
Secure Neighbor Discovery through Overhearing in
Static Multihop Wireless Networks

Srikanth Hariharan
Department of ECE

The Ohio State University
Columbus, OH - 43210

Email: harihars@ece.osu.edu

Ness B. Shroff
Departments of ECE and CSE

The Ohio State University
Columbus, OH - 43210

Email: shroff@ece.osu.edu

Saurabh Bagchi
School of ECE

Purdue University
West Lafayette, IN - 47906
Email: sbagchi@purdue.edu

Abstract—In wireless ad-hoc and sensor networks, neighbor
discovery is one of the first steps performed by a node upon
deployment and disrupting it adversely affects a number of
routing, MAC, topology discovery and intrusion detection pro-
tocols. It is especially harmful when an adversary can convince
nodes that it is a legitimate neighbor, which it can do easily
and without the use of cryptographic primitives. In this paper,
we develop a secure neighbor discovery protocol, SEDINE, for
static multihop wireless networks. We prove that, in the absence
of packet losses, without using any centralized trusted node or
specialized hardware, SEDINE prevents any node, legitimate or
malicious, from being incorrectly added to the neighbor list of
another legitimate node that is not within its transmissionrange.
We provide simulation results to demonstrate the efficacy of
SEDINE, in the presence of packet losses.

I. I NTRODUCTION

Wireless ad-hoc and sensor networks are increasingly being
used in a number of commercial, industrial and military
applications for data monitoring. The ability of nodes to self-
configure allows these nodes to be deployed in inhospitable
and hostile environments that need to be monitored. Security
of the monitored data could be of great concern. Neighbor
Discovery is one of the first steps performed by a node
before it starts monitoring. Neighbor discovery, as the name
suggests, is the process of identifying neighbor nodes. A
neighbor of a nodeX is defined as one that is within the
radio communication range ofX .

An adversary intending to disrupt the neighbor discovery
protocol, will try to make two non-neighboring nodes believe
that they are neighbors or will prevent two neighboring nodes
from becoming neighbors. By launching the former attack,
the adversary can in turn attack protocols that need accurate
neighbor information. For example, an adversary can attack
routing protocols such as AODV [1] and DSR [2] by launching
a wormhole attack. In a wormhole attack, malicious nodes
can either falsely convince two non-neighboring nodes that
they are within communication range or falsely convince the
nodes that the malicious nodes belong to the best possible
route between the source and the destination. This attack can
be launched even without requiring the cryptographic keys in
the network. The adversary, after inserting itself in the false

This work has been supported in part by the NSF grants 0721236, 0626830,
0831060, and CNS-0626830.

routes, can control the packets sent over those routes, e.g., by
selectively dropping packets and crypt-analyzing them.

We now illustrate the importance of secure neighbor dis-
covery. Consider two legitimate non-neighboring nodesA and
B, and a malicious nodeM that is within the communication
range of bothA andB (Figure 1(a)). If the neighbor discovery
protocol simply consists of broadcasting a HELLO packet and
receiving a response for the HELLO packet (as is typical [1],
[2], [3]), the malicious nodeM can relay the packet sent by
A to B and vice-versa.A and B will then believe that they
are neighbors. If there exists two malicious nodesX and Y

with powerful antennas or out-of-band channels, they can even
make nodes that are multiple hops away from each other to
believe that they are neighbors (Figure 1(b)). By establishing
these false links, the malicious nodes can insert themselves on
the path betweenA andB. So, while the path thatA should
take to send a packet toB be through the legitimate nodesC,
D, E andF , A will use the routeA − X − Y − B.

A
M

B

(a) M fools A and B into be-
lieving that they are neighbors.

A
X Y

B

C
D E

F

(b) X and Y fool A and B,
which are far away, into believ-
ing that they are neighbors.

Fig. 1. Insecure neighbor discovery

Not only is it important to prevent two legitimate non-
neighboring nodes from becoming neighbors, but it is also
important to prevent a legitimate node from adding a malicious
non-neighboring node to its neighbor list. For example, in
Figure 1(b), letX and Y be compromised malicious nodes
and letA and B be legitimate nodes.B can be fooled into
believing thatX is its neighbor (sinceY can relay packets
betweenB and X). Hence, whenB wants to send a packet
to A, B will believe that the route isB − X − A while the
actual route isB − Y − X − A. This may make the route
throughX andY look attractive toB. Thus, false routes can
be established.The goal of this work is to prevent a legitimate
node from adding a node that is not within its communication
range, to its neighbor list.

