with probability 1.

Now we consider the case where n > 1. We make the
following hypothesis to prove the correctness by induction.

Hypothesis 1. For all sets S′ with size less than n, k′ ∈
{1, 2, ..., |S′|}, and δ′ ∈ (0, δ], EQS(S′, k′, ε, δ′) returns an
(ε, k′)-optimal subset of S′ with probability at least 1− δ′.

We note that when n = 1, EQS returns an (ε, 1)-optimal
subset of S with probability 1, and thus, Hypothesis 1 holds
for n = 2.

From now on till the end of the proof of the correctness, we
assume that E happens and subEQS (i.e., the EQS called
by the algorithm) also returns a correct result. We have
shown that P{E} ≥ 1 − δ/n, and Hypothesis 1 claims
that subEQS returns a correct result with probability at least
1−(n−1)δ/n. Thus, this assumption holds with probability
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at least 1− δ.

First, we show a property about the sets Sup, Smid, and
Sdown. Since E happens, according to Lemma 3, all items
i added to Sup have i � v, all items i added to Smid have
pi,v ∈ (1/2 − ε/2, 1/2 + ε/2), and all items i added to
Sdown have v � i. Here we note that v is a pivot randomly
picked from S.

Now, let item i in Sup ∪ Smid and item j in Smid ∪ Sdown
be given. There are four cases about items i and j.

Case 1: item i is in Sup and item j is in Smid. Since i � v,
we have pi,j ≥ pv,j ≥ 1/2−∆v,j ≥ 1/2− ε/2 ≥ 1/2− ε.

Case 2: item i is in Sup and item j is in Sdown. In this
case, we have i � v � j, which implies that pi,j > 1/2 >
1/2− ε.

Case 3: item i is in Smid and item j is in Smid. By the
definition of STI, we have ∆i,j ≤ ∆i,v + ∆j,v ≤ ε, which
implies that pi,j ≥ 1/2−∆i,j ≥ 1/2− ε.

Case 4: item i is in Smid and item j is in Sdown. Since
v � j, we have pi,j ≥ pi,v ≥ 1/2 −∆i,v ≥ 1/2 − ε/2 >
1/2− ε.

Thus, from the above four cases, we conclude that for any
item i in Sup∪Smid and j in Smid∪Sdown, pi,j ≥ 1/2− ε.

Next, we finish the proof of the correctness by analyzing
the following three cases. Let R be the returned set of EQS.
Let i be an item in R and j be an item not in R.

Case 1: |Sup| > k. In this case, item i is in Sup. If j is
in Sup, by Hypothesis 1, the set returned by subEQS is an
(ε, k)-optimal subset of Sup, and thus, pi,j ≥ 1/2− ε. For
the case where j is in Smid ∪ Sdown, we have shown that
pi,j ≥ 1/2− ε.

Case 2: |Sup| ≤ k and |Sup|+ |Smid| ≥ k. In this case, we
have that i is in Sup ∪ Smid and j is in Smid ∪ Sdown. We
have shown that pi,j ≥ 1/2− ε.

Case 3: |Sup| + |Smid| < k. In this case, j is in Sdown.
For the case where i is in Sup ∪ Smid, we have shown that
pi,j ≥ 1/2−ε. If i is in Sdown, then i is in the returned set of
subEQS, which by Hypothesis 1 implies that pi,j ≥ 1/2− ε.

Therefore, if Hypothesis 1 holds for n, EQS returns a correct
(ε, k)-optimal subset of S with probability at least 1 − δ.
Since k ≤ n and δ < 1/2 are arbitrary, Hypothesis 1 holds
for n + 1. Also, since Hypothesis 1 holds for n = 2,
Hypothesis 1 holds for all n ≥ 2. This completes the proof
of the correctness.

Proof of the sample complexity. We prove the sample
complexity by induction. Let c1 > 0 be the hidden constant
of the sample complexity of DI stated in Lemma 3. For
any positive integer n1, we use T (n1, k1, ε, δ1) to denote

the upper bound of the expected number of comparisons
conducted by the call of EQS([n1], k1, ε, δ1), where [n1] de-
notes an arbitrary set consisting of n1 items, k1 is a positive
integer with k1 ≤ min{n1, k}, and δ1 is in (0, δ].

When there is only one item, we have T (1, k1, ε, δ1) = 0,
as we do not need to conduct any comparison. When there
are two items, since we only need to compare the two items
in the call of DI, we have T (2, k1, ε, δ1) ≤ c1ε

−2 log δ−1

for any k1 ≤ min{2, k} and δ1 ∈ (0, δ].

Now we let n1 > 2, k1 ≤ min{n1, k}, and δ1 ∈ (0, δ] be
given, we make the following hypothesis. Note that we have
shown that when n1 = 3, Hypothesis 2 holds.

Hypothesis 2. For all n2 < n1, k2 ≤ min{n2, k1}, and
δ2 ∈ (0, δ1], T (n2, k2, ε, δ2) ≤ c2n2ε

−2 log(n2/δ2), where
c2 > 0 is a sufficiently large constant.

