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Abstract—In this paper, we consider a single-user secure data
communication system. Data packets arriving at the transmitter
are enqueued at a data queue to be transmitted to the receiver
over a block fading channel, securely from an eavesdropper
that listens to the transmitter over another independent block
fading channel. We address two separate problems, both of which
involve the maximization of a long-term average utility, defined
as a function of the number of secure packets transmitted in each
time slot. We propose a transmission controller and an admission
controller based on simple index policies that do not rely on any
prior statistical information on the data arrival process. The
former chooses a random key generation (and transmission) rate
as well as the secure data transmission rate in each time slot.
Part of the data is secured by the available secrecy rate while
the other part is encrypted by the key bits, enqueued at both
the transmitter and the receiver. The latter chooses the amount
of data admitted by the transmitter to be enqueued in the data
queue. We show that our controller pair has a provably efficient
performance. Also, we illustrate via simulations that the use of a
key queue reduces the queuing delay for the data packets, while
serving packets that are admitted at the maximum admissible
rate. To our best knowledge, this is the first work that addresses
the queuing delay in the context of secrecy.

I. INTRODUCTION

Motivated by the seminal paper by [1], there has been
a large number of investigations (e.g., [2]–[8]) on wireless
information theoretic secrecy. These studies have significantly
enhanced our understanding of the basic limits and principles
of the design and the analysis of secure wireless communica-
tion systems. Despite the significant progress in information
theoretic secrecy, most of the work has focused on physical
layer techniques. The application of wireless information
theoretic secrecy remains mainly unresolved as it relates to
the design of wireless networks and its impact on network
control and protocol development. Indeed, our understanding
of the interplay between the secrecy requirements and the crit-
ical functionalities of wireless networks, such as scheduling,
routing, and congestion control remains very limited.

To that end, there have been some recent efforts to utilize the
insights drawn from the aforementioned investigations on in-
formation theoretic secrecy to build secure wireless networks.
In [9]–[13] the fundamental capacity and connectivity scaling
laws of wireless networks with secrecy have been addressed.
In [14], [15], single hop uplink scenario has been considered
in which nodes enqueue arriving private and open data packets
to be transmitted to a base station over block fading channels.

A node is scheduled to transmit information privately from
the other nodes and rate is controlled carefully to maximize
an overall utility. The solution provided follows up on the
stochastic network optimization framework (e.g., as treated
in [16]–[19]) and generalizes the uplink scenario to incorporate
secrecy as a quality of service requirement.

In a separate direction [20] proposed the idea of the use of a
key queue in a single user system. There, a key queue is kept
at the transmitter and the receiver, separately from the data
queues. Instead of using the entire instantaneous secrecy rate
for information transmission at all times, some of it is utilized
to transmit key bits, generated randomly at the transmitter.
These stored key bits are used later to secure information bits
in such a way that, even when the instantaneous secrecy rate
is 0, information bits can still be transmitted to the destination
securely from the eavesdropper. Hence, the idea of key sharing
allows one to “bank” secrecy rates at certain times to be
utilized at other times. It is shown in [21] that, using this
idea, a long-term constant secrecy rate, identical to the secrecy
capacity (expected instantaneous secrecy rate) of the channel
is achievable.

In this paper, we address the single user setting in the pres-
ence of arrival of data packets being enqueued at a data queue
to be transmitted to the receiver over a block fading channel,
securely from an eavesdropper that listens to the transmitter
over another independent block fading channel. We consider
two separate problems, which involve the maximization of a
long-term average utility, defined as a function of the number
of secure packets transmitted in each time slot. While, one
would be inclined to exploit the entire secrecy rate for data
transmission in each time slot in a greedy fashion, we show
that this approach leads to a performance loss. Instead, the
use of a key queue leads to a “smoother” secrecy rate, which
in turn maximizes a concave utility, since it is negatively
affected by the second order factors caused by the variability
of the service. We propose a controller, which chooses the
key generation (and transmission) rate along with the secure
data transmission rate in each time slot using a transmission
control component. The admission control component chooses
the amount of data admitted by the transmitter to be enqueued
in the data queue. These two components are based on
simple index policies that do not rely on any prior statistical
information on the data arrival process. We show that our
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Fig. 1. System model

controller achieves a utility, arbitrarily close to the optimal
utility. Also, we illustrate via simulations that the use of key
queue reduces the queuing delay for the data packets, while
serving packets that are admitted at the maximum admissible
rate. To our best knowledge, this is the first work that addresses
the queuing delay in the context of secrecy.