2

The disadvantages of insecure neighbor discovery are now
apparent. What is also significant is that if neighbor discovery
is made secure, the afore-mentioned wormhole attack can
be effectively mitigated by building on the guarantee that
neighbor information is accurate [3], [4]. This is the key
motivation for working on this problem.

We now overview related work. Typically, most work (e.g.,
[3]) have assumed that neighbor discovery is secure by rea-
soning that since neighbor discovery takes a very short time
(typically a few seconds) it is unlikely for a node to get
compromised before neighbor discovery is completed. While
this may be true, the adversaryneed not compromise a nodeto
disrupt the neighbor discovery protocol. An external malicious
node, i.e., a node that does not possess cryptographic keys,can
relay packets between legitimate non-neighboring nodes and
make them believe that they are neighbors. The assumption
that no compromised node exists during neighbor discovery
also does not hold when nodes are incrementally deployed.

A number of protocols have also managed to move away
from this assumption. Some of these protocols rely on timing
information [5], [6]. These protocols use bounds on the delay
between sending a message to the responder and receiving
a message from the responder to determine whether the
responder is actually within communication range. The main
issue with these protocols is that characterizing delay is ahard
problem in wireless networks due to interference, congestion,
and link errors. Therefore it is hard to prove that timing
information actually guarantees secure neighbor discovery. In
fact, Poturalski et al. [7] show that timing information alone
cannot guarantee secure neighbor discovery.

Another class of protocols rely on specialized hardware such
as directional antennas [4] or advanced physical layer features
[8]. The directional antenna protocol [4] substantially degrades
network connectivity and does not consider framing attacks.
[8] proposes a technique called sensor fingerprinting in which
a sensor can be identified based on the signal it transmits. The
signal thus acts as a fingerprint for the sensor. It is unclear
whether this approach would be practically feasible.

What is commonly lacking in many of these protocols is
that they do not provide anyprovablesecurity guarantees for
neighbor discovery. Recently, Papadimitratos et. al., [9]have
also explained the importance of providing security guarantees
for neighbor discovery in their survey paper. Another interest-
ing paper by Maheshwari et. al., [10] provides a theoretical
foundation using connectivity information to determine false
links in wireless networks. However, their scheme works only
when the wormhole is sufficiently long.

We develop a new protocol called SEDINE to achieve
secure neighbor discovery. It does not require specializedhard-
ware and relies on the overhearing capability of nodes to detect
whether a packet is being relayed. The main contributions of
this paper are as follows:

• We develop aprovably secureneighbor discovery pro-
tocol thatdoes not require any specialized hardware, or
highly accurate time measurement.

• We analytically guarantee that no two non-neighboring

legitimate nodes can be fooled into becoming neighbors,
in the absence of packet losses.

• We quantify our results by taking packet losses into
account and show through simulations that even in this
scenario, the fraction of non-neighboring nodes that be-
lieve that they are neighbors is significantly smaller when
using SEDINE than when using the insecure protocol.

The rest of this paper is organized as follows: We present
the system model and detail our assumptions in Section II.
Section III describes the neighbor discovery protocol for
static multi-hop wireless networks. In Section IV, we provide
security analysis for SEDINE. In Section V, we present our
simulation results. Finally, we conclude our paper and discuss
open problems in Section VI.

