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Throughput-Delay Analysis of Random Linear
Network Coding for Wireless Broadcasting

B. T. Swapna, Atilla Eryilmaz, and Ness B. Shroff

Abstract—In an unreliable single-hop broadcast network set-
ting, we investigate the throughput and decoding-delay perfor-
mance of random linear network coding as a function of the
coding window size and the network size. Our model consists
of a source transmitting packets of a single flow to a set of n
users over independent time-correlated erasure channels. The
source performs random linear network coding (RLNC) over
k (coding window size) packets and broadcasts them to the
users. We note that the broadcast throughput of RLNC must
vanish with increasing n, for any fixed k. Hence, in contrast
to other works in the literature, we investigate how the coding
window size k must scale for increasing n. Our analysis reveals
that the coding window size of Θ(ln(n)) represents a phase
transition rate, below which the throughput converges to zero,
and above which it converges to the broadcast capacity. Further,
we characterize the asymptotic distribution of decoding delay
and provide approximate expressions for the mean and variance
of decoding delay for the scaling regime of k = ω(ln(n)). These
asymptotic expressions reveal the impact of channel correlations
on the throughput and delay performance of RLNC. We also
show how our analysis can be extended to other rateless block
coding schemes such as the LT codes. Finally, we comment on
the extension of our results to the cases of dependent channels
across users and asymmetric channel model.

Index Terms—Broadcast, Delay Analysis, Erasure Channel,
Network Coding.

I. INTRODUCTION

We consider an important transmission scenario, occurring
in many communication systems, whereby a source must
broadcast common information to many users over wireless
channels in a timely manner. Such a scenario occurs, for
example, in a satellite or cellular network where a satellite
or base station broadcasts a large file or streaming multi-
media data to many users within their footprint over unreliable
channels. Another example occurs in a multi-hop wireless
network where each node broadcasts control information to all
its immediate neighbors to coordinate medium access, power
control, and routing operations. We note that such local sharing
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of control information (such as queue-length or other pricing
information) is common to many provably efficient network
controllers (e.g. [2], [3], [4] etc.).

In this work, the essential components of such wireless
broadcast systems are modeled through a transmitter broad-
casting consecutive blocks of k data packets to n users over
independent and identically fading time-correlated erasure
channels with steady state erasure probability p. Assuming
that the transmitter is infinitely backlogged, we consider
transmission strategies that transfer the data in blocks of k
packets, which include the class of block coding strategies.
Among all such block transmission strategies, it has previously
been shown (see [5]) that, for any fixed n and k, the Random
Linear Network Coding (RLNC) strategy (see Section III for a
detailed description) asymptotically1 minimizes the number of
transmissions required to complete the transfer of all k packets
at all n users (also called the block decoding delay).

With this motivation, we focus on the scaling performance
of RLNC as a function of k and n with respect to the following
two key metrics: the (broadcast) throughput, defined as the
data transfer rate to all users; and the (broadcast) decoding
delay, defined as the amount of time spent between the start
of a block transmission and its completion (i.e., successful
decoding) at all the users.

It is not difficult to see that the (broadcast) capacity of
such a collection of n erasure channels, for any n, is equal
to (1 − p) packets per time slot. Moreover, this maximum
limit on the throughput can be arbitrarily closely achieved by
encoding information into an arbitrarily large block size, k.
Yet, this is not attractive since it leads to a decoding delay
that diverges to infinity. In this work, we address the question
of whether RLNC can achieve throughput arbitrarily close to
the capacity while yielding acceptable decoding delay. The
main contributions of this work are:
• We find that the broadcast throughput of RLNC must

vanish for any fixed k as n tends to infinity. Using
upper and lower bounds on the throughput and decoding-
delay performance of the broadcast system, we show
that a phase transition in the performance of our system
occurs at the block length scaling rate2 of k = Θ(ln(n))
with respect to the network size n. Specifically, we

1This asymptotic is with respect to increasing field size over which the data
packets are defined (see Section III).

