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Remote Tracking of Distributed Dynamic Sources over
A Random Access Channel with One-bit Updates

Sunjung Kang, Atilla Eryilmaz, and Ness B. Shroff

Abstract—In this work, we consider a network, where distributed information sources whose states evolve according to a random
process transmit their time-varying states to a remote estimator over a shared wireless channel. Each source generates packets in a
decentralized manner and employs a slotted random access mechanism to transmit the packets. In particular, we are interested in
networks with a large number of low-complexity devices that share low-capacity random access channels. Accordingly, we investigate
update strategies for remote tracking of source states that require each update to constitute as few bits as possible. To that end, we
develop update strategies requiring only one-bit of information per update that employ a local cancellation strategy. We further
analytically compare the performance of the cancellation-enabled update policy to the optimal policy that does not restrict the number
of bits for each update, which show that an asymptotic upper bound of the optimality ratio is 13

√
2

12
. Through simulations, we compare

the proposed cancellation-enabled one-bit update policy with zero-wait sampling and threshold-based sampling policies that require
more than one-bit of information per update. The comparisons show that the cancellation-enabled update policy at its optimal threshold
level outperforms the multi-bit update policies.

Index Terms—Remote estimation, Internet of Things, Distributed scheduling, Random Walks, Asymptotic analysis

✦

1 INTRODUCTION

The Internet of Things (IoT) has attracted significant at-
tention resulting in an ever growing number of applica-
tions such as traffic monitoring and healthcare monitoring
systems [1]. In such systems, where distributed IoT de-
vices/sensors are connected to a remote monitor/controller,
the sensors send update packets with time-varying (sensing)
information to the monitor so that the monitor can track the
state of the monitoring objects. To this end, it is crucial to
send timely updates to keep the monitor maintaining fresh
information. The timely updates can be challenging in an
IoT network where many IoT devices are communicating
over a shared channel. This paper tackles this problem by
developing strategies that require each update1 to constitute
as few bits as possible so that a large device population can
be served.

Age of Information (AoI) has been introduced and stud-
ied to measure the freshness of information [2]–[6], which
is defined as the time that has elapsed since the latest
packet received at a remote monitor (or a receiver) was
generated at a source. In [3], the authors investigate the
cases when the zero-wait sampling is not age-optimal with a
single source-receiver pair. Networks with multiple sources
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1. Throughout this paper, we use ‘each update’ as a short-hand for
‘each update packet’.

updating a common receiver over a shared wireless channel
are considered in [4]–[6]. Centralized update policies with
throughput constraints are studied in [4], and decentralized
update policies employing a slotted random access with
channel collision feedback are studied in [5]. In [6], a sleep-
wake update policy when each source has a limited battery
capacity is developed. None of these designs apply to our
setting since they characterize the timely updates via age,
whereas in our setting the timely updates are characterized
via the estimation error.

Recently, remote estimation has attracted much attention
to characterize the timely updates in IoT networks, which is
also the focus of our work. In this scenario, instead of AoI,
the value of information may be measured in terms of an
estimation error, which is an error between the actual state at
a source and the estimate at a receiver [7]–[21] In [7], optimal
sampling policies for a Wiener process are developed to
minimize the Mean Squared Error (MSE) with the frequency
sampling constraints. This problem is also studied when a
communication channel has random delay in [8] and it is
shown that an optimal policy is a threshold-type. Optimal
sampling policies for an Ornstein-Uhlenbeck (OU) process
are investigated with a channel having random delay [9]
and with average power constraint [10]. In [11]–[13], a
source whose state xt evolves as xt+1 = axt + wt, where
a ∈ R and wt is an independent and identically distributed
(i.i.d.) random variable, are considered. In [11], update poli-
cies to minimize the MSE subject to a sampling frequency
constraint are investigated. In [12] and [13], it is assumed
that each update pays a communication cost and update
policies to minimize estimation error plus communication
costs.

In [14]–[17], [20]–[22], a network where n sources updat-
ing a common receiver is considered when the state of each
source is modeled as a Linear Time Invariant (LTI) system
with an independent zero-mean Gaussian noise [14]–[17],
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the Ornstein-Uhlenbeck (OU) process [22], a zero-mean in-
dependent and identically distributed random process [20]
or a random walk with Gaussian steps [21]. In [14] and [15],
time-based (centralized) scheduling policies at the receiver
are investigated to minimize the average estimation error
covariance when at most one source can update the receiver
at a time [14] or when at most m out of n sources can update
the receiver at a time and the communication channel has a
packet drop probability [15]. In [22], a centralized schedul-
ing policy is investigated to minimize the mean squared
error (MSE) using the fact that the MSE of the OU process
is proportional to the variance of the OU process and the
AoI. In [16] and [17], decentralized scheduling policies are
investigated, where each source’s objective is to minimize
its estimation error covariance at the receiver subject to
transmission power constraint. This problem is modeled as
a multi-player game, and a Nash equilibrium (NE) is found
in [16]. In [15], a concept of correlated equilibrium (CE)
where the estimation performance can be improved com-
pared with NEs is introduced, and a strategy that achieves
the performance at the CE is proposed. In [20] and [21],
distributed update policies for minimizing the expected
estimation error are investigated. In [20], each source makes
sampling and transmission decisions with or without local
communication, i.e., whether sources can communicate with
each other or not when the state of each source is a zero-
mean independent and identically distributed random vari-
able. In [21], the authors design distributed update policies
depending on whether each transmitter can observe the
exact state of the source when the state of each source is
a random walk process with Gaussian steps.

In [18], [19], a network with n independent source-
receiver pairs communicating over a shared channel is
considered. In [18], a centralized scheduling policy is pro-
posed when each transmission incurs a communication cost
to minimize the average MSE plus communication costs.
In [19], a decentralized scheduling policy is investigated to
minimize the transmission power subject to a lower bound
constraint on the successful transmission probability.