II. SYSTEM MODEL AND ASSUMPTIONS

A. System and Attack Model
We assume that all links are bi-directional, i.e., if nodeA

hears nodeB, then nodeB also hears nodeA. We assume
omni-directional antennas on nodes. SEDINE does not require
nodes to have specialized hardware such as GPS devices
or directional antennas. Further, SEDINE does not require a
trusted base station or time synchronization between nodes.
SEDINE requires a pair-wise key management protocol (for
example, key pre-distribution techniques as presented in [11],
[12], [13] that will allow any two nodes to establish a secure
communication channel between them). In our model, we
allow packet losses to occur due to link errors or collisions.
Malicious nodes may either be external nodes (that do not
possess the cryptographic keys) or insider nodes (that have
been compromised by the adversary). We relax the general
assumption that no malicious nodes exist during the neighbor
discovery process, and instead assume that malicious nodes
(both external and compromised) do not possess specialized
hardware such as out-of-band channels or power controlled
transmission (including using directional antennas) during
neighbor discovery. Note that we recognize that our neighbor
discovery protocol is shown to provide provable guarantees
under a certain class of attacker models. While these attacker
models are not required for various security related works
(e.g., wormhole detection), these works circumvent the prob-
lem by assuming a simple neighbor discovery mechanism that
cannot provide any security guarantees. Thus, this work can
be seen as foundational to the development of other more so-
phisticated security related works that rely on secure neighbor
discovery. We allow malicious nodes, both compromised and
external, to collude with other malicious nodes. Essentially,
the main intention of a malicious node would be to expand its
neighbor list as well as the neighbor lists of its neighbors.
By doing so, the adversary can establish false routes by
launching a wormhole attack in the future.We do not consider
denial of service attacks that prevent two neighboring nodes
from becoming neighbors, physical layer jamming attacks, and
physical destruction of nodes.

III. T HE NEIGHBOR DISCOVERY PROTOCOL

In this section, we develop a new protocol called SEDINE,
for secure neighbor discovery in static multi-hop wireless

3

networks. SEDINE consists of two phases:
1) The Neighbor Discovery Phase
2) The Neighbor Verification Phase
We first provide an overall idea of the protocol. During the

Neighbor Discovery Phase, theexpected neighborsof a node
are discovered. Theexpected neighbor listof a nodeA consists
of nodes that are its actual neighbors and also nodes that are
not within the communication range ofA but have been made
to believe thatA is their neighbor by some malicious node
in the network. During the Neighbor Verification Phase, we
propose a technique to filter out those nodes that are not within
the communication range ofA from theexpected neighbor list
of A usingverifiers. A verifier of a link A ↔ B is a node that
is in theexpected neighbor listof both A andB. In order to
perform link verification, each node requires the following.

• Each node needs to find its expected neighbors.
• Each node needs to know the expected neighbors of each

of its expected neighbors.
Each node then determines the verifiers for each of its links

and also determines the links for which it is a verifier. Each
verifier of a link, during the Neighbor Verification Phase,
checks whether a packet sent on that link is being relayed
to the next hop. Depending on whether the packet is being
relayed, each verifier takes an independent decision on whether
the link is legitimate. Verifiers then exchange their responses
between themselves and between the source and destination.

A. The Neighbor Discovery Phase

1) Determining the expected first hop neighbors:In this
phase, each node determines the nodes that claim to be its
first hop neighbors. Upon deployment, each node broadcasts
a HELLO packet and its node ID. Every node that hears this
HELLO packet sends back its ID and a reply containing a
nonce which is authenticated using the key that is shared
between the nodes. This key, for example, could be pre-
distributed between the two nodes [11], [12], [13]. The initi-
ating node accepts all replies that arrive within a timeout and
then authenticates itself to each of its neighbors by sending a
hash value of the nonce that it received from them and adds
them to its neighbor list. We call this neighbor list as the
expected neighbor list. This list may include nodes that are
not actually within the communication range of the initiating
node. This is because a malicious node or a set of malicious
nodes could have relayed these packets between the initiating
node and another node that is not within the communication
range of the initiating node to make them believe that they
are neighbors. The subsequent Neighbor Verification Phase
provides a mechanism to filter out the non-neighboring nodes
from theexpected neighbor listof a node.

2) Determining the expected second hop neighbors:Once
a node has determined its expected list of neighbors, it needs
to know the expected neighbors of each of the nodes in this
list to determine theverifiersof each of the claimed links.

Each node generates a random key,K, and uses this key to
encrypt its expected neighbor list and the list of hash values
of the nonces that were used when discovering neighbors

(Table I, Steps 6 and 7). Each node then broadcasts this en-
crypted expected neighbor list. After broadcasting, each node
waits until a timeout to receive the corresponding expected
neighbor list of each of its expected neighbors. Nodes that do
not send their expected neighbor list within the timeout period
are discarded from the expected neighbor list of the initiating
node. When the timeout expires, each node broadcasts keyK

and the set of discarded nodes. At this point, each node knows
its expected neighbors and the expected neighbors of each of
its expected neighbors.