For the call of EQS([n1], k1, ε, δ1), we use v to denote its
pivot, and use l to denote the rank of item v in [n1], i.e.,
item v ranks the l-th best in [n1]. Since the pivot v is picked
at random, l is uniformly distributed on [n1].

We recall that E is the event that all DIs called by
EQS([n1], k1, ε, δ1) return correct results, i.e., for each call
of DI, one of the five events stated in Lemma 3 happens. By
Lemma 3, E happens with probability at least 1− δ/n1.

First, we consider the case where E does not happen. In
this case, since v is added to Smid, we have |Sup| ≤ n1 −
1 and |Sdown| ≤ n1 − 1, and subEQS (if existing) will
only be executed on one of Sup and Sdown. Hence, in this
case, the expected number of comparison conducted by
EQS([n1], k1, ε, δ1) is

T1 ≤ max
k′∈[k1]

T (n1 − 1, k′, ε, δ1) +
c1(n1 − 1)

ε2
log

n1

δ1

≤ (c2 + c1) · n1

ε2
log

n1

δ1
.

Next, we consider the case where E happens. In this case,
since Lemma 3 states that no item less preferred than the
pivot v will be added to Sup and no item more preferred
than the pivot v will be added to Sdown, we have |Sup| ≤
l − 1 and |Sdown| ≤ n1 − l. If l > k1, then we have
|Sup| + |Smid| = n1 − |Sdown| ≥ l > k1, which implies
that subEQS (if existing) will only be executed on the set
Sup, and the size of Sup is no more than (l − 1). If l ≤ k1,
then we have |Sup| ≤ l ≤ k1, which implies that subEQS
(if existing) will only be executed on Sdown, and the size
of Sdown is at most (n1 − l). Hence, when E happens, the
expected number of comparisons conducted by the call of
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EQS([n1], k1, ε, δ1) is

T2 ≤
1

n1

k1∑
l=1

[
T
(
n1 − l, k1 − l, ε,

n1 − 1

n1
· δ1
)]

+
1

n1

n1∑
l=k1+1

[
T
(
l − 1, k1, ε,

n1 − 1

n1
· δ1
)]

+
c1(n1 − 1)

ε2
log

n1

δ

≤ c2
n1

k1∑
l=1

[n1 − l
ε2

log
(n1 − l)n1

(n1 − 1)δ1

]
+
c2
n1

n1∑
l=k1+1

[ l − 1

ε2
log

(l − 1)n1

(n1 − 1)δ1

]
+
c1n1

ε2
log

n1

δ1

≤ c2
n1

{ k1∑
l=1

[n1 − l
ε2

log
n1

δ1

]
+

n1∑
l=k1+1

[ l − 1

ε2
log

n1

δ1

]}
+
c1n1

ε2
log

n1

δ1

=
c2
n1ε2

log
n1

δ1

{ (2n1 − 1− k1)k1

2

+
(n1 + k1 − 1)(n1 − k1)

2

}
+
c1n1

ε2
log

n1

δ1

=
c2
n1ε2

log
n1

δ1
·
[
k1(n1 − k1) +

1

2
n1(n1 − 1)

]
+
c1n1

ε2
log

n1

δ1

≤ c2
n1ε2

log
n1

δ1
· 3

4
n2

1 +
c1n1

ε2
log

n1

δ1

=
(3

4
c2 + c1

)n1

ε2
log

n1

δ1
.

Summarizing the numbers of comparisons in these two
cases, by P{E} ≥ 1 − δ1/n1, n1 > 2, and δ1 < 1/2,
we get

T (n1, k1, ε, δ1) ≤
(

1− δ1
n1

)
· T2 +

δ1
n1
· T1

≤
((3

4
+

δ1
4n1

)
c2 + c1

)n1

ε2
log

n1

δ1

≤
(19

24
c2 + c1

)n1

ε2
log

n1

δ1
.

Choose c2 ≥ 4.8c1, and then we have T (n1, k1, ε, δ1) ≤
c2n1ε

−2 log(n1/δ1). Thus, if Hypothesis 2 holds for n1,
it will hold for n1 + 1. We also recall that when n1 ≤ 3,
Hypothesis 2 holds. Therefore, by induction, Hypothesis 2
holds for all values of n1. Hence, EQS([n], k, ε, δ) termi-
nates after at most c2nε−2 log(n/δ) number of comparisons
in expectation. This completes the proof of the sample com-
plexity, and the proof of Theorem 4 is complete.

B.4. Proof of Theorem 5

Theorem 5 (Theoretical Performance of TKS). Given input
1 ≤ k ≤ n/2, and ε, δ ∈ (0, 1/2), TKS terminates after
O(nε−2 log(k/δ)) number of comparisons in expectation,
and with probability at least 1− δ, returns an (ε, k)-optimal
subset of [n].