In this work, we consider a network with n distributed
sources updating a common receiver over a shared wireless
channel and investigate decentralized update policies to
minimize the estimation error. Our work is different from
other groups of works, in which centralized (e.g., [14],
[15], [18]) or game theoretic (e.g., [16], [17] settings are
considered. Further, we are interested in networks with a
large number of low-complexity devices that share low-
capacity random access channels. Such a setting is becoming
increasingly important in massive IoT networks with an
increasing number of low-complexity devices being con-
nected to the networks such as remote health monitoring
or smart architecture. Accordingly, we investigate update
policies (i.e., sampling and scheduling policies) that require
each update to constitute as few bits as possible. Thus, it
is unsuitable for the sampling policies proposed in [7]–
[13], [20] and [21] to be directly applied in this setting
since those sampling policies do not carefully deal with the
number of bits per sampling/transmission in the existence
of transmission failures. We also remark that part of the
results in this work was present in the conference version
[23].

Our contributions can be summarized as follows.

• We formulate the remote tracking problem to min-
imize the estimation error with a large number of
low-complexity devices updating a common receiver
over a low-capacity random access channel when the
state of each information source evolves according to
a symmetric random walk.

• We develop update strategies that require one-bit of
information per update as a case of particular inter-
est. We first consider a natural benchmark update
policy and reveal that the benchmark policy will
not be able to make the system stable in terms of
estimation error under some conditions.

• We then introduce an improvement on the bench-
mark policy that employs a local cancellation strat-
egy, which makes the system always stable. We fur-
ther compare the performance of the cancellation-
enabled update policy to the optimal policy that does
not restrict the number of bits for each update.

• We suggest how the proposed one-bit update policy
can be applied to more general source models.

• We compare the proposed one-bit update policy with
zero-wait sampling and threshold-based sampling
policies that require more than one-bit of information
per update through simulations. Numerical results
show that the proposed one-bit update policy outper-
forms the multi-bits update policies, which implies
that the proposed one-bit update policy is more ben-
eficial when we consider transmission power that is
usually increasing as the packet size (i.e., the number
of bits per update) increases.

The rest of the paper is organized as follows. In Section 2,
we describe the system model and formulate the problem.
In Section 3, we develop and analyze update strategies that
require only one-bit of information per update. In Section 4,
we extend our results to more general source models. In
Section 5, we compare the proposed one-bit update policy
with other update policies through simulations. In Section 6,
we conclude our work.

2 SYSTEM MODEL AND PROBLEM FORMULATION

2.1 Network Model

We consider a fundamental scenario of n distributed infor-
mation sources (e.g., sensors) whose states evolve according
to a random process, and one remote estimator (e.g., sink or
collector) that aims to remotely track the time-varying state
of the sources over a shared wireless channel, as shown
in Fig. 1. In this work, we are interested in developing
strategies for remote tracking of source states that require
one-bit of information per update as a particular interest,
which will be explained in Section 2.2.

Considering a time-slotted system operation, we let xi,t

denote the state of source i at the beginning of time t, which
evolves over integer values according to a simple random
walk. In particular, xi,t evolves as

xi,t+1 = xi,t + wi,t, for t ≥ 0, (1)
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Fig. 1: System model.

where wi,t is given by

wi,t =


1, with probability pi,

0, with probability 1− 2pi,

−1, with probability pi,

(2)

for some pi ∈ [0, 0.5]. The transition probability pi is known
to each source. Note that the noise wi,t is independent and
identically distributed (i.i.d.) with a zero-mean and finite
variance, and that it is symmetric, i.e., P(wi,t = 1) =
P(wi,t = −1). We note that such a basic evolution lies at
the foundation of many important estimation and control
mechanisms. By varying the pi parameter, this process can
capture more and less variable source evolution. After de-
veloping our results for this model, we will also discuss
more general state evolution in Section 4.

Let Ui,t ∈ {0, 1} denote the packet generation (or sam-
pling) decision of source i at time slot t, where Ui,t = 1
implies that source i generates a new packet at time slot t.
At the end of time slot t− 1, the packet generation decision
Ui,t is made in a decentralized manner by each source based
on their own observations up to time slot t− 1. Each source
maintains a First-Come First-Served (FCFS) queue, and the
newly generated packet is stored in the queue. The queue
length of source i at time slot t is denoted by Qi,t.

In view of the low-complexity nature of communication
capabilities of these devices, we assume a slotted random
access channel for wireless updates whereby if more than
one sources transmit packets simultaneously, then all the
transmissions fail due to a packet collision. Let Zi,t ∈ {0, 1}
denote the indicator variable for the successful transmission
of source i at time slot t. The source i transmits the packet
with probability µi ∈ (0, 1] (which is to-be-determined), and
idles with probability 1 − µi. We assume that if queue i
is empty (i.e., Qi,t = 0) then source i transmits a dummy
packet2. Then, we have

γi := E[Zi,t] = µi

∏
j ̸=i(1− µj). (3)

If source i is the only source transmitting a packet at time
slot t, then the packet is successfully transmitted to the
estimator (i.e., Zi,t = 1). We assume that the communication
channel is error-free and each transmission is done within a
time slot.

2. This assumption makes the mathematical analysis more tractable.
In practical operation, letting source i idle when it has no packet to
send can give more transmission opportunities to the other sources
and improve the system performance

Let x̂i,t denote the estimated state of source i at the esti-
mator at time slot t, which can be updated using information
received by time slot t. Let ei,t denote the information
mismatch (or error) between xi,t and x̂i,t, i.e.,

ei,t = xi,t − x̂i,t. (4)

We assume that xi,0 = x̂i,0 for all i ∈ {1, ..., n}.

2.2 One-Bit Update Policy at the Sources
In this work, we consider a low-overhead sampling policy,
whereby each update constitutes one-bit of information so
that the shared channel load is minimized for each trans-
mission. This is especially important for wireless channels
that serve a large population, as expected in future IoT
networks. This motivates us to consider a threshold-type
packet generation policy, whereby ∆i ∈ N denotes the
(state) threshold used for sampling. To describe this policy
more explicitly, let ẽi,t denote the virtual error of source
i, which is a variable being held by each source i and is
updated as

ẽi,t+1 =

{
0, if Ui,t = 1,

ẽi,t + wi,t, if Ui,t = 0.
(5)

Here, the packet generation decision Ui,t under the above
threshold-base policy at time slot t is given by

Ui,t =

{
1, if |ẽi,t + wi,t| = ∆i,

0, otherwise.
(6)

In other words, when ẽi,t + wi,t hits the threshold ∆i or
−∆i, a packet with one-bit information is generated and
sent to its queue with the value +1 for ∆i or −1 for −∆i,
and the value ẽi,t+1 is reset to 0. Fig. 2 shows a trajectory of
virtual error ẽi,t, where a new packet with the value +1 is
generated at time slot τ . We will provide an explanation of
the relationship between the error ei,t and the virtual error
ẽi,t in Section 2.3.