This protocol can be extended so that a node can also de-
termine the verifiers of the link between its expected neighbor
(sayX) and any expected neighbor ofX . By doing this, the
node can verify whether the nodes thatX claims to be its
neighbors, are actually the neighbors ofX . This is important
for protocols that require accurate information of second-hop
neighbors as well. We now explain this extension.

After having received the expected neighbor list of each of
its expected neighbors, instead of revealing the keyK and the
dropped neighbors, each node generates a new keyK ′. The
expected neighbor lists acquired are now encrypted withK ′

and broadcasted as described in Steps 10 and 11 in Table I.
If some node does not send this set of expected neighbor lists
within a timeout, it will be dropped from the corresponding
expected neighbor list. After receiving these two lists, each
node reveals keysK, K ′, the dropped neighbors, and the keys
revealed by each of its expected neighbors.

The Neighbor Discovery Phase is summarized in Table I:
TABLE I

THE NEIGHBORDISCOVERYPHASE

Determining the one hop expected neighbors
1. S → One hop broadcast: HELLO,IDS .
2. X → S: IDX , KX,S(HELLO reply, nonceNX,S).
3. S → X : KX,S(Ack, h(NX,S)).
4. S: Adds the ID ofX to its expected neighbor list,̃N(S).
5. S: Repeats steps 2, 3 and 4 for every HELLO reply received.
Determining the expected two hop neighbors
6. S: Generate keyKS,Bcast.
7. S → One hop broadcast:KS,Bcast(IDS, {(h(NX,S), X) ∀ X ∈ Ñ(S)}).
8. S: Wait for min(Tout, Ñ(T) ∀ T ∈ Ñ(S)).
9. S: Drop nodes that do not send their expected neighbor

list within Tout from Ñ(S).
10. S: Generate keyK ′

S,Bcast.
11. S → One hop broadcast:K ′

S,Bcast(IDS , {(h(NT,S),KT,Bcast(Ñ(T))) ∀ T ∈ Ñ(S)}).
12. S: Wait for min(T ′

out, Ñ(V) ∀ T ∈ Ñ(S) and∀ V ∈ Ñ(T)).
13. S: Drop nodes that do not send their neighbors’ neighbor

list within T ′

out from Ñ(S).
14. S → One hop broadcast:KS,Bcast(IDS , Dropped Neighbors).
15. S: Wait until a timeout to receiveKT,Bcast(IDT , Dropped Neighbors)

∀ T ∈ Ñ(S).
16. S → One hop broadcast:KS,Bcast.
17. S: Wait to receiveKT,Bcast ∀ T ∈ Ñ(S).
18. S → One hop broadcast:K ′

S,Bcast, KT,Bcast ∀ T ∈ Ñ(S).

At the end of this phase, each nodeS knowsÑ(S), Ñ(T)
∀T ∈ Ñ(S) andÑ(V) ∀V ∈ Ñ(T).

B. The Neighbor Verification Phase

Once each node has completed the Neighbor Discovery
Phase, it can determine the verifiers for each of its links.
Furthermore, each node can also determine the links for which
it is a verifier. For example, consider two nodesA andB that
are in the expected neighbor lists ofB and A, respectively.
Then the verifiers of the claimed linkA ↔ B are those nodes
that are present in both the expected neighbor list ofA and

4

the expected neighbor list ofB. Since each expected neighbor
of A and B knows the expected neighbor lists ofA and B,
each can determine the verifiers of the claimed linkA ↔ B.
All the verifiers may not be within the communication range
of both A andB. We will take this into account before each
verifier provides a final response for the claimed linkA ↔ B.

We now describe the Neighbor Verification Phase. Through-
out this phase, each node explicitly announces the destination
to which it is sending a packet. Also, each node can transmit a
particular packet only once to each destination during a single
round of this phase. Since the wireless medium is inherently
prone to packet losses, this phase can be repeated for a number
of rounds for those links over which verification packets were
lost. Note that the round is repeated in its entirety rather than
individual messages from the round.