II. SYSTEM MODEL

We consider the single-user system illustrated in Fig. 1, in
which the transmitter enqueues data packets to be transmitted
to the receiver over the main channel at a fixed power, securely
from an eavesdropper, overhearing the transmission over a
separate channel. Time is slotted, and the time-varying rates
of the main and the eavesdropper channel follow general
processes ~Rm = {Rm(0), Rm(1), . . . , Rm(T − 1), . . .} and
~Re = {Re(0), Re(1), . . . , Re(T − 1), . . .}, respectively. In
this paper, we assume perfect knowledge of these rates at the
transmitter. We also assume the time slots are long enough and
as shown in [1], the achievable instantaneous secrecy rate at a
given slot t is identical to Rs(t) = (Rm(t)−Re(t))+, ∀t ≥ 0,
where (·)+ = max[·, 0]. In a given time slot, this rate is fully
utilized: part of it is used to secure data from the data queue
and the remaining part is used to transmit randomly generated
key bits to be stored at the both key queues at the transmitter
and the receiver. The size of the data and the key buffers are
infinite.

As shown in Fig. 1, the amount of secure data transmitted
at a time t is µ(t). A part (µk(t) bits) of this data is secured
using µk(t) key bits by a simple bit-by-bit XOR operation.
The remaining µ(t)−µk(t) bits is secured using the available
secrecy rate Rs(t). Since the secrecy rate is fully utilized, the
portion of the secrecy rate, not used to secure data is used
to transmit Rk(t) key bits. The data arrivals to the system
is represented by the arrival process {A(t)}. The data queue
state is denoted by qd(t).

The Lindley equation that models the state evolution of the
key queue is:

qk(t + 1) = qk(t) + Rk(t)− µk(t).

We provide an equivalent model in the following lemma along
with the constraints that specify the relationships between the
parameters.

Lemma 1: The key queue qk can be modeled with the
state evolution equation qk(t + 1) = qk(t) + Rs(t) − µ(t)
with the constraints 0 ≤ µ(t) ≤ min[qk(t) + Rs(t), Rm(t)],
0 ≤ µk(t) ≤ min[µ(t), Re(t)], and

(
µ(t)− µk(t)

)
+ Rk(t) =

Rs(t).

Proof: We have the following relationships between the sys-
tem parameters:

(1) µk(t) ≤ µ(t): the amount of key bits used to secure data
does not exceed the amount of transmitted data.

(2) [µ(t)−µk(t)] + Rk(t) = Rs(t): the instantaneous secrecy
rate is fully utilized: µ(t)−µk(t) is the amount of transmitted
data secured over the wiretap channel in slot t and the rest of
it is used to generate key bits.

(3) µk(t) ≤ min{Rm(t), Re(t), qk(t)+Rk(t)}: the amount of
used key bits cannot exceed the main channel rate, since we
cannot send data at a higher rate even if all of it is secured
using key bits, i.e., µk(t) ≤ Rm(t). Also, we cannot use
more key bits than the amount available in the key queue, i.e.,
µk(t) ≤ qk(t)+Rk(t). Finally, for full secrecy, the amount of
shared randomness we need is no more than the eavesdropper
channel rate [21]. Using more key bits will be wasteful, i.e.,
µk(t) ≤ Re(t).

Claim 1: Constraints (1), (2), and (3) imply µ(t) ≤ Rm(t).
If Rm(t) ≤ Re(t), then Rs(t) = 0 and by Constraint (2),
µ(t) = µk(t)− Rk(t) ≤ µk(t). With Constraint (1), we have
µ(t) = µk(t), i.e., when Rs(t) = 0, we use key bits to secure
all the data.

Likewise, from Constraint (3), we obtain µ(t) ≤
min{Rm(t), qk(t) + Rk(t)} ≤ Rm(t); If Rm(t) > Re(t),
then Rs(t) = Rm(t) − Re(t) and by Constraint (2), µ(t) =
Rm(t) − Re(t) + µk(t) − Rk(t) ≤ Rm(t) + µk(t) − Re(t).
Since µk(t) ≤ Re(t) from Constraint (3), µ(t) ≤ Rm(t).

Claim 2: By Constraints (2) and (3), µ(t) = Rs(t)−Rk(t) +
µk(t) ≤ qk(t) + Rk(t) + Rs(t)−Rk(t) = qk(t) + Rs(t).

Claim 3: The key state evolution is equivalent to qk(t + 1) =
qk(t) + Rk(t) − µk(t) = qk(t) + Rs(t) − µ(t) by Constraint
(2).

Claim 4: Combining µ(t) ≤ Rm(t) and µk(t) ≤ µ(t) leads
to µk(t) ≤ Rm(t).

Claims 1,2,3 and 4 complete the proof.