2We use the standard order notation: g(n) = o(f(n)) im-
plies limn→∞(g(n)/f(n)) = 0; and g(n) = ω(f(n)) im-
plies limn→∞(g(n)/f(n)) = ∞; and g(n) = Ω(f(n)) implies
limn→∞(g(n)/f(n)) ≥ c for some constant c > 0; and g(n) = Θ(f(n))
implies c1 ≤ limn→∞(g(n)/f(n)) ≤ c2 for some constants c1 > 0 and
c2 > 0.
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show that if k increases slower than ln(n), then the
broadcast throughput of RLNC converges to zero, and if k
increases faster than ln(n), then the broadcast throughput
of RLNC converges to the broadcast capacity of (1− p).
In Section II, we shall note that the nature of this phase-
transition is different from the previously observed phase-
transition phenomenon in [6] due to a key difference in
the scaling of k and the metric of focus.

• We characterize the asymptotic distribution of decoding
delay and compute the mean and variance of decoding
delay for the scaling regime of k = ω(ln(n)) using
extreme value theory.

• We provide numerical results to substantiate our findings.
Our results verify the phase transition with respect to
the scaling rate and, not surprisingly, indicate that the
rate of convergence to capacity can be increased by
choosing a faster scaling of k with respect to n at the
cost of higher decoding delay. Our results also show
that the approximate expression for mean decoding delay
obtained using extreme value theory is accurate even for
small values of n.

These results collectively imply that RLNC can achieve
throughput-delay tradeoff of ((1 − p),Ω(ln(n))). This is an
attractive result as it indicates that as long as the coding
block size scales super-logarithmically (i.e., very slowly) with
the network size, the broadcast capacity is achievable with a
simple policy such as RLNC.

The rest of the paper is organized as follows. In Section II,
we overview some of the relevant work in this context. After
introducing the main system components in Section III, we
provide our throughput and delay analysis of RLNC for the
case of time invariant erasure channels in Section IV. We
present some numerical results to substantiate our findings in
the Section V. In Section VI, we comment on three important
extensions of our results - analysis of other rateless block
coding schemes such as the LT codes, dependent channels
across users, and asymmetric channel model. Finally, our
conclusions are provided in Section VII.

II. RELATED WORK

Our model is similar to that considered in [5], [6], [7].
In [7], the authors quantify the reliability gain of RLNC
for a fixed coding window size and show that RLNC
significantly reduces the number of retransmissions in lossy
networks compared to an end-to-end ARQ scheme. The delay
performance gains of RLNC were observed in [5]. They
show that, for a fixed coding window size k, the network
coding capability can lead to significantly better delay
performance as the system parameters (number of users) scale
when compared to traditional transmission strategies without
coding. More precisely, they show that, in the dense network
setting where the number of receivers is large, the mean
waiting time of scheduling relative to network coding for the
same load scales quadratically with the coding window size.

Also, in a similar setup as in this paper, it has recently
been shown in [6] that, for any given coding window size,
there exists a phase transition with respect to decoding delay

such that there is a threshold on the number of transmissions
below which the probability that a block of coded packets
can be recovered by all the nodes in the network is close to
zero. On the other hand, if the number of transmissions is
slightly greater than the threshold, then the probability that
every node in the network is able to reconstruct the block
quickly approaches one.

All of the aforementioned works [5], [6], [7] study the
gains of network coding as the system size grows while the
coding window size is held constant. In particular, they show
that the decoding delay of RLNC scales as O(ln(n)) for a
fixed coding window size as n → ∞. However it can be
seen that when the coding window size is held constant, the
throughput of the system goes to zero as the system becomes
large because each user receives a block of k packets in
O(ln(n)) time slots. Therefore, it is important to study the
system when k is scaled as a function of n. In this paper, we
investigate the decoding delay when the coding window size
scales as a function of the network size. We observe that there
is a phase transition with respect to broadcast throughput such
that when the coding window size k scales asymptotically
slower than ln(n), the broadcast throughput converges to zero.
On the other hand, scaling k asymptotically faster than ln(n)
leads to the broadcast throughput approaching (1 − p). This
behavior was first observed in [1] for a simple time-invariant
channel model. In their preliminary investigations in [1], the
authors prove this phase transition for an approximate system
defined by appealing to the central limit theorem for i.i.d
random variables. In this work, we investigate the throughput
performance and explain the phase transition behavior for the
more general case of a Markovian channel model. This phase
transition is fundamentally different from that observed in [6]
which relates to the decoding delay when k is fixed while the
phase transition observed in our work relates to the nature of
scaling of k as a function of network size n.

