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Abstract—We study a problem of detecting deterministic sig-
nals buried in correlated clutter using wireless sensor networks.
We are specifically interested in developing a distributed algo-
rithm over the network to detect the presence of a deterministic
signal while keeping low communication delay and energy asso-
ciated with the distributed computation. In this paper, we deploy
a distributed version of the Sparse Matrix Transform (SMT) that
decorrelates a signal measured by a number of sensors in order
to compute a matched filter. The matched filter represents the
sum of the Log-Likelihood Ratios over all the sensors of the two
hypotheses corresponding to whether a deterministic signal is
present or not. We show through numerical simulations that our
algorithm is very efficient in terms of communication energyand
delay while sustaining a high Signal-to-Clutter Ratio.

I. I NTRODUCTION

We consider a Wireless Sensor Network (WSN) that com-
prises a number of sensors that are used to monitor the
environment in which they are deployed. This network could
potentially function as an ad-hoc network where sensors
perform a number of operations without the necessity of a
powerful centralized node, such as a base station. One of the
important advantages of functioning in an ad-hoc manner is
that the network may not require much maintenance. On the
other hand, in order to minimize the amount of maintenance,
sensors need to utilize resources in an efficient manner. For
instance, sensors are battery-operated, and need to conserve
energy. They also have limited computational resources. In
this work, we are interested in one of the important functions
of a sensor network, which is to perform signal detection. We
wish to do this while utilizing sensor resources efficiently.

Hypothesis testing using the likelihood ratio test [1] is
a well-known technique to perform signal detection. In a
matched filter problem, one tests the hypothesis of the
measurements containing only noise/clutter (null hypothesis)
against the alternative hypothesis of the measurements con-
taining a deterministic signal together with noise/clutter. In a
WSN environment, since the sensor measurements are prone to
errors, acquiring measurements from multiple sensors typically
results in a better detection performance. However, measure-
ments from multiple sensors need to be combined carefully
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since they could potentially be correlated. Not only could
the measurements be correlated, but also the measurement
clutters. Therefore, in order to perform signal detection in an
ad-hoc sensor network, sensors need to first decorrelate their
measurements. Otherwise, the hypothesis testing could result
in an erroneous result. In [2], [3], the authors study detection
performance as the number of sensors becomes very large.
Decentralized detection becomes difficult when measurements
are correlated. This is because for an arbitrary covariance
matrix, the computation of the matched filter requires global
communication of sensor measurements either to a fusion
center, or among all sensors in the network. While the former
is computationally intensive (since the fusion center must
perform all the computation), the latter requires a huge amount
of communication.

The Sparse Matrix Transform (SMT) proposed in [4] can be
used for decorrelation. One advantage of the SMT technique is
that it can provide full-rank estimates of the signal’s covariance
matrix even when the number of training samples,n is much
less than the signal dimensionality,p. In [5], the authors
propose theGraphical-SMT, an algorithm to design the SMT
for graphical data requiring onlyO(p log p) computation in
average. Once designed, the computational complexity of ap-
plying the SMT decorrelating transform to test measurements
is O(p).

In this paper, we show how the SMT decorrelating transform
can be used in a network of sensors to compute a distributed
decorrelation of a measured signal. We analyze the commu-
nication costs required by this distributed SMT decorrelation
algorithm in terms of communication energy and delay.

We compare our method with two alternatives: (1) Using a
shrinkage estimate of the clutter covariance matrix; (2) assum-
ing the clutter is uncorrelated. In our simulations, sensors are
deployed to measure a deterministic signal buried in correlated
Gaussian random clutter. The sensors communicate among
each other using a tree topology. Our results suggest that the
our SMT-based method gives the best detection accuracy while
keeping the communication costs low.

The main contributions of our work are as follows.
• We design an algorithm for performing signal detection

by decorrelating measurements from multiple sensors in
a distributed manner in a multi-hop wireless network with



a tree topology. Our algorithms are based on designing
SMTs to estimate the covariance matrix, and applying this
estimate to test measurements in a distributed manner.