Each node checks whether each of its links has at least
k verifiers. If there does not exist at leastk verifiers for
a link, the link is dropped. Every verifier of a link also
performs this operation. LetN1 and N2 be two expected
neighboring nodes with at leastk verifiers. N1 initiates the
link verification process by sending an authenticated packet
to N2 and explicitly announcing the address ofN2. N1 waits
until a timeout to receive an authenticated reply fromN2.
When this communication happens betweenN1 and N2, no
other node within the communication range ofN1, N2 and
the verifiers of the linkN1 andN2 should transmit. A similar
operation is performed for the linkN2 → N1.

The verifiers that hear the verification packet fromN1 can
next hear one of three kinds of packets: a reply fromN2 to N1

or the same packet fromN1 being relayed or some arbitrary
packet being sent. Some legitimate verifiers might not actually
hear either the transmission fromN1 or the transmission from
N2 or both. This is because the list of verifiers is obtained from
the expected neighbor lists ofN1 andN2 and not their actual
neighbor list. Therefore, some verifiers may not be within the
communication range ofN1 or N2 or both. These verifiers
mark themselves asDropped verifierfor that particular link.
If a legitimate verifier hears the same packet fromN1 being
relayed, it marksPacket Relayedfor the link N1 → N2. If
the next packet that a legitimate verifier hears after hearing
the verification packet fromN1, is a reply fromN2, it marks
Link Correct for N1 → N2. If a legitimate verifier hears some
arbitrary packet being sent before the reply fromN2 comes,
it does not mark anything at this time. IfN1 hears some
arbitrary packet being sent before the reply fromN2 comes,
it will repeat the phase for that link. Similar actions are taken
whenN2 sends its verification packet toN1. The phase will
be repeated at most a predefined number of times in order
to reduce the number of links that get dropped because of
collisions and link errors. If at the end of these repetitions,
a legitimate verifier has not marked anything for a particular
link, it marks itself asDropped verifierfor that link. If either
N1 or N2 have not markedLink Correct for N1 ↔ N2, the
link is dropped.

The Neighbor Verification phase is summarized in Table II.

TABLE II
THE NEIGHBORVERIFICATION PHASE

1. S: Determine verifiers,VS↔T , ∀ T ∈ Ñ(S).
2. S: ∀ T , U ∈ Ñ(S), if T ∈ Ñ(U) andU ∈ Ñ(T),

S ∈ VT↔U .
3. S → T : KS,T (NonceN) ∀ T ∈ Ñ(S).
4. VS↔T : Hear whether the same packet is relayed toT .

If yes, markPacket Relayed.
Else, don’t mark anything at this point.

5. T → S: KS,T (h(N)).
6. VS↔T : Hear whether the same packet is relayed toS.

If yes and ifS was heard in Step4, mark Packet Relayed.
Else if S was heard and the packet sent byT is not heard
or if T is heard andS was not heard in Step4, mark
Dropped Verifier. Else, don’t mark anything at this point.

7. VS↔T : If Dropped Verifierhas been marked in
Step6, mark Dropped Verifier.
Else, if Packet Relayedhas been marked in Step4 and
Dropped Verifierhas not been marked in Step6, or if Packet
Relayedhas been marked in Step6, mark Packet Relayed.
Else, if after hearingS, the next packet heard was the reply
sent byT , and only these two packets are heard during the
communication betweenS andT , mark Link Correct.
Else, don’t mark anything at this point.

8. If S or T have not marked anything forS ↔ T , repeat the
phase for this link.

C. The Response Algorithm

After the Neighbor Verification Phase, each node would
have either markedDropped Verifieror Link Corrector Packet
Relayedfor every link for which it is a verifier.

A verifier, V , that has markedLink Correct or Packet
Relayedfor a link A ↔ B during the Neighbor Verification
phase, now determines whether it has markedLink Correctfor
the linksV ↔ A andV ↔ B. If V has marked anything else
for these two links, then it changes its response toDropped
Verifier for A ↔ B. It is possible for bothA and V to not
be within communication range of each other and forV to
mark V ↔ A as Link Correct. This is possible if there is a
malicious node or a chain of malicious nodes betweenV and
A that had relayed the Neighbor Verification packets between
V andA andV did not overhear the relay either because of
collisions or link errors. Therefore the response of a legitimate
verifier for a link may be incorrect. This is why we consider
the response of multiple verifiers. Our simulations suggestthat
SEDINE performs well even in the presence of such collisions
and link errors.