III. SYSTEM MODEL

In this work, we study the basic wireless broadcast scenario
depicted in Figure 1 that models the characteristics of cellular
or satellite systems and serves as the fundamental building
block for more general networks.

Fig. 1. A single source broadcasting
to n users over erasure channels with
probability of erasure, p in each time
slot.

Fig. 2. A time correlated erasure
channel model. In state ON, the trans-
mission is successful while in state
OFF, the transmission fails.

In particular, we consider a single source node, S, broadcast-
ing an infinite backlog of common information to n users over
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independent time-varying erasure channels. The data is encap-
sulated into packets, each represented as a vector of length l
over a finite field Fd. We assume a time-slotted operation of
the system with Ci[t] ∈ {0, 1} denoting the state of User i′s
channel in slot t. A single packet may be broadcast in each
time slot by the source and the transmission to the ith user
is successful only if Ci[t] = 1. Let C[t] = [C1[t], . . . , Cn[t]]
be the n−dimensional vector of channel states of all users in
slot t. We refer to C[t] as the channel state of our system.
C[t] ∈ Sn where S = {0, 1}. For simplicity, we assume that
all channels are independent and identically distributed. Also,
the source does not have any channel state information. We
assume a time correlated erasure channel model between the
source and each of the users that is defined next.

Definition 1 (Time Correlated Erasure Channel Model): In
each time-slot, user i′s channel is in one of two states as
shown in the Figure 2. When the channel is in the ON state,
Ci[t] = 1 with probability 1 while in OFF state, Ci[t] = 0 with
probability 1. The state of the channel evolves as a Markov
chain with transition probabilities α and β. Let p denote the
steady state probability of an erasure over the channel. Then
p = α

α+β . By setting α + β = 1, we can obtain, as a special
case, the time invariant erasure channel model, where Ci[t] =
1 with probability 1−p and Ci[t] = 0 with probability p. Note
that in the time invariant channel model, the channel state is
i.i.d over time slots.

We consider the class of block coding strategies employed
by the source, where data is transferred in blocks of k packets.
Specifically, the source can start transmitting the next block
only if the previous block is successfully transferred to all n
receivers. Moreover, we focus on the Random Linear Network
Coding (RLNC) strategy that is defined next.

Definition 2 (Random Linear Network Coding (RLNC)): In
each time slot, the source transmits a random linear combina-
tion of the k packets in the Head-of-line (HOL) coding block
(see Figure 1), i.e., the first block of k packets in the queue,
with coefficients of combination chosen uniformly at random
from the field Fd. In what follows, we refer to k as the coding
window (or block) size of RLNC.
Using random linear coding arguments [8], the probability
that the original k packets can be decoded from any k
encoded packets formed using the RLNC scheme is equal to(

1− 1

dk

)(
1− 1

dk−1

)
. . .

(
1− 1

d

)
which is bounded from

below by
(

1− 1
d−1

)
. Therefore, for a large enough field size

d, it is sufficient for the users to receive approximately k
coded packets to be able to decode the block. Hence, we
assume that, under the RLNC scheme, the source continues
to transmit encoded packets of the current block until each
user successfully receives k linear combinations.
It has been shown in [9] that random linear network coding is
capacity achieving for multicast connections in an unreliable
network setting. That is, for k sufficiently large, under the
coding scheme defined in Definition 2, the (broadcast) capacity
of our system is (1 − p). Next, we define the two metrics
of interest in our analysis, namely throughput and decoding-
delay.

