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Abstract—We study a problem of detecting deterministic sig- since they could potentially be correlated. Not only could
nals buried in correlated clutter using wireless sensor netorks. the measurements be correlated, but also the measurement
We are specifically interested in developing a distributed @O0~ o 1ters. Therefore, in order to perform signal detectiorai
rithm over the network to detect the presence of a determinitic ’ . .
signal while keeping low communication delay and energy ass ad-hoc sensor network,. sensors need to_ﬁrst Qecorrelate the
ciated with the distributed computation. In this paper, we deploy Mmeasurements. Otherwise, the hypothesis testing coultt res
a distributed version of the Sparse Matrix Transform (SMT) that in an erroneous result. In [2], [3], the authors study débect
decorrelates a signal measured by a number of sensors in orde performance as the number of sensors becomes very |a|’ge_
to compute a matched filter. The matched filter represents the pecentralized detection becomes difficult when measurésnen
sum of the Log-Likelihood Ratios over all the sensors of thevwo S . .
hypotheses corresponding to whether a deterministic signas &€ f:orrelated. ThIS.IS because for an .arbltrary_covanance
present or not. We show through numerical simulations that ar ~ Matrix, the computation of the matched filter requires globa
algorithm is very efficient in terms of communication energyand communication of sensor measurements either to a fusion
delay while sustaining a high Signal-to-Clutter Ratio. center, or among all sensors in the network. While the former
is computationally intensive (since the fusion center must
perform all the computation), the latter requires a hugewarho

We consider a Wireless Sensor Network (WSN) that coraf communication.
prises a number of sensors that are used to monitor therhe Sparse Matrix Transform (SMT) proposed in [4] can be
environment in which they are deployed. This network coulgsed for decorrelation. One advantage of the SMT technigjue i
potentially function as an ad-hoc network where sensofigat it can provide full-rank estimates of the signal’s aisace
perform a number of operations without the necessity of Batrix even when the number of training sampless much
powerful centralized node, such as a base station. One of {885 than the signal dimensionality, In [5], the authors
important advantages of functioning in an ad-hoc manner dgopose theGraphical-SMT an algorithm to design the SMT
that the network may not require much maintenance. On th§ graphical data requiring only(plogp) computation in
other hand, in order to minimize the amount of maintenan(&/erage_ Once designed, the Computationa| Comp|exity of ap
sensors need to utilize resources in an efficient manner. ifing the SMT decorrelating transform to test measurement
instance, sensors are battery-operated, and need to eensgro(y).
energy. They also have limited computational resources. Injn this paper, we show how the SMT decorrelating transform
this work, we are interested in one of the important funtiortan be used in a network of sensors to compute a distributed
of a sensor network, which is to perform signal detection. Weacorrelation of a measured signal. We analyze the commu-
wish to do this while utilizing sensor resources efficiently nijcation costs required by this distributed SMT decorietat

Hypothesis testing using the likelihood ratio test [1] igIgorithm in terms of communication energy and delay.

a well-known technique to perform signal detection. In a we compare our method with two alternatives: (1) Using a
matched filter problem, one tests the hypothesis of tR@rinkage estimate of the clutter covariance matrix; (2)as
measurements containing only noise/clutter (null hypsi)e ing the clutter is uncorrelated. In our simulations, sessoe
against the alternative hypothesis of the measurements c@8ployed to measure a deterministic signal buried in caieell
taining a deterministic signal together with noise/clutta a Gaussian random clutter. The sensors communicate among
WSN environment, since the sensor measurements are prongden other using a tree topology. Our results suggest that th

errors, acquiring measurements from multiple sensorsajlgi  our SMT-based method gives the best detection accuracg whil
results in a better detection performance. However, measUteeping the communication costs low.

ments from multiple sensors need to be combined carefullyThe main contributions of our work are as follows.