III. PROBLEM FORMULATION

We consider two problems. In our first problem, we assume
an infinitely backlogged data queue, i.e., qd(0) = ∞. The
objective is to maximize the long-term average utility, which
is a function of the transmission rate. Our control parameters
are the number, µk(t), of used key bits, the number, µ(t), of
served data bits, and the number, Rk(t), of generated key bits.
In particular, we have:
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(A) max
~µ,~µk, ~Rk

lim inf
T→∞

1
T

T−1∑
t=0

U(µ(t))

s.t. qk(t + 1) = qk(t) + Rs(t)− µ(t), (1)
0 ≤ µ(t) ≤ min[qk(t) + Rs(t), Rm(t)], (2)
0 ≤ µk(t) ≤ min[µ(t), Re(t)], (3)(
µ(t)− µk(t)

)
+ Rk(t) = Rs(t), (4)

where the utility function U(·) is assumed to be monotonically
increasing, reversible and differentiable on the half real line
<+

⋃{0}. Note that if there were no key queue, then we would
have qk(t) = 0, µ(t) = Rs(t), µk(t) = 0, Rk(t) = 0, ∀t ≥
0. Also note that, the maximum achievable average secrecy
rate is upper bounded by the average secrecy capacity R̄s =
lim infT→∞ 1

T

∑T−1
t=0 Rs(t).

In our second problem, we assume a general data arrival
process, {A(t)} at the input of the data queue. At time t,
only a portion R(t) of all arrivals are admitted into the data
queue in order to keep the data queue stable. All the admitted
packets are required to be served by the system eventually. In
the second problem, our objective is maximize the long-term
average admitted data rate.

(B) max
~R,~µ,~µk, ~Rk

lim inf
T→∞

1
T

T−1∑
t=0

R(t)

s.t. qd(t + 1) = (qd(t)− µ(t))+ + R(t), (5)
qk(t + 1) = qk(t) + Rs(t)− µ(t), (6)
0 ≤ R(t) ≤ A(t), (7)
0 ≤ µ(t) ≤ min[qk(t) + Rs(t), Rm(t)], (8)

lim sup
T→∞

1
T

T−1∑
t=0

qd(t) < ∞, (9)

0 ≤ µk(t) ≤ min[µ(t), Re(t)], (10)(
µ(t)− µk(t)

)
+ Rk(t) = Rs(t). (11)

Note that, the maximum achievable average secrecy rate,
which happens to be the objective function here, is upper
bounded by the average secrecy capacity R̄s. As we shall
show, R̄s can be achieved even without a key queue. However,
we will also illustrate that our solutions that involve the use
of the key queue lead to smaller queueing delays, compared
to the one without the key queue.

In these two problems, constraint (5) describes the data
queue evolution, and constraints (1) and (6) describe the key
queue evolution. Constraint (7) bounds the actual amount
of sensed data R(t) by the available amount of data A(t)
at time t. Constraints (2) and (8) state that the amount of
transmitted data is bounded by both the main channel rate and
the amount of keys available. Constraint (9) guarantees data
queue stability. Constraints (3) and (10) state that the amount
of key bits used to secure data is bounded by the eavesdropper
channel rate and does not exceed the amount of transmitted
data. Constraints (4) and (11) mean that the secure capacity is
fully utilized by the transmission of secure data and key bits.

Virtual Queue: In order to have a fair rate allocation, we do
not want the key queue to be drained frequently, which would
lead to outages whenever Rs(t) = 0. We define q̃k as the
virtual key queue and try to avoid key outage by making the
virtual key queue stable (similar ideas of utilizing virtual queue
are used in [19], [22]. The virtual queue evolves according to
the following equation:

q̃k(t + 1) =
(
(q̃k(t)− ε)+ + µ(t)−Rs(t) + 1o(t)

)+
, (12)

where ε > 0 can be chosen arbitrarily, and

1o(t) = 1key queue hits zero state from higher states in slot t

=
{

0 if µ(t) = 0 or µ(t) < qk(t) + Rs(t)
1 otherwise (13)

is the indicator that the key queue is drained in slot t. Without
loss of generality, the initial state q̃k(0) can be set to be zero.

IV. CONTROL ALGORITHM AND PERFORMANCE ANALYSIS

In this section, we provide a simple control algorithm,
analyze its performance, and show that its provably optimal
for both problems described in the previous section.

