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Heavy-traffic delay optimality is considered to be an important metric in evaluating the delay performance

of load balancing schemes. In this paper, we argue that heavy-traffic delay optimality is a coarse metric that

does not necessarily imply good delay performance. Specifically, we show that any load balancing scheme is

heavy-traffic delay optimal as long as it satisfies a fairly weak condition. This condition only requires that

in the long-term the dispatcher favors, even slightly, shorter queues over longer queues. Hence, although a

load balancing scheme could be heavy-traffic delay optimal, the empirical delay performance of heavy-traffic

delay optimal schemes can range from very good (that of join-shortest-queue) to very bad (arbitrarily close to

the performance of random routing). To overcome this limitation, we introduce a new metric called degree of
queue imbalance, which measures the queue length difference between all the servers in steady-state. Given a

heavy-traffic delay optimal load balancing scheme, we can characterize the resultant degree of queue imbalance.
This, in turn, allows us to explicitly differentiate between good and poor load balancing schemes. Thus, this

paper suggests that when designing good load balancing schemes, they should not only be heavy-traffic delay

optimal, but also have a low degree of queue imbalance.
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1 INTRODUCTION
Load balancing is a common approach to task assignment in distributed architectures such as Web

service [9], large data stores (e.g., HBase [8]), and cloud computing [6], etc. In such designs there is

a dispatcher that seeks to balance the assignment of jobs across the servers in the system so that

the queueing delay is minimized.

To provide delay performance guarantees and to design effective load balancing schemes, it is

imperative to develop analytical tools to evaluate the system performance under different load

balancing schemes. To that end, one important line of research has focused on the heavy-traffic
regime when the load ρ approaches 1. For instance, it has been shown that the well-known load

balancing policies join-shortest-queue (JSQ) and power-of-d (for any d ≥ 2) are delay optimal in

the heavy-traffic sense [4] [13].

Despite both JSQ and power-of-d being heavy-traffic delay optimal, it has been observed em-

pirically that the delay of power-of-d (for small d) is non-negligibly larger than that of JSQ. This

raises two interesting questions: (1) How large can the difference in the resultant delay be when

using different heavy-traffic delay optimal load balancing schemes? (2) Can we characterize this

difference, and explicitly differentiate between good and poor load balancing schemes that may all

be heavy-traffic delay optimal?

In this paper, we take a systematic approach in answering the above questions. To this end, the

main contributions of this paper are summarized as follows:

• We show that heavy traffic delay optimality is a coarse metric and does not necessarily

imply good delay performance. Specifically, we show that any load balancing scheme is

heavy-traffic delay optimal as long as it satisfies a fairly weak condition. This condition

only requires that in the long-term (instead of each time-slot), the dispatcher favors, even

slightly, shorter queues over longer queues. As a result, empirical delay performance of

heavy-traffic delay optimal schemes can range from very good (that of join-shortest-queue)

to very bad (arbitrarily close to the performance of random routing and far worse than that

of power-of-d).
• To overcome the fundamental limitation of heavy-traffic delay optimality, we introduce a new

metric called degree of queue imbalance, which measures the queue length difference between

all the servers in steady-state. Given a heavy traffic delay optimal load balancing scheme,

we can characterize the resultant degree of queue imbalance. Specifically, we first capture
the essence of a load balancing scheme by the notion of degree of dispatching preference,
which measures the extent to which the dispatcher favors shorter queues over long queues

in the long term. We show that the new metric i.e., degree of queue imbalance, is inversely
proportional to the square of the degree of dispatching preference of the load balancing scheme.

This also allows us to derive a non-asymptotic upper bound on the average delay under a

given heavy-traffic delay optimal scheme. In this way, via the degree of queue imbalance,
we reveal how the load balancing scheme would affect the system performance. This, in

turn, enables us to explicitly differentiate between good and poor heavy traffic optimal load

balancing schemes.

• We further investigate the degree of dispatching preference in the large system regime under

power-of-d policy. While this is different from the heavy-traffic regime, our earlier results

relating the degree of dispatching preference to the queueing performance motivate this

study. In particular, for power-of-d , we derive the limiting value and convergence rate of

the degree of dispatching preference under different growth rates of d when the number of

servers goes to infinity.
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1.1 Related work
Characterizing the exact delay performance of load balancing systems is known to be very difficult

in general. Hence, most of the works in the literature have focused on the asymptotic analysis.

Heavy-traffic analysis has been an important tool for characterizing the performance of queueing

systems, e.g., [5] [17] [2] [20] [22]. For load balancing systems, it has been shown that, under

two homogeneous servers, JSQ has the same behavior as that of a standard M/M/2 system in

heavy traffic limit via diffusion approximation [5] [17]. Recently, based on the Lyapunov drift

condition, an alternative method [4] has been proposed to prove heavy-traffic delay optimality of

routing and scheduling policies. It has been used to show heavy-traffic delay optimality of several

specific policies for distributed computing systems. For instance, using the Lyapunov drift-based

approach, the power-of-d policy proposed in [14] has been shown to be heavy-traffic delay optimal

for any d ≥ 2 [13]. Under power-of-d , the dispatcher probes d servers uniformly at random and

dispatches new arrivals to the server with the shortest queue among the d servers. Moreover, it has

been shown [13] that a joint JSQ and MaxWeight policy is heavy-traffic delay optimal when jobs

are preemptive for homogeneous servers. This result was extended to MapReduce clusters for a

specific traffic scenario in [21]. For all traffic scenarios, a heavy-traffic delay optimal policy called

‘local-task-first’ policy is proposed in [23] under two-level data locality. To address multi-level data

locality scenario, a heavy-traffic delay optimal policy was proposed in [24].

In addition, a pull-based policy has been recently proposed and investigated [11] [7]. It has supe-

rior delay performance over power-of-d under medium traffic loads. Nevertheless, its performance

degrades under high traffic loads [15]. As a result, it is not heavy-traffic delay optimal for general

load balancing systems [19]. We finally remark that the heavy-traffic regime considered in this

and other papers in the literature [4, 13, 21, 23, 24] is different from the Halfin-Whitt heavy-traffic

regime, in which the load ρ approaches one and the number of servers goes to infinity at the same

time.

1.2 Notations
The dot product in RN is denoted by ⟨x, y⟩ ≜

∑N
n=1 xnyn . For any x ∈ RN , the l1 norm is denoted

by ∥x∥
1
≜

∑N
n=1 |xn | and l2 norm is denoted by ∥x∥ ≜

√
⟨x, x⟩. Let 1N ≜ 1√

N
(1, 1, . . . , 1). Then

the parallel and perpendicular component of any vector x in RN with respect to the vector 1N is

denoted by x∥ ≜ ⟨1N , x⟩1N and x⊥ ≜ x − x∥ , respectively.

2 SYSTEMMODEL AND PRELIMINARIES
We consider a discrete-time model for a load balancing system that has one central dispatcher and N
parallel servers, indexed by 1, 2, . . . ,N . Each server n has a FIFO (first-in, first-out) queue denoted

by Qn . We use Q(t ) = (Q1 (t ),Q2 (t ), . . . ,QN (t )) to denote the queue lengths at the beginning

of time-slot t . Same as [4, 13, 21, 23, 24], the tasks arrived at the beginning each time-slot are

immediately dispatched to one of the servers. Once a task joins a queue, it will remain in that queue

until its service is completed.

2.1 Arrival and Service
Let AΣ (t ) denote the number of exogenous tasks that arrive at the beginning of time-slot t . We

assume that AΣ (t ) is an integer-valued random variable, which is i.i.d. across time-slots. The

mean and variance of AΣ (t ) are denoted as λΣ and σ 2

Σ, respectively. We further assume that there

is a positive probability for AΣ (t ) to be zero and the arrival process has a finite support, i.e.,

AΣ (t ) ≤ Amax < ∞ for all t .

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 1, Article 21. Publication date: March 2018.



21:4 X. Zhou et al.

Let Sn (t ) denote the amount of service that server n offers for queue n in time-slot t . We assume

that Sn (t ) is an integer-valued random variable, which is i.i.d. across time-slots. We also assume

that Sn (t ) is independent across different servers as well as the arrival process, and has a finite

support, i.e., Sn (t ) ≤ Smax < ∞ for all t and n. The mean and variance of Sn (t ) are denoted as µn
and ν2n , respectively. Let µΣ ≜ ΣNn=1µn and ν2Σ ≜ ΣNn=1ν

2

n .

2.2 Load Balancing Schemes
At the beginning of time-slot t , the dispatcher routes the newly arrived tasks according to some

load balancing policy η(t ), which is a rule that selects the queue to which a new arrival in time-

slot t should be dispatched. We allow a load balancing scheme to take different policies, such as

JSQ, Power-of-d and random routing, in different time-slots. That is, η(t ) may evolve over time.

Specifically, a load balancing scheme is modeled by a Markov chain as follows.

Definition 2.1 (Load Balancing Scheme). A load balancing scheme is a Markov chain {η(t ), t ≥ 0},

which is composed of the load balancing policy η(t ) adopted in each time-slot t with a pre-defined

transition matrix.

In this paper, we assume that for a load balancing scheme, the corresponding policy Markov

chain {η(t ), t ≥ 0} is ergodic and has a finite number of states, i.e., the dispatcher may switch

between a finite number of load balancing policies. A load balancing scheme is said to be feasible,

if it leads to a stable queueing system for any λΣ < µΣ.
LetAn (t ) denote the number of tasks routed to queue n at the beginning of time-slot t . According

to the above definitions, An (t ) depends on both Q(t ) and η(t ).

2.3 Queueing Dynamics
In each time-slot, three events take place in order as follows. First, tasks arrive at the beginning

of time-slot t . Then, based on the policy η(t ) and the queue length information (maybe partial)

about Q(t ), the dispatcher decides An (t ) and routes the newly arrived tasks to the servers. Last,

the tasks at the queues are processed by the corresponding servers. Therefore, the queue length at

each server n, satisfies the following dynamics for n = 1, 2, . . . ,N .

Qn (t + 1) = Qn (t ) +An (t ) − Sn (t ) +Un (t ), (1)

whereUn (t ) = max{Sn (t ) −Qn (t ) −An (t ), 0} is the unused service.

2.4 Heavy-traffic Delay Optimality
Note that in this paper the queueing system can be described by aMarkov chain {Z (t ) = (Q(t ),η(t )) , t ≥
0}. We consider a system {Z (ϵ ) (t ), t ≥ 0} parameterized by ϵ such that the mean arrival rate of the

exogenous arrival process {A(ϵ )
Σ (t ), t ≥ 0} is λ(ϵ )Σ = µΣ − ϵ . Note that ϵ characterizes the distance be-

tween the arrival rate and the capacity region boundary. In heavy-traffic analysis, one is interested

in the steady-state queue lengths values as ϵ approaches zero. To introduce heavy-traffic delay

optimality, we first restate the general lower bound given in [4].

Lemma 2.2. Given any feasible load balancing scheme, let Q
(ϵ )

be a random vector which is equal
in distribution to the queue length Q(t ) in the steady state. Assume (σ (ϵ )

Σ )2 converges to a constant σ 2

Σ
as ϵ decreases to zero, then

lim inf

ϵ ↓0
ϵE



N∑
n=1

Q
(ϵ )
n


≥

ζ

2

,

where ζ ≜ σ 2

Σ + ν
2

Σ.
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This result can be proved by constructing a hypothetical single-server queueing system with

arrival process A(ϵ )
Σ (t ) and service process

∑N
n Sn (t ) for all t ≥ 0. This hypothetical single-server

queueing system is often called the resource-pooled system. It is easy to show that for any feasible

load balancing scheme the sum queue-length process {
∑N

n=1Q
(ϵ )
n (t ), t ≥ 0} is stochastically larger

than the resource-pooled system.

Motivated by the universal lower bound above, as in [4, 13, 21, 23, 24], heavy-traffic delay
optimality of a load balancing scheme is defined as follows.

Definition 2.3. A load balancing scheme is said to be heavy-traffic delay optimal if the steady-state

queue length vector Q
(ϵ )

satisfies

lim sup

ϵ ↓0
ϵE



N∑
n=1

Q
(ϵ )
n


≤

ζ

2

,

where ζ is defined in Lemma 2.2.

3 PREVIEW OF THE MAIN RESULTS
In this section, let us first have a preview of the key concept and main results in this paper. Some

statements are informal and the rigorous versions are presented in subsequent sections.

3.1 Heavy-traffic Optimality is a Coarse Metric
Given a policy η(t ) at time-slot t , the corresponding dispatching distribution is denoted by a

vector Pη (t ) (t ), where its n-th component corresponds to the probability that the new arrivals are

dispatched to the n-th shortest queue at time-slot t . Based on this, we introduce the following key

concept.

Dispatching Preference: The dispatching preference for a given policy η(t ) is given by

∆η (t ) (t ) ≜ Pη (t ) (t ) − Prand,

where Prand corresponds to the dispatching distribution of random routing.

For example, under JSQ, since the new arrivals are always dispatched to the shortest queue, we

have PJSQ (t ) = (1, 0, · · · , 0). Under random routing, since the arrivals are dispatched to each server

with equal probabilities, it follows that Prand (t ) =
(
1

N ,
1

N , · · · ,
1

N

)
. Thus, by definition, we have

∆JSQ (t ) =
(
1 − 1

N ,−
1

N , · · · ,−
1

N

)
.

By Definition 2.1, we allow the load balancing scheme to adopt different policies in different

time-slots, and the policies can be time-correlated. Nevertheless, we show that heavy-traffic delay

optimality only requires the load balancing scheme to satisfy a fairly weak condition in the long

term.

Main Result 1: A load balancing scheme is heavy-traffic delay optimal if it satisfies the Long-

term Dispatching Preference Condition (LDPC), which is defined as follows.