Definition 3 ((Broadcast) Throughput): We let R[t] denote
the number of packets successfully served from the queue of
the source in a total of t slots. Then, the (broadcast) throughput
for a given n and k under RLNC scheme, denoted as η(n, k),
is the long-term average number of successfully transferred
data packets to all n users. Hence, we have

η(n, k) = lim
t→∞

R[t]

t
. (1)

Definition 4 (Decoding-Delay): We let Y (j)
i denote the

number of time slots it takes for the ith user to decode the
jth block of k packets under the RLNC scheme. The decoding
delay of the jth block, for a given n and k, under the RLNC
scheme, denoted as U (j), is the time required to transmit
all packets of the head-of-line (HOL) block to all the users.
Hence, we have

U (j) = max
1≤i≤n

Y
(j)
i . (2)

Recall that the source transmits linear combinations of the
current block until each user successfully receives k combi-
nations. Then Y (j)

i is the time it takes for k successful trans-
missions on User i′s channel and can be written as the sum
of durations between each of the k successful transmissions.
Hence,

Y
(j)
i =

k∑

h=1

X
(j)
ih , (3)

where X
(j)
ih is the duration between the (h− 1)

th and hth

successful transmission on User i′s channel for the jth coding
block.

To understand the importance of scaling k as a function of
n to guarantee a non-vanishing throughput, consider a simple
time invariant channel model, i.e, let Ci[t] be a Bernoulli
random variable with p being the probability that Ci[t] = 0
in any given time slot t. Owing to the block transmission
structure together with the independence of the channel states
across time, the decoding delay of the block transmissions
{U (j)}j≥1 are independent and identically distributed. This
allows us to model the RLNC operation as a renewal process
with renewals at the start of each coding block formation and
{U (j)}j≥1 being the sequence of inter-renewal intervals. Let
the random variable U be identically distributed as {U (j)}j≥1,
and, E[U (j)] = E[U ] for all j. Now, by defining a constant
reward of k acquired in each renewal interval, we can utilize
the main result in renewal theory for renewal reward pro-
cesses (c.f. [10], Theorem 3.6.1, p. 133) to write:

η(n, k) = lim
t→∞

R[t]

t
=

k

E[U ]
. (4)

Under the time invariant erasure channel model, it is easy
to see that for each i and j, Y (j)

i is the sum of k independent
geometric random variable with success probability (1 − p).
The exact expression for E[U ] is as follows,

E[U ] = k +

t=∞∑

t=k

[
1−

(
τ=t∑

τ=k

(
τ − 1

k − 1

)
p(τ−k)qk

)n]
, (5)

where
(
s
m

)
gives the number of size m combinations of s

elements and q , (1− p).
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The exact expression for E[U ] is difficult to simplify further.
However, as we show later in Lemmas 1 and 4, E[U ] is
Θ(ln(n)), since it is the maximum of n i.i.d random variables.
Thus, for any fixed k, η(n, k) in (4) goes to zero as n
approaches ∞.

In the next section, we provide throughput and delay
analysis of RLNC for the time-correlated channel model. By
identifying a suitable renewal process with reward R(t), we
express throughput in terms of E[U (j)] and k using the main
result in renewal theory for renewal-reward processes [10].
However, explicit characterization of E[U (j)] is difficult. In-
stead, we derive upper and lower bounds on E[U (j)] which
enable us to understand the scaling of k as a function of n to
guarantee a non-vanishing throughput. Further, we compute
the asymptotic approximation for the mean and variance of
U (j) when k scales faster than ln(n).

IV. ANALYSIS OF RLNC FOR TIME CORRELATED
ERASURE CHANNELS

Under the time correlated channel model (when α+ β 6= 1
in Definition 1), the RLNC operation is not a renewal process
after each coding block transmission and (4) is not valid.
Hence, in order to express the broadcast throughput in terms of
the decoding delay, we model the RLNC operation over time
correlated channels as a semi-Markov process and identify a
suitable renewal-reward process. By deriving upper and lower
bounds on the decoding delay and hence, the throughput, we
show that a phase transition in the throughput performance
of our system occurs at the block-length scaling rate of
k = Θ(ln(n)). This result is summarized in the following
theorem:

Theorem 1: Under the RLNC scheme, the broadcast
throughput η(n, k) of our system, when α, β > 0, and
α+ β 6= 2, can be characterized as follows,

a) If k = o(ln(n)), then

lim
n→∞

η(n, k) = 0. (6)

b) If k = ω(ln(n)), then

lim
n→∞

η(n, k) = 1− p. (7)

c) Furthermore, if k = Θ(ln(n)), then

lim inf
n→∞

η(n, k) ≥ r(1− p), (8)

where 0 < r < 1 is given in (25).
Remark 1: When k increases, every linear combination

broadcast by the source could potentially bring some new
information for every user in the system, and we expect the
users to decode the entire block at nearly the same time, i.e,
idle waiting time of each user for the beginning of next block
transmission is reduced. Hence, although the decoding delay
is large for large k, by identifying the right scaling of k as a
function of n, the throughput could potentially reach (1− p).
This scaling is identified in Part (b) of Theorem 1.
In what follows, we develop the mathematical model required
to prove the above result. We also characterize the asymptotic
distribution of the decoding delay for the scaling regime

of k = ω(ln(n)) and derive approximate expressions for
the mean and variance of the decoding delay using extreme
value theory. These expressions reveal the effect of channel
correlation on the throughput and delay performance of RLNC.

A. Throughput and Delay Analysis

Let T (j) ∈ Z+ denote the time slot of the completion of
the jth block transmission. Set T (0) = 0. Let the random
variable E(j) ∈ Sn denote the channel state of the system in
time slot T (j), i.e, at the end of the jth block transmission.
Consider the stochastic process {E[t], t ≥ 0}, where, for each
j ≥ 1, E[t] = E(j−1) for t in the interval T (j−1) ≤ t < T (j).
Note that each user’s channel evolves according to the
Markov chain shown in Figure 2 independently of other
users. Hence, the stochastic process, {E[t], t ≥ 0}, is a
semi-Markov process where the state transitions occur at
the end of each block transmission. Let E(0) = 1, i.e, the
process starts with all the user channels being ON. We
have that U (j) = T (j) − T (j−1), j ≥ 1 is the (holding)
time between successive state transitions. Note that U (j) is
the decoding delay of the jth block transmission and is a
non-negative random variable that depends only on the state
of the stochastic process at times T (j), and T (j−1). The
embedded Markov chain {E(j), j ≥ 0} is an irreducible finite
state (2n states) Markov chain when α 6= 0 and β 6= 0.
Also, the embedded Markov chain is aperiodic when α 6= 1
or β 6= 1.3 Let the random variable B(j) ∈ Sn denote the
channel state of the system in the time slot T (j−1) + 1, i.e,
at the beginning of jth block transmission.

The time epochs of return to the channel state s = 1 in
the semi-Markov process form a renewal process. The source
completes transmission of a random number of blocks in each
inter-renewal interval. Let the random variable W denote
the length of one such inter-renewal interval. Let M denote
the random number of block transmissions completed in

this interval. Therefore, we have the identity W =

M∑

j=1

U (j).

Figure 3 provides a schematic of the notation described so far.

Now, M represents the number of transitions in the embed-
ded Markov chain between consecutive visits to state 1. Since
the embedded Markov chain is an irreducible aperiodic finite
state Markov chain, we have that the steady state probabilities
of each state s in the embedded chain, Πs is strictly positive.
Hence E[M ] = 1

Π1
<∞ [10].

Since E[M ] <∞, by defining a reward of 1 for each packet
transmitted in a renewal interval, we can utilize the main result
from renewal theory (cf. [10], Theorem 3.6.1, p. 133) to write:

η(n, k) = lim
t→∞

R(t)

t
=
kE[M ]

E[W ]
. (9)

The random variable W depends on the channel state of the
system at the beginning of each of the M block transmissions.
Also, owing to the time correlated channel process, the random

3The cases when 1) α = β = 1 and 2) α = 0 or β = 0 are trivial
since the channel becomes deterministic within a finite expected number of
time-slots.
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E(0) = 1

E(1)

E(j−1)

E(M) = 1
E(j)

T (M)T (j)T (j−1)T (1)T (0) = 0

U (j)

W =
M∑

j=1
U (j)

Fig. 3. Schematic of the semi-Markov process {E[t], t ≥ 0}. State transitions
occur at T (j) which is the time slot of completion of the jth block
transmission. E(j) ∈ Sn is the channel state of the system in time slot
T (j). The stochastic process E[t] = E(j−1) for T (j−1) ≤ t < T (j). The
time epochs of return to channel state 1 form a renewal process and W is
the length of one such inter-renewal interval.

