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Abstract—We study the utility maximization problem for data
collection in a wireless sensor network subject to a deadline
constraint, where the data on a selected subset of nodes are
collected through a routing tree subject to the 1-hop interference
model. Our problem is closely related to the traditional util-
ity maximization problems in networking and communications.
However, instead of a separable concave form of utility functions
commonly seen in this area, we consider the class of monotone
submodular utility functions defined on subsets of nodes, which
is more appropriate for the applications we consider. While
submodular maximization subject to a cardinality constraint has
been well understood, our problem is more challenging due to
the multi-hop data forwarding nature even under the simple
interference model. We have derived efficient approximation
solutions to this problem both for raw data collection and when
in-network data aggregation is applied.

I. INTRODUCTION

A wireless sensor network (WSN) consisting of resource
constrained sensor nodes connected via wireless communica-
tion channel provides an efficient infrastructure for monitoring
the physical environment as well as the human world on an un-
precedented scale [7], through cooperation among networked
sensors. Due to the limited sensing and processing capability
of a single node, local information sensed by each node needs
to be gathered at one or more processing centers, commonly
referred to as the “sinks”. Moreover, sensor nodes are low
power devices with short communication ranges; hence, data
collection in a WSN is often implemented in a “multi-hop”
paradigm, where data are forwarded to a sink node through
multiple transmissions between nearby sensor nodes.

Multi-hop communication is especially important in harsh
environments when there is no wired infrastructure available.
In the last decade, multi-hop sensor networks of small (~10
nodes) to medium (~100 nodes) size have been deployed for
various environmental monitoring projects [17], [24], [32],
[33], and very large deployments (~1000 nodes) have also been
considered in field trials [3] and test-bed environments [1], [2].
It is projected that large-scale long-lasting sensor networks will
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play a key role in enabling unattended environmental moni-
toring at scale. An important challenge is that collecting data
from all the nodes in a WSN may incur high communication
overhead such as large delays or high energy consumption
especially when the network becomes large. To improve the
efficiency of data collection while ensuring the quality of data,
a key observation is that the spatial and temporal correlations
between the sensor nodes lead to redundancy inherent in their
data. For instance, the observations made by two nearby sensor
nodes towards the same target are likely to be correlated. Thus,
in many cases, information from a subset of nodes may be
sufficient from the applications’ perspective.

In this paper, we study the problem of utility maximization
for data collection in sensor networks subject to a deadline
constraint. We consider a setting where each node in a
sensor network holds some sensed data with respect to an
event. To collect the data, a routing tree rooted at a sink
has been built. Two data collection schemes are considered:
(a) data forwarding, where raw data are forwarded towards
the sink without manipulation, which is appropriate when
complicated post-processing on sensed data is needed, and
(b) in-network data aggregation, where data packets can be
aggregated in the internal nodes, which could significantly
reduce the communication overhead when only an aggregated
form of the sensed data is needed [10]. In both cases, data
packets are forwarded towards the sink in a multi-hop way
subject to the 1-hop interference model, where no two links
sharing a node can be activated at the same time. This model
has been used to characterize the interference in Bluetooth
and FH-CDMA based systems, and also applies to sensors
with directional antennae [9]. The problem is to decide which
nodes should transmit data so that the aggregated information,
which is described by a utility function, received at the sink
within a deadline, is maximized. Such a deadline constraint
is especially important for applications that require real-time
data, such as intruder detection and tracking.

Our problem is closely related to the traditional utility
maximization problems in networking and communications.
In the classic formulation of utility maximization problems
for wireless networks [8], [26]—-[28], there are a set of users
(flows) in the network. Each user s is associated with a source
node f; and a destination node d,, a real data rate x5 with
which data is sent from f; to ds in a multi-hop way subject
to some interference model, and a utility Ug(x5), where Uy
is typically a non-decreasing and strictly concave function.
The problem is to choose a vector of data rates to maximize
the system utility, i.e., Y Us(zs), such that the system is
stable, or even better, the average or the worst-case delay is



bounded. In our problem, each sensor node can be viewed as
a user with itself as the source and the sink as the destination.
The decision for each node is binary, i.e., whether to send
data or not. Hence, our problem can be viewed as a utility
maximization problem with binary decisions.

The key difference between our problem and the traditional
utility maximization problems is with the choice of utility
functions. In particular, when z4 is binary for any s, the
commonly considered system utility > Ug(x,) reduces to a
simple additive form, where each node is associated with a
non-negative weight, and the total utility for a set of nodes
is simply the sum of their weights. The weight of a node
models the quality of information that the node can provide
and can represent, for instance, error variance or distortion
in the sensed data. However, such an additive utility largely
ignores the spatial correlation of sensed data. Therefore, we
propose to consider a more general class of utility functions
f : 2V — RT, where f is defined over all the subsets
of a set of nodes V, and f(S) denotes the quality of data
associated with the nodes in set S C V. For additive utility,
f(S) = > ,csWa, Where w, is the weight of node a. In
this paper, we consider the general class of set functions that
are monotone submodular (a formal definition is provided in
Section III), which captures the spatial correlation and includes
additive utility as a special case.

Submodularity, a discrete counterpart of concavity, captures
a diminishing return property commonly seen in reality: the
marginal utility improvement when adding a node to a small
subset of nodes is at least as much as adding the node to a
larger subset. Many interesting sensor selection criteria have
been shown to satisfy submodularity, such as the total area
covered or total number of targets detected by a set of nodes
in a disk sensing model, the mutual information [23] and
variance reduction criterion [22] for modeling the uncertainty
of unsensed locations in an information based sensing model,
and the maximum a posteriori (MAP) estimate and a variant
of the maximum likelihood (ML) estimate for parameter
estimation [19], [31].

Most previous works on sensor selection with submodular
utility, however, consider a simple cardinality constraint. The
problem is to select a subset of nodes S that maximizes
a submodular utility f(S) subject to the constraint that the
number of nodes selected is bounded by a parameter k, that is
|S| < k. Even in this case, the problem is, in general, strongly
NP-hard. In contrast, our problem is to maximize f(.S) such
that L(S) < D, where L(S) denotes the minimum delay for
collecting all the data in S and D is given parameter. Note that
the deadline constraint reduces to the cardinality constraint in
a single hop network where all the nodes are connected to the
sink directly. In a general multiple-hop network, however, two
subsets of same cardinality can differ greatly in terms of delay.
Moreover, even for a given set S, L(.S) varies under different
data collection schemes. Hence, our problem for submodular
maximization subject to a deadline constraint is much more
challenging even under the simple 1-hop interference model.
For data aggregation with additive utility, this problem can be
solved efficiently using dynamic programming [13], which,
however, does not apply to data forwarding or general sub-

modular utility.

In this paper, we propose a general utility maximization
framework for efficient data collection in large-scale sensor
networks subject to communication resource constraints. We
study submodular utility maximization problem for both data
forwarding and data aggregation and establish provable bounds
for our solutions. In addition to deadline constraints, the
techniques developed can be applied to other types of resource
constraints, such as a per-node energy constraint. The main
contributions of this paper are as follows.

o For deadline constrained data forwarding, we propose an
efficient greedy solution that achieves at least a fraction of
1/3 of the optimal utility for a general submodular utility
function, and a better fraction of 1/2 for additive utility.
To prove this result, we have corrected a key formula
in [9] that characterizes the minimum delay for collecting
raw data from any subset of nodes in a tree network
subject to 1-hop interference. We further identify some
interesting cases where the greedy algorithm is optimal.

o For data aggregation, we propose a bi-criteria approxi-
mation, which, for a given deadline D, achieves at least
a fraction of m of the optimum utility, and
has a delay of at most prD. For a routing tree 7', hr
denotes its height, and pr is upper bounded (loosely)
by the maximum node degree. We expect that pr is
typically small (< 2) in practice, which is confirmed in
simulations. This algorithm is further utilized to derive a
feasible solution with guaranteed utility.

e We evaluate the performance of our algorithms using
simulations for two application scenarios: target point
coverage and parameter estimation. For small networks
where optimal solutions can be found through exhaustive
search, we show that our algorithms perform very close to
the optimal in both scenarios. We further consider large
networks and observe significant performance improve-
ment when comparing our algorithms with two heuristics
that ignore the spatial correlation among nodes.