∆̃1 ≥ ∆̃2 ≥ . . . ≥ ∆̃N and ∆̃1 , ∆̃N ,

where ∆̃ ≜ E
[
∆

]
and ∆ is a random vector which is equal in distribution to ∆(t ) in the steady state.

This result suggests that heavy-traffic delay optimality only requires that in the long-term

(instead of each time-slot), the dispatcher favors, even slightly, shorter queues over longer queues.

Therefore, there could be a large difference in the delay between different heavy-traffic delay optimal
load balancing schemes.

The rigorous results and detailed discussions on this part are presented in Section 4.
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(a) N = 2, JSQ (b) N = 2, p-JSQ (p = 0.5)

(c) N = 2, random routing (d) N = 10, CCDF

Fig. 1. Scatter plots of queue length distributions of load balancing schemes. The policy power-of-d is given

by SQ(d) in the figures. Under p-JSQ policy, the dispatcher adopts JSQ with probability p at each time-slot,

otherwise it uses random routing.

3.2 A Refined Metric: Degree ofQueue Imbalance
To overcome the limitation of heavy-traffic delay optimality, we introduce a new metric called

degree of queue imbalance, which measures the queue length difference between all the servers in

steady-state, i.e., how well the loads are balanced across the servers in the system.

Degree of Queue Imbalance: The degree of queue imbalance in a load balancing system with

a steady-state queue length vector Q is given by E
[


Q⊥





2

]
, where Q⊥ ≜ Q(t ) − ⟨Q, 1N ⟩1N .

The intuition behind the new metric is two-fold.

First, from the scatter plots of the steady-state queue length distributions of different load

balancing schemes as shown in Fig. 1, it can be observed that different load balancing schemes lead

to different degree of queue imbalance even though they may all be heavy-traffic delay optimal,

e.g., JSQ, SQ(2) and SQ(5). As expected, the larger the degree of queue imbalance, the worse the

empirical delay performance. It can also be seen that the stronger the preference on shorter queues,

the lower the degree of queue imbalance.

Furthermore, the degree of queue imbalance is also motivated by the following non-asymptotic

upper bound on the average delay. Under any heavy-traffic delay optimal scheme, the average

delay is upper bounded by

D (ϵ )
avg
≤

ζ (ϵ )

2λ(ϵ )Σ

·
1

ϵ
+

M

λ(ϵ )Σ

·

√
Degree of Queue Imbalance

ϵ
,
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where ζ (ϵ ) ≜ (σ (ϵ )
Σ )2 + ν2Σ, andM is some positive constant.

Hence, both empirical and theoretical results suggest that the lower the degree of queue imbalance

that results from the load balancing scheme, the better the delay performance.

Therefore, the key challenge is to understand how the load balancing scheme would impact the

degree of queue imbalance. In the following, (i) we first give a characterization of the extent to

which the dispatcher favors the shorter queues, and (ii) we then show a fundamental relationship

between the degree of dispatching preference and the resultant degree of queue imbalance.

Degree of Dispatching Preference: The degree of dispatching preference for a given load

balancing scheme {η(t ), t ≥ 0} is given by the l1 norm of the long-term dispatching preference, i.e.,




∆̃



1.
Main Result 2: For any load balancing scheme satisfying LDPC, the degree of queue imbalance

is on the order of

lim

ϵ ↓0
E

[



Q
(ϵ )
⊥






2

]
= Θ

(
1




∆̃




2

1

)
.

It is worth noting that the degree of dispatching preference



∆̃




1 corresponds to the total variation
distance between the long-term dispatching distribution of the scheme P̃ and the dispatching

distribution of random routing Prand, i.e.,




∆̃



1 = 2δ

(
P̃, Prand

)
,

where δ ( . ) denotes the total variation distance between two finite-space distributions. From this,

we can see that the definition of dispatching preference is quite intuitive, i.e., the closer to random

routing, the smaller the preference on shorter queues.

Based on this result, the degree of queue imbalance can be approximated by the degree of

dispatching preference as follows.

Degree of Queue Imbalance ≈
1

(Degree of Dispatching Preference)2
.

In this way, via the degree of queue imbalance, we reveal how the load balancing scheme would

affect the system performance. Therefore, the degree of queue imbalance enables us to explicitly
differentiate between good and poor heavy-traffic delay optimal load balancing schemes.
The rigorous results and detailed discussions on this part are presented in Section 5.

Combining the above two main results, our paper suggests that when designing good load

balancing schemes, they should not only be heavy-traffic delay optimal, but also have low degree

of queue imbalance.

4 HEAVY-TRAFFIC DELAY OPTIMALITY IS NOT ENOUGH
In this section, we show that, the delay performance of a large class of heavy traffic optimal load

balancing schemes can be quite poor in practice. In order to conduct the analysis, we introduce

the notion of dispatching preference, based on which we can show the limitations of heavy-traffic

delay optimality.

4.1 Dispatching Preference
For a load balancing scheme {η(t ), t ≥ 0}, given an increasing permutation of queues from the

shortest queue to the longest queue, we define the dispatching distribution in time-slot t as a vector
Pη (t ) (t ), where its n-th component denotes the probability that the new arrivals are dispatched to

the n-th shortest queue in time-slot t . When there are ties in the queue lengths, the dispatcher may

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 1, Article 21. Publication date: March 2018.
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Fig. 2. Delay performance of load balancing schemes. By Theorem 4.3, all the schemes in the figures except

for random routing are heavy-traffic delay optimal. However, their actual delay performance can range from

very good (that of join-shortest-queue) to very bad (very close to the performance of random routing).

break ties arbitrarily. By the assumption, Pη (t ) (t ) only depends on the policy η(t ) in time-slot t , and
may vary with η(t ) over different time-slots. For ease of presentation, we assume that the servers

are homogeneous with rate µ. In Section 8, we will discuss how to extend the results to the case

with heterogeneous servers.

Based on the dispatching distribution, we can define the notion of dispatching preference as

follows.

Definition 4.1 (Dispatching Preference). The dispatching preference for a given policy η(t ) in
time-slot t is given by

∆η (t ) (t ) ≜ Pη (t ) (t ) − Prand,

where Prand corresponds to the dispatching distribution of random routing.

To better understand dispatching distribution and dispatching preference, let us look at a load

balancing system with 3 servers. Under random routing, the new arrivals are dispatched to each

server with equal probabilities. Thus,

Prand (t ) =
(
1

N
, · · · ,

1

N

)
=

(
1

3

,
1

3

,
1

3

)
.

Under JSQ, the new arrivals are always dispatched to the shortest queue, and thus

PJSQ (t ) = (1, 0, 0) .

Under power-of-2, the dispatcher randomly picks two servers and dispatches the new arrivals to

the server with shorter queue length. It easily follows that

Ppower-of-2 (t ) =
(
2

3

,
1

3

, 0
)
.

Hence, by definition, we have

∆JSQ (t ) =
(
2

3

,−
1

3

,−
1

3

)
,

∆power-of-2 (t ) =
(
1

3

, 0,−
1

3

)
.
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Remark 1. For a given load balancing scheme, i.e., the Markov chain {η(t ), t ≥ 0}, there is a

corresponding Markov chain {P(t ), t ≥ 0} or {∆(t ), t ≥ 0} by definition. Moreover, {∆(t ), t ≥ 0}

has a steady-state vector ∆ for any given load balancing scheme with an ergodic and finite-state

policy Markov chain {η(t ), t ≥ 0}, which is the case considered in this paper.

4.2 Limitations of Heavy-traffic Optimality
To see the limitations of heavy-traffic delay optimality, we first introduce the following key condi-

tion.

Definition 4.2 (Long-term Dispatching Preference Condition (LDPC)). A Markov chain {η(t ), t ≥ 0}

is said to satisfy the LDPC condition if the corresponding Markov chain of dispatching preference

{∆(t ), t ≥ 0} is independent of ϵ and satisfies

∆̃1 ≥ ∆̃2 ≥ . . . ≥ ∆̃N and ∆̃1 , ∆̃N ,

where ∆̃ = E
[
∆

]
and ∆ is a random vector which is equal in distribution to ∆(t ) in the steady state.

Then, using the condition above, we are able to establish the following main result.

Theorem 4.3. Consider a load balancing scheme with {η(t ), t ≥ 0} being a finite-space, ergodic
Markov chain. If {η(t ), t ≥ 0} satisfies the Long-term Dispatching Preference Condition (LDPC), then
the load balancing scheme is heavy-traffic delay optimal.

Proof. See Section 7.1. □

Theorem 4.3 suggests that heavy-traffic delay optimality is limited in the following sense: For a
large class of heavy-traffic delay optimal load balancing schemes, their delay performance can be poor
in practice. To better illustrate this point, in the following we first present two basic properties of

LDPC, and then present two specific examples to facilitate the understanding of the limitations of

heavy-traffic delay optimality.

The class of load balancing schemes satisfying LDPC is closed under the following two linear

operations.

(1) (Linear multiplication) Given a load balancing scheme with {η1 (t ), t ≥ 0} satisfying LDPC,

the following new load balancing scheme {η2 (t ), t ≥ 0} also satisfies LDPC. Fix any p > 0, in

each time-slot t under the new scheme, the dispatcher adopts η1 (t ) with probability p and

uses random routing otherwise. This property holds since ∆̃η2 = p · ∆̃η1 .

(2) (Linear combination) Given two load balancing schemes with {η1 (t ), t ≥ 0} and {η2 (t ), t ≥ 0}

both satisfying LDPC, the following new load balancing scheme {η3 (t ), t ≥ 0} also satisfies

LDPC. Fix any p1,p2 > 0 with p1 + p2 = 1, in each time-slot t , the dispatcher adopts η1 (t )
with probability p1 and adopts η2 (t ) with probability p2. This property results from the fact

that ∆̃η3 = p1 · ∆̃η1 + p2 · ∆̃η2 .

Based on the properties above, we present two load balancing schemes that have very poor

empirical delay performance whereas they are still heavy-traffic delay optimal.

Example 4.4. (p-JSQ and p-SQ(d)) In each time-slot, the dispatcher adopts JSQ (power-of-d) with
probability p and uses random routing otherwise. It is easy to check that JSQ and power-of-d
satisfy LDPC. By Property (1), it follows that p-JSQ and p-SQ(d) also satisfy LDPC, and hence are

heavy-traffic delay optimal by Theorem 4.3.

Key observation: Despite heavy-traffic delay optimality, since p can be arbitrarily close to zero,

one can expect that the delay performance of p-JSQ and p-SQ(d) can be arbitrarily close to that of

random routing as p approaches zero. As shown in Fig. 2, when p = 0.01, the delay performance of
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p-JSQ and p-SQ(d) is much worse than that of JSQ and power-of-d (SQ(d) in figures), and is close to

that of random routing, even when the load is as high as 0.99.

Notice that all the heavy-traffic delay optimal schemes discussed so far statistically favor shorter

queues in every time-slot. In practice, due to data locality and other constraints, it is possible that

the dispatcher has to route new arrivals to longer queues in certain time-slots. It is important to know

whether a load balancing scheme in this case can be heavy-traffic delay optimal. Theorem 4.3 suggests

that a load balancing scheme is heavy-traffic delay optimal as long as it favors shorter queues in

the long-term instead of each time-slot. In the sequel, we present a simple example to demonstrate

this idea.

Example 4.5. (Join longer or shorter queue (JLSQ) scheme) In each time-slot, with probability p̂
the new arrivals are dispatched to a queue which is chosen uniformly at random from the longest

N1 queues. Otherwise, the new arrivals are routed to a queue which is chosen uniformly at random

from the shortest N −N1 queues. It is easy to see that if p̂ <
N1

N , then the corresponding dispatching

preference of JLSQ satisfies LDPC, hence by Theorem 4.3, JLSQ is heavy-traffic delay optimal when

p̂ < N1

N .

Key observation: In a special case N1 =
N
2
, in order to achieve heavy-traffic delay optimality,

it is fine to join longer queues temporarily, as long as the time devoted to it in the long term is

slightly less than the time devoted to joining shorter queues. As a result, despite heavy-traffic delay

optimality, the empirical delay performance of JLSQ can be very bad when p̂ approaches
N1

N .

After observing the limitation of heavy-traffic delay optimality through examples and simulations,

we now turn to the key insights behind the proof of Theorem 4.3, which theoretically explain the

limitation of heavy-traffic delay optimality.

Key insights in the proof of Theorem 4.3:

(1) From Lemma 2.2, sum of the queue lengths of a load balancing system is lower bounded

by its corresponding resource-pooled system. This is because in a load balancing system

there exists the situation when one queue is empty with a positive unused service while

there are still waiting jobs in other queues. Thus, to achieve the same average delay of the

resource-pooled system in the heavy-traffic limit, i.e., heavy-traffic optimality, it is required

for the load balancing scheme to guarantee that when one queue is empty with a positive

unused service, all the other queues are close to empty, i.e., there is no waste of service. This

is actually the intuition behind the sufficient and necessary condition for heavy-traffic delay

optimality proved in Proposition 7.4, i.e.,

lim

ϵ ↓0
E

[



Q
(ϵ )

(t + 1)




1





U
(ϵ )

(t )




1

]
= 0. (2)

It is worth pointing out that this condition is fairly weak in the following sense: To be heavy-

traffic delay optimal, it is not necessary to balance the queues all the time (e.g., JSQ), rather,

it is only required that the queue lengths are all close to zero when one queue becomes zero

with a positive unused service. Based on this fact, it is not surprising that a weak condition,

e.g., LDPC, is able to guarantee heavy-traffic delay optimality.

(2) The left-hand-side of Eq. (2) can be upper bounded as follows.

E
[



Q

(ϵ )
(t + 1)





1




U

(ϵ )
(t )





1

]
≤ N

√
CϵE

[



Q
(ϵ )
⊥ (t )






2

]
,
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Fig. 3. Insights behind Theorem 4.3.

where C is a constant independent of ϵ . This upper bound suggests that to be heavy-traffic

delay optimal, it suffices to guarantee that the second moment of





Q
(ϵ )
⊥





 is bounded by any

constant that is independent of ϵ . This condition is often called state-space collapse.