Proof of Theorem 5. We first prove the correctness of TKS
and then prove its sample complexity. Here, we let T be the
number of rounds, and thus, the returned set is RT+1.

Proof of the correctness. Step 1 is to prove that for any
round t, Rt+1 contains an (εt, k)-optimal subset of Rt. Let
b1, b2, ..., bk be the best-k items of Rt, and denote B =
{b1, b2, ..., bk}. Also, for all l ∈ [k], we use St,sl to denote
the split set that contains bl.

We let Etgood be the event that for all l ∈ [k], the calls of
EQS on St,sl return correct results. By Theorem 4 and the
union bound, we have P{Etgood} ≥ 1− δt. During the proof
of the correctness, we assume that Etgood happens for all t,
and by the union bound, we have that

P{
T⋂
t=1

Etgood} ≥1−
T∑
t=1

P{(Etgood){}

≥1−
T∑
t=1

δt

≥1−
∞∑
t=1

6δ

π2t2
= 1− δ. (2)

We complete Step 1 by constructing a subset U ⊂ Rt+1 that
is an (εt, k)-optimal subset of Rt. The construction consists
of stages. We note that we only need to prove the existence
of such a set, and thus, in the construction, we have the
oracle knowledge about the values of b1, b2, ..., bk.

Stage 0: Let U be the empty set.

Stage 1: If b1 is not in At,s1 , then by Theorem 4, all items
i in At,s1 have pi,b1 ≥ 1/2− εt. By the definition of SST,
this implies that pi,j ≥ 1/2− εt for all items j in Rt. In this
case, we let U = At,s1 , which is an (εt, k)-optimal subset
of Rt, and the construction of U is complete. If b1 is in
At,s1 , then we add b1 to U and the construction proceeds to
Stage 2.

Stage l for any l in {2, 3, ..., k}: We hypothesize that
either (i) the construction has ended at an earlier stage,
or (ii) b1 ∈ At,s1 ,b2 ∈ At,s2 ,..., bl−1 ∈ At,sl−1

, and
U = {b1, b2, ..., bl−1}. Now we assume that the construc-
tion has not ended, otherwise we skip this stage. If bl is
not in At,sl , then by the property of EQS stated in Theo-
rem 4 and the definition of SST, in At,sl −{b1, b2, ..., bl−1},
there are at least |At,sl | − l + 1 = k − l + 1 items i
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such that for all items j in Rt − {b1, b2, ..., bl−1}, we have
pi,j ≥ pi,bl ≥ 1/2−εt. In this case, we add these (k−l+1)
items to U . Then U is an (εt, k)-optimal subset of Rt, and
the construction of U is complete. If bl is not in At,sl−1

,
then we add bl to U , and the construction proceeds to
Stage (l + 1).

Stage 1 does not require any hypothesis, and after each
Stage l for l in [k− 1], the hypothesis required by Stage (l+
1) is satisfied. Also, each stage adds at least one item to U .
Hence, the construction completes after at most k stages.
From the above induction, we have that U is an (εt, k)-
optimal subset of Rt. Thus, for any t, given that Et happens,
Rt+1 contains an (εt, k)-optimal subset of Rt.

Step 2 is to finish the proof of the correctness. Step 1 has
shown that for each t ∈ [T ], there exists a set Ut+1 ⊂ Rt+1

such that Ut+1 is an (εt, k)-optimal subset of Rt. Recall
that T is the last round, and the loop ends only when |Rt|
reaches k. Thus, |RT+1| = k, and UT+1 = RT+1.

Let t > 1 be given, and let ut+1 be an item in Ut+1. If
ut+1 is in Ut, then we let ut = ut+1, which implies that
put+1,ut = 1/2 ≥ 1/2 − εt. If ut+1 is not in Ut, then by
that fact that |Ut| = |Ut+1|, Ut − Ut+1 contains at least
one item, and we denote this item by ut. By Step 1, ut
has put+1,ut ≥ 1/2 − εt. Thus, in both cases, we have
put+1,ut ≥ 1/2− εt.

Let i be an item in RT+1 and j be an item in [n] − RT+1.
Since j ∈ [n] = R1 and j /∈ RT+1, there is an r such that
j ∈ Rr and j /∈ Rr+1. We use uT+1 to denote i. By the
above paragraph, there exists a sequence of items uT ∈
UT ,uT−1 ∈ UT−1,...,ur+1 ∈ Ur+1 such that put+1,ut ≥
1/2− εt for all t in {T, T −1, T −2, ..., r+ 1}. Also, since
item j is inRr but not inRr+1, we have pur+1,j ≥ 1/2−εr.
By this sequence, we conclude that

pi,j =puT+1,j

≥puT ,j − εT
≥puT−1,j − εT − εT−1

...

≥pur+1,j −
T∑

s=r+1

εs

≥1/2−
T∑
s=r

εs

≥1/2−
∞∑
s=1

εs = 1/2− ε.