Fig. 2: A trajectory of the virtual error ẽi,t of source i.

Next, we provide a few interesting facts about the ab-
solute estimation error performance of such a threshold-
based one-bit update rule. These are interesting in explicitly
characterizing how the error relates to the threshold level
∆i and the source dynamics pi.
Theorem 2.1. Under the threshold-based one-bit update policy

with threshold ∆i, the long-term expectation of virtual error
ẽi,t of source i is given by

E[|ẽi,∞|] = ∆2
i−1
3∆i

. (7)
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Further, the long-term expectation of update decision Ui,t of
source i is given by

E[Ui,∞] = 2pi

∆2
i
. (8)

Proof: The virtual error ẽi,t is a finite-state Markov chain
with 2∆i − 1 states from (5) and (6). Thus by solving global
balance equations, we can obtain its stationary distribution

πi,k = ∆i−|k|
∆2

i
for k ∈ {−∆i + 1, ...,∆i − 1}, (9)

from which we can obtain the long-term expected virtual
error E[|ẽi,∞|]:

E[|ẽi,∞|] =
∑∆i−1

k=−∆i+1 kπi,k =
∆2

i−1
3∆i

. (10)

Further, since each source independently generates a
packet, we can consider ẽi,t as an independent renewal
process, which is reset to 0 upon every packet generation.
In [24], it is shown that

E[Ui,∞] = lim
t→∞

P(Ui,t = 1) = 2pi

∆2
i

(11)

using Blackwell’s renewal theorem (Theorem 4.6.2 in [25]).
■

2.3 Estimation at the Receiver
Now that we described the policy at the sources, we turn
to the corresponding estimation process at the receiver. We
denote V k

i,t ∈ {−1, 1} for k ∈ {1, ..., Qi,t} as the value of
k-th packet in queue i at time slot t with V 0

i,t = 0, where
k = 1 is the index for the head of the queue. If Zi,t = 1,
then the packet with value V 1

i,t is successfully sent to the
receiver and we have V k

i,t+1 = V k+1
i,t . Then, at the receiver,

the estimate x̂i,t is updated as

x̂i,t+1 = x̂i,t + V 1
i,tZi,t∆i. (12)

In other words, when a new packet is received from source
i, the estimated x̂i,t is either increased by ∆i if the received
information is 1, or decreased by ∆i if −1 is received.
Thus, the virtual error ẽi,t is the (actual) error after the
last generated packet is delivered to the receiver. By the
definition of the error ei,t in (4) and the virtual error ẽi,t
in (5), we have that

ei,t = ẽi,t +∆i

Qi,t∑
k=1

V k
i,t (13)

with ei,0 = ẽi,0 = 0. This implies that the error ei,t at time t
can be measured using the virtual error ẽi,t plus the sum of
values of the packets stored in the queue at time t. We refer
to Appendix A for detailed proof.

2.4 Distributed Remote-Estimation Problem
Given the one-bit update policy at the sources and the
estimation policy at the receiver, the goal of the remote
tracking problem is to optimize the choices of thresholds
∆ ≜ {∆1, ...,∆n}, and the probabilities µ ≜ {µ1, ..., µn}
for random access transmissions that minimize the mean
absolute estimation error. Mathematically, our objective is to
design (∆,µ) given the source dynamics p ≜ (p1, ..., pn) to
minimize the expected average absolute-error over infinite
time horizon:

min
∆,µ

J(∆,µ) = lim
t→∞

1

tn

t∑
s=1

n∑
i=1

Eπ [|ei,s|] . (14)

Fig. 3: A Markov chain generated by the evolution of esti-
mation error ei,t under the optimal policy.

3 DESIGN AND ANALYSIS OF ONE-BIT UPDATE
POLICIES FOR REMOTE ESTIMATION

In this section, we attack the problem formulated in the
previous section by designing one-bit update policies for
distributed remote tracking. At the outset, it is even unclear
whether there exists a policy that can guarantee a bounded
absolute estimation error. In fact, in Section 3.2, we inves-
tigate a class of First-Come-First-Serve (FCFS) policies to
find a condition on the (source-dynamics, threshold-level)
pairs, (p,∆), that can be stabilized by such policies. The
negative result from this design motivates us in Section 3.3
to propose an improved class of policies that employ a
cancellation strategy within the transmission queues in order
to guarantee stability for all possible source dynamics p.

3.1 Optimal Sampling without Constraints on Informa-
tion Size
We first consider the estimation error minimization prob-
lem over a random access channel without constraints on
information size. That is, the source can generate a packet
with the exact state information at the time the packet
is generated. Since transmission time is not stochastic, an
optimal update policy is to generate a packet with value
xi,t (or ei,t) and make a transmission with probability µi

at every time slot. Hence, letting γi = µi

∏
j ̸=i(1 − µj) be

the probability of successful transmission for source i, the
evolution of the estimation error ei,t can be viewed as a
Markov chain with +1 or −1 with probability (1 − γi)pi
and returning to 0 with probability γi as shown in Fig. 3.

It is not difficult to see that the error evolution process
{ei,t}t is an ergodic Markov chain since it returns to 0
with probability γi > 0 from all states. Hence, there ex-
ists a unique steady state distribution. Let eopt∞ (µ) denote
the long-term estimation error under the optimal sampling
policy with activation probabilities µ. The next theorem
provides the long-term expected absolute error E[|eopt∞ (µ)|]
and the entropy H(ei,∞(µ)) of the estimation error ei,∞ for
each source i under the optimal sampling policy given a set
of activation probabilities µ.
Theorem 3.1. The long-term expected absolute error of the opti-

mal sampling policy with activation probabilities µ is given
by

E[|eopt∞ (µ)|] = 1

n

n∑
i=1

1√
β2
i +2βi

, (15)

and the entropy of the estimation error eopti,∞(µ) for source i is
given by

H(eopti,∞(µ)) = log
(√

1 + 2
βi

)
+ 1√

β2
i +2βi

log
(
1 + βi +

√
β2
i + 2βi

)
,

(16)
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where βi =
γi

2(1−γi)pi
and γi = µi

∏
j ̸=i(1− µj).