For each linkA ↔ B, A, B, and the verifiers of the link
A ↔ B communicate their response for that link to each of the
expected neighbors ofA andB. Now A, B and each expected
neighbor ofA andB determines that the linkA ↔ B exists
only if all of the following conditions hold:

1) Both nodes claim that their link is correct.
2) After removing verifiers that have marked themselves as

Dropped Verifier, there still exists at leastk verifiers for
that link.

3) Out of thek verifiers, there exists less thanγ verifiers
that have markedPacket Relayedfor that link.

IV. SECURITY ANALYSIS
Before we begin the analysis, we first define amalicious

path between two nodes as a path that consists solely of
malicious nodes, except possibly the two end-points.

5

Theorem 4.1:SEDINE prevents two non-neighboring
nodes,A and B, from believing that they are neighbors, in
the absence of packet losses, if at least one of the following
conditions hold:

1) Both A andB are legitimate nodes or
2) At least one ofA andB is a legitimate node and there

are no Sybil attacks.

Proof: The proof follows from the following Lemmas.
Lemma 4.2:SEDINE prevents two non-neighboring legiti-

mate nodes from becoming neighbors, in the absence of packet
losses.

Proof: We present the idea of the proof here. The details
can be found in [14]. Consider any two non-neighboring
legitimate nodes,L1 and L2, that have a malicious path
connecting them. Assume that after the Neighbor Discovery
Phase, they have been made to believe that they are neighbors.
During the Neighbor Verification Phase, whenL1 sends a
verification packet toL2, in order forL2 to receive this packet,
it has to traverse through the malicious path betweenL1 and
L2. In order for this to happen, the malicious nodes in the
malicious path have to replay the verification packet sent by
L1. SinceL1 is a verifier of its own links, in the absence of
packet losses and collisions,L1 will hear the replay. Since the
next packet thatL1 hears is not the reply fromL2, it will not
accept that the linkL1 ↔ L2 exists.

Lemma 4.3:SEDINE prevents two non-neighboring nodes,
one legitimate and the other malicious, from becoming neigh-
bors, in the absence of packet losses and Sybil attacks.

Proof: See proof in [14].
We briefly explain the significance of Sybil attacks in

Lemma 4.3. LetA be a legitimate node, andM1 be a malicious
node such thatA and M1 are not within communication
range of each other, but there exists a malicious nodeM2

that is within the communication range of bothA and M1.
M1 and M2 can collude and exchange identities. So, when
A tries to find its neighbors,M2 would pose both asM2

and M1 and fool A into believing that bothM2 and M1

are its neighbors. However, hereA is only adding a node
that is within its communication range but possessing multiple
identities. [15], [16], [17] suggest approaches to detect nodes
possessing multiple identities in sensor and mobile ad hoc
networks. However, protecting against Sybil attacks is still an
open problem. It is important to note thatSybil attacks cannot
fool two non-neighboring legitimate nodes into believing that
they are neighbors. The correctness of SEDINE is affected
by the Sybil attack when a malicious node takes multiple
identities and creates a spurious link between a legitimatenode
and a node with one of the false identities.

From the above lemmas, Theorem 4.1 directly follows.
Theorem 4.1 guarantees that irrespective of any security

attack launched against SEDINE other than those mentioned
in our assumptions, two legitimate non-neighboring nodes
cannot be fooled to become neighbors, in the absence of packet
losses and collisions.

In addition, it can be observed from the proof of Theo-
rem 4.1 thatin the absence of packet losses and collisions, in

order to guarantee that two non-neighboring legitimate nodes
do not get fooled into believing that they are neighbors, the
decision taken by the corresponding two legitimate nodes is
sufficient. The decisions taken by the other verifiers or even
the availability of other verifiers do not matter. This implies
that when packet losses are negligible and the network is so
sparsely distributed that collisions are negligible, it iseasy for
two legitimate non-neighboring nodes to ensure that they don’t
believe that they are neighbors. The same results hold when
Sybil attacks are absent and one of the nodes is legitimate and
the other malicious.

Corollary 4.4 (Corollary to Theorem 4.1):In the absence
of packet losses and Sybil attacks, SEDINE guarantees:

1) The neighbors of a legitimate node,S, will only be
those nodes that are within the one-hop communication
range ofS. The legitimate nodes that are neighbors of
a malicious node,X , will only be those nodes that are
within the one-hop communication range ofX .