(3) To show the bounded moment of





Q
(ϵ )
⊥





 via Lyapunov-drift condition, the main idea is to

show that there is a strictly negative drift independent of ϵ along the direction perpendicular

to the line 1N ≜ 1√
N
(1, 1, . . . , 1) when





Q
(ϵ )
⊥





 is large enough. Note that, it is not necessary

to have a strictly negative drift for each time-slot. Instead, it only requires that there exists a

finite T such that the drift within the T slots is strictly negative. In addition, it is easy to see

that under random routing, i.e., ∆(t ) = 0 for all t , the drift is zero at each time-slot. Hence, it

follows that to be heavy-traffic delay optimal, a load balancing scheme only needs to have a

slight preference on shorter queues. This is actually the key insight behind the LDPC, which

further demonstrates the limitation of heavy-traffic delay optimality.

Remark 2. Note that in some of the previous works, showing the state-space collapse is also a key

step in establishing heavy-traffic delay optimality. However, they suffer from two main limitations:

(1) Their analysis is policy by policy. It is not known in general under which condition a load

balancing scheme can lead to state-space collapse. (2) Moreover, the previous works only focus

on the load balancing schemes consisting of one specific policy, which does not change over time.

In contrast, we allow the load balancing scheme to adopt different policies in different time-slots,

and the policies can be time-correlated. Thus, our contribution is that for this general class of load

balancing schemes, we show a fairly weak condition for heavy-traffic delay optimality: Any load

balancing scheme is heavy-traffic delay optimal as long as it satisfies the Long-term Dispatching

Preference Condition (LDPC), which suggests that heavy-traffic delay optimality is a coarse metric.

4.3 Numerical Results
Now we use simulations to show the limitation of heavy-traffic delay optimality. In particular, we

show that for fixed load ρ, the delay performance of heavy-traffic delay optimal schemes can be very

poor. In the simulations, as shown in Fig. 2, we consider the previously discussed heavy-traffic delay

optimal schemes, i.e., JSQ, p-JSQ (p=0.01), power-of-2 (SQ(2)), p-SQ(2) (p=0.01), JLSQ (N1 = N /2,
p̂ = 0.49), as well as random routing which is not heavy-traffic delay optimal [5]. In each time-slot

t , the exogenous arrival AΣ (t ) and service Sn (t ) are drawn from a Poisson distribution with rate λΣ
and µn = µ = 1. We consider two cases with different number of servers, i.e., N = 10 and N = 50,

respectively.
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From Fig. 2 (a,b), it can be seen that for both cases N = 10 and N = 50, the delay performance

of heavy-traffic delay optimal schemes can range from very good (that of JSQ) to very bad (quite

close to the performance of random routing). Although by the definition of heavy-traffic delay

optimality, the delay of all these schemes (except for random routing) should scale at the same

order as JSQ when ρ → 1, the average delays of these schemes are very different in the simulation

results even when ρ = 0.99. For example, when ρ = 0.99, the average delay of p-SQ(2) is almost 23

and 54 times larger than that of JSQ for N = 10 and N = 50, respectively. Moreover, the differences

of the delay between these schemes become larger as the number of servers increases.

To sum up, all the heavy-traffic delay optimal schemes have the optimal asymptotic delay

performance as ρ → 1. However, from all the discussions above, we have shown that for any fixed

load, the actual delay performance of heavy-traffic delay optimal schemes can range from very good

to very poor. This motivates the following important question: How can we explicitly differentiate
between good and poor load balancing schemes that may all be heavy-traffic delay optimal?

5 A REFINED METRIC
In this section, we introduce a new metric called degree of queue imbalance, which is able to

differentiate between good and poor heavy-traffic delay optimal load balancing schemes.

5.1 Degree ofQueue Imbalance
To formally define this new metric, we first denote

Q∥ (t ) ≜ ⟨Q, 1N ⟩1N ,

and

Q⊥ (t ) ≜ Q(t ) − Q∥ (t ) = Q(t ) −Qavg (t )1,
in which 1N ≜ 1√

N
(1, 1, . . . , 1), 1 ≜ (1, 1, . . . , 1) andQavg (t ) is the average queue length at time-slot

t .

Definition 5.1 (Degree of Queue Imbalance). The degree of queue imbalance for a load balancing

system with a steady-state queue length vector Q is given by E
[


Q⊥





2

]
.

From the definition, we can see that the degree of queue imbalance measures the queue length

difference between all the servers in steady-state. From the scatter plots of the queue length

distribution shown in Fig. 1 (a-c), it can be observed that a good load balancing scheme, such as

JSQ, is able to statistically maintain a good balance between the two queues, i.e., the expected

queue lengths difference between the servers is kept small. This is achieved by dispatching the new

arrivals to the shorter queue, and thus reducing the queue length difference between the servers.

On the other hand, a poor load balancing scheme, such as random routing, results in a large queue

length difference between the servers, because the dispatcher has no (or little) preference on the

shorter queue. This insight remains true when there are more than two servers, as shown in Fig. 1

(d).

Furthermore, the degree of queue imbalance is also motivated by the following non-asymptotic

upper bound on the average delay.

Lemma 5.2. Under any heavy-traffic delay optimal scheme satisfying LDPC, for any ϵ > 0, the
average delay is upper bounded by

D (ϵ )
avg ≤

ζ (ϵ )

2λ(ϵ )Σ

·
1

ϵ
+

M

λ(ϵ )Σ

·

√
Degree of Queue Imbalance

ϵ
,

where ζ (ϵ ) ≜ (σ (ϵ )
Σ )2 + ν2Σ, andM is some positive constant.
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Proof. See Appendix G. □

Hence, it is suggested that the smaller the queue imbalance generated by a load balancing scheme,

the better its delay performance.

Therefore, the key challenge is to understand how the load balancing scheme would impact the

degree of queue imbalance. In the following, (i) we first give a characterization of the extent to

which the dispatcher favors the shorter queues, and (ii) we then show a fundamental relationship

between the degree of dispatching preference and the resultant degree of queue imbalance.

5.2 Differentiating Good and Poor Schemes
Given a load balancing scheme, we capture the extent to which the dispatcher favors shorter queues

through the notion degree of dispatching preference, which is defined as follows.

Definition 5.3 (Degree of Dispatching Preference). The degree of dispatching preference for a given
load balancing scheme {η(t ), t ≥ 0} is given by the l1 norm of the long-term dispatching preference,

i.e.,



∆̃




1.

It is worth noting that the degree of dispatching preference



∆̃




1 corresponds to the total variation
distance between the long-term dispatching distribution of the scheme P̃ and the dispatching

distribution of random routing Prand, i.e.,




∆̃



1 = 2δ

(
P̃, Prand

)
,

where δ ( . ) denotes the total variation distance between two finite-space distributions. This means

that for a load balancing scheme, the smaller the degree of dispatching preference on the shorter

queues, the closer it is to random routing, which is quite intuitive.

In the following, we show a fundamental relationship between the degree of queue imbalance

and the degree of dispatching preference.

Theorem 5.4. Under any load balancing scheme satisfying LDPC, the degree of queue imbalance is
on the order of

lim

ϵ ↓0
E

[



Q
(ϵ )
⊥






2

]
= Θ

(
1




∆̃




2

1

)
.

This theorem shows that the smaller the dispatching preference, the larger the degree of queue

imbalance. Take p-JSQ and p-SQ(d) for example. By the linear multiplication property of LDPC,

it can be seen that the degree of queue imbalance for both p-JSQ and p-SQ(d) is on the order of

Θ
(
1

p2
)
with respect to p. Thus, although they still remain heavy-traffic delay optimal for any p > 0,

the degree of queue imbalance goes to infinity as p approaches 0.

A Delay Upper Bound via Degree of Queue Imbalance:

A non-asymptotic upper bound on the average delay follows directly from Theorem 5.4 and

Lemma 5.2.

Corollary 5.5. Given a load balancing scheme satisfying LDPC, the average delay D (ϵ )
avg for all

ϵ ≤ ϵ0 is upper bounded by

D (ϵ )
avg ≤

ζ (ϵ )

2λ(ϵ )Σ

·
1

ϵ
+

M ′




∆̃



1 · λ

(ϵ )
Σ

·

√
1

ϵ
, (3)

where ζ (ϵ ) ≜ (σ (ϵ )
Σ )2 + ν2Σ, ϵ0 ≜

µΣ
2
, andM ′ is some positive constant.
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Fig. 4. Degree ofQueue Imbalance vs. Average delay of load balancing schemes. The parameter p ranges from

0.01 to 1.

The right-hand-side of Eq. (3) is related to a load balancing scheme by its degree of dispatching

preference. The larger the degree of dispatching preference of the scheme, the smaller the upper

bound of the average delay. Although this result only gives an upper bound of the delay performance,

it suggests that the delay performance is poor if the load balancing scheme has a large degree

queue imbalance. This insight is also verified by extensive numerical results, as shown in Fig. 4

(a-d) which will be discussed later.

Having shown the main result and its implications, we can now elaborate on the technical details

behind it. In particular, Theorem 5.4 is obtained via two steps. First, we derive an upper bound on

the degree of queue imbalance as follows.

Proposition 5.6. Under any load balancing scheme satisfying LDPC, the degree of queue imbalance
is upper bounded by

lim

ϵ ↓0
E

[



Q
(ϵ )
⊥






2

]
≤

1




∆̃




2

1

M1,
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where M1 ≜ 2max

(
16N 2 (2K+LT )

T µΣ
, 4
√
2DN

(
1 + 16DN

T µΣ

))2
, in which K ≜ µΣNT

2
max(Amax, Smax),

L ≜ N max(Amax, Smax)
2 and D ≜ 2T

√
N max(Amax, Smax).

Proof. See Appendix F □

Remark 3. Note that in the previous works [4] [13], it has been shown that under some specific

heavy-traffic delay optimal schemes (e.g., JSQ and power-of-d), the moment of


Q⊥

 are bounded

by some constant independent of ϵ in heavy-traffic. However, it is still unknown: (1) Whether there

exists an explicit form of the upper bound? (2) How the upper bound is related to the different load

balancing schemes. In a recent work [12], the authors derived an upper bound of the moment of



Q⊥

 for Max-Weight scheduling in a switch system. But it was not clear how a upper bound of the

moment of


Q⊥

 can be derived for different load balancing schemes in a load balancing system,

which is settled down by the proposition above.

Second, we derive a lower bound on the degree of queue imbalance.

Proposition 5.7. Under a heavy-traffic delay optimal load balancing scheme such that




Q

(ϵ )



 has

bounded second moment for all ϵ > 0, the degree of queue imbalance is lower bounded by

lim

ϵ ↓0
E

[



Q
(ϵ )
⊥






2

]
≥

1




∆̃




2

1

M2,

whereM2 =
(N−1)2 (σ 2

Σ+µ
2

Σ+ν
2

Σ)
2

4N 2µ2Σ
, which is a constant independent of ϵ .

Proof. See Section 7.2 □

Remark 4. Technically, it is very challenging to derive a meaningful lower bound on the degree

of queue imbalance. In particular, the conventional way to bound moments in [1] fails for the

following reason. It is required to derive a uniform lower bound of the Lyapunov-drift for all the

queue length states. However, due to the boundary constraint that Qn (t ) ≥ 0 for n and t , some

queue length states on the boundary has a much smaller Lyapunov-drift than the other states,

which makes the uniform lower bound meaningless. To overcome this difficulty, we develop a

novel approach: We obtain a universal equality, i.e., Eq. (5), which characterizes the steady state of

the system for any heavy-traffic delay optimal load balancing schemes. This enables us to derive

the lower bound for any heavy-traffic delay optimal load balancing scheme. The proof sketch is

presented as follows.

Proof sketch of Proposition 5.7. We consider the following particular Lyapunov function

V1 (Z ) ≜
N∑
i=1

N∑
j>i

(
Qi −Q j

)
2

.

Under the assumption that the second moment of


Q

 is finite, then the mean drift of V1 (·) is zero

in steady state, which yields

2E
[



Q

(ϵ )
(t + 1)





1




U

(ϵ )
(t )





1

]

= 2NE
[
⟨Q

(ϵ )
⊥ ,A

(ϵ )
− S

(ϵ )
⟩

]

︸                           ︷︷                           ︸
T

(ϵ )
1

−

N∑
i=1

N∑
j>i

E

[(
U

(ϵ )
i −U

(ϵ )
j

)
2

]

︸                            ︷︷                            ︸
T

(ϵ )
2

+

N∑
i=1

N∑
j>i

E

[(
A
(ϵ )
i −A

(ϵ )
j − S

(ϵ )
i + S

(ϵ )
j

)
2

]

︸                                             ︷︷                                             ︸
T

(ϵ )
3

(4)
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Fig. 5. Degree of Queue Imbalance vs. Degree of Dispatching Preference.

Note that for any heavy-traffic delay optimal scheme, the left-hand-side (LHS) of Eq. (4) is zero as

ϵ → 0 by the necessary condition in Proposition 7.4. As a result, we obtain the following universal

steady-state equality for all heavy-traffic delay optimal schemes.

lim

ϵ ↓0
T

(ϵ )
1
= lim

ϵ ↓0
T

(ϵ )
2
− lim

ϵ ↓0
T

(ϵ )
3
. (5)

Then, we can characterize each term respectively. To begin with, it is easy to see that T
(ϵ )

2
ap-

proaches 0 as ϵ → 0 since it describes the unused service. Furthermore, we can show that T
(ϵ )

3

converges to some constant K independent of ϵ when ϵ → 0. For the term T
(ϵ )

1
, we can simplify it

to

T ϵ
1
= 2λ(ϵ )Σ NE

[
⟨Q

(ϵ )
σ ,⊥, ∆̃⟩

]
,

where the n-th component of the vector Qσt (t ) is the n-th shortest queue length at time-slot t .
Therefore, Eq. (5) can be simplified as

lim

ϵ ↓0
2µΣNE

[
⟨Q

(ϵ )
σ ,⊥, ∆̃⟩

]
= −K . (6)

Hence, according to Eq. (6), the required result follows directly from Cauchy-Schwartz inequality.