The expected estimation error E[|eopt∞ (µ)|] and the en-
tropy H(eopti,∞(µ)) can be obtained from the steady-state
distribution of ei,∞, which is obtained by solving global bal-
ance equations for the Markov chain represented in Fig. 3.
The detailed proof is in Appendix B. Note that source i gen-
erates and transmits an update packet with the exact value
of the error eopti,t (µ) ∈ Z, which implies that the average
information size (i.e., the number of bits required to deliver
eopti,t (µ)) is lower-bounded by the entropy H(eopti,t (µ)) by
Shannon’s source coding theorem.

Note that γi is the probability of successful transmission
for source i, which becomes very small as the number n of
sources becomes large in general. Then, as can be expected,
both the error E[|eopt∞ |] and the entropy H(ei,∞) increase
as n is increasing. In the following sections, we will design
an update policy that requires one bit of information and
compare the estimation error between the optimal policy
and the proposed policy.

3.2 Benchmark Analysis for First-Come First-Serve Up-
dates for a Single Source
To develop a basic understanding of the system operation,
let us consider the operation of the one-bit update and
random-access service policy in a single source case. Sup-
pose that the source uses a threshold level of ∆ and achieves
a transmission success probability of µ in each transmission.
The next theorem establishes a condition between ∆, p, and
µ that would make the FCFS update policy unstable.
Theorem 3.2. Under the threshold-based one-bit sampling and

the First-Come First-Serve update policy, if ∆ ≤
√

2p
µ , then

the system is unstable, i.e.,

lim
t→∞

E[|e∞|] = ∞. (17)

This follows from the fact that, to make the system stable,
the source has to make the queue stable and the condition
for queue stability is that, in the long-term, the arrival rate
must be less than the service rate, i.e., 2p

∆2 < µ. The detailed
proof is in Appendix C. In the next section, we shall show
that this deficiency can be eliminated through a cancellation
mechanism within the transmission queue of each source.

3.3 One-Bit Update Policies with Packet Cancellation
The performance of FCFS update policy revealed that the
estimation error will be unbounded if 2pi

∆i
> γi, where

γi = µi

∏
j ̸=i(1 − µj). In this subsection, we introduce an

improvement on these benchmark policies with substantial
improvement. To that end, we first note that the dynamics
of xi,t in (2) is symmetric, i.e., P(xi,t0+t = x | xi,t0 =
0) = P(xi,t0+t = −x | xi,t0 = 0), due to symmetry of
noise wi,t. Using this symmetry of the dynamics, we can
manipulate the FCFS queue if the information of packets
in the queue can be accessed. If the values of the newly
generated packet and the packet at the tail of the queue
are the opposite, then those two packets cancel each other
and are discarded from the queue before transmission. Let
Di,t ∈ {0, 1} be the indicator variable for this event, where
Di,t = 1 indicates the packet cancellation occurs. Note that

E[Di,t] =
1
2E[Ui,t]P{Qi,t > 0} since P(xi,t = ∆i | Ui,t =

1) = P(xi,t = −∆i | Ui,t = 1) = 1
2 from symmetry of the

dynamics of xi,t.
Under this cancellation-enabled policy, the values of all

the packets at queue i must be the same at all times, i.e.,
V 1
i,t = · · · = V

Qi,t

i,t . We assume that departure happens after
arrival. Under this queueing discipline, the queue length
Qi,t evolves as

Qi,t+1 = Qi,t + Ui,t − 2Di,t − Zi,tI{Qi,t > 1}
− Zi,tI{Qi,t = 1}((1− Ui,t) + Ui,t(1−Di,t))

− Zi,tI{Qi,t = 0}Ui,t. (18)

Note that Di,t = 1 implies that Ui,t = 1 and Qi,t > 0 by its
definition. Further, since we are assuming departure-after-
arrival, Zi,t can be 1 only if (a) Qi,t > 1, (b) if Qi,t = 1,
either a new packet is not generated (Ui,t = 0) or a packet is
generated (Ui,t) and the packet cancellation does not occur
(Di,t = 0), or (c) if Qi,t = 0, a new packet is generated
(Ui,t = 1).

3.4 Analysis of One-Bit Updates with Cancellation

In this subsection, we present fundamental results on the
error performance of cancellation-enabled one-bit update
policies that is introduced in the previous subsection. We
start with the next lemma that establishes the strongly
ergodic (non-stationary) nature of the transmission queue-
length {Qi,t}t.
Lemma 3.1. For each source i, the queue length process

{Qi,t}t≥0 under the cancellation-enabled one-bit update pol-
icy described in (18) forms a strongly ergodic Markov Chain
for any ∆i > 0, µi > 0, and pi ∈ [0, 1/2].

Note that the non-stationary property of the queue
length process {Qi,t}t≥0 comes from the packet genera-
tion probability λi,t = P(Ui,t = 1), which converges to
λi = 2pi

∆2
i

. Hence, the non-stationary Markov chain gener-
ated by {Qi,t} converges to a (stationary) Markov chain
shown in Fig. 4 and it can be shown that the Markov chain
is ergodic. The detailed proof is in Appendix D.

In contrast to the FCFS policy performance (see Theo-
rem 3.2), Lemma 3.1 proves that cancellation-enabled up-
date policy can stabilize the error level for any ∆i > 0, µi >
0 and any feasible pi.3 Specifically, it proves that there
exists a unique steady-state distribution for the queue length
process {Qi,t}t≥0 under the cancellation-enabled update
policy.