Thus, when Etgood happens for all t, the returned set of EQS
is an (ε, k)-optimal subset of [n]. By Eq. (2), the joint event
∩Tt=1Etgood happens with probability at least 1 − δ. This
completes the proof of the correctness.

Proof of the sample complexity. At each round t, there
are d|Rt|/me calls of EQS. Each call of EQS involves
at most 2k items with parameters k (or less), εt, and δt,
and returns at most k items. Thus, we have |Rt+1| =
d|Rt|/(2k)ek. If |Rt| ≤ dn/(2t−1k)ek, then we have
|Rt+1| ≤ ddn/(2t−1k)e/2ek ≤ dn/(2tk)ek. Also, we
have |R1| = n ≤ dn/kek, and thus, by induction, for any t,

|Rt| ≤ dn/(2t−1k)ek ≤ c3n · 2−t,

where c3 > 0 is some universal constant. By the fact that
|Rt| ≥ k, we also get that the number of EQS called by
round t is at most

d|Rt|/(2k)e ≤ |Rt|/k ≤ c3n · 2−t/k.

Let c4 > 0 be the hidden constant factor in the sample com-
plexity stated in Theorem 4.We conclude that the expected
number of comparisons conducted by TKS is

E[N ] ≤E
{ T∑
t=1

[⌈ |Rt|
2k

⌉
· c4
(2k

ε2t
log
(2k2

δt

))]}
≤
∞∑
t=1

[⌈ |Rt|
2k

⌉
· c4
(2k

ε2t
log
(2k2

δt

))]
≤
∞∑
t=1

[c3n
2tk
· c4
(2k

ε2
·
(5

4

)2t

log
(2π2k2t2

6δ

))]
=

2c3c4n

ε2

∞∑
t=1

[(25

32

)t(
2 log t+ log

(2π2k2

6δ

))]
=O
( n
ε2

log
k

δ

)
.

This completes the proof of the sample complexity, and the
proof of Theorem 5 is complete.

B.5. Proof of Theorem 6

Theorem 6 (Lower bound for exact k-selection under Thur-
stone’s model). Under Thurstone’s model with variance one,
given δ ∈ (0, 1/100), n items with scores θ1, θ2, ..., θn ∈
[0, 1], and 1 ≤ k ≤ n/2, to find the best-k items with prob-
ability at least 1− δ, any algorithm must conduct at least
Ω(
∑
i∈[n][∆

−2
i log δ−1] + log log ∆−1

rk
) number of compar-

isons in expectation.

Proof of Theorem 6. In this proof, we reduce the PEMAB
problem (Jamieson et al., 2014; Chen et al., 2017) with
Gaussian arms to the exact k-selection problem under Thur-
stone’s model, and use the lower bound of PEMAB proved
by Jamieson et al. (2014); Chen et al. (2017) to prove the
desired lower bound for exact k-selection.

In the PEMAB problem with Gaussian(0, 1) noises, there
are n arms denoted by a1, a2, ..., an. Each arm ai holds a
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real number µi denoting the mean reward of arm ai. The
t-th sample of arm ai returns a random value Rti = µi +Zti
as the reward, where Zti is a Gaussian random variable with
mean 0 and variances 1. We further assume that (Zti , ai ∈
[n], t ∈ Z+) are independent.

We first consider the case where k = 1. Let a1, a2, ..., an
be n arms with Gaussian(0, 1) noises such that the mean
reward of arm ai is µi = θi. Let µ∗ be the largest mean
reward and µ′ be the second largest mean reward. To find the
arm with the largest mean reward with probability at least
1− δ, Jamieson et al. (2014); Chen et al. (2017) proved that
Ω(
∑
ai 6=ar1

|µ∗−µi|−2 log δ−1 + |µ∗−µ′|−2 log log |µ∗−
µ′|−1) number of pulls of arms are needed in expectation.

To reduce the PEMAB problem to exact k-selection, we
develop a Procedure P2, which is descried in Procedure 7.

Algorithm 7 P2(ai, aj)

Input: Two Gaussian arms ai and aj with unknown mean
rewards µi and µj , respectively;

1: Sample arm ai and let Ri be the reward;
2: Sample arm aj and let Rj be the reward;
3: if Ri > Rj then
4: return arm ai;
5: else
6: return arm aj ;
7: end if

The probability that Procedure P2(ai, aj) returns arm ai is

p
(c)
i,j =

1

2
+

1√
4π

∫ µi−µj

0

e−
x2

4 dx.

Thus, given n items with scores θi = µi for all items i, the
probability that Procedure P2(ai, aj) returns arms is exactly
the same as the probability that a comparison between items
i and j returns items.