The current paper improves our previous conference pa-
per [36] in various ways. First, for data forwarding, we have
provided new analytic results for the greedy algorithm (Algo-
rithm 1). In particular, we have shown that the algorithm is
optimal when the utility function is additive and node weights
satisfy a monotonicity condition (see Section IV). Second, for
data aggregation, we have proposed a new searching-based
algorithm (Algorithm 3). Our original algorithm (Algorithm 2)
may output an infeasible solution, albeit the infeasibility is
bounded; hence, it may not be directly applicable in practice.
In contrast, the new algorithm always generates a feasible
solution while still providing a performance guarantee (see
Section V). Third, we have considered the new application
scenario of parameter estimation in simulations. Moreover, in
addition to the random sensor selection heuristic, we have also
compared our algorithms with the optimal solutions in small
deployments, and a heuristic based on the dynamic program-
ming algorithm in [13] for additive utility (see Section VI).

The rest of the paper is organized as follows. We review
the related works in Section II, and present the system model



and the problem definition in Section III. Our solutions to
the deadline constrained data forwarding and data aggregation
problems are presented in Sections IV and V, respectively.
Simulation results are presented in Section VI. We conclude
the paper in Section VII.

II. RELATED WORK

Delay constrained data collection in sensor networks has
been studied to some extent. Most pervious works consider the
problem of finding a minimum-delay schedule for collecting
data over a network. For data forwarding, a minimum-delay
schedule is identified in [9] for a given routing tree under
the 1-hop interference model, which is further extended to the
omni-directional antenna model in [18]. For data aggregation,
a minimum-delay schedule for a routing tree under 1-hop
interference model can be easily determined as we remark
at the end of Section V-C. On the other hand, the problem
is known to be NP-hard for a general graph even under the
1-hop interference model [30] and for a unit disk graph under
the protocol interference model [6]. Approximation algorithms
have been proposed in [6], [30], [35].

In contrast, we consider the dual problem of utility max-
imization under a deadline constraint, which has received
relatively less attention until recently. To the best of our
knowledge, this problem has only been considered for data
aggregation with additive utility. In particular, for a routing tree
subject to the 1-hop interference model, an optimal dynamic
programming based solution is provided in [13]. The algorithm
is further extended to consider unreliable links [14], per-
node energy constraints [15], and joint deadline and energy
constraints [16]. These techniques, however, do not apply to
data forwarding or a general submodular utility. Our work
provides efficient algorithms for general submodular utility
functions and both types of data collection schemes.

Submodular functions have been used in modeling utility in
various network design problems, with applications in sensor
networks [22], [23], [25] and social networks [20], [25]. For
instance, the influence of a given set of seeds in a social
network can be modeled by a submodular function [20].
Most works on submodular utility maximization have a simple
cardinality constraint, which allows a (1—1/e) approximation
ratio by a simple greedy technique when the utility is also
nondecreasing [11]. The same bound can be achieved for a
general matroid constraint [4]. The problem becomes more
challenging when a connectivity requirement is added [12],
[21], i.e., a feasible solution is a connected subgraph of certain
type. For instance, in the group Steiner problem [12], the
objective is to maximize a particular submodular function
defined on the subsets of nodes in an edge-weighted graph,
subject to a constraint on the weight of a Steiner tree that
spans the set of nodes selected. This problem only allows a
logarithmic factor approximation even when the underlying
graph is a tree [12]. Our problem is related to this problem
with two key differences. First, we are looking at a general
monotone submodular utility function. Second, the delay cost
with/without data aggregation is very different from the cost
of a weighted Steiner tree.

TABLE I
NOTATION LIST

Symbol Meaning

n Number of sensor nodes

S0 Sink node

T Data collection tree (rooted at sg)

Vr Set of sensor nodes in T

Er Set of links in 1"

hr Height of T’

Ar Maximum number of children of nodes in
T

T(S) A subtree of T' of minimum size that spans
nodes S U {so}

Lr(S) Minimum number of time slots required for
forwarding data in nodes S C Vi to sg
subject to 1-hop interference

La(S) Minimum number of time slots required for
aggregating data in nodes S C Vp to sg
subject to 1-hop interference

La(T) | = La(Vr)

f A monotone submodular utility function de-
fined on subsets of Vi

D Deadline constraint

III. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a sensor network of n sensor nodes and a sink sg.
We assume that a routing tree rooted at sg that spans all the
nodes has been built for data collection. We let T = (Vr, Er)
denote this tree, where V7 is the set of nodes and E'7 is the set
of links. Let hp denote the height of 7', and A the maximum
number of children of any node in 7. Let |T| be the size of
T, i.e., the number of links in 7. We say that a node is at
level k if the path in T that connects the node to the sink has
k links. The level of sq is 0. Table I summarizes the notations
used in the paper.

We assume that all the nodes are sensing a single event,
and each node has at most one data packet ready to be
delivered, which contains the information sensed by the node
in the last period of time. The set of nodes with packets can
be either learned through direct communication or inferred
from the geographic span of the event, and is assumed to
be known. Two data collection patterns are considered: data
forwarding and data aggregation. For data forwarding, raw
data packets are forwarded along the routing tree to the sink
without manipulation within the network. All the packets are
assumed to be of the same size. In the case of data aggregation,
each internal node applies an aggregation function, e.g., MAX,
MIN, SUM, etc., to the data received from its children and the
local data to generate a new packet of the same size, which
is then forwarded to its parent.

We consider a time-slotted and synchronized system. In
each time slot, a node either forwards one packet to its parent
or receives a packet from one of its children, or remains idle,
subject to the 1-hop interference constraint. That is, when
a node is transmitting, it cannot receive packets from its
children, and two children cannot transmit at the same time.
Links are assumed to be reliable. For a subset S C Vr, let
Lp(S) (resp. La(S)) denote the minimum number of time
slots needed for forwarding (resp. aggregating) the packets at
nodes S to the sink sg. Fig. 1 shows an example of minimum
delay schedules for data forwarding and data aggregation,



(a) data forwarding

(b) data aggregation

Fig. . Minimum delay schedules for a tree with 6 internal nodes
(dot) and a sink (square). A black node has a single packet and a
white node has no packet. The numbers besides a link denote the
time slots when the link is scheduled to forward a packet. Links with
the same number are activated together.

respectively, in a small tree, where data forwarding takes 5
time slots to collect all the 4 packets, while data aggregation
takes 3 time slots only. It is expected that the saving using
aggregation is much bigger for large networks.

For a subset S C Vr, let f(S) denote the utility associated
with the data sensed by the nodes in S. The value of f can be
learned from historical data or domain knowledge. A common
example of f is an additive utility, where each node @ has a
weight w, € R and f(S) =", g wa. We consider a more
general class of utility functions that satisfy the following
conditions where f is (a) normalized, i.e., f(0)) = 0; (b)
nondecreasing, i.e., f(S) < f(R) if S € R C Vr; and (c)
submodular, i.e., f(SU{a}) — f(S) > f(RU{a}) — f(R)
for any S C R C Vp and a € Vp\R. Note that an additive
f satisfies all the three conditions with equality holds in the
last condition. In this paper, we consider a general monotone
submodular f and study the following optimization problem:

Problem 1: max f(S) s.t. Lp(S) < D (resp. La(S) < D).