• We analyze the communication costs (in terms of energy
and delay) of our algorithm, and show through extensive
numerical evaluations that it performs significantly better
both in terms of accuracy, and communication costs
compared to a number of other existing techniques.

The rest of the paper is organized as follows. In Section II,
we describe the system model for the wireless sensor network.
In Section III, we provide an overview of the SMT method.
In Section IV, we develop the SMT-based distributed signal
decorrelation in a multi-hop wireless sensor network, and
explain how a signal can be detected using our technique.
In Section V, we perform extensive numerical evaluations of
our algorithms. Finally, in Section VI, we conclude our work,
and consider open problems.

II. SYSTEM MODEL

We consider a multi-hop wireless sensor network organized
in the form of a tree, consisting of a number of sensors. The
sensors communicate information to a cluster-head (which is
the root of the tree) in possibly a multi-hop fashion. Note
that the cluster-head is just another sensor, and not a powerful
node compared to other nodes in the network. One could,
for instance, periodically assign different sensors as cluster-
heads. The purpose of the cluster-head is, for instance, to take
a decision on whether a signal has been detected, based on
the hypotheses ratios received from multiple sensors.

We assume error-free links. The energy consumed by com-
municating from one sensor to another is a function of the link
costs in the path between the sensors. In order to evaluate the
delay performance of our algorithms, we consider unit capacity
links, and a time-slotted system.

III. T HE SPARSEMATRIX TRANSFORM (SMT)

The SMT [4] is used to provide full-rank estimates of the
clutter covariancep × p used during detection, discussed in
Section IV. Here we review the concepts of designing and
applying the SMT.

A. Design of the SMT transform

The SMT design consists of estimating the full set of eigen-
vectors and associated eigenvalues for a generalp-dimensional
signal. More specifically, the objective is to estimate the
orthonormal matrixE and diagonal matrixΛ such that the
signal covariance can be decomposed asR = EΛEt, and to
compute this estimate fromn independent training vectors,
Y = [y1, · · · ,yn]. This is done by assuming the samples are
i.i.d. Gaussian random vectors and computing the constrained
maximum log-likelihood (ML) estimates ofE andΛ. In [4],
we show that these constrained ML estimates are given by

Ê = arg min
E∈ΩK

{∣

∣diag(EtSE)
∣

∣

}

(1)

Λ̂ = diag(ÊtSÊ) , (2)

whereS = 1

n
Y Y t is the sample covariance matrix, andΩK

is the set of allowed orthonormal transforms.
If n > p andΩK is the set of all orthonormal transforms,

then the solution to (1) and (2) is the diagonalization of the
sample covariance, i.e,̂EΛ̂Êt = S. However, the sample
covariance is a poor estimate of the covariance whenn < p.

In order to improve the accuracy of the covariance estimate,
we will impose the constraint thatΩK be the set of sparse
matrix transforms (SMT) of orderK. More specifically, we
will assume that the eigen-transformation has the form

E =

K
∏

k=1

Ek = E1 · · ·EK , (3)

where eachEk is a planar rotation (known as a Givens
rotation) over a coordinate pair(ik, jk) by an angleθk, and
K is the model order parameter. So,Ek = I + Θ(ik, jk, θk),
where

[Θ]ij =















cos(θk)− 1 if i = j = ik or i = j = jk

sin(θk) if i = ik andj = jk

− sin(θk) if i = jk andj = ik
0 otherwise

(4)

Intuitively, each Givens rotation,Ek, plays the same role as
the butterflies of a fast Fourier transform (FFT). In fact, the
SMT is a generalization of both the FFT and the orthonormal
wavelet transform. However, since both the ordering of the
coordinate pairs,(ik, jk), and the values of the rotation angles,
θk, are unconstrained, the SMT can model a much wider range
of transformations. It is often useful to express the order of
the SMT asK = rp, where r is the average number of
rotations per coordinate, being typically very small:r < 5.
The optimization of (1) is non-convex, so we use a greedy
optimization approach in which we select each rotation,Ek,
in sequence to minimize the cost. The greedy optimization
can be done fast if a graphical constraint can be imposed to
the data [5]. The parameterr can be estimated using cross-
validation over the training set [4], [5] or using the information
criterion proposed in [6].