A. Algorithm

Our algorithm for Problem (A) involves only a transmission
rate controller. The transmission controller attempts to provide
a smooth service by the help of the key bits.
Transmission Control (TC): We define V ∈ <+ to be the
control parameter of our algorithm. In slot t, the controller
solves the following optimization problem and transmits with
the calculated rate:

max
µ(t)∈Π(t)

V

2
U(µ(t))− q̃k(t)µ(t), (14)

where Π(t) = {µ(t) : 0 ≤ µ(t) ≤ min[qk(t)+Rs(t), Rm(t)]}
is a compact and nonempty set. Furthermore, key generation
and usage rates (Rk(t), µk(t)) are chosen as follows: If
µ(t) > Rs(t), then Rk(t) = 0 and µk(t) = µ(t) − Rs(t);
if µ(t) ≤ Rs(t), then µk(t) = 0 and Rk(t) = Rs(t) − µ(t).
This ensures that constraint

(
µ(t) − µk(t)

)
+ Rk(t) = Rs(t)

is satisfied. It is not surprising that µk(t)Rk(t) = 0, since any
solution with µk(t) > 0 and Rk(t) > 0, can be equivalently
replicated by using the secrecy rate to transmit data rather
than generating and using key bits at the same time. Note that
Rs(t) =

(
Rm(t)−Re(t)

)+ ≥ Rm(t)−Re(t), then for µ(t) >
Rs(t), we have µk(t) = µ(t) − Rs(t) ≤ Rm(t) − Rs(t) ≤
Re(t). This leads to constraint 0 ≤ µk(t) ≤ min[µ(t), Re(t)]
being satisfied.

The set, Π(t) of possible data transmission guarantees
constraint (2) on µ(t) in Problem (A). If U(·) is concave, the
objective function is a concave function of µ(t). Consequently,
TC solves a simple convex optimization problem in each
time slot. The positive term V

2 U(µ(t)) can be viewed as a
utility obtained from the transmission rate µ(t) and the term
q̃k(t)µ(t) can be viewed as its associated cost. When the
virtual key queue q̃k(t) is small, TC tries to allocate a high
amount of transmitted data to increase the utility; and when
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q̃k(t) is large, TC allocates a small amount of transmitted data
to reduce cost. This pushes the served data rate to be smoother
over time. It is also notable that (14) involves only µ(t). The
key generation and usage rates are not part of this optimization,
and are chosen subsequently.

In Problem (B), we need to control both the admission and
transmission rate such that the admitted rate is maximized
while keeping the data queue stable. In our algorithm, there
are two components: a admission control component and
a transmission control component. The transmission control
component is the identical to the one described above for
Problem (A), and the admission control component is as
follows:
Admission Control (AC): In slot t, the controller solves
the following optimization problem and admit the calculated
amount of data arrivals:

max
0≤R(t)≤A(t)

V

2
U(R(t))− qd(t)R(t), (15)

Both TC and AC are index policies, i.e., the solutions are
memoryless and they depend only on the instantaneous values
of the system variables.

B. Performance Analysis

Recall that A(t) is the original data arrival and R(t) is the
amount of data admitted to the data queue. The natural ques-
tion one would ask here is, whether our admission controller
rejects too many packets in the first place to synthetically keep
the data queue stable. In the following theorem, we show that
this is not the case. Indeed, the admission rate associated with
AC and TC can be made closer to the optimum by increasing
the control parameter V . We use the notation y = O(x) to
represent y going to 0 as x goes to 0.

Theorem 1: If
1) U(·) is strictly concave on <+

⋃{0}, and its slope at 0
satisfies1 0 ≤ β = U ′(0) < ∞,
2) 0 ≤ lim supT→∞

1
T

∑T−1
t=0 A2(t) < ∞ and 0 ≤ Rm(t) ≤

Rmax < ∞, ∀t ≥ 0,
then TC achieves:

lim inf
T→∞

1
T

T−1∑
t=0

U(µ(t)) ≥ lim inf
T→∞

1
T

T−1∑
t=0

U(µ∗(t))−O(
1
V

),

(16)

and AC achieves:

qd(t) ≤ β
V

2
, ∀ t ≥ 0 (17)

lim inf
T→∞

1
T

T−1∑
t=0

U(R(t)) ≥ lim inf
T→∞

1
T

T−1∑
t=0

U(R∗(t))−O(
1
V

),

(18)

lim inf
T→∞

1
T

T−1∑
t=0

R(t) → lim inf
T→∞

1
T

T−1∑
t=0

R∗(t) as V →∞,

(19)

1For instance, U(1 + R) = log(1 + R).

where ~µ∗ = {µ∗(0), µ∗(1), . . . , µ∗(T − 1), . . .} and ~R∗ =
{R∗(0), R∗(1), . . . , R∗(T − 1), . . .} are the optimal solutions
to Problem (A) and Problem (B), respectively.

The proof of Theorem 1 can be found in Appendix A.
Equation (17) shows that the data queue qd is stable. In
Equation (16), the gap between the average transmission rate
with our algorithm and the optimal average transmission rate
can be made arbitrarily small by choosing parameter V large.
Similarly, by Equation (19), the admission rate can be close
to optimum with large V . As a tradeoff, the data queue length
increases as V increases. From Equation (18), we observe that,
if we plug the rates allocated by our algorithm in the utility
function, it still remains close to the utility achieved by the
optimal solution of Problem (B). This implies that, AC and
TC allocate rates smoothly over time, as opposed to the case
without a key queue. Based on this observation, combined with
Equation (16), we expect the queueing delay to be smaller with
a key queue. We will verify this in the following numerical
example.