Hardness of the problem: Problem 1 is strongly NP-hard for
a general submodular utility. To see this, consider a tree of
height 1. Then for both data forwarding and data aggregation,
the problem becomes maximizing a monotone submodular
function subject to a cardinality constraint, which includes
the maximum set covering problem as a special case and no
(1 —1/e+ €)-approximation is possible for any € > 0, unless
P = NP [34]. On the other hand, in the special case when f
is additive, a polynomial time solution has been developed for
data aggregation [13].

IV. DEADLINE CONSTRAINED DATA FORWARDING

In this section, we study Problem 1 for data forwarding.
For a general monotone submodular utility, we approach the
problem using a standard greedy technique (Section IV-A).
The main challenge is to show that the algorithm can be
implemented efficiently (Section IV-B), and achieves a small
approximation ratio (Section IV-C). We further show that
the greedy algorithm is actually optimal in some special but
important cases (Section IV-C).

A. Greedy sensor selection

The problem of maximizing a submodular set function sub-
ject to a cardinality constraint and more general constraints has
received a lot of attention in combinatorial optimization [4],

[11], [29]. Among the solutions proposed, the most intuitive
one is based on a simple greedy heuristic that always chooses
the nodes with maximum marginal utility. For a given set
of nodes S and a node a ¢ S, the marginal utility of a with
respect to .S is defined as f(SU{a})— f(S). In many problem
settings, the simple greedy heuristic can be implemented in an
efficient way. Moreover, it can often provide a good perfor-
mance guarantee depending on the structure of the feasible
set. Therefore, we choose to adapt the greedy algorithm to
our problem and study its performance accordingly.

When applied to our problem, the standard greedy algorithm
can be illustrated as follows (see Algorithm 1). The algorithm
starts with an empty set S. In each step, a node with maximum
marginal utility subject to the deadline constraint is added to
S (lines 3-6). To achieve this, we first identify the set of nodes
that satisfy the following two conditions (line 3): (1) the node
has not been selected before; and (2) when the node is added
to S, the new set is still feasible, that is, the deadline constraint
is still satisfied. The algorithm finishes if no such nodes exist
(line 4). Otherwise, among all these nodes, the one has the
maximum marginal utility is chosen (line 5-6).

Algorithm 1 A greedy algorithm for utility maximization
under a deadline constraint
Input: T, f, D; Output: S C Vp
1. S«
2: while true do
3: A+ {a:aeVp\Sand Lp(SU{a}) < D};
4 if A = () then break;
5
6
7.

a < argmax, o f(S U {a}) — f(9);
S+ Su{a};

return S

We note that the greedy algorithm requires access to two
oracles, a value oracle that returns f(S) for a given set
of nodes S, and a membership oracle that decides whether
Lr(S) < D, i.e., checking the feasibility of a given set S.
We assume an exact value oracle is readily available when
stating our results, which also extends to the case when only
an a-approximate value oracle is available as we remark in
Section IV-C. On the other hand, we show, in the next section,
that Ly (S) can be determined for any S in an efficient way;
hence, a membership oracle can be easily implemented for our
problem. With these two oracles, the greedy algorithm serves
as an efficient solution to our problem.

In addition to its efficiency, the greedy algorithm can often
ensure a guaranteed performance when the set of feasible
solutions has a nice structure. For instance, a classic result
in combinatorial optimization [11] is that the greedy algo-
rithm achieves a fraction 1/2 of the optimal solution when
f is monotone submodular and when the feasible set is a
matroid (formally defined in Section IV-C), which includes
the cardinality constraint as a special case. In our problem, the
feasible set is defined as {S C Vp : Lp(S) < D}. Therefore,
we study the structure of Lg(-) in the next section, which
enables us to prove the performance guarantee of Algorithm 1
in Section IV-C.



B. Minimum delay data forwarding

In this section, we show that the minimum delay Ly (S)
for a set S C Vr can be efficiently determined; hence
the feasibility of S can be easily checked. The problem of
minimum delay data forwarding in a tree network subject to
1-hop interference has been studied in [9]. However, there is
an error in a key construction. In the following, we provide a
brief overview of the results in [9] by focusing on correcting
the construction, which is needed for both determining L (.5)
and the analysis of Algorithm 1 in the next section.

To find the minimum-delay schedule in a tree network, the
equivalent problem of data dissemination is considered in [9],
where packets flow from sg to the internal nodes subject to
the 1-hop interference constraint, and the objective is to find
a schedule of minimum length such that all the destination
nodes receive the corresponding packets. The schedule can
then be converted back to a schedule of equal length for data
forwarding. The main observation in [9] is that an optimal
schedule for a tree network can be derived by considering a
multi-line network, which is obtained from the original tree
graph by mapping each subtree rooted at sy to a line, where
all the packets at level [ of the subtree stay at level [ in the
line. Note that by our assumption that each node has at most
one packet in the original tree network, each level-1 node in
the equivalent line network has at most one packet, but the
rest of the nodes in the line network may have more than one
packet.

First consider the easy case when the sink has a single child,
which can be mapped to a single line network, denoted as 7.
The following schedule is shown to be optimal in [9]: sq first
sends packets towards the furthest node (that should have the
packets), and then the second furthest node and so on. A node
between s and the destination of a packet forwards the packet
in the next time slot after it receives the packet, and sy waits
if a level-1 node has a packet to forward. Let v; denote the
number of level-i packets, and let v = (v1,va, ..., Uy, ), Where
m is the maximum level of any packets in the network. The
minimum delay for delivering v, denoted as Lg(v), can be
determined as follows:

m
1&22;}@(_1(@ — 14w+ 2]_:2;;1 vj) ifm>1,
v if m <1.
(II1.1)

Next consider the more general case when 1" is composed
of K lines rooted at sg. To derive an optimal schedule, the
idea is to consider a new tree 7" constructed from 7', where 7"
also has K lines and the packets on the k-th branch of T are
redistributed on the k-th branch of 7”. However, as we will
show, the construction of 7" in [9] is problematic and may
lead to an incorrect formula of Lg(-). Below we first present
a corrected construction as follows. First, let vf denote the
number of level-i packets on the k-th line of 7', and let v =
{Uf}ieu,...,hT},ke{L...,K} denote the distribution of packets
on T. Let {p1,...,pn, } denote the set of packets that are at
level 2 or more on branch k of 7', ordered in a nondecreasing
order of their levels (with ties broken arbitrarily), with ny
being the number of these packets. Let t¥ denote the minimum

LF(V) =

delay required for forwarding packets pq, ..., p; as well as the
level-1 packets on branch k to sg, which can be determined by
resorting to the single line case. Packets in 7" are redistributed
in T such that the number of level-i packets on the k-th line
of T, denoted as v/¥, is determined as follows: (1) v{¥ = v,
() vji = 1,1 <i < ny, and (3) vj¥ = 0 for other i’s. That is,
the level-1 packets stay where there are. Each packet p; that
is at level 2 or more is moved to level tf. See Figure 2(a) for
an example. 7" constructed this way has some nice properties,
which can be formalized to show the following result.

Proposition IV.1. (1) An optimal schedule for T can be
converted to a schedule of same length for T' and vice-versa.
(2) Each node at level 2 or more in T' has at most 1 packet;
(3) Two nodes in T' having packets are separated by at least
one node that has no packet.