□

5.3 Numerical Results
We conduct extensive simulations to demonstrate the effectiveness of the new metric, i.e., degree of

queue imbalance, and also verify the theoretical results. The distributions of the arrival and service

processes are set to be the same as Section 4. All the data points are collected over 10
7
time-slots.

In Fig. 4 (a-d), the average delay performance is plotted with respect to the degree of queue

imbalance under different load balancing schemes, for different loads, and for different number of

servers. It can be observed that in all cases, i.e., different loads and different number of servers, the

delay performance becomes worse if the load balancing scheme results in a larger degree of queue

imbalance. Thus, the numerical results suggest that the degree of queue imbalance is empirically a

good metric to differentiate between good and poor load balancing schemes, verifying the insight

from Corollary 5.5.
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Fig. 6. Degree of Queue Imbalance vs. p.

To verify Theorem 5.4, in Fig. 5 (a-b), the degree of queue imbalance is plotted with respect to

the degree of dispatching preference. From Fig. 5, it can be seen that the degree of queue imbalance

increases when the degree of dispatching preference decreases. Specifically, for both cases N = 10

and N = 50, the growth rate of the degree of queue imbalance with respect to the degree of

dispatching preference matches well to the theoretical predictions given by Theorem 5.4. In Fig. 6

(a,b), the degree of queue imbalance under p-JSQ and p-SQ(d) is plotted with respect to p. Recall

that for both p-JSQ and p-SQ(d) the degree of queue imbalance scales on the order of Θ
(
1

p2
)
by

Theorem 5.4. In Fig. 6, the numerical results match well with the theoretical predictions for both

cases N = 10 and N = 50. Hence, our theoretical results are validated by the numerical results.

Furthermore, it is very important to note that although Theorem 5.4 is stated in the heavy-traffic

regime, from Fig. 5 (a,b) and Fig. 6 (a,b), the results still hold empirically in the non-asymptotic

regime, e.g., ρ < 1.

6 DEGREE OF DISPATCHING PREFERENCE IN THE LARGE SYSTEM REGIME
In Section 5, we have shown the fundamental relationship between system performance and the

degree of dispatching preference in the heavy-traffic regime. In this section, we further study the

degree of dispatching preference in the large system regime. In particular, we focus on power-of-

d , which is the most well known heavy-traffic delay optimal policy with a low communication

overhead. The choice of d has a substantial impact on the delay performance and the message

overhead, i.e., a larger d improves the delay performance at the cost of a larger message overhead.

Since power-of-d is heavy-traffic optimal for any d ≥ 2, the existing heavy-traffic analytical tool

provides limited insights. In the following, we study this fundamental trade-off between the delay

performance and the message overhead via our new analytical framework. Specifically, we study

the important question: What is the minimum growth rate of d with respect to the number of

servers N to achieve a good degree of dispatching preference, which in turn implies good delay

performance and low message overhead?

For ease of presentation, the degree of dispatching preference for power-of-d is denoted by




∆
(d )


1. We first show the large system limit of




∆
(d )


1 under different growth rates of d .

Proposition 6.1. The large system limit for the degree of dispatching preference 


∆
(d )


1 under

different growth rates of d when N → ∞ can be characterized by
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(1) For any fixed d ≥ 2, we have

2

d − 1

d

(
1

d2

) 1

d−1
≤ lim

N→∞




∆
(d )


1 ≤ 2

(
1

d

)1/d
.

(2) If limN→∞ d (N ) = ∞, then we have

lim

N→∞




∆
(d )


1 = lim

N→∞




∆
(N )


1 = 2

Proof. See Appendix H. □

Remark 5. From (1) of Proposition 6.1, it can be seen that for any fixed d ≥ 2, the degree of

dispatching preference will always be strictly larger than zero even when N → ∞. This agrees with
the result that power-of-d leads to a substantial delay improvement over random routing. From (2)

of Proposition 6.1, we can see that as long as d (N ) → ∞, the limiting value of



∆

(d )


1 converges to
that of JSQ. This insight behind this result agrees with the previous result [16], which shows that

stochastic optimality of the JSQ policy can be preserved at the fluid-level as long as d = ω (1).

The above result shows that the growth rate of d does not have any impact on the limiting value

of



∆

(d )


1. However, in the next proposition, we show that the convergence rate of



∆

(d )


1 depends
on the growth rate of d .

Proposition 6.2. If limN→∞ d (N ) = ∞ and d (N ) = o(N ),

���2 −



∆

(d )


1
��� = Θ

(
logd

d

)
Proof. See Appendix I. □

Remark 6. Although Proposition 6.1 suggests that 


∆
(d )


1 converges to 2 as long as limN→∞ d (N ) =

∞, Proposition 6.2 reveals that the corresponding convergence rate is on the order of Θ
(
logd
d

)
.

Corollary 6.3. If limN→∞ d (N ) = ∞ and d (N ) = o(N ),

(1) For some K > 0 and d = K 1

ϵ log
1

ϵ , there exists an ϵ
∗ such that ���2 −




∆
(d )


1

��� ≤ ϵ for all ϵ < ϵ∗.

(2) Given any γ > 0, if d = O
(
1

ϵ

(
log

1

ϵ

) (1−γ ))
, then there exits an ϵ∗ such that ���2 −




∆
(d )


1

��� > ϵ

for all ϵ < ϵ∗.

Proof. See Appendix J. □

Remark 7. Corollary 6.3 suggests that, to keep the degree of dispatching preference within an

ϵ-neighborhood of the optimal value, it is sufficient and necessary to let d grow on the order of

1

ϵ log
1

ϵ .

7 PROOF OF MAIN RESULTS
Let us first define a permutation σt (·) of (1, 2, . . . ,N ) which satisfies Qσt (1) (t ) ≤ Qσt (2) (t ) ≤ . . . ≤
Qσt (N ) (t ), i.e., the queues are sorted according to their queues in a non-decreasing order with ties

broken arbitrarily.
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7.1 Proof of Theorem 4.3
Before we present the proof of Theorem 4.3, we would first introduce the following useful results.

Lemma 7.1. Consider a time-slot t0 and a positive integer T . Then for any t with t0 ≤ t ≤ t0 +T
and n with 1 ≤ n ≤ N ,

|Qσt (n) (t ) −Qσt
0
(n) (t0) | ≤ T max(Amax, Smax).

Proof. See Appendix B.1 □

Lemma 7.2. For any t0 and 1 ≤ n ≤ N , we have

lim

T→∞

1

T
E



t0+T−1∑
t=t0

∆n (t ) | Z (t0)

= ∆̃n

Proof. See Appendix B.2 □

Now we are ready to present the proof of Theorem 4.3.

Proof of Proposition 4.3. The proof will be divided into three steps.

Step 1: We will show that under a load balancing scheme satisfying LDPC, the system is stable

with bounded moments.

Proposition 7.3. Under a load balancing scheme satisfying LDPC, the system is stable, i.e., the

Markov chain {Z (ϵ ) (t ), t ≥ 0}is positive recurrent for any ϵ > 0. Moreover, all the moments of




Q

(ϵ )




are bounded for any ϵ > 0.

Proof. See Appendix C □

Step 2:We will present a sufficient and necessary condition for heavy-traffic delay optimality

when the system is stable with a bounded second moment.

Proposition 7.4. Consider a load balancing system with a load balancing scheme such that the

second moment of




Q

(ϵ )



 is bounded for any ϵ > 0, then the load balancing policy is heavy-traffic

delay optimal if and only if

lim

ϵ ↓0
E

[



Q
(ϵ )

(t + 1)




1





U
(ϵ )

(t )




1

]
= 0. (7)

Proof. See Appendix D □

Step 3: We will show that under a load balancing scheme satisfying LDPC, Eq. (7) holds, which

establishes heavy-traffic delay optimality. This is achieved by showing that all the moments of



Q⊥

 are bounded by a constant independent of ϵ , i.e., state-space collapse.

Proposition 7.5. Under a load balancing satisfying LDPC, the sufficient and necessary condition
in Eq. (7) holds.

Proof. See Appendix E □

The result in Theorem 4.3 follows directly from the three steps.

□
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7.2 Proof of Proposition 5.7
Proof of Proposition 5.7. Let us consider the following Lyapunov function:

V1 (Z ) ≜
N∑
i=1

N∑
j>i

(
Qi −Q j

)
2

We start with the conditional mean drift of V1 (Z ). Note that we shall omit the time reference (t )
after the first step and Q+ ≜ Q(t + 1).

E [V1 (Z (t + 1)) −V1 (Z (t )) | Z (t ) = Z ]

=

N∑
i=1

N∑
j>i

E
[(
Qi (t + 1) −Q j (t + 1)

)
2

−
(
Qi (t ) −Q j (t )

)
2

| Z (t ) = Z
]

=

N∑
i=1

N∑
j>i

E
[
2

(
Qi −Q j

) (
Ai −Aj − Si + S j

)
−

(
Ui −Uj

)
2

| Z
]

+

N∑
i=1

N∑
j>i

E
[(
Ai −Aj − Si + S j

)
2

+ 2
(
Q+i −Q

+
j

) (
Ui −Uj

)
| Z

]

(a)
=

N∑
i=1

N∑
j>i

E
[
2

(
Qi −Q j

) (
Ai −Aj − Si + S j

)
−

(
Ui −Uj

)
2

| Z
]

+

N∑
i=1

N∑
j>i

E
[(
Ai −Aj − Si + S j

)
2

− 2
(
Q+i Uj +Q

+
j Ui

)
| Z

]

(b )
= 2NE [⟨Q⊥,A − S⟩ | Z ] −

N∑
i=1

N∑
j>i

E
[(
Ui −Uj

)
2

| Z
]

+

N∑
i=1

N∑
j>i

E
[(
Ai −Aj − Si + S j

)
2

− 2
(
Q+i Uj +Q

+
j Ui

)
| Z

]

in which (a) follows from the fact that Qn (t + 1)Un (t ) = 0 for all n and t > 0 as shown in Lemma

D.1; (b) comes from the definition of Q⊥.

Since


Q

2 has bounded moment in steady state, the steady state mean E

[
V1 (Z

(ϵ )
)
]
is finite for

any ϵ > 0. As a result, the mean drift of V1 (·) is zero in steady state, which implies that

2

N∑
i=1

N∑
j>i

E
[(
(Q
+

i )
(ϵ )U

(ϵ )
j + (Q

+

j )
(ϵ )U (ϵ )

i

)]

=2NE
[
⟨Q

(ϵ )
⊥ ,A

(ϵ )
− S

(ϵ )
⟩

]
−

N∑
i=1

N∑
j>i

E

[(
U

(ϵ )
i −U

(ϵ )
j

)
2

]
+

N∑
i=1

N∑
j>i

E

[(
A
(ϵ )
i −A

(ϵ )
j − S

(ϵ )
i + S

(ϵ )
j

)
2

]

(8)

Now we will further simplify each term in Eq. (8). First, the left-hand-side (LHS) of it can be

rewritten as follows

LHS = 2E
[



Q

(ϵ )
(t + 1)





1




U

(ϵ )
(t )





1

]
≜ 2B

(ϵ )
, (9)

which holds because Qn (t + 1)Un (t ) = 0 for all n and t ≥ 0 as shown in Lemma D.1. Then we turn

to simplify each term on the right-hand-side of Eq. (8).
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For the first term on the right-hand-side of Eq. (8), we can rewrite it as follows

T
(ϵ )

1
≜ 2NE

[
⟨Q

(ϵ )
⊥ ,A

(ϵ )
− S

(ϵ )
⟩

]

(a)
= 2NE

[
⟨Q

(ϵ )
⊥ ,A

(ϵ )
⟩

]

(b )
= 2λ(ϵ )Σ NE

[
⟨Q

(ϵ )
σ ,⊥, ∆̃⟩

]
, (10)

where (a) follows from that the service are independent of queue lengths and are homogeneous; (b)

is true since ∆ is independent of Q and the nth element of Q
(ϵ )
σ ,⊥ is Qσ (n) −Qavg

.

For the second term on the right-hand-side of Eq. (8), we have

T
(ϵ )

2
≜

N∑
i=1

N∑
j>i

E

[(
U

(ϵ )
i −U

(ϵ )
j

)
2

]
≤ ϵ (N − 1)Smax, (11)

which follows from the fact that 0 ≤ Un ≤ Smax for all n and E
[



U

(ϵ )



1

]
= ϵ as shown in Lemma

D.1.

The third term on the right-hand-side of Eq. (8) can be simplified as follows

T
(ϵ )

3
≜

N∑
i=1

N∑
j>i

E

[(
A
(ϵ )
i −A

(ϵ )
j − S

(ϵ )
i + S

(ϵ )
j

)
2

]

(a)
=

N∑
i=1

N∑
j>i

E

[(
A
(ϵ )
i −A

(ϵ )
j

)
2

−

(
S
(ϵ )
i − S

(ϵ )
j

)
2

]

(b )
= (N − 1)

((
σ (ϵ )
Σ

)
2

+
(
λ(ϵ )Σ

)
2

+ ν2Σ

)
, (12)

where (a) holds since the arrival and service are independent and the servers are homogeneous;

(b) is true because Ai (t )Aj (t ) = 0 for all i , j and t ≥ 0, and the service is independent and

homogeneous.