It is intractable to solve global balance equations for the
Markov chain in Fig. 4. Thus, we instead investigate the
asymptotic behavior of the Markov chain and obtain the
steady-state distribution for the large number n of sources.
Note that the probability γi of successful transmission for
each source i decreases as the number n of sources increases

3. There is an intuition about the stability of the cancellation-enabled
update policy. Note that the cumulative arrival process evolves as a
symmetric random walk with the cancellations of packets since, given a
packet arrival, the packet is equally likely to have a positive or negative
value. This grows at the rate O(

√
t). On the other hand, the cumulative

service process with any positive probability of transmission grows at
the rate of O(t). Hence, the queue length process remains stable for any
positive probability of transmission from each source.
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Fig. 4: A Markov chain generated by the queue length
process {Qi,t}t≥0 with λi = E[Ui,∞] = 2pi

∆2
i

and γi =

µi

∏
j ̸=i(1− µj).

since µi ∈ (0, 1). Now, we consider a behavior of threshold
∆i to achieve an optimal estimation error. Lemma 3.1 im-
plies that the queue will be stable for any ∆i > 0, µi > 0
and pi ∈ [0, 1/2], and the long-term expected virtual error
E[|ẽi,∞|] in (10) is finite for ∆i < ∞. Since, under the
cancellation-enabled policy, we can write the error ei,t as

ei,t = ẽi,t +∆iV
1
i,tQi,t, (19)

the network will be stable for any ∆i in terms of the
estimation error. However, when the number n of sources
is large, a small threshold ∆i will result in a large queue
length Qi,t since the (steady state) probability λi = 2pi

∆2
i

of
packet generation is relatively larger than the probability
γi of successful transmission. Hence, increasing ∆i as n
becomes large is necessary to achieve an optimal estimation
error.

Note that λi and γi are dependent on the number n of
sources, so for the following discussion, we use λn,i and
γn,i, respectively, to clarify their dependency on n. With λn,i

and γn,i decreasing as n → ∞ and the assumption that
γn,i/λn,i → ci for some ci > 0 as n → ∞, we can observe,
in Fig. 4, that the transition probability from state k to k− 2
(i.e., 1

2λn,iγn,i) is dominated by the transition probabilities
from state k to k − 1 and from state k to k + 1 as n →
∞, which consist of λn,i(1− γn,i) and γn,i(1− λn,i) terms.
Hence, the Markov chain asymptotically becomes a birth-
death process as n → ∞, which is tractable to obtain the
steady-state distribution as in the following lemma.
Lemma 3.2. Assume that limn→∞ limt→∞

γn,i

λn,i,t
= ci for some

ci > 0. Then, when the number n of sources is sufficiently
large, the steady-state distribution θn,i = (θn,i,k)

∞
0 of

the queue length process {Qi,t}t≥0 for source i under the
cancellation-enabled one-bit update policy described in (18) is
given by

θn,i,0 ∼
(
1 +

λi(1−γi)((1−λi)γi+
1
2λi(1−γi))

(1−λi)γi((1−λi)γi+
1
2λi)

)−1

,

θn,i,k ∼ λi(1−γi)θi,0
(1−λi)γi+

1
2λi

(
1
2λi(1−γi)

(1−λi)γi+
1
2λi(1−γi)

)k−1

(20)

for k = 1, 2, ..., where λi = λn,i = limt→∞ P(Ui,t = 1) =
2pi

∆2
i

, γi = γn,i = µi

∏
j ̸=i(1− µj) and xn ∼ yn means that

limn→∞
xn

yn
= 1.

The detailed proof is in Appendix E. For the rest of the
paper, we omit the subscript n to save space.

From (19), (9), (20) and the fact that P(V 1
i,t > 0 | Qi,t >

0) = P(V 1
i,t < 0 | Qi,t > 0) = 1

2 by the symmetry of dynam-
ics, we can obtain the steady state distribution of ei,∞ and
further the expected estimation error E[|ei,∞|]. However, it

is intractable to optimize µi and ∆i that minimize E[|ei,∞|]
mainly due to (20). Hence, in the next section, we propose
an alternative choice of µi and ∆i and compare the expected
estimation error E[|ei,∞|] between the proposed policy and
the optimal policy studied in Section 3.1.

3.5 Comparison of Optimal and Cancellation-Enabled
Updates
The intractability of minimizing E[|ei,∞|] mainly comes
from the steady state distribution θi of each source i in (20).
Hence, we instead propose an alternative choice of µ and
∆ and compare its estimation error to that of the optimal
policy. Let eopt∞ (µ) and ecxl∞ (µ,∆) denote the long-term
estimation error under the optimal policy with parameter
µ and the cancellation-enabled policy with parameters µ
and ∆, respectively.
1) Activation probabilities µ: We consider µ that minimizes
E[|eopt∞ |] instead of E[|ecxl∞ |] since E[|eopt∞ |] depends only on
µ given p. Note, in Theorem 3.1, that βi =

γi

2(1−γi)pi
→ 0 as

γi → 0, i.e., as n → ∞, and thus β2
i is dominated by βi as

n → ∞. Further, we have that
√

1
2βi

=
√

pi

γi
− pi →

√
pi

γi
as

n → ∞. From this asymptotic behavior for a large number n
of sources, we use activation probabilities µasym that solves
the following convex optimization problem:

µasym := argmin
µ

1

n

n∑
i=1

√
pi

µi
∏

j ̸=i(1−µj)
. (21)

The convexity of the objective function can be shown by
showing that the leading principal minors of the Hessian
matrix of

√
pi

µi
∏

j ̸=i(1−µj)
are positive. For completeness, we

provide the detailed proof in Appendix F.
2) Thresholds ∆: Given a set p of state transition probabili-
ties and a set µ of activation probabilities, let

∆µ
i =

⌊√
2pi

γi

⌋
or

⌈√
2pi

γi

⌉
, (22)

where γi = µi

∏
j ̸=i(1 − µj). Note that both choices of ∆µ

i

in (22) result in the same asymptotic performance since both
of them become close to

√
2pi

γi
as n → ∞, and that λi ≈ γi

as n → ∞ since λi =
2pi

(∆µ
i )2

, which makes the steady state
distribution θi of the queue length process {Qi,t} of source
i in (20) simpler4:

θi,0 ∼ 3− 2γi
6− 5γi

, θi,k ∼ 2− 2γi
6− 5γi

1

3k−1
for k ≥ 1. (23)

Next, we compare the expected long-term estimation
error E[|ecxl∞ (µasym,∆µasym

)|] of the cancellation-enabled
update policy with parameters µasym and ∆µasym

to that
of the optimal policy in the following theorem.
Theorem 3.3. The optimality ratio of the cancellation-enabled

one-bit update policy with parameters µasym and ∆µasym

is
asymptotically upper bounded by 13

√
2

12 as n → ∞, i.e.,

lim
n→∞

E[|ecxl
∞ (µasym,∆µasym

)|]
E[|eopt∞ (µasym)|] ≤ 13

√
2

12 ≈ 1.5321. (24)

4. It can be easily shown that
∣∣∣∣γi − 2pi

(∆
µ
i )2

∣∣∣∣ → 0 as n → ∞. The

choice of this specific threshold ∆i is for obtaining analytical results in
Theorem 3.3 by simplifying the steady-state distribution of the queue
length process in (20).
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Note, from (19), that we can obtain

E[|ei,t|] ≤ E[ẽi,t] + ∆iE[Qi,t] for all t, (25)

and that E[|ẽi,∞|] is given in (10) and E[Qi,∞] for large n
can be obtained using (23), from which we can obtain the
upper bound of the optimality ratio. The detailed proof is in
Appendix G.