variables {U (j)}Mj=1 are not i .i .d . An explicit characterization
of E[W ] in terms of {U (j)} is, therefore, difficult. Instead, we
obtain upper and lower bounds on E[W ]. Recall that U (j),
j ≥ 1 is the decoding delay of the jth block. Now using (2)

and (3), we have U (j) = max
1≤i≤n

k∑

h=1

X
(j)
ih . We can bound U (j),

for k ≥ 2, as follows,

max
1≤i≤n

X
(j)
i2 ≤ U (j) ≤ max

1≤i≤n
X

(j)
i1

+ max
1≤i≤n

(
X

(j)
i2 + . . .+X

(j)
ik

)
a.s.

(10)

The lower bound in the above equation is obtained by us-
ing the fact that X(j)

ih ≥ 0. The upper bound is due to
the following simple identity: If a1, a2, b1, b2 are any four
non-negative real numbers, then max(a1 + a2, b1 + b2) ≤
max(a1, b1) + max(a2, b2). Note that, for all h ≥ 2, X

(j)
ih

is the number of time-slots between the (h− 1)
th and hth

successful transmission given that the channel state of User i
in the time slot of reception of (h− 1)

th linear combination is
ON. Therefore, the random variables {X(j)

ih } are i .i .d for all
i = 1, . . . , n, ∀j ≥ 1, ∀h ≥ 2 . We also have that, for all j ≥ 1
and h ≥ 2, X

(j)
ih is independent of E(1), . . . ,E(j−1). Also, note

that X(j)
i1 , j ≥ 1 is not independent of E(j−1). Let Fj be the

smallest σ−field of events containing the σ−fields generated
by the random variables {X(1)

ih , . . . , X
(j)
ih , i = 1, . . . , n, h =

1, . . . , k} and E(1), . . . ,E(j). Then, M is a stopping time with
respect to the filtration {Fj}.

Now, the identity W =

M∑

j=1

U (j) along with (10) enables us

to bound E[W ] as follows,

E[W ] ≥ E



M∑

j=1

max
1≤i≤n

X
(j)
i2


 (11)

E[W ] ≤ E



M∑

j=1

max
1≤i≤n

X
(j)
i1




+ E



M∑

j=1

max
1≤i≤n

(
X

(j)
i2 + . . .+X

(j)
ik

)

 (12)

To prove Theorem 1, we further bound the lower and upper
bounds on E[W ] in (11) and (12), respectively. First, we state
a useful lemma [11]:

Lemma 1: (From [11], p. 7) Let χi, i = 1, 2, . . . , n be iden-
tically distributed and possibly correlated random variables.
Then for any τ > 0, we have that

E[ max
1≤i≤n

χi] ≤
1

τ

(
ln(n) + ln(E[eτχ1 ]))

)
(13)

Note that the above bound is useful only when τ lies within
the radius of convergence of the moment generating function
(m.g.f) of χ1.
Next, we state a few lemmas that will be useful in the proof of
Theorem 1. The proofs of these lemmas are given in Appendix
I. Recall that B(j) ∈ Sn denotes the channel state of the system
at beginning of jth block transmission. For any fixed n, |Sn|
is finite. Hence, max

s∈Sn
E
[

max
1≤i≤n

X
(j)
ih |B(j) = s

]
exists and can

be bounded as follows,
Lemma 2: There exist constants µ0 and τ0 such that, for all

j and h,

max
s∈Sn

E
[

max
1≤i≤n

X
(j)
ih |B(j) = s

]
≤ 1

τ0
(ln(n) + µ0) .

Also, E
[

max
1≤i≤n

X
(j)
ih

]
<∞ for any j, h ∈ {1, . . . , k}.

Proof: See Appendix I
In the next lemma, we find an upper bound on the expected

value of
M∑

j=1

max
1≤i≤n

X
(j)
i1 :

Lemma 3: Let µ = 1
τ0

(ln(n) + ln(µ0)) where τ0 and µ0

are defined in the previous lemma. Then,

E



M∑

j=1

max
1≤i≤n

X
(j)
i1


 ≤ E[M ]µ. (14)

Proof: See Appendix I
Next, we find a lower bound on the expected value of
max

1≤i≤n
X

(j)
i2 :

Lemma 4: Let λ = − ln(1− β). Then, for all j, we have

E
[

max
1≤i≤n

X
(j)
i2

]
≥ 1 +

α

λ
[ln(n) + γ] , (15)

where γ is the Euler’s constant.
Proof: See Appendix I

Next, we prove Theorem 1 using the above lemmas and Wald’s
first equation to bound the lower and upper bounds in (11) and
(12), respectively.