V. NUMERICAL EXAMPLE

In this section we simulate our algorithms and numerically
compare them with the optimal performance. In the simulation,
the number of time slots is T = 106. We use the utility
function U(x) = log2(1 + x) ∀x ≥ 0. The main channel
rate is uniformly distributed over [0, 100] and the eavesdropper
channel rate is uniformly distributed over [0, 50]. As a result
of the simulation, the average secure capacity R̄s = 29.1. We
also set the virtual key queue parameter ε = 0.01.

We first use an arrival process A(t), t ≥ 0, that is composed
of independent Poisson random variables with mean 30 each
slot. In this example, Ā > R̄s. We run the simulation for
different values of the control coefficient V and compare the
results with the optimal value2. In Figure 2(a), one can observe
that, as V increases, the average utility of the transmission
rate with a key queue approaches the optimal value, which
is consistent with Equation (16). For the case without a key
queue, the average utility remains a constant and is quite
smaller. Figure 2(b) shows that, as V increases, the average
admission rate (both with and without a key queue) also
increases to the optimum, which is consistent with Equa-
tion (19). As a tradeoff, the average queue length increases
but remains bounded as shown in Figure 2(c). Although the
optimal admission rate can be approached both with and
without a key queue, the delay performance with a key queue
is better as we can see in Figure 2(d).

Figure 3 illustrates the same scenario, with a more bursty
arrival process. This time, A(t) = 0 w.p. 1

2 and A(t) = 50
w.p. 1

2 independently for each time slot. Consequently, Ā =
25 < R̄s. Similar observations to the previous case can be
made with this arrival process.

2Note that the optimal value for Problem (A) is U(R̄s) and for Problem
(B) is min[Ā, R̄s].
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Fig. 2. Performance Evaluation of TC and AC with respect to the solutions
of Problem (A) and (B) under Poisson Arrivals: (a) Control Parameter V vs.
Average Utility of Transmission Rate; (b) Control Parameter V vs. Average
Admission Rate; (c) Control Parameter V vs. Queueing Delay; (d) Throughput
vs. Delay Curve
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Fig. 3. Performance Evaluation of TC and AC for Problem (A) and (B)
under Variable Arrivals

VI. CONCLUSION

In this paper, we considered a single-user secure data
communication system and addressed two separate problems,

both of which involve the maximization of a long-term average
utility, defined as a function of the number of secure packets
transmitted in each time slot. We proposed a transmission
controller and an admission controller based on simple index
policies that do not rely on any prior statistical information
on the data arrival process. We showed that our controller pair
has a provably efficient performance. Also, we illustrated via
simulations that the use of a key queue reduces the queuing
delay for the data packets, while serving packets that are
admitted at the maximum admissible rate. This is due to the
fact that, the transmission controller is designed to choose the
rate of served packets as uniformly over time as possible.
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APPENDIX

A. Proof of Theorem 1

Proof of Equation (17): Equation (17) directly follows from
the following lemma:

Lemma 2: Under algorithm AC and TC, we have

qd(t) ≤ βV

2
, q̃k(t) ≤ βV

2
.

Proof: Since U(·) is concave on <+
⋃{0}, we have

U(µ(t)) ≤ U(0)+βµ(t), ∀t ≥ 0, where 0 ≤ β = U ′(0) < ∞.
Then, V

2 U(µ(t))− q̃k(t)µ(t) ≤ V
2 U(0) + βV

2 µ(t)− q̃k(t)µ(t)
where µ(t) is the solution of TC.

If βV
2 µ(t) − q̃k(t)µ(t) < 0, then we get V

2 U(µ(t)) −
q̃k(t)µ(t) < V

2 U(0). However, TC chooses µ(t) that max-
imizes V

2 U(µ(t)) − q̃k(t)µ(t) which means V
2 U(µ(t)) −

q̃k(t)µ(t) ≥ V
2 U(0) since 0 ∈ Π(t). Then, we must have

βV
2 µ(t)− q̃k(t)µ(t) ≥ 0, i.e.,

q̃k(t)µ(t) ≤ βV

2
µ(t). (20)

We now prove the result by induction. Without loss of gen-
erality, let q̃k(0) ≤ βV