Let B
(ϵ )
≜ E

[



Q
(ϵ )

(t + 1)




1





U
(ϵ )

(t )




1

]
. Now combining Eqs. (8), (10), (11) and (12), we obtain

2B
(ϵ )
− T

(ϵ )
3
≤ T

(ϵ )
1
≤ 2B

(ϵ )
− T

(ϵ )
3
+ ϵ (N − 1)Smax. (13)

Since we assume heavy-traffic delay optimality and bounded second moment of


Q

, it follows

from Proposition 7.4 that limϵ ↓0 B
(ϵ )
= 0. Consequently, from Eq. (13), we have

M̂ = lim

ϵ ↓0
T

(ϵ )
1
= lim

ϵ ↓0
2µΣNE

[
⟨Q

(ϵ )
σ ,⊥, ∆̃⟩

]
,

in which M̂ ≜ − limϵ ↓0 T
(ϵ )

3
= −(N − 1)

(
σ 2

Σ + µ
2

Σ + ν
2

Σ

)
assuming

(
σ (ϵ )
Σ

)
2

converges to a constant

σ 2

Σ. Applying Cauchy-Schwartz inequality to the equality above, yields,

M̂2 = lim

ϵ ↓0

(
2µΣNE

[
⟨Q

(ϵ )
σ ,⊥, ∆̃⟩

])
2

≤ 4N 2µ2Σ limϵ ↓0



∆̃





2

E

[



Q
(ϵ )
⊥






2

]
.
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Therefore, we have

lim

ϵ ↓0
E

[



Q
(ϵ )
⊥






2

]
≥

M̂2

4N 2µ2Σ



∆̃





2
=

1




∆̃




2
M2 ≥

1




∆̃




2

1

M2,

whereM2 ≜
M̂2

4N 2µ2Σ
. Hence, it completes the proof. □

8 RESULTS FOR THE GENERAL CASE
In this section, we show how to extend our main results in Sections 4 and 5 to the general case

when the servers are heterogeneous. Basically, we show that the main insights that have been

shown in the homogeneous server case still hold in a weaker sense for the heterogeneous server

case, under some additional conditions.

Definition 8.1. The dispatching preference in the general case is a function of Z (t ), the nth
element of which is given by

∆Z (t ),n (t ) ≜ P(t ) −
µσt (n)

µΣ
,

where the n-th component of P(t ) is again the probability of joining the n-th shortest queue at

time-slot t , and σt (n) represents the server that has the n-th shortest queue at time-slot t .

Based on this definition, we can obtain the following two results for the general case. The first

result is the extension of Theorem 4.3 and Proposition 5.6 to the general case.

Proposition 8.2. Consider a load balancing system under a load balancing scheme such that there

is a steady-state vector Z
(ϵ )

for all ϵ > 0. Let ∆̃(ϵ ) ≜ E
[
∆
Z

(ϵ )

]
and suppose that for all ϵ > 0

∆̃(ϵ )
1
≥ ∆̃(ϵ )

2
≥ . . . ≥ ∆̃(ϵ )

N and ∆̃(ϵ )
1
, ∆̃(ϵ )

N .

Then the second moment of 


Q⊥



 in heavy-traffic is bounded, i.e.,

lim

ϵ ↓0
E

[



Q
(ϵ )
⊥






2

]
≤

1




∆̃
(ϵ )




2

1

M̂1,

where M̂1 is independent of ϵ . Moreover, if 


∆̃
(ϵ )




2

1

= ω (ϵ ), then the load balancing scheme is heavy-
traffic delay optimal.

Proof. See Appendix L □

The second result is an extension of Proposition 5.7 to the general case.

Proposition 8.3. Consider a load balancing system under a heavy-traffic delay optimal load

balancing scheme such that there is a steady-state vector Z
(ϵ )

with a bounded second moment of




Q

(ϵ )




for all ϵ > 0 . Let ∆

(ϵ )
≜ ∆

Z
(ϵ ) . If the following two conditions hold

(1) The first moment of 


Q(ϵ )
⊥




 is o( 1ϵ ).

(2) E
[
⟨µ (ϵ )σ ,⊥, P

(ϵ )
⟩

]
converges to a constant that is independent of ϵ as ϵ approaches zero.

Then the second moment of 

Q⊥

 in heavy-traffic limit can be lower bounded by

lim

ϵ ↓0
E

[



Q
(ϵ )
⊥






2

]
≥

1

E

[



∆
(ϵ )





2

1

] M̂2.
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where M̂2 is a constant independent of ϵ .

Proof. See Appendix M □

9 DISCUSSION
This paper motivates the following interesting open questions.

1. How can we generalize the framework in this paper to load balancing systems with multiple

dispatchers and data locality?

2. Does heavy-traffic delay optimality suffer from similar limitations for scheduling in distributed

systems? If so, can one develop a new metric similar to degree of queue imbalance to overcome it?

3. Is the LDPC condition necessary for heavy-traffic delay optimality? We conjecture it is not,

because it is argued heuristically in [10] that a policy with a multi-dimensional state-space collapse

(rather than the single-dimensional collapse in this paper) is still heavy-traffic delay optimal, yet it

does not satisfy LDPC.

4. How can we derive a tighter characterization of the delay performance via degree of queue

imbalance? In this paper, we have only derived an upper bound on the average delay in terms of

degree of queue imbalance.

5. In a load balancing system with heterogeneous servers, a perfect balance of the queue lengths

may not be good. As shown in [18], another policy called the shortest-expected-delay (SED) policy

is able to achieve a lower delay than that of JSQ. Different from JSQ, SED tries to maintain a balance

of the queue lengths which are weighted by the corresponding service rate. Also, the authors in [3]

showed that it helps to decrease the mean task slowdown by unbalancing the load (e.g., SITA-V

policy) when the task size distribution is heavy-tailed. Nevertheless, little has been known on how

to design delay optimal load balancing schemes with heterogeneous servers.

10 CONCLUSIONS
In this paper, we show that any load balancing scheme is heavy-traffic delay optimal as long as

in the long-term, the dispatcher favors, even slightly, shorter queues over longer queues. Thus,

the actual delay performance of a heavy-traffic delay optimal scheme could vary between being

very good to being very bad. In contrast, our proposed new metric called degree of queue imbalance
enables us to explicitly differentiate between good and poor load balancing schemes. Thus, when

designing good load balancing schemes, they should not only be heavy-traffic delay optimal, but

also have a low degree of queue imbalance.
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A MOMENTS BOUND FROM DRIFT CONDITIONS
In this paper, we will use the Lyapunov drift conditions based method developed in [4] to derive

bounded moments in steady state. The following lemma is a T -step version of Lemmas 2 and 3 in

[12]. This lemma could be proved by simply replacing the one-step transition probability to T -step
transition probability, and hence we omit the proof here.

Lemma A.1. For an irreducible aperiodic and positive recurrent Markov chain {X (t ), t ≥ 0} over a
countable state space X, which converges in distribution to X , and supposeV : X → R+ is a Lyapunov
function. We define the T time-slot drift of V at X as

∆V (X ) ≜ [V (X (t0 +T )) −V (X (t0))]I (X (t0) = X ),

where I (.) is the indicator function. Suppose for some positive finite integer T , the T time-slot drift of
V satisfies the following conditions:
• (C1) There exists an η > 0 and a κ < ∞ such that for any t0 = 1, 2, . . . and for all X ∈ X with
V (X ) ≥ κ,

E [∆V (X ) | X (t0) = X ] ≤ −η.

• (C2) There exists a constant D < ∞ such that for all X ∈ X,

P( |∆V (X ) | ≤ D) = 1.
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Then {V (X (t )), t ≥ 0} converges in distribution to a random variableV , and all moments ofV exist
and are finite. More specifically, we have for any r = 1, 2, . . .

E
[
V (X )r

]
≤ (2κ)r + (4D)r

(
D + η

η

)r
r !. (14)

B PROOFS OF LEMMA 7.1 - LEMMA 7.2
B.1 Proof of Lemma 7.1

Proof. Let us consider any two consecutive time-slots t and t + 1. We claim that |Qσt+1 (n) (t +
1) −Qσt (n) (t ) | ≤ M holds for any 1 ≤ n ≤ N , whereM = max(Amax, Smax). We prove this claim by

contradiction.

First, by the boundedness of arrival and service, we can easily see thatQσt+1 (N ) (t+1)−Qσt (N ) (t ) ≤
M . Assume that there exists a k with 1 ≤ k < N − 1 such thatQσt+1 (k ) (t + 1) −Qσt (k ) (t ) > M . Then

it directly implies that (σt+1 (1), . . . ,σt+1 (k )) cannot be a permutation of (σt (1), . . . ,σt (k )). This is
true since for any n with 1 ≤ n ≤ k , we have

Qσt (n) (t + 1) ≤ Qσt (n) (t ) +M ≤ Qσt (k ) (t ) +M, (15)

which contradicts the assumption. Hence there is at least one element of (σt (1), . . . ,σt (k )) is in
(σt+1 (k + 1), . . . ,σt+1 (N )). However, this cannot hold due to Eq. (15) and the fact that for any n
with k + 1 ≤ n ≤ N

Qσt+1 (n) (t + 1) ≥ Qσt+1 (k ) (t + 1) > Qσt (k ) (t ) +M

Therefore, we have for any k with 1 ≤ k ≤ N , Qσt+1 (k ) (t + 1) −Qσt (k ) (t ) ≤ M .

Similarly, we can easily see thatQσt+1 (1) (t+1)−Qσt (1) (t ) ≥ −M . Assume that there exists a k with

1 < k ≤ N such that Qσt+1 (k ) (t + 1) −Qσt (k ) (t ) < −M . Then it implies that (σt+1 (k ), . . . ,σt+1 (N ))
cannot be a permutation of (σt (k ), . . . ,σt (N )). This holds since for any k ≤ n ≤ N

Qσt (n) (t + 1) ≥ Qσt (n) (t ) −M ≥ Qσt (k ) (t ) −M, (16)

which contradicts the assumption. Hence there is at least one element of (σt (k ), . . . ,σt (N )) is in
(σt+1 (1), . . . ,σt+1 (k − 1)). However, this cannot hold due to Eq. (16) and the fact that for any n
with 1 ≤ n ≤ k − 1

Qσt+1 (n) (t + 1) ≤ Qσt+1 (k ) (t + 1) < Qσt (k ) (t ) −M

Therefore, we have for any k with 1 ≤ k ≤ N , Qσt+1 (k ) (t + 1) −Qσt (k ) (t ) ≥ −M . Hence, we have

proved the claim, which directly implies the conclusion of this lemma. □

B.2 Proof of Lemma 7.2
Proof. Let fT ≜

1

T

(∑t0+T−1
t=t0 ∆n (t ) | Z (t0)

)
, then we have

lim

T→∞

1

T
E



t0+T−1∑
t=t0

∆n (t ) | Z (t0)


= lim

T→∞
E [fT ]

(a)
= ∆̃n

where (a) is the result of dominated convergence theorem since fT → ∆̃n almost surely by the

ergodicity of the Markov chain {η(t ), t ≥ 0} (independent of Q(t )) and | fT | ≤ 1 as |∆n (t ) | ≤ 1. □
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C PROOF OF PROPOSITION 7.3
Before we prove Proposition 7.3, we first introduce the following lemma.

Lemma C.1. For any t ≥ 0, we have



Q(t + 1)

2 − 

Q(t )

2 ≤ 2⟨Q(t ),A(t ) − S(t )⟩ + L (17)

where L is a finite constant.

Proof. Consider the left-hand-side (LHS) of Eq. (17).

LHS = 

Q(t ) + A(t ) − S(t ) + U(t )

2 − 

Q(t )

2

(a)
≤ 

Q(t ) + A(t ) − S(t )

2 − 

Q(t )

2

= 2⟨Q(t ),A(t ) − S(t )⟩ + ∥A(t ) − S(t )∥2

(b )
≤ 2⟨Q(t ),A(t ) − S(t )⟩ + L

where inequality (a) holds as [max(a, 0)]2 ≤ a2 for anya ∈ R; in inequality (b),L ≜ N max(Amax, Smax)
2

holds due to the assumptions that AΣ (t ) ≤ Amax and Sn (t ) ≤ Smax for all t ≥ 0 and all 1 ≤ n ≤ N ,

and the fact that they are both independent of the queue lengths. □

Now we are ready to present the proof of Proposition 7.3.

Proof of Proposition 7.3. We first show that the Markov chain {Z (t ) = (Q(t ),η(t )), t ≥ 0} is

irreducible and aperiodic. LetM denote the finite set for the policy spaces of the irreducible and

aperiodic chain {η(t ), t ≥ 0}. Let Z (0) = (Q(0),η(0)) = (0N×1,η0) for some η0 ∈ M, and the state

space S ⊂ NN ×M consists of all the states that can be reached from the initial state, where N
is the set of nonnegative integers. Then the chain is irreducible because for any state Z in the

state space, the Markov chain is capable of reaching the initial state within a finite step if there are

no exogenous arrivals and all the service is at least one during each time-slot, which can happen

with a positive probability under our assumptions. The chain is also aperiodic since the transition

probability from the initial state to itself is positive.

To prove positive recurrence, we will adopt the Foster-Lyapunov theorem. Specifically, it is

sufficient to find a Lyapunov function and a positive constant T such that the expected drift in T
time-slots is bounded within a finite subset of the state space and negative outside this subset.