) . ) o We design an algorithm for performing signal detection
This material is based upon work supported by, or in parti®y/4.S. Army by d lati f ltipl .
Research Laboratory and the U.S. Army Research Office urmigract/grant Yy ) e?orre ating megsurements rom multiple Sensor$ n
number 56541-Cl and ARO MURI Award W911NF-07-1-0376 (SA- a distributed manner in a multi-hop wireless network with
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a tree topology. Our algorithms are based on designimthere S = %YYt is the sample covariance matrix, afdd
SMTs to estimate the covariance matrix, and applying this the set of allowed orthonormal transforms.
estimate to test measurements in a distributed manner. If n > p andQg is the set of all orthonormal transforms,

« We analyze the communication costs (in terms of energiyen the solution to (1) and (2) is the diagonalization of the
and delay) of our algorithm, and show through extensiwample covariance, i.eEAE* = S. However, the sample
numerical evaluations that it performs significantly bettecovariance is a poor estimate of the covariance whenp.
both in terms of accuracy, and communication costs In order to improve the accuracy of the covariance estimate,
compared to a number of other existing techniques. we will impose the constraint thdd; be the set of sparse

The rest of the paper is organized as follows. In Section fpatrix transforms (SMT) of ordef’. More specifically, we
we describe the system model for the wireless sensor netwotdl assume that the eigen-transformation has the form

In Section Ill, we provide an overview of the SMT method. K
In Section IV, we develop the SMT-based distributed signal E= H E,=FE - Ex, ()
decorrelation in a multi-hop wireless sensor network, and iy

explain how a signal can be detected using our techniq
In Section V, we perform extensive numerical evaluations
our algorithms. Finally, in Section VI, we conclude our work
and consider open problems.

ue. . . .
(\S\f%ere eachE) is a planar rotation (known as a Givens
rotation) over a coordinate paifiy,jx) by an angled;, and
K is the model order parameter. S8, = I + O (i, ji, Ok ),

where
Il. SYSTEM MODEL cos(Op) —1 fi=j=ipori=j=jp
We consider a multi-hop wireless sensor network organize({l@]i} _ Sln@k) !f L=k and J =k 4)
in the form of a tree, consisting of a number of sensors. The — sin(6y) if i = jx andj =iy,
sensors communicate information to a cluster-head (wthsich i 0 otherwise

the root of the tree) in possibly a multi-hop fashion. Note Intuitively, each Givens rotatiorf;,, plays the same role as
that the cluster-head is just another sensor, and not a fWef\o 1 terfiies of a fast Fourier transform (FFT). In face th
node compared to other nodes in the network. One coulhT js a generalization of both the FFT and the orthonormal
for instance, periodically assign dlfferer_n Sensors astefd wavelet transform. However, since both the ordering of the
head;. The purpose of the pluster-head is, for instancakeo tcoordinate pairsi, jr ), and the values of the rotation angles,
a decision on whether a signal has been detected, based)0n, e nconstrained, the SMT can model a much wider range
the hypotheses ratios received from multiple sensors. of transformations. It is often useful to express the order o
We assume error-free links. The energy consumed by COjja SMT ask — rp, wherer is the average number of
municating from one sensor to another is a function of thie lingiations per coordinate, being typically very small:< 5.
costs in the path between the sensors. In order to evaluatej, optimization of (1) is non-convex, so we use a greedy
delay performance of our algorithms, we consider unit Cﬁpacoptimization approach in which we select each rotatibp,

links, and a time-slotted system. in sequence to minimize the cost. The greedy optimization

can be done fast if a graphical constraint can be imposed to

the data [5]. The parametercan be estimated using cross-
The SMT [4] is used to provide full-rank estimates of thgalidation over the training set [4], [5] or using the infoation

clutter covariancey x p used during detection, discussed iRriterion proposed in [6].

Section IV. Here we review the concepts of designing and

applying the SMT. B. Application of the SMT transform

I1l. THE SPARSEMATRIX TRANSFORM(SMT)

Typically, r is small  5), so that the computation to apply
. ] o ~ the SMT to a vector of data is very low, i.y + 1 floating-
The SMT design consists of estimating the full set of eigepyint operations per coordinate. Therefore, we can apgy th

vectors and associated eigenvalues for a gepedahensional sMT decorrelating transform te-dimensional random vectors
signal. More specifically, the objective is to estimate thg only (2 + 1)p steps.