Also, since for any arm ai, µi = θi ∈ [0, 1], we have that
for every two arms ai and aj ,∣∣∣p(c)

i,j −
1

2

∣∣∣ =
1√
4π

∫ |µi−µj |
0

e−
x2

4 dx

≥|µi − µj |√
4π

· e−|µi−µj |
2/4

≥|µi − µj |√
4π

· e−1/4. (3)

Let A be an exact k-selection algorithm. Now, for each
arm ai, we create an artificial item i, and input these n ar-
tificial items into Algorithm A. Whenever Algorithm A
wants to compare two artificial items i and j, we call Pro-
cedure P2(ai, aj) to mimic the comparison, i.e., if Pro-
cedure P2(ai, aj) returns arm ai (aj), then we tell Al-
gorithm A that artificial item i (j) wins this comparison.

Since the probabilities with which Procedure P2(·, ·) return
arms are the same as the comparison probabilities under
Thurstone’s model, Algorithm A does not notice anything
strange. Thus, if Algorithm A can find the best item in
[n] with probability 1− δ by M number of comparisons in
expectation, one can find the best arm with probability 1− δ
by pulling 2M number of arms in expectation.

Thus, by the lower bound for finding the best arm, we con-
clude that the lower bound for exact best item selection is
Ω(
∑
ai 6=ar1

|µ∗−µi|−2 log δ−1 + log log |µ∗−µ′|−1). By
the definition of ∆i’s, θi = µi, and Eq. (3), we have that for
any artificial item i 6= r1, ∆i ≥ (e−1/4/

√
4π)|µ∗−µi| and

∆r1 = ∆r2 . Thus, the lower bound for best item selection
is Ω(

∑
i∈[n] ∆−2

i log δ−1 + log log ∆−1
r1 ).

Next, we consider the case where k > 1. Let Ak,1
be an algorithm which a priori knows the best (k − 1)
items, and thus, for Algorithm Ak,1, the problem of find-
ing the best-k items is the same as finding the best item of
{rk, rk+1, rk+2, ..., rn}. Thus, the expected number of com-
parisons conducted by any best-k items selection algorithm
is lower bounded by Ω(

∑n
i=k ∆−2

ri log δ−1 + log log ∆−1
rk

).

Similarly, let Algorithm Ak,2 be an algorithm which a pri-
ori knows the worst (n − k − 1) items, and thus, for Al-
gorithm Ak,2, the problem of finding the best-k items is
the same as finding the worst item of {r1, r2, ..., rk, rk+1}.
Since the lower bound for finding the worst item is of the
same form as finding the best item (where the definition of
the gaps vary accordingly), the expected number of compar-
isons conducted by any best-k items selection algorithm is
lower bounded by Ω(

∑k+1
i=1 ∆−2

ri log δ−1 + log log ∆−1
rk

).

Combine these two lower bounds, and the proof of Theo-
rem 6 is complete.

B.6. Proof of Theorem 7

Theorem 7 (Theoretical Performance of SEEBS). With
probability at least 1 − δ, SEEBS terminates after
O(
∑
i 6=r1 [∆−2

i (log δ−1 + log log ∆−1
i )]) number of com-

parisons in expectation and returns the best item in [n].

Proof of Theorem 7. Notations. We use round t to denote
the t-th iteration of Lines 3 to 11. For any item i, we use Ti
to denote the index of the round when i is discarded (i.e.,
the round when i is added to Sdown and not added to Rt+1).
Assume that the unknown true order of these n items is
r1 � r2 � · · · � rn, and r1 is the best item in [n]. Use T
to denote the index of the last round. The proof consists of
two parts, the proof of the correctness and the proof of the
sample complexity.

Proof of the correctness, i.e., to prove that if SEEBS re-
turns, then the returned item is r1, the best item in [n].
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Hypothesis 3. For a round t, we hypothesize that with
probability at least 1−

∑t−1
r=1 δr, r1 is in Rt.

Since R1 = [n], we have that r1 is in R1 with probability 1.
Hence, Hypothesis 3 holds for round one.

Now, we let t ≥ 1 be given and assume that Hypothesis 3
holds for round t. By Theorem 5, with probability at least
1− 2δt/3, pvt,r1 ≥ 1/2− αt/3. Then, since r1 � vt, i.e.,
pr1,vt ≥ 1/2, by Lemma 3, we have that given pvt,r1 ≥
1/2 − αt/3, with probability at least 1 − δt/3, item r1

is not added to Sdown. Thus, if Hypothesis 3 holds for
round t, with probability at least 1 − δt, item r1 is not
discarded in round t, which implies that with probability at
least 1−

∑t−1
r=1 δr − 2δt/3− δt/3 = 1−

∑t
r=1 δr, item r1

is in Rt+1.

Therefore, if Hypothesis 3 holds for round t, it will hold
for round t+ 1. Hypothesis 3 also holds for round one. By
induction, Hypothesis 3 holds for all rounds t, i.e., with
probability at least 1 −

∑t−1
r=1 δr, item r1 is in Rt. Since

1−
∑T
r=1 δr ≥ 1−

∑∞
r=1 δr = 1− δ, with probability at

least 1− δ, r1 is in RT+1, i.e., the returned item is r1. This
completes the proof of the correctness.