To that end, it is advantageous to work with quadratic Lyapunov functionW (Z ) ≜ 

Q

2 in
this case since {η(t ), t ≥ 0} is a finite Markov chain. Then for any time-slot t0, the T time-slot
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conditional mean drift ofW (Z ) is given by

E [W (Z (t0 +T )) −W (Z (t0)) | Z (t0)]

=E
[

Q(t0 +T )

2 − 

Q(t0)

2 | Z (t0)

]

=E


t0+T−1∑
t=t0

(

Q(t + 1)

2 − 

Q(t )

2) | Z (t0)


(a)
≤E



t0+T−1∑
t=t0

2⟨Q(t ),A(t ) − S(t )⟩ + L | Z (t0)


(b )
= 2

t0+T−1∑
t=t0

E [E [⟨Q(t ),A(t ) − S(t )⟩ | Z (t )] | Z (t0)] + LT

(c )
=2

t0+T−1∑
t=t0

E


N∑
n=1

Qσn (t ) (t )
(
∆n (t )λΣ − ϵ

1

N

)
| Z (t0)


+ LT

(d )
≤ 2E



N∑
n=1

Qσn (t0 ) (t0)
t0+T−1∑
t=t0

(
∆n (t )λΣ − ϵ

1

N

)
| Z (t0)


+ K1

(18)

where (a) comes from Lemma C.1; (b) follows from the tower property of conditional expectation

and the fact that Q(t ), A(t ) and S(t ) are conditionally independent of Z (t0) when given Z (t ); (c)
follows from the assumption that the servers are homogeneous with rate µ; (d) follows from Lemma

7.1 and K1 ≜ LT + 2µNT 2
max(Amax, Smax) (N + 1).

Now from Lemma 7.2, we can conclude that for any ϵ1 > 0, there exists a Tn for each n such that

for any T > Tn

1

T
E



t0+T−1∑
t=t0

∆n (t ) | Z (t0)

≤ ∆̃n + ϵ1.

Hence, choose ϵ1 <
ϵ

N 2µ and forT > max(T1,T2, . . . ,TN ), Eq. (18) can be further upper bounded as

follows

E [W (Z (t0 +T )) −W (Z (t0)) | Z (t0)]

≤2T *
,
λΣ

N∑
n=1

Qσn (t0 ) (t0)∆̃n + λΣϵ1 

Q(t0)

1 −
ϵ

N


Q(t0)

1+

-
+ K1

(a)
≤ 2T 

Q(t0)

1

(
λΣϵ1 −

ϵ

N

)
+ K1

(b )
= − 2θT 

Q(t0)

1 + K1

(c )
≤ − 2θT 

Q(t0)

 + K1 (19)

where (a) comes from

∑N
n=1Qσt

0
(n) (t0)∆̃n ≤ 0. This holds due to the monotonicity ofQσn (t0 ) (t0) and

∆̃n , and the fact that

∑N
n=1 ∆̃n = 0; (b) follows from θ ≜ ϵ

N − λΣϵ1, which is positive by our choice

of ϵ1; (c) holds since ∥x∥1 ≥ ∥x∥ for any x ∈ RN . Therefore, by the Foster-Lyapunov theorem, we

conclude that the Markov chain {Z (t ), t ≥ 0} is positive recurrent, and hence ergodic.

Having established the ergodicity, we can now turn to apply Lemma A.1 to show that all

the moments of


Q

 are upper bounded. In particular, let us consider the Lyapunov function

V (Z ) ≜ 

Q

, and try to show that it satisfies the two conditions (C1) and (C2) in Lemma A.1.
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For condition (C1), we have

E [∆V (Z ) | Z (t0) = Z ]

=E [

Q(t0 +T )

 − 

Q(t0)

 | Z (t0) = Z ]

=E

[√


Q(t0 +T )

2 −

√


Q(t0)

2 | Z (t0) = Z

]

(a)
≤

1

2


Q(t0)



E
[

Q(t0 +T )

2 − 

Q(t0)

2 | Z (t0) = Z

]

(b )
≤ −Tθ +

K1

2


Q(t0)



where (a) follows from the fact that f (x ) =
√
x is concave; (b) comes from the upper bound in Eq.

(19). Hence, (C1) in Lemma A.1 is verified.

For Condition (C2), we have

|∆V (Z ) | = | 

Q(t0 +T )

 − 

Q(t0)

 |I (Z (t0) = Z )

(a)
≤ 

Q(t0 +T ) − Q(t0)

I (Z (t0) = Z )

(b )
≤ T
√
N max(Amax, Smax)

where (a) follows from the fact that | ∥x∥ − 

y

 | ≤ 

x − y

 holds for any x, y ∈ RN ; (b) holds due
to the assumptions that the AΣ (t ) ≤ Amax and Sn (t ) ≤ Smax for all t ≥ 0 and all 1 ≤ n ≤ N , and

independent of the queue length. This verifies Condition (C2) and hence completes the proof of

Proposition 7.3. □

D PROOF OF PROPOSITION 7.4
Before we present the proof of Proposition 7.4, we first introduce the following useful result on

unused service in load balancing system.

Lemma D.1. For any ϵ > 0 and t ≥ 0, we have

Q (ϵ )
n (t + 1)U (ϵ )

n (t ) = 0.

Moreover, if the system has a finite first moment, then we have for some constants c1 and c2

E

[



U
(ϵ )





2

1

]
≤ c1ϵ and E

[



U
(ϵ )





2

]
≤ c2ϵ

Proof. According to the queues dynamic in Eq. (1), we can see that when Un (t ) is positive,

Qn (t + 1) must be zero, which directly implies the result Q (ϵ )
n (t + 1)U (ϵ )

n (t ) = 0 for any ϵ > 0,

1 ≤ n ≤ N and t ≥ 0. Then, let us consider the Lyapunov functionW1 (Z (t )) ≜ 

Q(t )

1. Since the
system has a finite first moment, the mean drift ofW1 (Z ) is zero in steady state, which gives

E
[



U

(ϵ )



1

]
= ϵ .

Then, due to the fact thatUn (t ) ≤ Smax for all 1 ≤ n ≤ N and t ≥ 0, we have





U
(ϵ )





2

≤ Smax





U
(ϵ )



1

,

which implies that c2 = Smax. Note that





U
(ϵ )





2

1

≤ N




U

(ϵ )




2

, which gives c1 = NSmax. □

Now we are well prepared for the proof of Proposition 7.4.
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Proof of Proposition 7.4. Let us consider the Lyapunov function V1 (Z (t )) ≜ 

Q(t )

21, and the

corresponding conditional mean drift is given by

E [V1 (Z (t + 1)) −V1 (Z (t )) | Z (t ) = Z ]

=E
[

Q(t + 1)

21 − 

Q(t )

21 | Z (t ) = Z

]

=E
[(

Q(t )

1 + ∥A(t )∥

1
− ∥S(t )∥

1
+ ∥U(t )∥

1

)
2

| Z (t ) = Z
]

− E
[

Q(t )

21 | Z (t ) = Z

]

=E
[
2



Q

1 (∥A∥1 − ∥S∥1) + (∥A∥
1
− ∥S∥

1
)2

+ 2

(

Q

1 + ∥A∥1 − ∥S∥1
)
∥U∥

1
+ ∥U∥2

1
| Z (t ) = Z

]

=E
[
2



Q

1 (∥A∥1 − ∥S∥1) + (∥A∥
1
− ∥S∥

1
)2

+ 2


Q(t + 1)

1 ∥U∥1 − ∥U∥21 | Z (t ) = Z

]
(20)

Under the assumption that the second moment of


Q

 is bounded in steady state, we have the

mean drift of V1 (Z ) is zero in steady state. Taking expectation of both sides of Eq. (20) with respect

to the steady-state distribution Z
(ϵ )
, yields

ϵE


N∑
n=1

Q
(ϵ )
n


=

ζ (ϵ )

2

+ E
[



Q

(ϵ )
(t + 1)





1




U

(ϵ )
(t )





1

]
−
1

2

E

[



U
(ϵ )





2

1

]
(21)

where ζ (ϵ ) = (σ (ϵ )
Σ )2 + ν2Σ + ϵ

2
. Then by utilizing the property of unused service shown in Lemma

D.1, we have

ζ (ϵ )

2

+ B
(ϵ )
−
1

2

c1ϵ ≤ ϵE


N∑
n=1

Q
(ϵ )
n


≤

ζ (ϵ )

2

+ B
(ϵ )
,

in which B
(ϵ )
≜ E

[



Q
(ϵ )

(t + 1)




1





U
(ϵ )

(t )




1

]
. Since ζ (ϵ )

converges to ζ , from the inequality above

and the definition of heavy-traffic delay optimality, we can easily see that the sufficient and

necessary condition is limϵ ↓0 B
(ϵ )
= 0, which completes the proof. □

E PROOF OF PROPOSITION 7.5
Before we prove Proposition 7.5, we first define the following Lyapunov functions and their

corresponding drifts.

V⊥ (Z ) ≜ 

Q⊥

 ,W (Z ) ≜ 

Q

2 andW∥ (Z ) ≜ 

Q∥

2

with the corresponding T time-slot drift given by

∆V⊥ (Z ) ≜ [V⊥ (Z (t0 +T )) −V⊥ (Z (t0))]I (Z (t0) = Z )

∆W (Z ) ≜ [W (Z (t0 +T )) −W (Z (t0))]I (Z (t0) = Z )

∆W∥ (Z ) ≜ [W∥ (Z (t0 +T )) −W∥ (Z (t0))]I (Z (t0) = Z )

Note that Lemma C.1 provides a upper bound on the drift ofW (Z ) forT = 1. Similarly, the following

lemma provides a lower bound on the drift ofW∥ (Z ) for T = 1.

Lemma E.1. For any t ≥ 0, we have



Q∥ (t + 1)

2 − 

Q∥ (t )

2 ≥ 2⟨Q∥ (t ),A(t ) − S(t )⟩.
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Proof.



Q∥ (t + 1)

2 − 

Q∥ (t )

2

=2⟨Q∥ (t ),Q∥ (t + 1) − Q∥ (t )⟩ + 

Q∥ (t + 1) − Q∥ (t )

2

≥2⟨Q∥ (t ),Q∥ (t + 1) − Q∥ (t )⟩
=2⟨Q∥ (t ),Q(t + 1) − Q(t )⟩ − 2⟨Q∥ (t ),Q⊥ (t + 1) − Q⊥ (t )⟩
(a)
≥ 2⟨Q∥ (t ),Q(t + 1) − Q(t )⟩

(b )
≥ 2⟨Q∥ (t ),A(t ) − S(t )⟩

where the inequality (a) is true because ⟨Q∥ (t ),Q⊥ (t )⟩ = 0 and ⟨Q⊥ (t + 1),Q∥ (t )⟩ = 0; (b) follows

from the fact that all the components of Q∥ (t ) and U(t ) are nonnegative. □

Based on the bounds onW (Z ) andW∥ (Z ), we are able to bound the drift of V⊥ (Z ) as follows.

Lemma E.2. For any t0 ≥ 0 and Z ∈ S, we have

E [∆V⊥ (Z ) | Z (t0) = Z ]

≤
1

2


Q⊥ (t0)



E


t0+T−1∑
t=t0

(2⟨Q⊥ (t ),A(t ) − S(t )⟩ + L) | Z (t0) = Z


Proof. Let us define Ψ(t ) ≜ 

Q(t + 1)

2 − 

Q(t )

2 and Ψ∥ (t ) ≜ 

Q∥ (t + 1)

2 − 

Q∥ (t )

2, then

E [∆V⊥ (Z ) | Z (t0) = Z ]

(a)
≤

1

2


Q⊥ (t0)



E
[
∆W (Z ) − ∆W∥ (Z ) | Z (t0) = Z

]
=

1

2


Q⊥ (t0)



E


t0+T−1∑
t=t0

Ψ(t ) − Ψ∥ (t ) | Z (t0 = Z )


(b )
≤

1

2


Q⊥ (t0)



E


t0+T−1∑
t=t0

(2⟨Q⊥ (t ),A(t ) − S(t )⟩ + L) | Z (t0) = Z


where (a) is a natural extension of Lemma 7 in [4], which can be easily proved via the concavity of

root function; (b) follows directly from Lemmas C.1 and E.1. □

Now we get ready to present the proof of Proposition 7.5.

Proof of Proposition 7.5. To show the bounded moments of


Q⊥

, we will again verify the

two conditions in Lemma A.1 when applied to the Lyapunov function V⊥ (Z ) ≜ 

Q⊥

.
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For condition (C2), we have

|∆V⊥ (Z ) |

=| 

Q⊥ (t0 +T )

 − 

Q⊥ (t0)

 |I (Z (t0) = Z )

(a)
≤ 

Q⊥ (t0 +T ) − Q⊥ (t0)

I (Z (t0) = Z )

= 

Q(t0 +T ) − Q∥ (t0 +T ) − Q(t0) + Q∥ (t0)

I (Z (t0) = Z )

(b )
≤ 

Q(t0 +T ) − Q(t0)

 + 

Q∥ (t0 +T ) − Q∥ (t0)

I (Z (t0) = Z )

(c )
≤2 

Q(t0 +T ) − Q(t0)

I (Z (t0) = Z )

(d )
≤ 2T
√
N max(Amax, Smax) (22)

where (a) follows from the fact that | ∥x∥ −

y

 | ≤ 

x − y

 holds for any x, y ∈ RN ; (b) follows from
the triangle inequality; (c) holds due to the non-expansive property of projection onto a convex

set. (d) holds due to the assumptions that the AΣ (t ) ≤ Amax and Sn (t ) ≤ Smax for all t ≥ 0 and all

1 ≤ n ≤ N , and are both independent of queue lengths. This verifies Condition (C2) in Lemma A.1.