Proof: Properties (2) and (3) are clear from the construc-
tion. To establish the first property, consider a data distribution
schedule S for T" with the following form: In each time slot, sg
decides which child to forward a packet to if none of the level-
1 nodes have a packet. Otherwise, sy waits. All the packets on
the same line are then forwarded using the optimal schedule
for a single line network discussed above. We then construct
a data distribution schedule S’ for 7" as follows. S’ mimics
the decisions at sy in S, and also forwards packets on each
line using the optimal schedule for a single line. Then the k-th
lines in both networks are scheduled the same number of time
slots for all k. Our construction then guarantees that S’ can
distribute all the packets in 7" as needed. The same argument
applies to the other direction as well. Hence the claim follows.

|

By making use of properties (2) and (3), an optimal schedule

for T" can be established as in [9], which can then be converted

back to an optimal schedule for 7" by property (1). Let v} =

S v/, The minimum delay for forwarding packets in v

to sp can then be determined as follows, where m denotes the
highest level of packets in T".

. /
Lp(v) = max (i =1+ ;vj). (I1.2)
Critique of the construction of 7’ in [9]: The original
construction of 7" in [9] redistributes packets in a different
way. In particular, packets at level-1 stay where they are as
we do, but each packet p; at level 2 or more is moved to level
th —2(np—1i),i=1,...,n;". See Figure 2(b) for an example.
The T’ built in this way still satisfies the properties (2) and
(3) in Proposition IV.1. But, 77 and T may require different
number of time slots to forward their packets to sg as shown
in Figure 3, which leads to an incorrect formula of Lg(-).

C. Analysis of Algorithm 1

In this section, we show that Algorithm 1 approximates
the optimal solution to Problem 1 within a constant factor.
Our analysis is based on a classic result of submodular
maximization over p-systems. We first introduce some terms.

The formula given in [9] has a different but equivalent form.
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Fig. 2. Construction of the k-th branch of T”. The number of packets at each node with at least one packet is labeled.
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Fig. 3. An example that shows that 7" constructed in [9] may be
inequivalent to 7. In T, it takes 6 time slots to forward the 4 packets
to the sink, while it takes 7 time slots in 7" due to the incorrect
shifting of a packet in the topmost branch.

Definition IV.1. Given a ground set A and a collection of
subsets T C 24, (A,T) is called an independence system if
(1) 0 € Z, and (2) for every S C A, if S € I, and S’ C S,
then S' € T.

Given an independence system (A,Z) and a set S C A,
let B(S) denote the set of maximal independent sets in S,
ie, B(S) = {8 € S : S € ZTandthereisnoa €
S\S’ such that S’ U {a} € T}.

Definition IV.2. An independence system (A,T) is called a

p-system if for all S C A maxgen(s) 1S »

P mingrepsy |87 =

We note that a I-system is more commonly known as a
matroid. As an example of p-systems, consider the set of
matchings M¢ in a graph G with edge set E. (E, Mg) is
clearly an independence system since if a subset of edges
E’ C FE forms a matching, so does any subset of E’.
Furthermore, for any E' C FE, B(E’) consists of all the
maximal matchings contained in E’. It is well known that
in any graph, the size of a maximum matching is at most
twice the size of a maximal matching. Hence (E, M) is a
2-system. The following result for p-systems is classic [29]:

Lemma IV.1. For a p-system (A, T) and a monotone submod-
ular function f defined on the subsets of A with f() = 0,
the problem of maximizing f(S) subject to S € T can be
approximated by a greedy algorithm (similar to Algorithm 1)
within a factor of 1/(p+1). The factor improves to 1/p when
f is additive.

Remark: A slightly more general result is proved in [4], where
it is shown that a ratio «/(p + «) can be achieved by the
greedy algorithm when only an a-approximate oracle for f is
available for some o < 1. In the following, we assume that
an exact oracle for f is available for simplicity. Extensions of
our results to the general case are straightforward.

The main idea for establishing the approximation factor
of Algorithm 1 is to show that the feasible set subject to
the deadline constraint forms a p-system for a small p. For
instance, Figure 4 gives an example where a tree with 3

() (b) (©)

Fig. 4. (a) A tree with three packets (on the black nodes). The
minimum delay is 4 time slots. Assuming D = 3, then (b) shows
a maximal feasible subset with 2 packets, and (c) shows another
maximal feasible subset with 1 packet.

packets forms a 2-system. We then proceed to prove the main
result of this section.

Lemma IV.2. Let ZTp denote the set of feasible solutions
to Problem 1 for data forwarding, ie., Irp = {S C Vr :
Lp(S) < D}. Then (Vr,Zr) is a I-system when the sink has
a single child, and is a 2-system in general.

Proof sketch: 1t is clear that (Vp,Zp) is an independence
system. By converting each subtree rooted at sg to an equiv-
alent line as mentioned above, it suffices to consider a single
line network for the first part and a multi-line network for the
second part. The main idea of the proof is that, for any two
feasible subsets X and Y, if | X| < |Y] (or 2|X]| < |Y] in
the multi-line case), then there is a packet in Y that can be
added to X such that X is still feasible. The proof for the
more difficult multi-line case relies on our construction of 7"
and Proposition IV.1. The detailed proof is provided in the
appendix.

The following proposition then follows directly from
Lemma IV.1 and Lemma IV.2.

Proposition 1V.2. Algorithm 1 is a 1/2-approximation to
Problem 1 for data forwarding if the sink has a single child
in T, and a 1/3-approximation for a general T. When f is
additive, Algorithm 1 is optimal in the former case and a 1/2-
approximation in general.

Remark: For a given deadline constraint D, it is clear that
the maximum achievable utility depends on the tree topology.
The above result reveals that the performance of the greedy
algorithm is also related to the tree topology. An interesting
open problem is then to study the joint optimization of routing
tree construction and data collection, which is left as part of
our future work.

According to Proposition IV.2, the greedy algorithm is
optimal for additive utility when the sink has a single child,
which, however, is rarely satisfied in practice. In the following,
we show that the greedy algorithm remains optimal for a



general tree structure if f is additive and the distribution of
node weights satisfies a monotonicity condition. This condition
includes the special case where each node has the same weight
and the problem is to maximize the total number of packets
collected by a deadline (recall that each node has at most
one packet). The result is based on the following observation
(the proof is similar to Lemma IV.2 and is provided in the
appendix).

Lemma IV.3. Consider a set of packets on a routing tree T
and let T' denote the equivalent multi-line structure, as dis-
cussed in Section IV-B. Then (Vp,Zr) is a matroid (i.e., a 1-
system) if T' and T are the same, i.e., no packet redistribution
is needed in T'.

Note that the above condition is satisfied if and only if in
the multi-line representation of 7', each node has at most 1
packet and two nodes on the same line that have packets are
separated by at least one node without packets. Using this
lemma, we then derive the following optimality condition.

Proposition IV.3. Algorithm 1 is optimal if f is additive and
satisfies the following monotonicity condition: For the set of
nodes in T' that have packets, the weight of a lower level node
is no less than the weight of a higher level node that belongs
to the same subtree of the sink.