Proof of the sample complexity. In the proof of the sample
complexity, we assume that the returned item is r1, which
happens with probability at least 1− δ. Since the algorithm
terminates when there is only one item remaining, we have
T ≤ maxi 6=r1 Ti.

Let N denote the number of comparisons conducted by
SEEBS. In round t, the comparisons are conducted by the
calls of TKS (Line 4) and DI (Line 7). By Theorem 5,
the expected number of comparisons conducted by TKS is
at most O(|Rt|α−2

t log δ−1
t ). By Lemma 3, the expected

number of comparisons conducted by each call of DI is
at most O(α−2

t log δ−1
t ). Thus, in round t, the expected

number of comparisons is at most O(|Rt|α−2
t log δ−1

t ). Re-
call that for any item i, Ti is the index of the round when
item i is removed from Rt or the loop ends. Also we have
T ≤ maxi 6=r1 Ti. Thus, we get

E[N ] ≤c5E
{ T∑
t=1

[
|Rt|α2

t log δ−1
t

]}
≤2c5E

{ T∑
t=1

[
|Rt − {r1}|α2

t log δ−1
t

]}
≤2c5

∑
i6=r1

E
{ Ti∑
t=1

[
α−2
t log δ−1

t

]}
, (4)

where c5 > 0 is a universal constant.

For any item i, define τi := inf{t ∈ Z+ : αt < ∆i}, i.e.,
when t ≥ τi, we have αt < ∆i. Since αt = 2−t, we have
τi ≤ 1 + log2 ∆−1

i . Now we show some probabilities about

the values of Ti’s.

Let item i in [n]− {r1} and t ≥ τi be given. When t ≥ τi,
we have αt < ∆i,r1 , i.e., pi,r1 = 1/2−∆i,r1 < 1/2− αt.
We have shown that 1/2− αt/3 ≤ pvt,r1 ≤ 1/2, which by
the definitions of SST and STI implies that pi,vt ≤ 1/2−
(∆i,r1 −∆r1,vt) < 1/2− 2αt/3. By Lemme 3, at round t,
with probability at least 1− δt/3, item i is added to Sdown
(i.e., item i is discarded). Thus, we have

P{Ti > t | Ti > t− 1} ≤ δt/3,

which by δt ≤ 1/2, implies that for any r in Z+,

P{Ti ≥ τi + r} ≤ (5/6) · (1/6)r−1 = 5 · 6−r.

Thus, by τi ≤ 1 + log2 ∆−1
i,r1

= O(log ∆−1
i,r1

) and x+ y ≤
2xy when x, y ≥ 1, we have

E
{ Ti∑
t=1

[
α−2
t log δ−1

t

]}
≤

τi∑
t=1

[
α−2
t log δ−1

t

]
+

∞∑
r=1

[
5 · 6−r · α−2

τi+r log δ−1
τi+r

]
=

τi∑
t=1

[
4t log

(π2t2

6δ

)]
+

∞∑
r=1

[
5 · 6−r · 4τi+r log

(π2(τi + r)2

6δ

)]
≤c6

τi∑
t=1

(
4t log

τi
δ

)
+ c6 · 4τi

∞∑
r=1

[(4

6

)−r
· log

( (τi + r)

δ

)]
≤c7 · 4log ∆−1

i,r1 log
( log ∆−1

i,r1

δ

)
+ c7 ∗ 4log ∆−1

i,r1

∞∑
r=1

[(4

6

)−r
· log

(2r log ∆−1
i,r1

δ

)]
≤c8∆−2

i,r1
(log δ−1 + log log ∆−1

i,r1
), (5)

where c6, c7, c8 > 0 are three universal constants.

Thus, by Eq. (4) and Eq. (5), we conclude that

E[N ] = O(
∑
i∈[n]

[∆i(log(n/δ) + log log ∆i)]),

which completes the proof of the sample complexity, and
the proof of Theorem 7 is complete.

B.7. Proof of Theorem 8

Theorem 8 (Theoretical Performance of SEEKS). With
probability at least 1 − δ, SEEKS terminates after
O(
∑
i∈[n][∆

−2
i (log(n/δ) + log log ∆−1

i )]) number of com-
parisons in expectation, and returns the best-k items.
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Proof of Theorem 8. Notations. We use round t to denote
the t-th iteration of Lines 3 to 14. For any item i, we use T ′i
to denote the index of the round when i is assured (i.e., the
round when item i is added to Sup or Sdown and not added
to Rt+1) and define Ti := min{T, Ti} as the index of the
last round when item i is involved in some comparisons. We
use T to denote the index of the last round. Assume that the
unknown true order of these n items is r1 � r2 � · · · � rn.
Define U := {r1, r2, ..., rk} as the set of the best-k items,
and Ut := U ∩Rt.

Proof of the correctness, i.e., to prove that if SEEKS re-
turns, then the returned set is U with probability at least
1− δ. We prove the correctness by induction.