Theorem 3.3 implies that the cancellation-enabled one-
bit policy is not far from the optimal policy in terms of the
estimation error. However, from Theorem 3.1, we can see
that H(ei,∞) → ∞ as n → ∞, i.e., the average packet length
becomes longer. Therefore, in terms of transmission power,
the update policy with one bit of information becomes more
beneficial than the optimal policy.

4 EXTENSION TO MORE GENERAL SOURCE DY-
NAMICS

4.1 Symmetric Dynamics with Finite Variance
In this section, we investigate the estimation error mini-
mization problem described in (14), but with a different
type of source, where the state evolution of each source
is a Gaussian random walk. This problem has also been
studied in [21], but our work is different from [21] in that
we consider a scenario where each update must constitutes
a limited number of bits.

Suppose that the state xi,t of source i changes as

xi,t+1 = xi,t + wi,t, for t ≥ 0, (26)

where wi,t is a Gaussian random variable with zero mean
and finite variance σ2

i . A new packet is generated (i.e., Ui,t =
1) if |ẽi,t + wi,t| ≥ ∆i for ∆i ∈ (0,∞), and the virtual error
ẽi,t is updated as

ẽi,t+1 = ẽi,t + wi,t −∆iI{ẽi,t + wi,t ≥ ∆i}
+∆iI{ẽi,t + wi,t ≤ −∆i}.

(27)

Also, the source randomly accesses the channel with the
successful transmission probability of µi ∈ (0, 1). Then,
the next theorem provides the long-term expected absolute
error performance under the cancellation-enabled one-bit
update policy.
Theorem 4.1. Under the cancellation-enabled one-bit update

policy with parameter (µ,∆) when a noise of source i is a
Gaussian random variable with zero mean and finite variance
σ2
i , we have

E[|ei,∞|] ≤ σ2
i+P(|ẽi,∞|≥∆i)∆

2
i

2∆iP(|ẽi,∞|≥∆i)
+

∆iE[Ui,∞]
2γi

+ ∆i

2 , (28)

where γi = µi

∏
j ̸=i(1− µj).

To prove this, we first show that the virtual error pro-
cess ẽi,t with a Gaussian noise with zero mean and finite
variance σ2

i forms a positive Harris recurrent Markov chain
with a unique invariant distribution. If one can show that
the virtual error process ẽi,t with an arbitrary symmetric
noise with zero mean and finite variance σ2

i forms a positive
Harris recurrent Markov chain with a unique invariant
distribution, then Theorem 4.1 holds for the particular sym-
metric noise. The detailed proof is in Appendix H.

Note that P(|ẽi,∞| ≥ ∆i) > 0 for ∆i ∈ (0,∞); otherwise,
i.e., P(|ẽi,∞| ≥ ∆i) = 0 for ∆i ∈ (0,∞), the system is

naturally stable with E[|ei,∞|] < ∆i. Further, from Theorem
4.6.2 in [25], we have E[Ui,∞] = limt→∞ P(Ui,t = 1) = 1

E[T ] ,
where T is the packet generation period. Since P(|ẽi,∞| ≥
∆) > 0, we have E[T ] ∈ [1,∞). Thus, the upper bound
in (28) is finite, which implies that the system is always
stable for any σ ∈ (0,∞). Further, if one can analytically
obtain the long-term probability P(|ẽ∞| ≥ ∆) of packet
generation and the long-term expected packet generation
period E[U∞], then one can optimize the upper bound in
(28) and have a sub-optimal update policy.

4.2 Asymmetric Dynamics
In this section, we consider an asymmetric noise and apply
the cancellation-enabled one-bit update policy. Suppose that
the state xi,t of source i changes as

xi,t+1 = xi,t + wi,t, for t ≥ 0, (29)

where

wi,t =


1, with prob. pi,
0, with prob. 1− pi − qi,

−1, with prob. qi,
(30)

where pi, qi ∈ [0, 1] such that pi + qi ≤ 1 and pi − qi = αi.
Note that E[xi,t+1 − xi,t | xi,t] = αi, i.e., the state xi,t

is drifted by αi. We assume that the amount αi of drift
is known to the receiver. Then, the receiver updates the
estimate x̂i,t for source i as

x̂i,t+1 = x̂i,t − αi + V 1
i,tZi,t∆i, (31)

where Zi,t = 1 if a packet is arrived from source i and V 1
i,t

is the sign of the received information. That is, the receiver
makes a correction by the amount of drift at each time slot.
Then, the estimation error ei,t = xi,t − x̂i,t evolves as

ei,t+1 = ei,t + wi,t − αi − V 1
i,tZi,t∆i, (32)

and the virtual error ẽi,t evolves as

ẽi,t+1 = ẽi,t + wi,t − αi −∆iI{ẽi,t + wi,t − αi ≥ ∆i}
+∆iI{ẽi,t + wi,t − αi ≤ ∆i}. (33)

Since wi,t − αi is an asymmetric random variable with
mean 0, we may not have P(ẽi,t > 0 | |ẽi,t| ≥ ∆i) =
P(ẽi,t < 0 | |ẽi,t| ≥ ∆i), which is the property that the
cancellation-enabled update policy is built on. However, we
show that the symmetric property holds for a large number
n of sources in the following theorem.
Theorem 4.2. For the virtual error process ẽi,t defined in (33),

we have
lim

n→∞
P(ẽi,t > 0 | |ẽi,t| ≥ ∆i)

= lim
n→∞

P(ẽi,t < 0 | |ẽi,t| ≥ ∆i)= 1/2.
(34)

Note that ∆i → ∞ as n → ∞ by the choice of µ and
∆ in Section 3.5. Then, it can be shown that the virtual
error ẽi,t is equally likely to be positive or negative when
it exceeds threshold ∆i for a sufficiently large n (i.e., large
∆i) using analysis of Martingales [26]. The detailed proof is
in Appendix I.