orthonormal matrixE and diagonal matrixX\ such that the
signal covariance can be decomposedias EAE?, and to IV. WSNs AND COMMUNICATION CONSTRAINTS
compute this estimate from independent training vectors,
Y =[y1, - ,yn]. This is done by assuming the samples ay
i.i.d. Gaussian random vectors and computing the constai
maximum log-likelihood (ML) estimates of and A. In [4],

we show that these constrained ML estimates are given b

A. Design of the SMT transform

In this section, we explain how to apply a SMT decorre-
gting transform to a multi-dimensional signal measuredaby
r]’nulti-hop wireless network with a tree topology. The main

urpose is to use this decorrelating transform as part of a
matched filter detection as explained below. We assume that
E = arg min {|diag(E*SE)|} (1) the SMT decorrelating transform had been previously design

EeQk from training data as described in Section IlI-A using one of

A diag(E'SE) | (2) the methods proposed in [4], [5].



A. Distributed matched filter with the SMT 3) SinceFEy} is a sparse matrix with non-zero elements only

In our setup, each sensor node has a sequence of rotations 2t the coordinatei, ix), (ix, jx), (jx, ix), and (ji, jk),
containing the nodesiy and j,) performing each of these by only exchanging the above messages betvwigemd
rotations, and the anglé,() of each rotation. These parameters  Jk» We can updatg;, andy;, in the following manner.
are obtained from the SMT design. LéE R? be a determin-
istic signal buried in additional random clutter~ N(0, R).
The random vector: is measured, and one wants to make Y < cos(Ok)y;, + sin(0k)yi, - 9)

a decision whether the signdlis present, i.e.x = d + w,

or the measurement only contains clutter, i~ w. This _ o

can be done by testing the following hypotheses using a Log-  Note thatz;, andz;, can be updated in a similar manner.
Likelihood Ratio (LLR) test according to Beyman-Pearson  Thus, by only exchanging messages between the nodes that
criterion [1]. decorrelate during each rotation, we can deterniimg.

Vi, < cos(0k)yi, — sin(0x)y;,. (8)

B. Communication costs
Ho:xz ~N(0,R) (5) . _ . o
Hy 2~ N(d, R) ©) We are interested in two metrics for the communication cost
b ’ - energy and delay. The communication energy is the total
energy spent by all the nodes in the network for applying
In this case, the LLR test has the form of an inner-produdfie distributed SMT decorrelating transform on test data.
I(x) = ¢’z = n, where the vectoy £ R~d is called a The delay is the number of time slots required to apply the

matched filterand its detection capability can be obtained bistributed decorrelating transform on the given test data

the Signal-to-Clutter Ratio (SCR) [7]: Computing Energy: Let the energy required to make a
transmission over a linkbe 3;. 3; could depend on a number
SCR — (@'d? _ (¢4 _ (¢'d)* (7) Of factors such as the distance between the nodes, the SNR
E[(¢tx)?] ¢'Elzztlq  ¢*'Rq required, etc. For each rotatidn two nodesi, and j, have

Note that a node only has thei’* elements ofz and to exchange packets. The energy required to send a packet

d. Therefore, computing(z), in general, requires global TOM ik 10 jk is given by}, 5, where F;,;, is the
communication of these elements either to the clustershe&§t Of links on the path from. to ji. Therefore, the total
or to all nodes in the network. However, using the graphic&N€'dY required by a rotation is given Bp_,p, /i, since

. . kJk .
SMT, we can computé(z) in a distributed manner. We do’s S€nds a packet tgy., and vice versa. On the average, in

this as follows. a tree, there ar@(logp) links in the path from one node
We first rewritel(z) in the following manner. to another. Therefore, it require9(log p) energy for one
rotation. Therefore, the total energy required for perfioign
I(x) =q'z K rotations isO(K logp). Since K is typically O(p), the
= (R ')’z total energy required for applying the SMT to perform signal
= (d'E)A"Y(E'z) detection isO(plogp).