Proof: (Proof of the Theorem 1)
Proof of (a) : First, we prove that k = o(ln(n)) leads to
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a vanishing throughput. As mentioned in Lemma 3, M is a
stopping time with respect to the filtration {Fj}. We have that
{ max

1≤i≤n
X

(j)
i2 }j≥1 are identically distributed and have a finite

mean. Also, max
1≤i≤n

X
(j)
i2 is independent of Fj−1. Thus, using

Wald’s first equation and Lemma 4, we can lower bound E[W ]
(cf. (11)) as follows,

E[W ] ≥ E[M ]E
[

max
1≤i≤n

X
(1)
i2

]

≥ E[M ]
(

1 +
α

λ
[ln(n) + γ]

)
.

Consequently, using (9), we can bound the throughput from
above as follows,

η(n, k) ≤ kE[M ]λ

E[M ] (λ+ α [ln(n) + γ])
(16)

=
kλ

λ+ α [ln(n) + γ]
. (17)

Clearly, when k = o(ln(n)), the upper bound, and hence,
η(n, k) decreases to zero, as n→∞.
Proof of (b) : Next, we consider the case when k = ω(ln(n)).
We let k = f(n) ln(n) + 1 for some function f(n) > 0 such
that lim

n→∞
f(n) = ∞. Let Ŷ (j)

i = X
(j)
i2 + . . . + X

(j)
ik . Let µ̂

and σ̂2 be the mean and variance of Ŷ (j)
i . Then,

µ̂ = (k − 1)(1 +
α

β
) = (k − 1)

1

1− p ,

σ̂2 =
(k − 1)α[2− (α+ β)]

β2
. (18)

As mentioned in Lemma 3, M is a stopping time with respect
to the filtration {Fj}. We have that { max

1≤i≤n
Ŷ

(j)
i }j≥1 are

identically distributed and have a finite mean. Also, max
1≤i≤n

Ŷ
(j)
i

is independent of Fj−1. Using Wald’s first equation and
Lemma 3, we can rewrite (12) as follows,

E[W ] ≤ E



M∑

j=1

max
1≤i≤n

X
(j)
i1


+ E[M ]µ̂

+ σ̂E



M∑

j=1

max
1≤i≤n

Ŷ
(j)
i − µ̂
σ̂




≤ E[M ]

(
µ+ µ̂+ σ̂E

[
max

1≤i≤n

Ŷ
(j)
i − µ̂
σ̂

])
. (19)

Now, using Lemma 1, for 0 < τ ≤ σ̂ ln( 1
1−β ), we have the

following upper bound,

E

[
max

1≤i≤n

Ŷ
(j)
i − µ̂
σ̂

]

≤ 1

τ

(
ln(n) + ln

(
E

[
exp

(
τ
Ŷ

(j)
i − µ̂
σ̂

)]))

Define φ(n) as follows,

φ(n) = (1− p)
(
µ+ µ̂+

σ̂

τ
ln(n)

+
σ̂

τ
ln

(
E

[
exp

(
τ
Ŷ

(j)
i − µ̂
σ̂

)]))
. (20)

Using (19) and (20), we can bound E[W ] and η(n, k) as
follows,

E[W ] ≤ E[M ]
φ(n)

1− p ,

η(n, k) =
kE[M ]

E[W ]
≥ (1− p)(f(n) ln(n) + 1)

φ(n)
. (21)