2 . Suppose for all t ≥ 1, q̃k(t−1) ≤ βV
2

holds. In slot t, if µ(t) = 0, then q̃k(t) ≤ q̃k(t− 1) ≤ βV
2 by

Equation (12). Otherwise, µ(t) 6= 0, and by Equation (20), we
have q̃k(t) ≤ βV

2 .
qd(t) ≤ βV

2 can be obtained using the same argument.
Proof of Equation (16): We define the Lyapunov function
L(q̃k(t)) = (q̃k(t))2, and ∆(q̃k(t)) = L(q̃k(t+1))−L(q̃k(t)).
From Equation (12), we have

(
q̃k(t + 1)

)2 ≤(
q̃k(t)− ε

)2 +
(
µ(t)−Rs(t) + 1o(t)

)2+

2
(
q̃(t)− ε

)+(
µ(t)−Rs(t) + 1o(t)

)

≤(
q̃k(t)

)2 + ε2 +
(
1 + Rmax

)2 + 2εRmax+
2q̃k(t)1o(t) + 2q̃k(t)µ(t)− 2q̃k(t)Rs(t),

then

∆ =∆(q̃k(t))

≤V U(µ(t))− V U(µ(t)) + ε2 +
(
1 + Rmax

)2 + 2εRmax

+ 2q̃k(t)1o(t) + 2q̃k(t)µ(t)− 2q̃k(t)Rs(t)

≤V U(µ(t)) + ε2 +
(
1 + Rmax

)2 + 2εRmax + βV 1o(t)

− 2
[
V

2
U(µ(t))− q̃k(t)µ(t)

]
− 2q̃k(t)Rs(t).

It is apparent that TC is trying to maximize the value of
the term

[
V
2 U(µ(t))− q̃k(t)µ(t)

]
. Since the optimal solution

for Problem (A) may not be unique, we let U∗ be the optimal
solution set and µ∗ ∈ U∗ be any optimal solution, for Problem
(A) given any sample path. Since the constraint set Π(t) is
queue dynamic related, it is possible that µ∗(t) /∈ Π(t).

Lemma 3: In slot t, if by solving TC, we get[
V
2 U(µ(t))− q̃k(t)µ(t)

]
<

[
V
2 U(µ∗(t))− q̃k(t)µ∗(t)

]
,

then µ(t) < µ∗(t) and 1o(t′) = 1 for some t′ ≤ t and
t− t′ < ∞.
Proof: In time slot t, let µm(t) be the value that maximize
the unconstrained objective function V

2 U(µ(t))− q̃k(t)µ(t).
Claim 1: qk(t) + Rs(t) ≤ Rm(t). Otherwise, Π(t) =
[0, Rm(t)] which is not queue dynamic related, then[

V
2 U(µ(t))− q̃k(t)µ(t)

] ≥ [
V
2 U(µ∗(t))− q̃k(t)µ∗(t)

]
.

Claim 2: µm(t), µ∗(t) > qk(t) + Rs(t). If µm(t), µ∗(t) ∈
Π(t), we must have

[
V
2 U(µ(t))− q̃k(t)µ(t)

] ≥[
V
2 U(µ∗(t))− q̃k(t)µ∗(t)

]
, then µ∗(t) > qk(t) + Rs(t).

If µm(t) < 0, we will have V
2 U(0) =[

V
2 U(µ(t))− q̃k(t)µ(t)

] ≥ [
V
2 U(µ∗(t))− q̃k(t)µ∗(t)

]
,

then µm(t) > qk(t) + Rs(t).
By the above claims, µ(t) < µ∗(t) and µ(t) < µm(t).

Suppose µ(t) < qk(t) + Rs(t), since the objective function
of TC is concave in µ(t), we can increase µ(t) to increase
the objective without violating the constraint. Thus, µ(t) =
qk(t)+Rs(t) and 1o(t) = 1. It is also possible that 1o(t′) = 1
for some t′ < t and Rs(τ) = 0, ∀τ ∈ [t′, t]. Note that t−t′ <
∞, otherwise, lim supT→∞

1
T

∑T−1
t=0 Rs(t) = 0.

Let N = max{n : for any t ≥ 0, Rs(τ) = 0, ∀τ ∈
[t, t + n]}. By using Lemma 3 and µ(t), µ∗(t) ≤ Rm(t) ≤
Rmax, ∀t ≥ 0, we have N < ∞ and

∆ ≤V U(µ(t))− V U(µ∗(t)) + ε2 +
(
1 + Rmax

)2 + 2εRmax

+ 2q̃k(t)
[
µ∗(t)−Rs(t)

]
+ V (β + NU(Rmax))1o(t).

(21)

Lemma 4:

1
V

lim sup
T→∞

1
T

T−1∑
t=0

q̃k(t)[µ∗(t)−Rs(t)] ≤ O(
1
V

).