Proof: First note that the condition on node weight
distribution implies a hereditary property in optimal solutions
to Problem 1. That is, there is an optimal solution where
if a node of level 7 is included, so are all the lower level
nodes with packets in the same branch. Otherwise, the level
1 node can be replaced by a lower level node with packet,
which does not increase delay and does not hurt utility by
the assumption. Based on this property, we then construct
a multi-line network 7' and redistribute packets in 7' to T
such that for a given deadline constraint, the same optimal
utility is achieved in both trees. The construction of T is
similar to the construction of 7” in Section IV-B with one
difference. When redistributing the set of packets on the same
node in the multi-line representation of 7', or equivalently the
set of packets at the same level of a subtree of the sink in 7',
instead of breaking the tie arbitrarily as we did before, the one
with higher weight is kept closer to the sink. The equivalence
of the two trees in terms of optimal utility under the same
deadline constraint then follows from the hereditary property
and Proposition IV.1. Furthermore, T satisfies the condition of
Lemma IV.3. Hence, the set of feasible solutions in 7' forms
a matroid, and Algorithm 1 is optimal by Lemma IV.1. [ |

Note that the monotonicity condition is trivially satisfied
when all the nodes have the same weight. Hence the greedy
algorithm is optimal for maximizing the total number of
packets collected by a deadline.

V. DEADLINE CONSTRAINED DATA AGGREGATION

In this section, we study the deadline constrained utility
maximization problem for data aggregation, which turns out
to be much harder than the case of data forwarding. Some
evidences on the hardness of this problem are discussed at

the end of this section. While a greedy algorithm similar to
Algorithm 1 can be applied to this case as well, proving a
non-trivial bound for it eludes us so far. In the following, we
provide a bi-criteria approximation to this problem. We first
observe that due to the monotonicity of the utility function
f, there is an optimal solution to Problem 1 such that if
a node a is selected, all the nodes along the unique path
from a to the sink sy are also included, since the minimum
delay does not increase by doing so. Hence a feasible solution
to Problem 1 for data aggregation is a subtree of 7' rooted
at the sink. Without loss of generality, we assume in this
section that each node in T has exactly one packet. Let L4 (T)
denote the minimum delay for aggregating all the packets in
T to the sink, that is, Lao(T) = La(Vr). We begin with
proving some bounds on L 4(7T") (Section V-A), which will be
needed in analyzing our algorithm. We then consider the data
aggregation problem under the “clique” interference model and
propose a greedy solution to it (Section V-B), which is then
used as a subroutine in deriving the bi-criteria approximation
to Problem 1 (Section V-C). Since a solution found using the
bi-criteria approximation may violate the deadline constraint,
it may not be directly applicable in practice. We therefore
propose a searching procedure that utilizes the bi-criteria
approximation to obtain a feasible solution with performance
guarantee in Section V-D.

A. Upper and lower bounds on minimum delay

We first note that due to the aggregation nature, among the
schedules that achieve the minimum delay L4(7'), there is
one that satisfies the following condition: Each node should
wait until it receives the packets from all its children and then
forwards one aggregated packet to its parent. We then establish
the following bounds on L4 (T).

Proposition V.1. hp < La(T) < hpAr.

Proof: The lower bound is obvious since there is at least
one level-h packet, which takes at least i time slots to reach
the sink. To see the second inequality, first expand 7' to a
complete Ap-ary tree 13 such that hy, = hr and there is
one packet at each node of 7. We then show that L 4(T}) <
hrAr by considering the following schedule. For each node
a € Ty except the sink, let t(a) denote the time slot when a
is scheduled to forward a packet to its parent (each node only
needs to be scheduled once as argued above). The value of
t(a) is determined in a top-down way. First consider the level-1
nodes. Index the nodes in an arbitrary order. Then the ¢-th child
of the sink is scheduled at time (hy —1)Ar+i,i=1,...,Ap.
Suppose ¢(b) has been determined for a node b. Then the i-th
child of b is scheduled at time ¢(b) —Ap+i—1,i =1, ..., Ap.
It is easy to see that this schedule has a delay of hpAp. It
follows that L4(T) < La(T1) < hrAr. [ |

Given the above bounds, we can derive the following sim-
ple (Ar,1)-approximation to Problem 1. Given the deadline
constraint D, only the nodes at level h = min{D,hy} or
less can possibly be reached. Hence by selecting all the nodes
of level h or less, the algorithm achieves at least the optimal
utility. These nodes form a subtree of 7', whose minimum



delay is bounded by hAr by the above proposition. Note that
this algorithm does not access the utility function at all.

B. Data aggregation under “clique” interference model

In this section, we study a problem that is similar to
Problem 1, but replaces the 1-hop interference model with
the clique model, where at any time, at most one node can
transmit a packet to its parent. Note that, under this model,
the minimum delay for aggregating all the packets in a routing
tree to sq is equal to the size of the tree. The solution to this
problem will be used as a subroutine for solving Problem 1.
Formally, let 7'(S) denote the minimum subtree of 7' that is
rooted at sp and spans the nodes in S, the new optimization
problem is:

Problem 2: max f(5)

s.t. and |T(S)| < D.
SCVr

Let Z°° denote the set of feasible solutions to Problem 2,
ie., I ={S CVp:|T(S)| < D}. It is clear that (Vp,Z)
is an independence system. We further have the following
result:

Proposition V.2. (V,Z°°) is a hp-system.

Proof: Consider a subset S C Vp, and two maximal
independent sets X and Y in S. Without loss of generality,
we assume both X and Y are non-empty. Then S contains
at least one node at level D or less. We will show that
|Y'|/IX| < hp(s), which implies the proposition. First it is
clear that |Y| < min(D,|S|) since a subtree of size D can
span at most D nodes in S. Write D = khpg) + [,k >
0,0 <1 < hpsy,k,1 € N. We will argue for all the possible
values of k and I. (1) k = 0. Then D =1 < hp(s). Hence
Hence |X| = [Y| = |S], [Y|/|X| =1 < hpsy. Q) 0< k<
|S|,1 = 0. Then |X| > min(|S|,k) = k = D/hp(s). Hence
Y[|/IX| < hpesy. 4) 0 < k < [S[,l > 0. Then |X| > k.
We distinguish the following two cases. (4.a) | X| > k + 1.
Then [Y|/|X| < D/(k + 1) = (khpsy) +1)/(k+1) <
(k 4+ hrsy/(k+1) = hyesy. (4b) |X| = k. Then since
X is maximal independent and k < |S|, every node in X is
at least [ + 1 hops away from sg. Furthermore, every node
in Y is at least [ + 1 hops away from s, since otherwise
a node at level [ or less in Y can be added to X without
violating the cost constraint, which contradicts the assumption
that X is maximal. It follows that |Y| < D — I. Hence
Y|/1X| < (D —=1)/k = khps)/k = hrs). u

Figure 5 shows an example where the factor is tight. By
the above proposition, a greedy algorithm similar to Algo-
rithm 1 achieves a factor ﬁ—approximation to Problem 2
by Lemma IV.1. Furthermore, the feasibility of SU {a} when
adding a node a to a partial solution S can be easily checked
by following the unique path that connects a to a node in

7(S).

C. A bi-criteria approximation

By utilizing the greedy algorithm for Problem 2, we propose
the following algorithm to Problem 1 for data aggregation.

S —
t nodes
t nodes { |

[

Fig. 5. Consider a subset S consisting of the ¢+ 1 black nodes in the
tree, and assume D = hp(gy = t. Then the bottom left node forms
a maximal independent set in S, so do the ¢ level-1 nodes.

All the subtrees in the algorithm are rooted at sg. First, T' is
truncated to include only nodes at level A = min(hy, D) or
less (line 1), as these are the nodes that can possibly be reached
by the deadline D. A subtree 77 of maximum size subject
to the deadline constraint is then found (line 2), which can
be implemented using the dynamic programming algorithm
in [13] for additive utility by associating with each node a unit
weight. Line 3 invokes the greedy algorithm to Problem 2 to
find a subtree 75 that achieves (approximately) the maximum
utility with its size bounded by |73]|. Note that the minimum
delay with respect to T could be larger than D. T5 is then
expanded without further increasing the delay (line 4). This
can be done in an arbitrarily way and does not effect the
approximation ratio that we will derive. For instance, we can
again use the greedy approach. To check the feasibility of a
partial solution, the minimum delay of a subtree needs to be
computed. An efficient algorithm is provided at the end of this
subsection.