For condition (C1), by Lemma E.2, we will first focus on the inner product between Q⊥ (t ) and
A(t ) − S(t ).

t0+T−1∑
t=t0

E [⟨Q⊥ (t ),A(t ) − S(t )⟩ | Z (t0) = Z ]

(a)
=

t0+T−1∑
t=t0

E [E [⟨Q⊥ (t ),A(t ) − S(t )⟩ | Z (t )] | Z (t0) = Z ]

(b )
=

t0+T−1∑
t=t0

E [E [⟨Q⊥ (t ),A(t )⟩ | Z (t )] | Z (t0) = Z ]

(c )
=λΣ

t0+T−1∑
t=t0

E


N∑
n=1

(
Qσn (t ) (t ) −Qavg (t )

) (
∆n (t ) +

1

N

)
| Z (t0) = Z


(d )
= λΣE



N∑
n=1

t0+T−1∑
t=t0

Qσn (t ) (t )∆n (t ) | Z (t0) = Z


(e )
≤λΣE



N∑
n=1

Qσn (t0 ) (t0)
t0+T−1∑
t=t0

∆n (t ) | Z (t0) = Z

+ K

(f )
= λΣ

N∑
n=1

(
Qσn (t0 ) (t0) −Qavg (t0)

)
E



t0+T−1∑
t=t0

∆n (t ) | Z (t0) = Z

+ K ,

where (a) follows from the tower property of conditional expectation and the fact that Q(t ), A(t )
and S(t ) are conditionally independent of Z (t0) when given Z (t ). (b) holds because the servers are
assumed to be homogeneous; (c) follows from the definition of the dispatching preference ∆(t ); (d)
holds since

∑N
n=1 (Qσn (t ) (t ) −Qavg (t )) = 0 and

∑N
n=1 ∆n (t ) = 0; (e) follows from Lemma 7.1 and the

constant K ≜ µΣNT
2
max(Amax, Smax); (f) is true since

∑N
n=1 ∆n (t ) = 0 for all t ≥ 0 and Qavg (t0) is

the average queue length at time-slot t0.
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Now from Lemma 7.2, we have for any ϵ1 > 0 there exists aTn for each n such that for allT > Tn

∆̃n − ϵ1 ≤
1

T
E



t0+T−1∑
t=t0

∆n (t ) | Z (t0)

≤ ∆̃n + ϵ1. (23)

Let Q (n)
⊥ (t0) ≜ Qσn (t0 ) (t0) −Qavg (t0) and T > max (T1,T2, . . . ,TN ), then

t0+T−1∑
t=t0

E [⟨Q⊥ (t ),A(t ) − S(t )⟩ | Z (t0) = Z ]

≤λΣ

N∑
n=1

Q (n)
⊥ (t0)E



t0+T−1∑
t=t0

∆n (t ) | Z (t0) = Z

+ K

(a)
≤ λΣT

N∑
n=1

Q (n)
⊥ (t0)

(
∆̃n +

(
2I

(
Q (n)
⊥ (t0) ≥ 0

)
− 1

)
ϵ1

)
+ K

≤λΣT *
,

N∑
n=1

Q (n)
⊥ (t0)∆̃n + ϵ1 

Q⊥ (t0)

1+

-
+ K , (24)

in which (a) comes from Eq. (23). Now, let us turn to analyze the term

∑N
n=1Q

(n)
⊥ (t0)∆̃n . Note that

LDPC condition, i.e., ∆̃1 ≥ ∆̃2 ≥ · · · ≥ ∆̃N and ∆̃1 , ∆̃N , implies that ∆̃1 > 0 and |∆̃N | > 0 since∑N
n=1 ∆̃n = 0. Moreover, we have

N∑
n=1

Q (n)
⊥ (t0)∆̃n

(a)
=

N∑
n=1

Qσt
0
(n) (t0)∆̃n

(b )
≤ −min

(
|∆̃1 |, |∆̃N |

) (
Qσt

0
(N ) (t0) −Qσt

0
(1) (t0)

)
(c )
≤ −δ 

Q⊥ (t0)

1 (25)

where (a) follows

∑N
n=1 ∆̃n = 0; (b) comes from the monotonicity of both Qσt

0
(n) (t0) and ∆̃n , as

well as the fact that

∑N
n=1 ∆̃n = 0; (c) is true since



Q⊥ (t0)

1 ≤ N
(
Qσt

0
(N ) (t0) −Qσt

0
(1) (t0)

)
and

δ ≜ 1

N min{|∆̃1 |, |∆̃N |} > 0, which is independent of ϵ . Now combining Eq. (24) with Eq. (25), yields

t0+T−1∑
t=t0

E [⟨Q⊥ (t ),A(t ) − S(t )⟩ | Z (t0) = Z ]

≤λΣT
(
−δ 

Q⊥ (t0)

1 + ϵ1 

Q⊥ (t0)

1

)
+ K

≤ − λΣT (δ − ϵ1) 

Q⊥ (t0)

 + K

which holds since ∥x∥
1
≥ ∥x∥ for any x ∈ RN . Choose ϵ1 = δ

2
> 0, then for all ϵ ≤

µΣ
2
, we can find

a finite T such that

t0+T−1∑
t=t0

E [⟨Q⊥ (t ),A(t ) − S(t )⟩ | Z (t0) = Z ] ≤ −η1 

Q⊥ (t0)

 + K ,

in which η1 ≜
Tδ µΣ

4
. Now substituting the inequality above into the upper bound in Lemma E.2, we

conclude that

E [∆V⊥ (Z ) | Z (t0) = Z ] ≤ −η1 +
K2



Q⊥ (t0)


(26)
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where K2 ≜ K + LT
2

and η1 are both independent of ϵ . Hence, by Lemma A.1, we have all the

moments of



Q(ϵ )
⊥




 in steady state are bounded by a constant independent of ϵ when ϵ ≤
µΣ
2
.

Finally, we will show that bounded second moment of


Q⊥

 implies that Eq. (7) holds. Note that

the left-hand-side of Eq. (7) can be upper bounded as follows

E
[



Q

(ϵ )
(t + 1)





1




U

(ϵ )
(t )





1

]

(a)
=NE

[
⟨U

(ϵ )
(t ),−Q

(ϵ )
⊥ (t + 1)⟩

]

(b )
≤N

√
E

[



U
(ϵ )
⊥ (t )






2

]
E

[



Q
(ϵ )
⊥ (t + 1)






2

]

(c )
=N

√
E

[



U
(ϵ )
⊥ (t )






2

]
E

[



Q
(ϵ )
⊥ (t )






2

]

(d )
≤N

√
c2ϵE

[



Q
(ϵ )
⊥ (t )






2

]
(27)

where (a) comes from the property Q (ϵ )
n (t + 1)U (ϵ )

n (t ) = 0 for all 1 ≤ n ≤ N and all t ≥ 0 in

Lemma D.1 and the definition of Q⊥; (b) holds due to Cauchy-Schwartz inequality; (c) is true since

the distributions of Q
(ϵ )
⊥ (t + 1) and Q

(ϵ )
⊥ (t ) are the same in steady state. Therefore, given that

E

[



Q
(ϵ )
⊥ (t )






2

]
is bounded by a constant independent of ϵ , Eq. (7) directly holds, which establishes

heavy-traffic delay optimality. □

F PROOF OF PROPOSITION 5.6
Proof. Recall Eq. (26) in the proof of Proposition 7.5, we have for all ϵ ≤

µΣ
2

E [∆V⊥ (Z ) | Z (t0) = Z ] ≤ −η1 +
K2



Q⊥ (t0)



where K2 ≜ K + LT
2

and η1 ≜
Tδ µΣ

4
. Now we take a closer look at δ = 1

N min{|∆̃1 |, |∆̃N |}, which can

be further lower bounded by




∆̃



1

2N 2
. This is true since




∆̃



1 ≤ 2N |∆̃1 | and




∆̃



1 ≤ 2N |∆̃N |, which

comes from the fact that ∆̃1 ≥ ∆̃2 ≥ · · · ≥ ∆̃N and

∑N
n=1 ∆̃n = 0.

Therefore, based on Eq. (22) and the equation above, we can conclude that the drift of V⊥ (Z )
satisfies conditions (C1) and (C2) in Lemma A.1 with

κ =
2K2

η1

η =




∆̃



1T µΣ
16N 2

D = 2T
√
N max(Amax, Smax)
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Hence, substituting these three equalities into Eq. (14) in Lemma A.1, yields

E

[



Q
(ϵ )
⊥






2

]
≤ (2κ)2 + (4D)2

(
D + η

η

)
2

2!

≤
1




∆̃




2

1

*
,
4H 2

1
+ 2H 2

2

(
D +

T µΣ
16N

)
2

+
-

≤
1




∆̃




2

1

M1 (28)

for all ϵ ≤
µΣ
2
, inwhichH1 ≜

8N 2 (2K+LT )
T µΣ

andH2 ≜
64DN 2

T µΣ
andM1 ≜ 2max

(
16N 2 (2K+LT )

T µΣ
, 4
√
2DN

(
1 + 16DN

T µΣ

))2
.

HenceM1 is independent of ϵ , which completes the proof. □

G PROOF OF LEMMA 5.2
Proof. By Proposition 7.3, we have the second moment of



Q

 in steady-state is bounded under

LDPC. Hence, it follows from Eqs. (20) and (21) that

E


N∑
n=1

Q
(ϵ )
n


≤

ζ (ϵ )

2ϵ
+
1

ϵ
E

[



Q
(ϵ )

(t + 1)




1





U
(ϵ )

(t )




1

]

(a)
≤

ζ (ϵ )

2ϵ
+
N

ϵ

√
c2ϵE

[



Q
(ϵ )
⊥ (t )






2

]

(b )
=

ζ (ϵ )

2ϵ
+M

√
Degree of Queue Imbalance

ϵ
(29)

where (a) follows from Eq. (27) and ζ (ϵ ) ≜ (σ (ϵ )
Σ )2 + ν2Σ; (b) results from the definition of degree of

queue imbalance andM ≜
√
c2N 2

. Note that, the Corollary 5.5 follows directly from Eq. (28) and

Little’s Law. □

H PROOF OF PROPOSITION 6.1
Proof of (1). By definition, we have ∆(d )

n = P (d )
n −

1

N , in which P (d )
n of power-of-d is given by

P (d )
n =

(
N − n

d − 1

) / (
N

d

)
=

d

N

d−1∏
j=1

(
1 −

n − 1

N − j

)
.

For the upper bound, we are interested in the index n such that ∆(d )
n ≥ 0, i.e., P (d )

n ≥ 1

N . Note that

P (d )
n is non-increasing and P (d )

n ≥ d
N

(
1 − n

N−d

)d
for all n. Then it follows that ∆(d )

n ≥ 0 for all

n ≤ n∗, where n∗ satisfies

d

(
1 −

n∗

N − d

)d
= 1,

which gives n∗ =
(
1 − d−1/d

)
(N − d ). Hence, by the property that

∑N
n=1 ∆

(d )
n = 0 and min(∆(d )

n , 1 ≤

n ≤ N ) = − 1

N , we have




∆
(d )


1 ≤ 2

1

N
(N − n∗) = 2

(
1

d

)1/d
+

2

N

(
1 −

(
1

d

)1/d )
d, (30)

which converges to 2

(
1

d

)
1/d

as N → ∞.
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For the lower bound, we are interested in the index n such that P (d )
n ≤ ε

N for some positive

constant ε < 1. Note that P (d )
n ≤ d

N

(
1 − n−1

N−1

)d−1
and it is non-increasing. It follows that P (d )

n ≤ ε
N

for all n ≥ n̂, where n̂ satisfies equation

d

(
1 −

n̂ − 1

N − 1

)d−1
= ε,

which gives n̂ = (N − 1)
(
1 −

(
ε
d

) 1

d−1
)
+ 1. Hence, since ∆(d )

n is non-increasing and its sum is zero,

we have




∆
(d )


1 ≥ 2

1 − ε

N
(N − n̂) = 2

( ε
d

) 1

d−1
(1 − ε ) − 2

(
ε
d

) 1

d−1

N
(1 − ε ), (31)

which converges to 2

(
ε
d

) 1

d−1 (1 − ε ) as N → ∞. This lower bound obtains its maximal value

2
d−1
d

(
1

d2

) 1

d−1
at ε = 1

d . Note that ε =
1

d < 1 for all d ≥ 2. Hence, this completes the proof for the

assertion in (1). □

Proof of (2). First, it is easy to see that limN→∞



∆

(N )


1 = 2. This is simply true since



∆

(N )


1 =
2(N−1)

N .

To show that limN→∞



∆

(d )


1 = 2, we are interested in the index n such that P (d )
n ≤ ε

N for some

fixed 0 < ε < 1 when N is large enough. And again note that P (d )
n ≤ d

N

(
1 − n−1

N−1

)d−1
, it suffices to

consider the n such that

d
(
1 −

n − 1

N − 1

)d−1
≤ ε (32)

holds when N is large enough. In particular, let us consider the case where n is a linear function

of N that is defined as n(α ) = αN + 1 − α for some constant 0 < α < 1. Substituting it into the

left-hand-side of Eq. (32), yields

d

(
1 −

n(α ) − 1

N − 1

)d−1
= d (1 − α )d−1 ,

which converges to zero as N → ∞ since d (N ) → ∞. As a result, for a sufficient large N , P (d )
n ≤ ε

N

for all n ≥ n(α ) since P (d )
n is non-increasing. Hence, by the property that the sum of ∆(d )

n is zero,

we obtain for a sufficient large N




∆
(d )


1 ≥ 2 (N − n(α ))

1 − ε

N
= 2 ((1 − α )N + α − 1)

1 − ε

N
, (33)

which converges to 2(1 − α ) (1 − ε ) as N → 0. Since Eq. (33) holds for arbitrary 0 < ε < 1 and

arbitrary 0 < α < 1, it directly follows limN→∞



∆

(d )


1 = 2, which finishes the proof for assertion

(2). □

I PROOF OF PROPOSITION 6.2
The following two lemmas will be the basis for the proof of Proposition 6.2.

Lemma I.1. If limN→∞ d (N ) = ∞ and d (N ) = o(N ),

log
*.
,




∆
(d )


1 − 2α
2 − 2α

+/
-
≤ Θ

(
−
logd

d

)
holds for any α ∈ (0, 1).
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Proof. See Appendix K.1 □

Lemma I.2. If limN→∞ d (N ) = ∞,

log
*.
,




∆
(d )


1
2

+/
-
≥ Θ

(
−
logd

d

)
.

Proof. See Appendix K.2 □

Now, we are ready to prove Proposition 6.2.