Proof: Note that
T−1∑
t=0

µ∗(t)−
[
qk(0) +

T−1∑
t=0

Rs(t)

]
≤ 0,

then
T−1∑
t=0

(
µ∗(t)−Rs(t)− δ

)
< qk(0),

where δ can be arbitrarily small. By divided by T and taking
lim supT→∞ of both sides, we have

lim sup
T→∞

1
T

T−1∑
t=0

(
µ∗(t)−Rs(t)− δ

)
< 0. (22)

Construct an auxiliary queue with the following evolution:

q̄∗k(t + 1) =
(
q̄∗k(t)−Rs(t)− δ

)+

+ µ∗(t),

then with Equation (22), q̄∗k(t) is strongly stable. By mul-
tiplying q̃k(t) for both sides of the inequality q̄∗k(t + 1) ≥
q̄∗k(t) − Rs(t) − δ + µ∗(t) and rearranging terms, we obtain
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q̃k(t)
[
µ∗(t)−Rs(t)

]
≤ q̃k(t)

[
q̄∗k(t+1)− q̄∗k(t)+δ

]
. By sum-

ming from 0 to T −1, dividing by T and taking lim supT→∞,
we have

1
V

lim sup
T→∞

1
T

T−1∑
t=0

q̃k(t)[µ∗(t)−Rs(t)]

≤ 1
V

lim sup
T→∞

1
T

T∑
t=1

q̄∗k(t)
(
q̃k(t− 1)− q̃k(t)

)

+
1
V

lim sup
T→∞

q̃k(T )q̄∗k(T )− q̃k(0)q̄∗k(0)
T

+ lim sup
T→∞

1
T

T∑
t=1

q̃k(t)
V

δ

≤Rmax + ε

V
lim sup
T→∞

1
T

T−1∑
t=0

q̄∗k(t) +
δ

V

βV

2

=O(
1
V

) +
δβ

2
,

since the average queue length of the auxiliary queue remains
stable and is not related to V . By letting δ → 0, we finish the
proof.

Lemma 5: If q̃k(t) ≤ βV
2 , then qk(t) < ∞.

Proof: First, we provide a rough idea of the proof: by
exploring the relations between q̃k(t) and qk(t), we notice
that as qk(t) increases from 0 to at most β V

2 , q̃k(t) will hit
zero at some slot. Once q̃k(t) becomes zero, TC results in
µ(t) = min[qk(t) + Rs(t), Rm(t)]. Since Rs(t) ≤ Rm(t),
qk(t) will either be zero or decrease. We now give the proof
details.

Without loss of generality, let qk(0) = 0. We have the
following cases:
i) if µ(t) ≥ Rs(t), 1o(t) = 0 and q̃k(t) > 0, then
qk(t + 1) ≤ qk(t) and q̃k(t + 1)− q̃k(t) ≤ qk(t)− qk(t + 1),
i.e., even if q̃k(t) increases, the increment is no larger than the
decrement of qk(t);
ii) if µ(t) < Rs(t), 1o(t) = 0, then if q̃k(t + 1) > 0,
q̃k(t)−q̃k(t+1) ≥ qk(t+1)−qk(t), i.e., the decrement of q̃k(t)
is no less than the increment of qk(t), else if q̃k(t + 1) = 0,
it goes to case iv);
iii) if 1o(t) = 1, then qk(t + 1) = 0 by Equation (1) and
Equation (13);
iv) if q̃k(t) = 0, by Equation (14), TC chooses µ(t) =
min[qk(t) + Rs(t), Rm(t)], then either qb(t + 1) = 0, or
qk(t + 1) = qk(t)−Rm(t) + Rs(t) ≤ qk(t).

From the above discussion, we have qk(t) ≤ β V
2 < ∞.

Lemma 6: If both the key queue qk(t) and virtual key queue
q̃k(t) are strongly stable, i.e.,

lim sup
T→∞

1
T

T−1∑
t=0

(
qk(t) + q̃k(t)

)
< ∞,

then lim supT→∞
1
T

∑T−1
t=0 1o(t) ≤ ε.

Proof: Using the idea similar to [19], we have the fact that
if any queue represented with Q(t) is strongly stable, then
lim supT→∞

Q(T )
T = 0. Hence, if qk(t) and q̃k(t) are strongly

stable, lim supT→∞
qk(T )

T = lim supT→∞
q̃k(T )

T = 0. From
Equation (12), we have

q̃k(t + 1) ≥ q̃k(t)− ε + 1o(t) + µ(t)−Rs(t).

Note that qk(t + 1) = qk(t)− µ(t) + Rs(t). By adding from
0 to T − 1, dividing by T and taking lim sup on both sides,
we have

lim sup
T→∞

q̃k(T )
T

≥ lim
T→∞

q̃k(0)
T

− ε + lim sup
T→∞

1
T

T−1∑
t=0

1o(t)

+ lim
T→∞

qk(0)− qk(T )
T

.