Algorithm 2 A bi-criteria approximation for data aggregation
under a deadline constraint
Input: T, f, D; Output: T5: a subtree of T’
1: h + min(hr,
h + 1 or more;
2: Find a subtree 77 C T (rooted at sg) of maximize size
such that the minimum delay L4(T}) < D;
3: Find a maximum utility subtree T» C T (rooted at sg)
with its size bounded by |T}| using the greedy algorithm;
4: Expand T3 greedily without further increasing the delay;
5: return 715

D) and remove all the nodes in T at level

Algorithm 2 achieves a bi-criteria approximation to Prob-
lem 1 as stated in the following proposition.

Proposition V.3. Let OPT denote the optimal utility for a
given deadline D. Let T denote the set of subtrees of T rooted
at sg. Then for the subtree Ty found by Algorithm 2, we have
f(Tz) > mOPT and LA(Ty) < prD, where pp =

maXT/ T"ET {f (T”) hT/ < hT’/ |Tl| < |T//|}, WhiC/’l iS
bounded by Ar.

Proof: We first study the utility of 7> compared with
OPT. Let T°P* denote the optimal subtree as a solution to
Problem 1, and T°P*(2) the optimal solution to the Problem 2
with budget |T}|. Since |T°PY| < |Ty|, f(T°Pt) < f(T°PH2))



Algorithm 3 A searching algorithm for utility maximization

Input: 7', f, D; Output: T: a subtree of T

1: for d < D, 1 do
2: T, < call Algorithm 2 with parameters 7', f, and

deadline d;
3: if Lé(Tg) < D then
4: T < T5y; break
5. return T

- opt(2)
by the optimality of 7°P*(?), Hence f(T,) > f(}z;ip:) >
2
fTert) oPT
h+1 = min(hp,D)+1"

We then bound L 4(7%). It is not hard to see that 77 has
at least one level-h node. Hence hpy, = h. Since hp, < h
and |T3| < |T1|, we have L4(T3) < max(p(T)La(Th), D) <
p(T)D. Furthermore, for any 7", T" € T where hp: < hpn,
we have LA(T/) < hr A < hpor A and LA(T”) > g
by Proposition V.1. Hence pr < Arp. . ]

We expect that a routing tree built for a sensor network
usually has a relatively small height to bound the worst case
delay, especially in a relatively dense deployment. We have
evaluated the typical values of pr in a randomly generated
T of a given maximum degree (< 10) and height (< 6), by
randomly selecting pairs of subtrees 77, 7" in T', and observe
that the values of pp are upper bounded by 1.5 on average
and by 3 in the worst case. The detailed simulation results are
given in Section VI.

Minimum delay data aggregation: We now provide an effi-
cient algorithm to find L4(T"), which is needed to implement
the last step of Algorithm 2 in a greedy way, and is interesting
by itself. We note that the algorithm in [13] for maximizing
additive utility under a deadline constraint combined with a
binary search can be used to solve this problem. However,
our solution is more efficient. Let 7, denote the subtree
rooted at node v. Let L', (T,) denote the minimum delay for
aggregating data in T, to v. Then Lo(T) = L'y (Ts,). Our
algorithm computes L’,(T},) in a bottom-up way as follows.
Let vq,vs, ..., v, denote the set of children of node v, and
suppose L', (T, ) through L', (T, ) have been found. We then
create a m-line network rooted at v, with a single packet at
level L'y(T,,) + 1 on the k-th line, for k = 1,...,m. L'y (T,)
can then be determined by Equation (III.2). This algorithm
takes O(nArLA(T)) time.

D. A feasible approximation

For a given deadline constraint, the solution found by Algo-
rithm 2 is not directly applicable when it violates the deadline
constraint. To obtain a feasible solution while retaining a
performance guarantee, we propose a searching approach by
utilizing Algorithm 2 as a subroutine. We first state a simplified
version in Algorithm 3 and characterize its performance in
Proposition V.4. We then discuss a refinement of the searching
procedure that achieves better performance.

The procedure starts with the deadline constraint D, and
searches over d = D,D — 1,...,1. For each value of d,
Algorithm 2 is invoked with deadline d to obtain a subtree

T5. The procedure continues until the 75 found is feasible
subject to D. It is clear that Algorithm 3 always finds a feasible
solution to the utility maximization problem. The following
proposition characterizes its performance.

Proposition V4. Let OPT(D) denote the optimal achiev-
able utility subject to a deadline D, and ALG(D)
the utility obtained by Algorithm 3. Then ALG(D) >

1 D+1
mOPT(dO), where [)7; -1 S dO S D.

Proof: First if D > L4(T), then all the packets in T
can be aggregated by D and Algorithm 3 is clearly optimal.
Assume D < L4(T). Let dy denote the value of d when
the searching algorithm stops. Let 75(d) and Tj(d) denote
the subtrees found in Algorithm 2 given a deadline d. We
then have ALG(D) = f(Tz(dp)) > mOPT(dO)
by Proposition V.3. It is clear that dy < D. To show the lower
bound, note that L 4(T2(do+1)) > D+ 1 by the definition of
dop, and LA(TQ(dO + 1)) < pTLA(Tl(dO + 1)) = PT(dO + 1)
by the definition of pp. Hence p(dp +1) > D + 1 and dy >
Dl _q, ]

pzl"o further improve the performance of the above algorithm,
one approach is to refine the searching procedure. Let ¢(d)
denote the size of 7 found in Algorithm 2 (line 2) given
deadline d, that is, c¢(d) is the maximum cardinality of a
subtree (rooted at the sink) of 7' subject to d. Instead of
searching over D, D — 1,...,1, a better way is to search
over ¢ = ¢(D),e(D) — 1,...,1. For a given value of ¢, the
maximum d such that ¢(d) > ¢ and ¢(d — 1) < ¢ can then be
determined, and is used to invoke Algorithm 2 to find 75. The
searching procedure again stops when T is feasible respecting
to D. Since multiple consecutive values of ¢ can correspond
to the same d, this approach provides a fine-grained searching
compared with the original algorithm. On the other hand, it is
not hard to see that the performance bound in Proposition V.4
still holds. This is the version we will implement and evaluate
in simulations.

E. Discussion

We note that the utility maximization problem under the
full interference model is related to the group Steiner prob-
lem. In the group Steiner problem, an edge-weighed graph
is considered, where every node covers a subset of targets
from a ground set. The problem is to find a subset of
nodes so that the total number of targets covered by them
is maximized subject to a constraint on the weight of the
Steiner tree spanning the nodes. For general edge weights,
it is known that even when the graph is a tree, the problem
does not have logl%gm—approximation for any fixed ¢ > 0,
where m is the total number of targets in the ground set,
unless NP C ZTIME(nP°1y1°g(”)) [12]. Furthermore, no
combinatorial algorithm is known to achieve a ratio close to
this bound. Our problem under full interference model can
be viewed as a variant of the group Steiner problem with a
general submodular function defined on a tree graph with unit
edge weight.

Although we did not establish the tightness of our results,
we conjecture that our problem under 1-hop interference is



harder than the problem under full interference, and achieving
polylogarithmic approximation is hard. We remark that the
recursive greedy algorithm in [5] can be adapted to provide a
m-approximation, which however has a complexity of
O((A7r!)"7), and hence is only applicable when Ar is very
small, e.g., 2 or 3, and hy = O(logn).