2) For a legitimate node,S, let T be in the expected
neighbor list ofS, andV be in the expected neighbor
list of T . If either ofT or V are legitimate,S will accept
the link T ↔ V to exist, only ifV is within the one-hop
communication range ofT .

Thus, apart from securely determining its one-hop neigh-
bors, a node can also verify the neighbors of each of its
neighbors using SEDINE.

V. SIMULATIONS

In this section, we quantify the performance of SEDINE
through numerical experiments.

A. Fraction of links dropped
This experiment identifies the effect of topology on the

fraction of links dropped by SEDINE and compares it with
that of the directional antenna protocol [4]. In order to perform
this comparison, we use the same settings as used in [4]. The
purpose of this experiment is also to determine a suitable value
for k. This experiment is performed using MATLAB. Nodes
are uniformly and randomly deployed in a100 × 100 square
field. The number of nodes in the field varies from 10 to 100.

Here, the fraction of legitimate links that get dropped due
to the absence ofk verifiers for those links, is simulated
for different k. As assumed in [4], this simulation is done
without malicious nodes. The simulation is run1000 times
and the results are averaged. Since, in our protocol, each
node, itself, is a verifier of the link that it is a part of, no
links get dropped whenk = 1. This can be seen in Figure 2.
For k > 1, the fraction of links dropped decreases as the
node density increases since the probability thatk verifiers
exist for a link increases as the node density increases. Fora
typical neighborhood density of10 neighbors a node with an
omni-directional antenna (corresponding to approximately 33
neighbors with a directional antenna [4]), the strict neighbor
discovery protocol of the directional antenna approach, with
one verifier, drops40% of the legitimate links [4] while
SEDINE does not drop any links with one verifier. Further,

6

comparing the same number of neighbors (33 for both SE-
DINE and the directional antenna protocol), SEDINE drops
less than4% of the legitimate links even with two verifiers.

For a given network, the value ofk should be chosen based
on the network density and the level of security that is required
by the application. In a network where nodes are randomly
deployed, choosing a large value fork will result in the
exclusion of nodes with few neighbors.In applications where
security is so critical that dropping of legitimate links isnot as
crucial, for any network density, SEDINE guarantees that two
legitimate non-neighboring nodes cannot become neighbors,
in the absence of packet losses (Theorem4.1).

20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Number of nodes

F
ra

ct
io

n
of

 li
nk

s
dr

op
pe

d

1 verifier
2 verifiers
3 verifiers
4 verifiers

Fig. 2. Fraction of links dropped due to the necessity of the existence
of k verifiers for every link

B. Number of non-legitimate links with\without verification
In this experiment, we show the advantage of using veri-

fication. We also consider the effect of packet losses due to
collisions and link errors. This experiment has been simulated
using Jist SWANS. The IEEE802.11 MAC protocol has
been used. The simulation is run25 times and the results
are averaged. We consider the worst-case scenario in which
malicious nodes relay whatever packet they hear. 50 legitimate
nodes are uniformly and randomly deployed in a100 × 100
m2 field. The number of malicious nodes is varied from0 to
4 and the communication range is roughly32 m.

Let k represent the minimum number of verifiers required
to validate a link and letγ represent the maximum number
of verifiers that can reportPacket Relayedfor a link so that
the link still gets validated. By increasingγ, we can prevent
compromised malicious nodes from framing legitimate links.
However, increasingγ decreases the chance of detecting a
non-legitimate link. From Figures 3(b) and 3(a), we see that
for the samek, increase inγ results in a slight increase in the
number of non-legitimate links in the network.

We observe that the total number of non-legitimate links
in the network decreases as the number of verifiers increases.
There is a trade-off here since arbitrarily increasing the number
of verifiers results in an increase in the number of legitimate
links being dropped. We also observe that even as we increase
the number of malicious nodes, the corresponding rate of
increase of the number of non-legitimate links is much lower
when verification is used than when verification is not used.