B. Application of the SMT transform

Typically, r is small (< 5), so that the computation to apply
the SMT to a vector of data is very low, i.e,2r + 1 floating-
point operations per coordinate. Therefore, we can apply the
SMT decorrelating transform top-dimensional random vectors
in only (2r + 1)p steps.

IV. WSNS AND COMMUNICATION CONSTRAINTS

In this section, we explain how to apply a SMT decorre-
lating transform to a multi-dimensional signal measured bya
multi-hop wireless network with a tree topology. The main
purpose is to use this decorrelating transform as part of a
matched filter detection as explained below. We assume that
the SMT decorrelating transform had been previously designed
from training data as described in Section III-A using one of
the methods proposed in [4], [5].



A. Distributed matched filter with the SMT

In our setup, each sensor node has a sequence of rotations
containing the nodes (ik and jk) performing each of these
rotations, and the angle (θk) of each rotation. These parameters
are obtained from the SMT design. Letd ∈ R

p be a determin-
istic signal buried in additional random clutterw ∼ N (0, R).
The random vectorx is measured, and one wants to make
a decision whether the signald is present, i.e.,x = d + w,
or the measurement only contains clutter, i.e.,x = w. This
can be done by testing the following hypotheses using a Log-
Likelihood Ratio (LLR) test according to aNeyman-Pearson
criterion [1].

H0 : x ∼ N (0, R) (5)

H1 : x ∼ N (d, R) (6)

In this case, the LLR test has the form of an inner-product:
l(x) = qtx ≷ η, where the vectorq , R−1d is called a
matched filter, and its detection capability can be obtained by
the Signal-to-Clutter Ratio (SCR) [7]:

SCR =
(qtd)2

E[(qtx)2]
=

(qtd)2

qtE[xxt]q
=

(qtd)2

qtRq
. (7)

Note that a nodei only has theith elements ofx and
d. Therefore, computingl(x), in general, requires global
communication of these elements either to the cluster-head,
or to all nodes in the network. However, using the graphical
SMT, we can computel(x) in a distributed manner. We do
this as follows.

We first rewritel(x) in the following manner.

l(x) = qtx

= (R−1d)tx

= (dtE)Λ−1(Etx)

= ztΛ−1y

=

p
∑

i=1

ziλ
−1

i yi

wherezt = dtEΛ−1, andy = Etx. Clearly, if we determine
the ith components of the vectorsz and y, i.e. zi and yi, at
nodei, we can computeziλi

−1yi at nodei. Each node will
then calculate this sum from their sub-trees, and send the sum
to their parent. This process terminates at the root of the tree,
and the cluster-head will obtainl(x). It can then compare it to
η, and make a decision whether signald was detected. We now
explain how to determinezi andyi in a distributed manner.

Recall thatE = E1E2...EK . Initialize yi = xi, andzi = di,
for each nodei. For k = 1 to K,

1) Suppose thatik and jk are the nodes that perform a
Givens rotation at thekth rotation. Then, bothik andjk

possessEk.
2) Nodeik communicatestik

andxik
to nodejk, and vice

versa.

3) SinceEk is a sparse matrix with non-zero elements only
at the coordinates(ik, ik), (ik, jk), (jk, ik), and(jk, jk),
by only exchanging the above messages betweenik and
jk, we can updateyik

andyjk
in the following manner.

yik
← cos(θk)yik

− sin(θk)yjk
, (8)

yjk
← cos(θk)yjk

+ sin(θk)yik
. (9)

Note thatzik
andzjk

can be updated in a similar manner.

Thus, by only exchanging messages between the nodes that
decorrelate during each rotation, we can determinel(x).