VI. SIMULATIONS

In this section, we study the performance of our solutions
using simulations. Two application scenarios are considered:
(1) target point coverage under a disk sensing model, and (2)
parameter estimate using maximum-likelihood ratio test. In
each case, we consider a properly defined monotone submod-
ular utility function over sensors deployed in a 2-d area. We
first consider small networks with 20 nodes, and observe that
our algorithms perform very closely to optimal solutions found
by exhaustive search. We then consider larger deployments
with 100 nodes, and show that our algorithms achieve clearly
better utility compared with two heuristics that ignore spatial
correlations. We further demonstrate that the parameter pr in
our bi-criteria approximation algorithm is typically a small
constant by doing a random sampling of subtrees.

A. Sensor selection for 2-d target point coverage

We first consider a small deployment, where 20 sensor
nodes are uniformly distributed in a 500 x 500 2-d region.
Each node has a sensing range of 100, and a communication
range of 200. There is a link between two nodes if they are
within the communication range of each other. The 2-d region
is partitioned into a 5 x 5 grid. Each grid cell is assigned a
weight randomly selected in {1, ...,20}. 1000 target points are
distributed in the region such that the probability that a point
is within certain cell is proportional to the weight of the cell,
and within a cell, points are uniformly distributed. A target
point is covered by a node if the point is within the sensing
range of the node.

Under the coverage model defined above, an application
may be either interested in an aggregated value over some
parameters associated with the target points, or would like
to collect these parameters without modification. We do not
specify the concrete format of sensed data, which varies over
applications. However, we expect that, for a given subset of
nodes, the number of points covered by these nodes is a good
indicator of their sensing quality in most settings. Hence, we
define the utility function to be the number of points covered
by a set of nodes, and use this utility to evaluate both data
forwarding and data aggregation algorithms. We note that this
utility function is additive only in the very special case when
all the sensing disks are disjoint. In general, the function is
non-additive due to the overlapping of sensing disks, but is
easily seen to be monotone submodular.

We generate 100 random distributions of points and nodes.
For each of them, one node is selected randomly as the sink,
and a tree 7' rooted at the sink is then built by a breadth-
first search (BFS), which is repeated 10 times. Algorithm 1
(greedy for short) is then applied to T for data forwarding

under various deadline constraints, and Algorithm 3 (bi-
criteria for short) is applied for data aggregation. We further
compare our algorithms with the following algorithms.

o Optimal solutions (optimal for short): For small net-
works, a set of nodes that achieve the optimal utility sub-
ject to the deadline constraint can be found by exhaustive
search for both data forwarding and data aggregation.

o Random sensor selection (random for short): The al-
gorithm starts with an empty set S. In each step, a node
is selected from the set of nodes not in S in a uniformly
random way and is added to S subject to the deadline
constraint. The procedure repeats until no extra node can
be added to S. In our simulations, the random algorithm
is repeated 100 times for each 71" generated.

o Additive sensor selection (additive for short): Each node
is associated with a weight that is equal to the number
of target points covered by the node. The dynamic
programming algorithm in [13] is then applied to find
a set of nodes of maximum total weight subject to the
deadline constraint. Effectively, the algorithm ignores the
overlapping of sensing regions and considers an additive
utility. Note that this algorithm only applies to data
aggregation.

In the case of data aggregation, we further implement a
greedy algorithm similar to Algorithm 1 with Lp(-) replaced
by L4(-) and compare it with Algorithm 3.

Figures 6(a) and 6(b) show the results under small deploy-
ments for data forwarding and data aggregation, respectively.
The results are averaged over the random distributions of target
points, sensor locations, and the sink node, and the 100 repeti-
tions for the random algorithm. We observe that in both cases,
our algorithm perform nearly optimal. Moreover, Figure 6(a)
shows that our greedy algorithm achieves 30% — 40% higher
utility than random for data forwarding, and Figure 6(b)
shows that our bi-criteria algorithm achieves 20% higher
utility on average compared to random, and 5% — 10% higher
utility compared to additive, for data aggregation. We further
observe that the performance of bi-criteria and that of greedy
are very close in the evaluated scenarios. This may imply
that the approximation ratio we obtained through bi-criteria
approximation actually provides a good characterization for
the greedy algorithm even if proving a bound for it directly
is difficult. This raises an interesting question that deserves
further investigation.

We next consider a large deployment with 100 nodes
uniformly distributed in a 1000 x 1000 2-d region. 1000 target
points are distributed in the 2-d region in a similar way as in
the small deployments. The nodes have the same configuration
as above. Under the large deployments, Figure 6(c) shows
that greedy achieves about 70% higher utility than random
in data forwarding. For data aggregation, Figure 6(d) shows
that bi-criteria achieves about 40% higher utility for small
deadlines and close to 30% higher utility on average compared
to random, and 10% improvement on average compared to
additive. Moreover, we again observe that the performance of
bi-criteria and greedy are very close in data aggregation.
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B. Sensor selection for parameter estimation

In our second application scenario, we consider the problem
of parameter estimation using sensors as studied in [19], [31].
The problem is to estimate an m-dimensional vector x € R™
from the measurements of sensor nodes. Let y; = a?m + n;
denote the measurement of node 7, where a; is the measure-
ment vector and n; is the zero-mean Gaussian noise with
variance 2. Using the maximum-likelihood (ML) criterion,
the estimate of x given the measurements from a set of nodes .S
has the form & = (072 Y, g aial ) ™' 3, g yiai. Asin [19],
[31], we assume that both the measurement vectors a; and o
are known by the fusion center. Hence the sensor network only
needs to compute ) . y;a;, which can be implemented by
data aggregation. We therefore only consider data aggregation
in this section. The objective is to select a set of nodes S
subject to certain constraints to minimize the estimation error,
which is equivalent to maximize logdet(};cqa;al). This
problem is first studied in [19] under the cardinality constraint
and a heuristic is proposed based on convex relaxation. The
same problem is then studied in [31], where it is shown that a

slightly modified objective function logdet(}", g a;al + €l)
for any € > 0 is monotone submodular; hence, a standard
greedy algorithm achieves a constant factor approximation
under the cardinality constraint. We apply our algorithms to
ML based parameter estimation, which generalize the standard
greedy algorithm by considering a deadline constraint instead.

In our simulation, we again consider both a small setting
and a large setting as in the first application scenario. In each
case, we take m = 5 and € = 0.001. The measurement
vectors a; are generated randomly and independently from
a Gaussian distribution N (0,1/1/m) as in [19], [31]. The
random algorithm is again repeated 100 times for each
configuration of sensor locations, measurement vectors, and
the tree structure. On the other hand, there is no simple way
to summarize the contribution of a single node in this setting.
Hence, in this scenario, the additive algorithm assigns each
node a unit weight. Figures 7(a) and 7(b) show the simulation
results for small and large deployments, respectively. We again
observe that our algorithms (both bi-criteria and greedy)
achieve close to optimal performance in small deployments.
Moreover, the performance of greedy is very close to that of
bi-criteria in both settings, and both algorithms achieve much
better sensing quality than random and additive.

C. The distribution of pr

We have shown that pp is upper bounded by Ap in
Section V-C, which we expect to be only a loose bound. To es-
timate its value in the simulation settings discussed above, we
have plotted dy, the value of d when Algorithm 3 stops under
various deadline constraints for the point coverage scenario in
large deployments. The result is shown in Figure 8(a). Both
the minimum value and the average value of dy over different
node distribution and tree structure are plotted. We observe
that D/dy is upper bounded by 1.7 in the worst case and by
1.3 in the average case. A similar result is also observed for
the parameter estimation scenario (not shown).