Since lim supT→∞
q̃k(T )

T = limT→∞
q̃k(0)

T =
limT→∞

qk(0)
T = limT→∞

qk(T )
T = 0, so we get

lim supT→∞
1
T

∑T−1
t=0 1o(t) ≤ ε.

By summing from 0 to T − 1, dividing by T and V , taking
lim infT→∞ over Equation (21), combined with Lemma 2,
Lemma 5, Lemma 6, and Lemma 4, we get

lim inf
T→∞

1
T

T−1∑
t=0

U(µ(t)) ≥ lim inf
T→∞

1
T

T−1∑
t=0

U(µ∗(t))−O(
1
V

)

− ε(NU(Rmax) + β).

By letting ε → 0, we obtain Equation (16).
Proof of Equation (18) and Equation (19): We define
L(qd(t)) = (qd(t))2, and ∆(qd(t)) = L(qd(t+1))−L(qd(t)).
By Equation (5), we have

∆ =∆(qd(t))

≤V U(R(t))− 2
[
V

2
U(R(t))− qd(t)R(t)

]
+ A2(t) + R2

max

− 2qd(t)µ(t) (23)

(P1) max
~R

lim inf
T→∞

1
T

T−1∑
t=0

R(t)

(P2) max
~R

lim inf
T→∞

1
T

T−1∑
t=0

U(R(t))

s.t. qd(t + 1) = (qd(t)− µ(t))+ + R(t),
0 ≤ R(t) ≤ A(t),

lim sup
T→∞

1
T

T−1∑
t=0

[
Rs(t)− µ(t)

]
= 0,

lim sup
T→∞

1
T

T−1∑
t=0

qd(t) < ∞,

Lemma 7: (P1) and (P2) have different objective functions
under the same set of constraints. Let ~R∗ be the maximizer
of (P2), then it is also the maximizer of (P1).
Proof: Suppose there exists ~R∗1 such

lim inf
T→∞

1
T

T−1∑
t=0

R∗(t) < lim inf
T→∞

1
T

T−1∑
t=0

R∗1(t),
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then there exists ~R∗2 such that R∗(t) ≤ R∗2(t) ≤ A(t), ∀t ≥ 0
and

lim inf
T→∞

1
T

T−1∑
t=0

R∗(t) < lim inf
T→∞

1
T

T−1∑
t=0

R∗2(t)

≤ lim inf
T→∞

1
T

T−1∑
t=0

R∗1(t).

i.e., there are infinitely many slots in which R∗(t)−R∗2(t) <
0. Since U(·) is strictly concave, U(R∗(t)) − U(R∗2(t)) <
βm(R∗(t) − R∗2(t)) < 0 if R∗(t) − R∗2(t) < 0, where 0 <

βm = min{U(R∗(t))−U(R∗2(t))
R∗(t)−R∗2(t) : R∗(t)−R∗2(t) < 0}. Thus,

lim inf
T→∞

1
T

T−1∑
t=0

U(R∗(t)) < lim inf
T→∞

1
T

T−1∑
t=0

U(R∗2(t)),

which contradicts the fact that ~R∗ is the maximizer of
(P2).

Note that qk(t + 1) = qk(t) + Rs(t)− µ(t). By Lemma 5,
we have the fact that TC results into

lim sup
T→∞

1
T

T−1∑
t=0

[
Rs(t)− µ(t)

]
= 0, (24)

then Problem (B) is reduced to (P1). By Lemma 7, ~R∗ is
also the maximizer of Problem (B). Substituting R∗(t) into
Equation (23), we obtain

∆ ≤V U(R(t))− V U(R∗(t)) + A2(t) + R2
max

+ 2qd(t)
[
R∗(t)− µ(t)

]
.

Note that lim supT→∞
1
T

∑T−1
t=0

[
R∗(t)−Rs(t))

] ≤ 0 and
lim supT→∞

1
T

∑T−1
t=0 A2(t) < ∞. combining with Equa-

tion (24) and using the same idea as in Lemma 4, we have

1
V

lim sup
T→∞

1
T

T−1∑
t=0

qd(t)[R∗(t)− µ(t)] ≤ O(
1
V

).

Then, we further obtain

lim inf
T→∞

1
T

T−1∑
t=0

U(R(t)) ≥ lim inf
T→∞

1
T

T−1∑
t=0

U(R∗(t))−O(
1
V

),

where ~R∗ is the maximizer of (P2), (P1) and Problem (B).
This equation also means that as V → ∞, ~R becomes the
maximizer of (P2). By applying Lemma 7 again, we have

lim inf
T→∞

1
T

T−1∑
t=0

R(t) → lim inf
T→∞

1
T

T−1∑
t=0

R∗(t) as V →∞.