B. Communication costs

We are interested in two metrics for the communication cost
- energy and delay. The communication energy is the total
energy spent by all the nodes in the network for applying
the distributed SMT decorrelating transform on test data.
The delay is the number of time slots required to apply the
distributed decorrelating transform on the given test data.
Computing Energy: Let the energy required to make a
transmission over a linkl beβl. βl could depend on a number
of factors such as the distance between the nodes, the SNR
required, etc. For each rotationk, two nodesik and jk have
to exchange packets. The energy required to send a packet
from ik to jk is given by

∑

l∈Pikjk

βl, wherePikjk
is the

set of links on the path fromik to jk. Therefore, the total
energy required by a rotation is given by2

∑

l∈Pikjk

βl, since
ik sends a packet tojk, and vice versa. On the average, in
a tree, there areO(log p) links in the path from one node
to another. Therefore, it requiresO(log p) energy for one
rotation. Therefore, the total energy required for performing
K rotations isO(K log p). Since K is typically O(p), the
total energy required for applying the SMT to perform signal
detection isO(p log p).
Computing Delay: While the energy required is related to
the total number of transmissions in the network, the delay
to apply the SMT depends on whether transmissions can be
performed simultaneously. Assuming unit capacity links, the
time required to perform a rotation between two nodesik and
jk is given by2|Pikjk

|, i.e., twice the number of hops between
ik andjk. However, the total time required to perform allK

rotations is not the sum of the time required for individual
rotations. For instance, if sensor1 and sensor2 perform
the first rotation, and sensor10 and sensor11 perform the
second rotation, then these nodes can simultaneously do these
rotations, requiring an overall delay ofmax(2|P1,2|, 2|P10,11|).
On the other hand, if sensor2 and sensor3 perform the
second rotation instead, the two rotations have to be performed
sequentially becausey2 and z2 get updated after the first
rotation. We use the following algorithm to schedule rotations.

1) Initialize tistart and tiend for each rotationi to be zero.
tistart represents the time slot at which the message
exchange for rotationi starts, andtiend is the time slot
at which it ends.



2) For each rotationk, look at the list of previous rotations
from 1 to k− 1. Find the last rotationi in the list from
1 to k− 1 such that no rotation in the list fromi + 1 to
k−1 involves either of the nodes in rotationk. Suppose
thatik andjk are involved in rotationk. Thentkstart and
tkend are given by

tkstart ← tiend + 1 (10)

tkend ← tkstart + 2|Pikjk
| (11)

3) The overall delay is given bymaxi(t
i
end).

V. EXPERIMENTAL RESULTS

We now evaluate our algorithms numerically to study its
decorrelation performance, and the communication costs as-
sociated with it. Before we do this, we first give a brief
description of other methods that we compare our method
with.

• Independent: This method assumes that sensors make
independent measurements, and are not correlated. While
this method requires the lowest communication costs, it
gives the poorest performance when measurements are
correlated, which is typical in practice.

• Sample covariance: As explained in Section III, the
sample covariance matrix is given byS = 1

n
Y Y t.

However, the matrix̂E in the diagonalizationS = ÊΛ̂Êt

is not necessarily a product of sparse matrices. Therefore,
in order to apply this estimate to test data in a distributed
manner, each nodei has to communicate itsxi anddi to
every other node in the tree.

• Shrinkage estimators: Shrinkage methods[8], [9] are
widely used to estimate high-dimensional covariance ma-
trices. They work by estimating the covariance matrix
as a combination of the rank-deficient sample covariance
and a positive definite target such as the identity matrix
or the diagonal of the sample covariance. LetS be
the p × p sample covariance estimate of the covariance
R computed fromn samples. The Shrinkage-Indentity
estimate is given by

R̃ = αS + (1− α)
tr(S)

p
I .

The Shrinkage-Diagonal is given by

R̃ = αS + (1− α)diag(S) .

The intuition behind these methods is that a combination
of an estimator that over-fits the data (i.e, the rank-
deficient sample covariance) with an estimator that under-
fits the data (i.e, thep × p identity matrix I, or the
diagonal matrixdiag(S)) will produce a more accurate
final estimate. The right value of the parameterα is
usually determined using cross-validation. The eigen-
vector matrix Ẽ in the diagonalizationR̃ = ẼΛ̃Ẽt is
dense, therefore, the matrix-vector productẼty required

to decorrelate a vectory requires as much communication
as the sample covariance method.