From Theorem 4.2, we can use the cancellation-enabled
update policy with drift adjustment and obtain the result on
the optimality ratio represented in Theorem 3.3.
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Fig. 5: Cancellation-enabled policy for m-dimensional
source dynamics, where the packet cancellation occurs at
the source m’s queue.

4.3 Multi-dimensional States

Lastly, we consider a problem of multi-dimensional states.
Suppose that each source i is observing mi different dynam-
ics, where each dynamics is one-dimensional as we have
investigated throughout this paper. Let xi,k,t denote the
state of kth dynamics observed by source i at time t, and
let xi,t = [xi,1,t, ..., xi,mi,t]

T for mi ∈ N, where xi,k,t ∈ R.
The objective is to minimize:

lim
t→∞

1

tn

t∑
s=1

n∑
i=1

1

mi

mi∑
k=1

E[|ei,k,t|]. (35)

We assume that xi,1,t, ..., xi,mi,t are independent each
other. Then, the source can locally use the cancellation-
enabled for each xi,k,t with threshold ∆i,k, which can be
∆µasym

i,k if xi,k,t is a symmetric random walk with parameter
pi,k, generate a packet containing the values of mi local
queues at every time slot, and if the packet is not success-
fully transmitted to the receiver then the packet is discarded
at the end of the time slot as shown in Fig. 5.

Since xi,1,t, ..., xi,mi,t are independent, we can obtain the
optimality ratio obtained in Theorem 3.3 (i.e., asymptotic
upper bound of 13

√
2

12 ). However, in the multi-dimensional
case, each local queue has three types of information (i.e.,
three quantization bins): +1, 1 and 0, where +1 and −1 are
the value of packet if exists, and 0 means that the error does
not exceed the threshold5. Hence, by the Shannon’s entropy
theorem [27], the average data length is upper-bounded by
log2 3mi since there is 3mi number of quantization bins.

5 NUMERICAL RESULTS

In this section, we verify the performance of our threshold-
based one-bit update policies. We first compare four differ-
ent one-bit update policies: updates without packet cancel-
lation proposed in Section 3.2 (denoted by No-pck-cancel),
cancellation-enabled updates (denoted by Pck-cancel) pro-
posed in Section 3.3, threshold-based updates with one bit
inspired by [8] (denoted by Th-based (1 bit)), and one-bit
updates with freshest information inspired by the optimal
policy in Section 3.1 (denoted by Fresh-info (1 bit)). Given
(∆, µ), the Th-based (1 bit) policy tries to generate a new
packet after a successful transmission thus the queue being
empty. If ẽt ≥ ∆ (or ≤ −∆), then a packet having ∆
(or −∆) is generated and the virtual error ẽt decreases (or
increases) by ∆, i.e., ẽt+1 = ẽt − ∆ (or ẽt+1 = ẽt + ∆). If

5. For 1-dimensional case, the 0 can be replaced by not sending a
packet

Fig. 6: A trajectory of the state xi,t of source i.

1 3 5 7 9 11 13 15

3

6

9

12

15

Fig. 7: Average absolute error of four different one-bit up-
date policies for a single source with different thresholds ∆
given p = 0.4 and µ = 0.04.

|ẽt| < ∆, then it waits until ẽt hits the thresholds ∆ or −∆.
The Fresh-info (1 bit) policy generates a packet if |ẽt| ≥ ∆
with the corresponding sign at the beginning of each time
slot, and if the packet is not successfully transmitted to
the receiver, then the packet is discarded at the end of the
time slot6. For example, suppose that xi,0 = x̂i,0 = 0,
(xi,t)

7
t=1 = (1, 2, 1, 0, 1, 2, 3) and ∆i = 2 as in Fig. 6, and

that no packets have been successfully delivered to the
receiver for t = 1, ..., 7. Then, under the Pck-cancel policy,
the queue has three packets with the value +1, −1 and +1
generated at time 2, 4 and 6 at the end of time 7, and the
virtual error ẽi,7 at time 7 is 1. On the other hand, the queue
has one packet with the value +1 generated at time 2 under
the Th-based (1 bit) policy at the end of time 7, and the
queue has one packet with the value +1 generated at time 7
under the Fresh-info (1 bit) before discarding the packet at
the end of time 7.

We first consider remote tracking of a single source. The
source has transition probability p = 0.4 and activation
probability µ = 0.04, and the simulations run for T = 105

time slots and are averaged over 200 repetitions. Fig. 7
shows the average absolute error of four different one-
bit update policies with respect to threshold ∆. For No-
pck-cancel policy, the thresholds ∆ >

√
2p
µ ≈ 4.4741 is

the stability condition as stated in Theorem 3.2, while the
other three policies (Pck-cancel, Th-based and Fresh-info)
make the system always stable. Further, Pck-cancel policy

6. Under Th-based (1 bit) policy, the generated packets are not dis-
carded. However, under Fresh-info (1 bit) policy, the generated packets
are discarded whenever, at the end of the time slot, the generated
packet at the beginning of the time slot is not delivered to the receiver.
Thus, they can be viewed as non-preemptive and preemptive policies,
respectively. In addition, the cancellation-enabled one-bit update policy
can be viewed as a preemptive policy.
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(a) Update policies with dummy packet assumption.
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(b) Update policies without dummy packet assumption.

Fig. 8: Average absolute error of four different 1-bit update
policies for homogeneous sources with the different number
n of sources given p = 0.4.

outperforms the other one-bit update policies for all ∆.
Next, consider remote tracking of multiple homoge-

neous sources with pi = p = 0.4 for all i. Since the
sources have the same dynamics, it is reasonable to set the
activation probabilities µ = 1

n for all the sources given
n number of sources in the system. For the cancellation-
enabled one-bit updates, we use two different thresholds:
one is the threshold ∆µasym

=
⌊√

2p
1
n (1− 1

n )n−1

⌋
, which is the

threshold obtained in Section 3.5, and another one is the
optimal threshold ∆∗, which is numerically found through
exhaustive search. For Th-based (1 bit) and Fresh-info (1
bit) policies, the optimal thresholds ∆ are also numerically
found. The simulations run for T = 105 time slots and are
averaged over 200 repetitions.