1 Computing Delay: While the energy required is related to
» the total number of transmissions in the network, the delay
_ Zzz‘)\flyi to apply the_SMT depends on Wh_ether Fransmls_smrjs can be
Pt performed simultaneously. Assuming unit capacity linke t
time required to perform a rotation between two notjeand
wherez! = d'EA~!, andy = E'z. Clearly, if we determine jk is given by2|P;, ;, |, i.e., twice the number of hops between
the i*» components of the vectorsandy, i.e. z; andy;, at ix andji. However, the total time required to perform &l
nodei, we can computei/\i_lyi at nodei. Each node will rotations is not the sum of the time required for individual
then calculate this sum from their sub-trees, and send time siptations. For instance, if sensdr and sensor2 perform
to their parent. This process terminates at the root of #e, trthe first rotation, and sensd and sensor1 perform the
and the cluster-head will obtaiiiz). It can then compare it to second rotation, then these nodes can simultaneously de the
n, and make a decision whether sigriabas detected. We now rotations, requiring an overall delay ofax(2| Py 2|, 2| P1o,11])-

explain how to determine; andy; in a distributed manner. On the other hand, if sensa& and sensor3 perform the
Recall thatE = E; Fs...Ek. Initialize y; = z;, andz; = d;, Second rotation instead, the two rotations have to be peedr

for each node. Fork =1 to K, sequentially becausg, and 2z, get updated after the first
Givens rotation at thé‘" rotation. Then, both, andjy 1) Initialize ¢%,,,, andt’, , for each rotation to be zero.
possessiy. ti,.. represents the time slot at which the message
2) Nodei; communicate$;, andz;, to nodej;, and vice exchange for rotation starts, and’, , is the time slot

versa. at which it ends.



2) For each rotatiotk, look at the list of previous rotations to decorrelate a vectarrequires as much communication
from 1 to k — 1. Find the last rotation in the list from as the sample covariance method.
1 to k — 1 such that no rotation in the list froi+-1t0  We consider a full binary tree with 63 nodes for the
k—1 involves either of the nodes in rotatidn Suppose following results. We assume that correlations decreases e
thati;, andyjj. are involved in rotatiork. Thent?,,,.. and ponentially with distance, i.e., the actual covariance rixat
th,q are given by is given by R = e¢~P, where D is the matrix of physical
& i distances between nodes. We normalize this matrix so that it
Estart leng +1 (10) determinant is one. We generate Gaussian distributed nando
thna  — torare + 2|Pij (11) samples with mean zero, and covariadedor designing the
SMT. We generate additional additional samples to test the
) decorrelation performance.
3) The overall delay is given byax;(t,,,,)- For calculating the energy, we assume that the cost to
communicate one sample over each link is one unit. Simijlarly
since we assumed unit capacity links, the delay required to
We now evaluate our algorithms numerically to study itsommunicate one sample over a link is also one unit.
decorrelation performance, and the communication costs
sociated with it. Before we do this, we first give a brie

description of other methods that we compare our methogOne of the metrics for analyzing the decorrelation perfor-
with. mance is theSignal-to-Clutter Ratio RatigSCRR) which is

: the ratio of the SCR of our algorithm to that of a perfect
o Independent This method assumes that sensors mak . . .
. correlation algorithm. Note that a perfect decorretatio
independent measurements, and are not correlated. While” . TP
. ; L algorithm would require infinite measurement samples, and
this method requires the lowest communication costs,.] . .
) is therefore not practically feasible.
gives the poorest performance when measurements are

correlated, which is typical in practice.

V. EXPERIMENTAL RESULTS

%S SCRR vs. Measurement Samples

o Sample covariance As explained in Section Ill, the 1|—sample
sample covariance matrix is given hy = %YYt. -6-SMT
However, the matrix in the diagonalizatiors = EAE? 0.8)-m-S-|
is not necessarily a product of sparse matrices. Therefore, X6 - Indep
in order to apply this estimate to test data in a distributed 2
manner, each nodehas to communicate itg; andd; to 0.4}
every other node in the tree. 02l
o Shrinkage estimators Shrinkage methods[8], [9] are
widely used to estimate high-dimensional covariance ma- 0 1‘01 1‘02
trices. They work by estimating the covariance matrix Number of samples
as a combination of the rank-deficient sample covariance
and a positive definite target such as the identity matrix Fig. 1. SCRR vs#Measurement Samples

or the diagonal of the sample covariance. Lgthe _ )
the p x p sample covariance estimate of the covariance Figure 1 shows the SCRR for various amounts of measure-

R computed fromn samples. The Shrinkage-lndentit)me”t samples used for design. One can see that the SMT
estimate is given by performs better than all the other estimators. Also, oleserv

that the sample covariance estimator requires at lpast
R=aS+(1-a) t’”(S)I _ 63 here) samples_ for estimating the covariance matrix. The

“Independent” estimator assumes that there are no cdoegat
and therefore performs poorly compared to all the other
estimators.