Hypothesis 4. Let t ≤ T + 1 be given. We hypothesize that
St ⊂ U ⊂ Rt ∪ St with probability at least 1−

∑t−1
r=1 δr.

When t = 1, we have R1 = [n] and S1 = ∅, which implies
that S1 = ∅ ⊂ U ⊂ [n] = R1 with probability 1. Thus,
Hypothesis 4 holds for t = 1. Now, we consider the case
where t ≥ 2.

First, we bound an event. Let Et be the event that in round t,
all the calls of TKS, TKS2, and DIs return correct results.
By Theorem 5, Lemma 3, and the union bound, we have

P{Et} ≥1− δt
3
− δt

3
− δt

3(|Rt| − 1)
· (|Rt| − 1)

≥1− δt.

In the proof of the correctness, we assume Et happens.

Second, we show a useful property of the pivot vt. In each
iteration, items in Sup are added to St and kt is decreased
by |Sup|, and thus, kt = k − |St|. By Hypothesis 4, we
have St ⊂ U ⊂ Rt ∪ St, Ut ⊂ Rt, and St ∩ Rt = ∅, and
thus, Ut = U − St and |Ut| = |U − St| = k − |St| = kt.
By Theorem 5, for any item i in At and j in (Rt −At), we
have pi,j ≥ 1/2−αt/3. If Ut = At, then we have vt � rk,
which implies that pvt,rk ≥ 1/2 > 1/2−αt/3. If Ut 6= At,
then Rt−At contains some item v in U (which implies that
v � k), and thus, pvt,rk ≥ pvt,v ≥ 1/2 − αt/3. Thus, in
both cases, we have pvt,rk ≥ 1/2− αt/3.

For Line 5, we recall that TKS2 is almost the same as TKS
with the only difference being that TKS2 is used for finding
the PAC worst items. By Theorem 5, we have that for any
item j in At − {vt}, pvt,j ≤ 1/2 + αt/3. Since |At| =
|Ut| = kt and At ∩ U ⊂ Rt ∩ U ⊂ Ut, mt the worst item
in At has rk � mt. Thus, pvt,rk ≤ pvt,mt ≤ 1/2 + αt/3.
Therefore, we conclude

1/2− ε/3 ≤ pvt,rk ≤ 1/2 + αt/3. (6)

The third step is to show that in round t, Sup ⊂ Ut and
Sdown ∩ Ut = ∅. Let item i in Ut be given. Since Et
happens, the calls of DI on items i and j give correct results.

Since item i is in Ut, we have pi,rk ≥ 1/2, which by Eq. (6)
implies that pi,vt ≥ 1/2−αt/3. By Lemma 3, item i is not
added to Sdown. Hence, no item in Ut is added to Sdown,
which implies Sdown ∩ Ut = ∅.

Let item j in Rt − Ut be given. Since rk � j, we have
prk,j > 1/2, which implies that pj,rk ≤ 1/2 + αt/3. By
Lemma 3, item j is not added to Sup. Thus, no item in
Rt − Ut is added to Sup, which implies Sup ⊂ Ut.

Lastly, we show that Hypothesis 4 holds for all t. We have
already proved that when Hypothesis 4 holds for t, with
probability at least 1− δt (i.e., when Et happens), Sup ⊂ Ut
and Sdown ∩ Ut = ∅. By Sup ⊂ Ut and St ⊂ U , we get

St+1 = St ∪ Sup ⊂ U.

By Sdown ∩ Ut = ∅ and U ⊂ Rt ∪ St, we get

Ut ∩ (Rt − St+1 −Rt+1) = Ut ∩ Sdown = ∅,

which implies that Ut ⊂ St+1 ∪Rt+1. Hence,

U =Ut ∪ (U − Ut)
=Ut ∪ ((Rt ∪ St) ∩ U −Rt ∩ U)

=Ut ∪ (St ∩ U)

⊂Rt+1 ∪ St+1 ∪ St
=Rt+1 ∪ St+1.

Thus, we conclude that with probability at least 1 −∑t−1
r=1 δr − δt = 1−

∑t
r=1 δr, St+1 ⊂ U ⊂ Rt+1 ∪ St+1.

This means that if Hypothesis 4 holds for t, then it holds for
t+ 1. It has also been shown that when t = 1, Hypothesis 4
holds. Thus, Hypothesis 4 holds for all t ≤ T + 1.

Therefore, with probability at least

1−
T∑
r=1

δr ≥ 1−
∞∑
r=1

6δ

π2r2
≥ 1− δ, (7)

ST+1 ⊂ U ⊂ RT+1 ∪ ST+1. Also, we have |RT+1 ∪
ST+1| ≤ k. Thus, the returned set ST+1 ∪RT+1 is exactly
U . This completes the proof of the correctness.

Proof of the sample complexity. In the proof of the sample
complexity, we assume that ∩Tt=1Et happens. By Eq. (7),
∩Tt=1Et happens with probability at least 1− δ. Thus, with
probability at least 1− δ, all the calls of TKS, TKS2, and
DI return correct results.