We consider a full binary tree with 63 nodes for the
following results. We assume that correlations decreases ex-
ponentially with distance, i.e., the actual covariance matrix
is given by R = e−D, whereD is the matrix of physical
distances between nodes. We normalize this matrix so that its
determinant is one. We generate Gaussian distributed random
samples with mean zero, and covarianceR for designing the
SMT. We generate additional additional samples to test the
decorrelation performance.

For calculating the energy, we assume that the cost to
communicate one sample over each link is one unit. Similarly,
since we assumed unit capacity links, the delay required to
communicate one sample over a link is also one unit.

A. SCRR vs. Measurement Samples

One of the metrics for analyzing the decorrelation perfor-
mance is theSignal-to-Clutter Ratio Ratio(SCRR) which is
the ratio of the SCR of our algorithm to that of a perfect
decorrelation algorithm. Note that a perfect decorrelation
algorithm would require infinite measurement samples, and
is therefore not practically feasible.
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Fig. 1. SCRR vs.#Measurement Samples

Figure 1 shows the SCRR for various amounts of measure-
ment samples used for design. One can see that the SMT
performs better than all the other estimators. Also, observe
that the sample covariance estimator requires at leastp (=
63 here) samples for estimating the covariance matrix. The
“Independent” estimator assumes that there are no correlations,
and therefore performs poorly compared to all the other
estimators.

B. SCRR vs. Energy

We now compare the energy required by these methods
for application of the respective estimations of the covariance
matrices. Figure 2(a) illustrates how much energy is required
for given values of SCRR for all these methods. For this
experiment, we usen = 500 samples for designing the
covariance matrix estimators. As explained before, in order
to apply the covariance matrices estimated by either the
Shrinkage+I or the sample covariance method, each nodei

needs to communicate itsxi to all the other nodes in the
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network. This is becauseE need not be a sparse matrix in
these cases. Since in a tree withp nodes, there arep−1 links,
it requiresp− 1 total transmissions in order for every node in
the network to obtainxi. Therefore, these techniques require
O(p2) total transmissions so that every node has the vectorx.

We observe that for the same SCRR, the SMT requires
significantly lower energy than the other methods. The “In-
dependent” estimator requires an extremely low amount of
energy, however it provides very poor SCRR.

C. Energy vs. Rotations

Using the MDL criterion [4] for determining the model
parameterK in the design of the SMT, we compare the
energy required for application of the respective estimations
of the covariance matrices as a function ofr = K

p
. Here,

we vary the number of measurement samples for designing
the transforms, and obtainK for each value using the MDL
criterion. We see thatr is always < 3 (Figure 2(b)). As
in the previous experiment, the Shrikange+I and the sample
covariance estimators requireO(p2) energy for application.
The energy required by the SMT is significantly lower than
that required by the other methods.

D. SCRR vs. Delay

We finally study the delay performance of our algorithms.
Here, the delay is the time required to apply these methods to
computel(x). We again usen = 500 samples for designing
the covariance matrix estimators. As explained earlier, for the
SMT, the time required depends on which rotations can be
done simultaneously, and which needs to be done sequentially.

Figure 2(c) shows how the SMT algorithms compare with
the other methods. The SMT performs significantly better in
terms of delay compared to the sample covariance method, and
the shrinkage method, both of which requirep×p computation.

VI. CONCLUSION

We studied a signal detection problem in a multi-hop
wireless network with a tree topology. We considered sensor
measurements with correlated clutter, and designed distributed
algorithms using Sparse Matrix Transforms that could be
implemented in these networks in a decentralized manner to
perform signal detection. We provided extensive numerical
evaluations of our algorithms, and showed that it performs

significantly better than existing methods in terms of decorre-
lation performance, energy, and delay. A number of interesting
open problems need to be addressed. Communication needs
to be optimized. For instance, it would be interesting to
determine if storing packets in intermediate nodes on the
path between two nodes would result in energy savings. One
could also study about implementing these algorithms in a
wireless network with an arbitrary topology. The problem
becomes much harder in these networks since routing and
scheduling are significantly more difficult in networks with
arbitrary topologies.
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