VI. CONCLUSION

Securing the neighbor discovery protocol is a critical prob-
lem in wireless ad-hoc and sensor networks. SEDINE not only
tries to prevent legitimate non-neighboring nodes from being
fooled to believe that they are neighbors, but also malicious

0 1 2 3 4
0

5

10

15

20

25

30

Number of wormholes

A
ve

ra
ge

 #
 n

on
−

le
gi

tim
at

e
lin

ks
 in

 th
e

ne
tw

or
k

Without verification
k > 0
k > 2
k > 4

(a) With γ = 0

0 1 2 3 4
0

5

10

15

20

25

30

Number of wormholes

A
ve

ra
ge

 #
 n

on
−

le
gi

tim
at

e
 li

nk
s

in
 th

e
ne

tw
or

k

Without verification
k > 1 and γ < 2
k > 3 and γ < 3

(b) With γ ≤ k/2

Fig. 3. Number of non-legitimate links with and without verification

nodes from becoming neighbors to legitimate non-neighboring
nodes. Our simulation results show that SEDINE is successful
in preventing a huge fraction of non-legitimate links from
being formed in a lossy wireless communication environment.
Some of the open issues include providing provable security
guarantees for out-of-band channel, power controlled, and
Sybil attacks, studying the effects of denial of service attacks
against neighbor discovery, and designing secure neighbor
discovery protocols for mobile networks.

REFERENCES

[1] C. E. Perkins and E. M. Royer, “Ad-hoc on-demand distancevector
routing,” in IEEE WMCSA, 1999.

[2] D. Johnson, D. Maltz, and J. Broch, “The dynamic source routing
protocol for multihop wireless ad hoc networks,” inAd Hoc Networking,
Addison-Weasley, 2001.

[3] I. Khalil, S. Bagchi, and N. B. Shroff, “Liteworp: A lightweight
countermeasure for the wormhole attack in multihop wireless networks,”
in DSN, 2005.

[4] L. Hu and D. Evans, “Using directional antennas to prevent wormhole
attacks,” inNetwork and Distributed System Security Symposium, 2004.

[5] Y. C. Hu, A. Perrig, and D. B. Johnson, “Rushing attacks and defense
in wireless ad hoc network routing protocols,” inACM WiSe Workshop,
2003.

[6] D. Liu, P. Ning, and W. Du, “Detecting malicious beacon nodes for
secure location discovery in wireless sensor networks,” inICDCS, 2005.

[7] M. Poturalski, P. Papadimitratos, and J.-P. Hubaux, “Secure neighbor
discovery in wireless networks: formal investigation of possibility,” in
ASIACCS, 2008.

[8] K. B. Rasmussen and S. Capkun, “Implications of radio fingerprinting
on the security of sensor networks,” inSecureComm, 2007.

[9] P. Papadimitratos, M. Poturalski, P. Schaller, P. Lafourcade, D. Basin,
S. Capkun, and J.-P. Hubaux, “Secure neighborhood discovery: A funda-
mental element for mobile ad hoc networking,”IEEE Communications
Magazine, 2008.

[10] R. Maheshwari, J. Gao, and S. Das, “Detecting wormhole attacks in
wireless networks using connectivity information,” inINFOCOM, 2007.

[11] H. Chan, A. Perrig, and D. Song, “Random key predistribution schemes
for sensor networks,” inSymposium on Security and Privacy, 2003.

[12] W. Du, J. Deng, Y. Han, and P. Varshney, “A pair-wise key pre-
distribution scheme for wireless sensor networks,” inACM CCS, 2003.

[13] D. Liu and P. Ning, “Establishing pair-wise keys in distributed sensor
networks,” inACM CCS, 2003.

[14] S. Hariharan, N. B. Shroff, and S. Bagchi, “Secure neighbor discovery
in wireless sensor networks,” Tech. Rep., 2007. [Online]. Available:
http://www.ece.osu.edu/∼harihars/sedine.pdf

[15] J. Newsome, E. Shi, D. Song, and A. Perrig, “The sybil attack in sensor
networks: Analysis and defenses,” inIEEE/ACM IPSN, 2004.

[16] C. Piro, C. Shields, and B. N. Levine, “Detecting the Sybil Attack in
Ad hoc Networks,” inProc. IEEE SecureComm, 2006.

[17] Q. Zhang, P. Wang, D. S. Reeves, and P. Ning, “Defending against
sybil attacks in sensor networks,”25th IEEE International Conference
on Distributed Computing Systems Workshops, 2005.