Proof of Proposition 6.2. By Lemma I.1, for a large enough d , we have

log
*.
,




∆
(d )


1 − 2α
2 − 2α

+/
-
≤ −c1

logd

d
,

holds for some constant c1 > 0. This implies that




∆
(d )


1 − 2α
2 − 2α

≤ 1 − c1
logd

d
+ o

(
−
logd

d

)
.

Multiplying both sides by 2 − 2α and rearranging it, yields,

2 −



∆

(d )


1 ≥ (2 − 2α )

(
c1
logd

d
+ o

(
logd

d

))
= Θ

(
logd

d

)
.

By Lemma I.2, for a large enough d , we have




∆
(d )


1
2

≥

(
1 − c2

logd

d
+ o

(
−
logd

d

))
,

which directly implies

2 −



∆

(d )


1 ≤ Θ

(
logd

d

)
.

Hence, this completes the proof. □

J PROOF OF COROLLARY 6.3
Proof of (1). By Proposition 6.2, we have

2 −



∆

(d )


1 ≤ C
logd

d

for some constant C > 0 when d ≥ d0. Let K = 2C and d = K 1

ϵ log
1

ϵ , then there exists a ϵ0 such
that d ≥ d0 for all ϵ ≤ ϵ0 and hence

2 −



∆

(d )


1 ≤ ϵ
logK + log 1

ϵ + log log
1

ϵ

2 log
1

ϵ

.

Thus, there exists a ϵ1 such that for any ϵ < ϵ1, the right-hand-side of the inequality above is strictly
less than one. Take ϵ∗ = min(ϵ0, ϵ1), we have completed the proof of (1). □

Proof of (2). Similarly, by Proposition 6.2, we have

2 −



∆

(d )


1 ≥ C
logd

d
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for some constant C > 0 when d ≥ d0. If d = O
(
1

ϵ

(
log

1

ϵ

) (1−γ ))
, then there exists a K and ϵ1 > 0

such that d ≤ K 1

ϵ log
1

ϵ
(1−γ )

for all ϵ < ϵ1. Choose ϵ2 < ϵ1 such that for all ϵ < ϵ2, d ≥ d0. Then, we
have for any ϵ < ϵ2,

2 −



∆

(d )


1 ≥ ϵ
C (logK + log 1

ϵ + (1 − γ ) log log 1

ϵ )

K (log 1

ϵ )
(1−γ )

,

which is strictly larger than ϵ for some ϵ3 > 0. Take ϵ∗ = min(ϵ2, ϵ3), we have completed the proof

of (2). □

K PROOF OF LEMMA I.1 AND LEMMA I.2
K.1 Proof of Lemma I.1

Proof. From Eq. (30), we have




∆
(d )


1 ≤ 2

(
d

N

(
1 −

(
1

d

)1/d )
+

(
1

d

)1/d )
For any α ∈ (0, 1), since d = o(N ), we can find a N0 and d0 such that for all N ≥ N0 and d ≥ d0,
d
N ≤ α is always true. Hence, we have




∆
(d )


1 − 2α ≤ 2

(
1

d

)1/d
(1 − α ) ,

which directly implies the result, hence completing the proof. □

K.2 Proof of Lemma I.2
Proof. From Eq. (31), we have




∆
(d )


1 ≥ 2

( ε
d

) 1

d−1
(1 − ε )

(
1 −

1

N

)
.

The right-hand-side achieves its maximal value at ϵ = 1

d , which gives




∆
(d )


1 ≥ 2

(
1

d2

) 1

d−1
(
1 −

1

d

) (
1 −

1

N

)
≥ 2

(
1

d2

) 1

d−1
(
1 −

1

d

)2
,

which comes from the fact that 2 ≤ d ≤ N . Thus, we have

log
*.
,




∆
(d )


1
2

+/
-
≥ 2 log

(
1 −

1

d

)
−

2

d − 1
logd

(a)
= 2

(
−
1

d
+ o

(
−
1

d

))
−

2

d − 1
logd

= Θ

(
−
logd

d

)
(34)

where (a) comes from the fact that d (N ) → ∞. □
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L PROOF OF PROPOSITION 8.2
Proof. The proof of Proposition 8.2 follows the same idea in the proof of Theorem 4.3. In

particular, to show that the second moment of



Q⊥




 in heavy-traffic limit is bounded, we would

again verify the two conditions (C1) and (C2) in Lemma A.1 for V⊥ (Z ) ≜ 

Q⊥

.
For condition (C2), it follows exactly the same as in the proof of Proposition 7.5, that is,

|∆V⊥ (Z ) | ≤ 2T
√
N max(Amax, Smax). (35)

For condition (C1), we have

t0+T−1∑
t=t0

E [⟨Q⊥ (t ),A(t ) − S(t )⟩ | Z (t0) = Z ]

=

t0+T−1∑
t=t0

E [E [⟨Q⊥ (t ),A(t ) − S(t )⟩ | Z (t )] | Z (t0) = Z ]

(a)
=

t0+T−1∑
t=t0

E


N∑
n=1

Q (n)
⊥ (t )

(
λΣ∆n (t ) − ϵ

µσn (t )

µΣ

)
| Z (t0) = Z



≤

t0+T−1∑
t=t0

E


N∑
n=1

Q (n)
⊥ (t )λΣ∆n (t ) + ϵ 

Q⊥ (t )

1 | Z (t0) = Z


(b )
≤ λΣ

N∑
n=1

Q (n)
⊥ (t0)E



t0+T−1∑
t=t0

∆n (t ) | Z (t0) = Z

+T
√
Nϵ 

Q⊥ (t0)

 + K̂ ,

(c )
≤ −T

*.
,
λΣ

*.
,




∆̃



1

2N 2
− ϵ1

+/
-
−
√
Nϵ+/

-


Q⊥ (t0)

1 + K̂

where (a) follows from the definition of ∆(t ) for the general case and Q (n)
⊥ (t ) ≜ Qσn (t ) (t ) −Qavg (t );

(b) results from the first inequality in Eq. (24) and the bounded drift in condition (C2). As a result,

K̂ ≜ µΣNT
2
max(Amax, Smax) + 2ϵNT

2
max(Amax, Smax); (c) comes from Eqs. (24) and (25) and the

fact that ∥x∥ ≤ ∥x∥
1
for all x in RN .

We choose ϵ1 =




∆̃



1

4N 2
> 0, then for all ϵ ≤ ϵ0 =

µΣ



∆̃




1

2

(


∆̃


1

+4N 2

√
N

) we have

t0+T−1∑
t=t0

E [⟨Q⊥ (t ),A(t ) − S(t )⟩ | Z (t0) = Z ] ≤ −η̂1 

Q⊥ (t0)

 + K̂ ,

in which η̂1 ≜
µΣT




∆̃



1

8N 2
. The rest of the proof follows exactly the same as in proof of Proposition

5.6. In particular, we have for all ϵ ≤ ϵ0

E

[



Q
(ϵ )
⊥






2

]
≤

1




∆̃
(ϵ )




2

1

M̂1 (36)

in which M̂1 is independent of ϵ but ∆̃ is not in general, which highlights the difference.

In order to show heavy-traffic delay optimality, we would again apply the sufficient and necessary

condition in Proposition 7.4. Thus, we need first prove that





Q
(ϵ )



 is bounded for all ϵ > 0. Similarly,

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 1, Article 21. Publication date: March 2018.



Degree of Queue Imbalance 21:39

we check the conditions (C1) and (C2) for V (Z ) ≜ 

Q

. Since (C2) is exactly the same as before, we

are only interested in (C1) for the general case.

Substituting the definition of ∆(t ) for the general case into Eqs. (18) and (19), yields

E
[

Q(t0 +T )

2 − 

Q(t0)

2 | Z (t0)

]

≤2T *
,
λΣ

N∑
n=1

Qσn (t0 ) (t0)∆̃n + λΣϵ1 

Q(t0)

1 −
ϵµmin

µΣ


Q(t0)

1+

-
+ K̂1

≤2T 

Q(t0)

1
(
λΣϵ1 −

ϵµmin

µΣ

)
+ K̂1

≤ − 2 ˆθT 

Q(t0)

 + K̂1,

where µmin ≜ minn µn , ˆθ ≜
ϵ µmin

µΣ
− λΣϵ1, which is positive when choosing ϵ1 <

ϵ µmin

(µΣ )2
and K̂1 ≜

2LT + 2NT 2
max(Amax, Smax) (µΣ + µmax) and µmax ≜ maxn µn .

Then for condition (C1), we have

E [∆V (Z ) | Z (t0) = Z ]

=E [

Q(t0 +T )

 − 

Q(t0)

 | Z (t0) = Z ]

=E

[√


Q(t0 +T )

2 −

√


Q(t0)

2 | Z (t0) = Z

]

≤
1

2


Q(t0)



E
[

Q(t0 +T )

2 − 

Q(t0)

2 | Z (t0) = Z

]

≤ −T ˆθ +
K̂1

2


Q(t0)



.

This verifies (C1), hence establishing that all the moments of





Q
(ϵ )



 are bounded for any ϵ > 0.

Now we are able to check the condition in Proposition 7.4. Note that as shown in Eq. (27), we

have

E
[



Q

(ϵ )
(t + 1)





1




U

(ϵ )
(t )





1

]
≤ N

√
c2ϵE

[



Q
(ϵ )
⊥ (t )






2

]

Then according to Eq.(36), we have for all ϵ ≤ ϵ0

E
[



Q

(ϵ )
(t + 1)





1




U

(ϵ )
(t )





1

]
≤ N

√√
c2M̂1ϵ

1




∆̃
(ϵ )




2

1

which approaches zero as ϵ goes to zero when



∆̃

(ϵ )



2

1

= ω (ϵ ), hence establishing heavy-traffic

delay optimality. □
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M PROOF OF PROPOSITION 8.3
Proof. As in the proof of Proposition 5.7, we have the following equality in steady state for any

ϵ > 0.

2

N∑
i=1

N∑
j>i

E
[(
(Q
+

i )
(ϵ )U

(ϵ )
j + (Q

+

j )
(ϵ )U (ϵ )

i

)]

=2NE
[
⟨Q

(ϵ )
⊥ ,A

(ϵ )
− S

(ϵ )
⟩

]
−

N∑
i=1

N∑
j>i

E

[(
U

(ϵ )
i −U

(ϵ )
j

)
2

]

+

N∑
i=1

N∑
j>i

E

[(
A
(ϵ )
i −A

(ϵ )
j − S

(ϵ )
i + S

(ϵ )
j

)
2

]
(37)

First, as before, the left-hand-side (LHS) of Eq. (37) can be rewritten as

LHS = 2E
[



Q

(ϵ )
(t + 1)





1




U

(ϵ )
(t )





1

]
≜ 2B

(ϵ )
,

which holds because Qn (t + 1)Un (t ) = 0 for all n and t ≥ 0 as shown in Lemma D.1.

The main task is to simplify each term on the right-hand-side of Eq. (37) in the general case. For

the first term on the right-hand-side of Eq. (37), we can rewrite it as follows

ˆT
(ϵ )

1
≜ 2NE

[
⟨Q

(ϵ )
⊥ ,A

(ϵ )
− S

(ϵ )
⟩

]

= 2NE
[
E

[
⟨Q

(ϵ )
⊥ ,A

(ϵ )
− S

(ϵ )
⟩ | Z

(ϵ )
] ]

= 2NE


⟨Q

(ϵ )
σ ,⊥, λ

(ϵ )
Σ

*.
,
∆
(ϵ )
+
µ (ϵ )σ

µΣ

+/
-
− µ (ϵ )σ ⟩



= 2Nλ(ϵ )Σ E
[
⟨Q

(ϵ )
σ ,⊥,∆

(ϵ )
⟩

]
+ 2NE

[
⟨Q

(ϵ )
σ ,⊥,−

ϵ

µΣ
µ (ϵ )σ ⟩

]
,

which implies that

lim

ϵ ↓0
ˆT
(ϵ )

1
= lim

ϵ ↓0
2Nµ (ϵ )Σ E

[
⟨Q

(ϵ )
σ ,⊥,∆

(ϵ )
⟩

]
, (38)

under the assumption (1) that the first moment of





Q
(ϵ )
⊥





 is o(1/ϵ ).

For the second term on the right-hand-side of Eq. (37), we have

ˆT
(ϵ )

2
≜

N∑
i=1

N∑
j>i

E

[(
U

(ϵ )
i −U

(ϵ )
j

)
2

]
≤ ϵ (N − 1)Smax

which follows from the fact that 0 ≤ Un ≤ Smax for all n and E
[



U

(ϵ )



1

]
= ϵ as shown in Lemma

D.1.

The third term on the right-hand-side of Eq. (37) can be simplified as follows

ˆT
(ϵ )

3
≜

N∑
i=1

N∑
j>i

E

[(
A
(ϵ )
i −A

(ϵ )
j − S

(ϵ )
i + S

(ϵ )
j

)
2

]

= L (ϵ ) − 2λ(ϵ )Σ NE
[
⟨µ (ϵ )σ ,⊥, P

(ϵ )
⟩

]

where L (ϵ ) ≜ (N − 1)
((
σ (ϵ )
Σ

)
2

+
(
λ(ϵ )Σ

)
2

+ ν2Σ

)
+

∑N
i=1

∑N
j>i

(
µi − µ j

)
2

.
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Now by the sufficient and necessary condition in Proposition 7.4, we have limϵ ↓0 B
(ϵ )
= 0.

Consequently, from Eq. (37), we can obtain

lim

ϵ ↓0
ˆT
(ϵ )

1
= − lim

ϵ ↓0
ˆT
(ϵ )

3
≜ C (39)

whereC is a constant independent of ϵ under the assumption (2) in Proposition 8.3. Thus, combining

Eqs. (38) and (39) and applying Cauchy-Schwartz inequality, yields the required result, hence

completing the proof. □
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