We then make some effort to study the typical values of pr
in a general routing tree. We start with a complete tree 7j of
degree 10 and height 6, rooted at sg. For each A =1,...,10
and h = 1,...,6, we find a subtree T} of Ty rooted at sg
with A, < A hp < h, by doing a pre-order traversal of Tp
and removing each edge with probability 0.5 independently.
For each pair of A and h, 100 T are sampled. For each T,
100 subtrees 75 of T3 rooted at sy are sampled in a similar
way. Then for each 75, 100 subtrees T3 of T rooted at sy are



sampled with the requirement that Az, < hp, and |T3| = |T3|.
We then compute the worst-case ratio L4(73)/La(T3) over
the 10000 pairs of 75 and 73, as an estimate of pp, for each
Ty. For A = 1,...,10, the worst-case and average values of
pr, (averaged over all the samples of 77 of various height)
are plotted in Figure 8(b). We note that the worst-case pp, is
upper bounded by 3 in all the settings we have evaluated and
the averages are even smaller, upper bounded by 1.5.

VII. CONCLUSION

The resource-constrained nature of sensor networks calls for
efficient data collection schemes that can better trade off the
quality of data and communication overhead. In this paper,
we study the problem of sensor selection for maximizing
the utility of data collected through a routing tree subject
to a deadline constraint. We consider the general class of
utility functions that are monotone submodular, and two data
collection schemes under the 1-hop interference model. We
show that a simple greedy algorithm achieves a small constant
factor approximation for raw data collection, and propose a
bi-criteria approximation for the harder case when in-network
aggregation is applied.

VIII. APPENDIX
A. Proof of Lemma 1V.2

Single-line networks: To prove the first part of the propo-
sition, let 7' be a single line network of height h, with v;
packets at level-i. Note that v;1 < 1 by our assumption made
in Section III. Consider two subsets of packets X and Y.
Let z; < v; denote the number of level-i packets in X, and
x = {x1,...,xp}. Define y = {y1,...,yn} similarly. Let m,
and m, denote the maximum level of any packets in X and
that in Y, respectively. Suppose |X| < |Y|, Lr(X) < D, and
Lp(Y) < D. We will show that there is a packet p in Y that
can be added to X to get X = X U{p}, subject to the deadline
constraint, i.e., there is an index [ with g; > 0 such that the
new sequence X = {x1,...,x;—1,2 + 1, 2141, ..., x5} is still
feasible.

Let [ be the smallest index such that ; < ;. Such a [ must
exist since | X | < |Y|. Define g(X,i) = i—1+x;+2 sz
Define ¢(Y,%) similarly. First assume [ > m,. For any 4 such
that 1 < ¢ < [, let d; = z; — y;. We have d; > 0 and
D5 +di < 3,5, y; by the choice of [, and therefore

9(X,0) = i—14ai 2>,y < i—14yit+di+2(3 5, v5—
d;—1) < g(Y,i) < Dby the feasibility of Y. Hence Lp(X) =
maxi<;<;—1 g(X,i) < D by Equation IIL1, ie., X is still
feasible. Next assume [ < m,. For any ¢ such that 1 <1¢ <[,
the above argument still applies. For any ¢ such that | < 7 <
mg, we have Z; = x; and hence g(X,i) = g(X,i) < D by
the feasibility of X. For ¢ = [, we distinguish the following
two cases:

Case 1: y; — x; = 1. We have szx] < szyj by the
choice of 1. Hence g(X,1) =i—1+z+14+23, ,2; <
i—14yi+23 .y, =9, <D.

Case 2: y; — x; > 1. Then ¢ > 1 by the assumption that
vy < 1. We then have D > g(Y,i — 1) =i -2+ y,—1 +

2 i ¥ 20— 2423y > i =24 2(04 3 Ty) =

i+2xi+22j>ixj > g(X,1).

It follows that Lr(X) < D and we have proved the first
part of the proposition.

Multi-line networks: To prove the second part of the propo-
sition, let 7" denote a multi-line network with K lines, with Uf
packets at the level-i node of branch k. Each level-1 node has
at most 1 packet by assumption. Again consider two subsets
of packets X and Y. Let x = {xf}lékSK,izl’ where z¥ < vF
denotes the number of level-i packets on branch k in X. Define
y = {yF} similarly. Suppose 2|X| < |Y|, Lr(X) < D and
Lr(Y) < D. We will show that there are indices & and 4, such
that y¥ > 0, and a level-i packet on branch k in Y can be
added to X subject to the deadline constraint. This is trivial
if X is empty. Assume X # () in the following.

Let x’' denote the equivalent redistribution of packets in x
to 7" constructed in Section IV-B. Define y’ similarly. Let s
denote the smallest index such that Y, o~ oyt < 30, ik
We have s > 1and >, ;v ko> Z ki 2!¥ by the assumption
that 2| X| < |Y|, and Zlm>s—l yi* > 37, xF by the choice
of s. Hence there is k such that 3, y/¥ > 3" 2/, that is,
on the k-th branch, the number of packets at level s — 1 or
less in y’ is large than the total number of packets in x’. Let
t be the largest index less than s such that ;¥ = 1 (recall that
yi¥ < 1 by the construction of 7”). Let Y,* C Y denote the
set of packets on the k-th branch that is at level ¢ or less in y’.
Define X} similarly. By our construction of 77, L (Y/}F) = t.
We claim that there is a packet in Y,* that can be added to
X, subject to the deadline constraint. We first distinguish the
following two cases:

Case 1: z®, = 0. Since |Y/| |XE|, Lp(XF) <
t, Lp(Y;¥) = t, by applying the first part of the proposition,
there is a packet p in Y/* that can be added to X[ to get
XF = XFU{p} such that Lp(XF) < t.Now let X = XU{p},
and X the packet distribution of X, and X’ the equivalent
redistribution in 7”. Then by the properties of our construction
and Lp(X[) <t, it is clear that /% = 2/F for all i > ¢.

Case 2: %, = 1. Since |V}*| > | X[ |, Lp(XF ) =t +
1,Lp(YF) =t < t+ 1, by applying the first part of the
proposition, there is a packet p in Y/* that can be added to
XF o, toget Xf = XF , U{p} such that Lp(X} ) =t+1.
Again we have z/¥ = /¥ for all i > t.

To prove the claim, let m, denote the maximum index such

that x;ﬁ # 0. First assume s > m,. For i < s, we have z'—1—|-

Dy TF i1 1430, < §=24 2 o 1f <
L F(Y) Where the first 1nequa11ty holds since only one packet
is added, the second inequality follows from -, .~ | yik

> ki x¥, and the last inequality follows from Equation (III.2).
Hence Lr(X) < D by the feasibility of Y. Next assume
5 < myg. Then for ¢ < s, the above argument still applies.
For all s < z < my, we have i — 1435, o, @ =i -
14 kaz " < Lp(X). Again we have Lp(X) < D by
Equation (III.2) and the feasibility of X. Therefore, we have
proved the second part of the proposition. [ ]



B. Proof of Lemma IV.3

Consider the multi-line representation of a routing tree 7,
where each node has at most one packet, and in each branch,
two nodes with packets are separated by at least one node
without packet. Consider two subsets of packets X and Y in
T, where | X| < |Y|,Lp(X) < D, and Lrp(Y) < D. Let x;
denote the total number of level-i packets in X across all the
branches, and define y; similarly. Let [ denote the smallest
index such that x; < y;. Then following a similar argument as
in the proof of Lemma IV.2, we can show that there is a level
[ packet p in Y\ X that can be added to X such that X U {p}
is still feasible, which implies the statement of the lemma. W
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