B. SCRR vs. Energy

The intuition behind these methods is that a combinationWe now compare the energy required by these methods
of an estimator that over-fits the data (i.e, the ranKer application of the respective estimations of the cavace
deficient sample covariance) with an estimator that undenatrices. Figure 2(a) illustrates how much energy is reglir
fits the data (i.e, the x p identity matrix I, or the for given values of SCRR for all these methods. For this
diagonal matrixdiag(S)) will produce a more accurateexperiment, we usex = 500 samples for designing the
final estimate. The right value of the parameteris covariance matrix estimators. As explained before, in orde
usually determined using cross-validation. The eigete apply the covariance matrices estimated by either the
vector matrix £ in the diagonalization? = FAE! is Shrinkage+| or the sample covariance method, each rode
dense, therefore, the matrix-vector proditt required needs to communicate its; to all the other nodes in the

The Shrinkage-Diagonal is given by
R=aS+ (1 — a)diag(S) .
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Fig. 2. Communication Performance

network. This is becaus& need not be a sparse matrix insignificantly better than existing methods in terms of dezor
these cases. Since in a tree witlhhodes, there are— 1 links, lation performance, energy, and delay. A number of intargst
it requiresp — 1 total transmissions in order for every node ipen problems need to be addressed. Communication needs
the network to obtain;. Therefore, these techniques requirto be optimized. For instance, it would be interesting to
O(p?) total transmissions so that every node has the vectordetermine if storing packets in intermediate nodes on the
We observe that for the same SCRR, the SMT requirpath between two nodes would result in energy savings. One
significantly lower energy than the other methods. The “Ircould also study about implementing these algorithms in a
dependent” estimator requires an extremely low amount wfreless network with an arbitrary topology. The problem
energy, however it provides very poor SCRR. becomes much harder in these networks since routing and
scheduling are significantly more difficult in networks with

C. Energy vs. Rotations arbitrary topologies.
Using the MDL criterion [4] for determining the model

parameterK in the design of the SMT, we compare the

energy required for application of the respective estiomsti [1] S. M. Kay, Fundamentals of Statistical Signal Processing: Vol. 2:

i ; ; . K Detection Theory Prentice-Hall, Inc., 1998.

of the covariance matrices as a function rof= D’ Here_’ [2] J. Chamberland and V. V. Veeravalli, “Decentralizeded¢ibn in sensor

we vary the number of measurement samples for designing networks," IEEE Transactions on Signal Processir2p03.

the transforms, and obtaiR” for each value using the MDL [3] W. Li and H. Dai, “Distributed detection in large-scalersor networks

Hap ; ; with correlated sensor observations,”Allerton Conference on Commu-
criterion. We see that is always < 3 (Figure 2(b)). As nication, Control and Computing2005.

in the previous experiment, the Shrikange+l and the sampl¢ G. cao and C. A. Bouman, “Covariance estimation for higiehsional
covariance estimators requit@(p®) energy for application. data vectors using the sparse matrix transform,Nieural Information

; ; iy Aifi Processing Systems Conferen2608.
The energy required by the SMT is significantly lower tha[%] LR Bagheé’a o Coo ar?d C. A, Bouman, “Fast signal aialy
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VI. CONCLUSION

We studied a signal detection problem in a multi-hop
wireless network with a tree topology. We considered sensor
measurements with correlated clutter, and designed faliédl
algorithms using Sparse Matrix Transforms that could be
implemented in these networks in a decentralized manner to
perform signal detection. We provided extensive numerical
evaluations of our algorithms, and showed that it performs