Let N denote the number of comparisons conducted by
SEEKS. In round t, the comparisons are conducted by the
calls of TKS (Line 4), TKS2 (Line 5), and DI (Line 8).
By Theorem 5, the expected number of comparisons con-
ducted by TKS is at most O(|Rt|α−2

t log(n/δt)), and that
of TKS2 is at most O(ktα

−2
t log(n/δt)). By Lemma 3,

the expected number of comparisons conducted by each
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call of DI is at most O(α−2
t log(|Rt|/δt)). Thus, in

round t, the expected number of comparisons is at most
O(|Rt|α−2

t log(|Rt|/δt)) = O(|Rt|α−2
t log(n/δt)). Re-

call that for any item i, Ti is the index of the round when
item i is assured (i.e., item i is not added to Rt+1) or the the
algorithm terminates. Thus, we have

E[N ] ≤c9E
{ T∑
t=1

[
|Rt|α2

t log(n/δt)
]}

≤c9
∑
i∈[n]

E
{ Ti∑
t=1

[
α−2
t log(n/δt)

]}
, (8)

where c9 > 0 is a universal constant.

Now let item i 6= rk be given. Define τi := inf{t ∈ Z+ :
αt < ∆i,rk}, i.e., when t ≥ τi, we have αt < ∆i,rk . Since
αt = 2−t, we have τi ≤ 1 + log2 ∆−1

i,rk
.

Let t ≥ τi be given. First, we consider the case where i
is in [n] − U . When t ≥ τi, we have αt < ∆i,rk , i.e.,
pi,rk = 1/2 − ∆i,rk < 1/2 − αt. By Eq. (6), we have
∆vt,rk ≤ αt/3, which implies that pi,vt ≤ 1/2− (∆i,rk −
∆rk,vt) < 1/2− 2αt/3. Since Et happens, by Lemme 3, at
round t, item i is added to Sdown, i.e., item i is not added to
Rt+1. Second, we consider the case where i ∈ U − {rk}.
Since t ≥ τi, we have αt < ∆i,rk , i.e., pi,rk > 1/2+αt. By
Eq. (6), we have ∆vt,rk ≤ αt/3, which implies that pi,vt =
1/2 + ∆i,vt ≥ 1/2 + (∆i,rk − ∆vt,rk) ≥ 1/2 − 2αt/3.
Since Et happens, by Lemma 3, at round t, item i is added
to Sup, i.e., item i is not added to Rt+1. Thus, when ∩Tt=1Et
happens,

Ti ≤ τi ≤ 1 + log2 ∆−1
i,rk

,

from which it follows that

E
{ Ti∑
t=1

[
α−2
t log(n/δt)

]}
≤

τi∑
t=1

[
4t log

(π2t2n

6δ

)]
≤

τi∑
t=1

[
4t log(τ2

i )
]

+

τi∑
t=1

[
4t log

(π2n

6δ

)]
≤ c10 · 4τi

(
log τi + log

(π2n

6δ

))
≤ c11 · 41+log2 ∆i,rk

(
log(1 + log2 ∆−1

i,rk
) + log(n/δ)

)
≤ c12∆−2

i,rk
(log(n/δ) + log log ∆−1

i,rk
), (9)

where c10, c11, c12 > 0 are three universal constants.

Also, we observe that when all items in [n]−U are assured,
SEEKS will terminate and conduct no more comparisons.
At round t with t ≥ maxi∈[n]−U τi = τrk+1

, since ∩Tt=1Et

happens, all items not in U are assured. Thus, we have
Tr1 , Tr2 , ..., Trk ≤ τrk+1

. Similar to Eq. (9), we have that
for any item i in U ,

E
{ Ti∑
t=1

[
α−2
t log(n/δt)

]}

≤
τrk+1∑
t=1

[
α−2
t log(n/δt)

]
≤ c12∆−2

rk+1,rk
(log(n/δ) + log log ∆−1

rk,rk+1
). (10)

Note that for any item i in U = {r1, r2, ..., rk}, ∆i =
∆i,rk+1

and ∆i = ∆i,rk + ∆rk,rk+1
, which implies that

min{∆−1
i,rk

,∆−1
rk,rk+1

} ≤ 2∆−1
i . Therefore, by Eq. (8) and

Eq. (10), for any item i in U , we have

E[N ] = O
(
∆−2
i (log(n/δ) + log log ∆−1

i )
)
. (11)

Thus, by Eq. (8) and Eq. (11), and the definition of ∆i’s
stated in Eq. (1), we conclude that when ∩Tt=1Et happens,

E[N ] ≤c9
∑
i∈[n]

E
{ Ti∑
t=1

[
α−2
t log(n/δt)

]}
=O
( ∑
i∈[n]

[
∆−2
i (log(n/δ) + log log ∆−1

i )
])
.

This completes the proof of the sample complexity, and the
proof of Theorem 8 is complete.