Fig. 8 shows the average absolute error of four differ-
ent one-bit update policies with respect to the number n
of sources with and without dummy packets, which are
assumed for analytical simplicity. Under no dummy packet
assumption (denoted by No dum.), each source tries a trans-
mission only when it has an update packet in its queue.
Fig. 8(a) shows that, under the dummy packet assumption,
the gap between the cancellation-enabled one-bit updates
with thresholds ∆µasym

and ∆opt is unnoticeable, and Pck-
cancel policies with ∆µasym

and ∆opt outperform the other
two update policies. On the other hand, Fig. 8(b) shows that,
without the dummy packet assumption, the gap between
Pck-cancel with ∆opt and Fresh-info (1 bit) is unnoticeable.
In the numerical simulations, it is observed that, at the
optimal threshold obtained by exhaustive search, Fresh-info

1 2 3 4 5 6 7 8

1

1.5

2

2.5

3

3.5

4

Fig. 9: Average absolute error of the 1-bit Pck-cancel policy
and three different M bits update policies for a single source
with different thresholds ∆ given p = 0.4 and µ = 0.2.
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Fig. 10: Optimality ratio of three different update policies
for homogeneous sources with the different number n of
sources given p = 0.4.

policy generates update packets less frequently than Pck-
cancel policy. Note that if a source sends update packets
too frequently then the source generates too much traffic
on the network resulting in the performance degradation.
On the other hand, if a source sends update packets too
occasionally, then its estimation error will be large, which
also results in the overall performance degradation. With
dummy packets, a source under Fresh-info policy cannot
use the benefit giving more transmission chances to the
other sources. Further, note that removing dummy packets
improves the error performance for all update policies. As
mentioned in Section 2.1, the dummy packet assumption is
made for the tractability of the mathematical analysis, but
it would be more beneficial not to use the dummy packets
in practical operation. It will also be an interesting open
problem to analyze the performance of the system without
the dummy packet assumption.

Next, we compare the cancellation-enabled one-bit up-
date policy with three different update policies with perfect
information: the optimal policy in Section 3.1, which keeps
the queue with the freshest packet (denoted by Fresh-info
(perf. info.)), threshold-based update policy in [8] (denoted
by Th-based (perf. info.)), and zero-waiting update policy
(denoted by ZW (perf. info.)). Note that “perfect informa-
tion” means that the policy do not restrict the number of bits
for information, i.e., the packet can have the exact value at
the time it is generated. The Zero-waiting policy generates
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Fig. 11: Optimality ratio of five different update policies for
homogeneous sources with different number n of sources
when a noise is a zero-mean Gaussian random variable with
variance 4.
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Fig. 12: Optimality ratio of five different update policies for
homogeneous sources with different number n of sources
when a noise is asymmetric with p = 0.5 and q = 0.3.

a new packet with the actual state value after successful
transmission. The Th-based (perf. info.) policy is similar
with the Th-based (1 bit) policy except that, if ẽt ≥ ∆ (or
≤ −∆), a packet having the actual value ẽt is generated and
the virtual error ẽt becomes 0. If |ẽt| < ∆, then it waits until
ẽt hits the thresholds ∆ or −∆.

Fig. 9 shows the average absolute error of the four
different update policies with respect to threshold ∆ with
a single source having transition probability p = 0.4 and
activation probability µ = 0.2. The simulations run for
T = 105 time slots and are averaged over 100 repetitions.
As can be seen, the Pck-cancel policy outperforms the zero-
waiting and threshold-based update policies with perfect
information at its optimum threshold level.

Fig. 10 shows the optimality ratio of average absolute
error with respect to the number n of homogeneous sources
with p = 0.4. The simulations run for T = 105 time slots
and are averaged over 500 repetitions. It can be seen that the
optimality ratio converges to some constant as the number
n of sources becomes large for all three update policies.
In general, transmission time and power increase as the
packet size (i.e., the number of bits for the state information)
increases. This suggests that the cancellation-enabled one-
bit update policy could be greatly beneficial for applications
where transmission power or shared channel capacity is
limited.

Next, we consider the general source dynamics studied
in Section 4: random walks with (i) a Gaussian noise and (ii)
an asymmetric noise. Fig. 11 and Fig. 12 show the optimality
ratio of five different update policies when a noise is a zero-
mean Gaussian random variable with variance 4 and when
a noise is an asymmetric noise with parameters p = 0.5 and
q = 0.3, respectively. The simulations run for T = 105 time
slots and are averaged over 500 repetitions. As can be seen
in Fig. 11 and 12, the optimality ratio converges to some
constant and the Pck-cancel policy outperforms the others
at its optimum threshold level.

6 CONCLUSION

Motivated by massive IoT network applications, we con-
sidered the scenario of a large number of low-complexity
devices updating their evolving state to a receiver over low-
capacity random access channels. In particular, we devel-
oped decentralized update policies that require one-bit of in-
formation per update for minimizing the expected absolute
(estimation) error when states of sources evolve according
to symmetric random walks. We first studied a benchmark
first-come first-serve (one-bit) update policy and showed
that this policy will fail to stabilize the system under some
conditions. Then, we introduced a cancellation-enabled one-
bit update policy that improves the performance of the
benchmark policy and makes the system always stable.
We proposed a choice of parameters for the cancellation-
enabled policy and showed that the cancellation-enabled
policy with the sub-optimal parameters has optimality ra-
tio 13

√
2

12 to the optimal policy that does not restrict the
number of bits for each update. Through simulations, we
identified that the sub-optimal parameters are robust to
errors compared with the optimal parameters obtained
through exhaustive search, and compared the cancellation-
enabled one-bit update policy with zero-wait sampling and
threshold-based sampling policies that require more than
one-bit of information per update. The numerical compar-
ison showed that the cancellation-enabled update policy
at its optimal threshold level outperforms the multi-bits
update policies. This suggests that the cancellation-enabled
one-bit update policy could be greatly beneficial for applica-
tions where transmission power or shared channel capacity
is limited. Further, analytical comparison between update
policies used in the simulations can be an interesting open
problem, especially a comparison between the cancellation-
enables one-bit update policy and the one-bit update policy
with the freshest information.
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