Next, choose τ = b
√

ln(n) where b is a constant such that
0 < τ ≤ σ̂ ln( 1

1−β ). For such a τ ,

E

[
exp

(
τ
Ŷ

(j)
i − µ̂
σ̂

)]
= e−τµ̂/σ̂

(
E

[
τX

(j)
i2

σ̂

])k−1

= e−τµ̂/σ̂

(
(1− α)eτ/σ̂ +

∞∑

u=2

αβ(1− β)u−2eτu/σ̂

)k−1

= e−τµ̂/σ̂
(

(1− α)eτ/σ̂ +
αβe2τ/σ̂

1− eτ/σ̂ (1− β)

)k−1

= e−τµ̂/σ̂

(
eτ/σ̂

[
1− α

(
1− eτ/σ̂

)
− eτ/σ̂ (1− β)

]

1− eτ/σ̂ (1− β)

)k−1

(22)

= r(n)f(n) ln(n), (23)

where r(n) is obtained by substituting for µ̂ and σ̂ from (18)
and using τ = b

√
ln(n), and k−1 = f(n) ln(n) in (22) above.

The expression for r(n) is given as follows

r(n) =



e

d1√
f(n)

[
1− α

(
1− e

d2√
f(n)

)
− e

d2√
f(n) (1− β)

]

1− e
d2√
f(n) (1− β)


 ,

with d1 =
−b√α√

2− α− β and d2 =
bβ√

α(2− α− β)
.

Substituting (18), (23), τ = b
√

ln(n), and µ = 1
τ0

(ln(n) +
ln(µ0)), in the expression for φ(n) in (20) , we get

φ(n) =
1− p
τ0

ln(nµ0) + f(n) ln(n)

+ d3(1− p)
√
f(n) ln(n) (1 + f(n) ln (r(n))) ,

(24)

where d3 =

√
α[2−(α+β)]

bβ . Since, f(n)→∞, as n→∞, we
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have r(n)→ 1 as n→∞. Then,

lim
n→∞

φ(n)

f(n) ln(n) + 1
− 1

= d3 lim
n→∞

√
f(n) ln (r(n))

= d3 lim
n→∞

√
f(n)(1− r(n)) ln (1− (1− r(n)))

1
1−r(n)

= −d3 lim
n→∞

√
f(n)(1− r(n)) (i)

=
−d3

β
lim
n→∞

√
f(n)

(
1− (1− β) e

d2√
f(n)

− e
d1√
f(n)

[
1− α

(
1− e

d2√
f(n)

)
− (1− β) e

d2√
f(n)

])

= 0, (ii)

where (i) follows by noting that (1− (1− r(n)))
1

1−r(n) →
e−1 as n→∞ and (ii) follows by L′Hôspital′s rule. Hence,
from (21) and the fact that η(n, k) ≤ (1−p), we see that under
the scaling regime of k = ω(ln(n)), we have η(n, k)→ (1−p)
as n→∞.
Proof of (c) : Finally, consider the case when k = Θ(ln(n)).
This is achieved by letting f(n) = b̂ for some constant
b̂ independent of n in the above analysis. Then, r(n) is a
constant independent of n and we denote ρ = r(n) in this
case. Now, using (24), we can write,

lim
n→∞

φ(n)

f(n) ln(n) + 1

= 1 +
1− p
τ0b̂

+

√
α[2− (α+ β)]

bβ
√
b̂

(
1 + b̂ ln (ρ)

)

= ∆ :=
1

r
<∞ (25)

where ∆ ≥ 1, because we know that η(n, k) ≤ (1 − p) and
hence, φ(n)

f(n) ln(n)+1 ≥ 1. Now we can see, from (21), that a
constant fraction 0 < r = 1

∆ ≤ 1 of the capacity is guaranteed,
hence proving (c).

B. Computing the Mean and Variance of Decoding Delay

In Theorem 1, we showed that it is necessary to scale k at
least as ln(n) to guarantee a non-vanishing broadcast through-
put. Next, we aim to obtain an accurate characterization of the
decoding delay, U (j) in the scaling regime of k = ω(ln(n)).
Recall that U (j) = max

1≤i≤n
Y

(j)
i . In what follows, we drop the

superscript (j) and let U denote the decoding delay of our
system under the RLNC scheme.
First consider the case of time-invariant channel model. We
see that, for each j, Y

(j)
i in (3) is the sum of i .i .d random

variables. By appealing to the Central Limit Theorem, we
know that, after suitable standardization, Y (j)

i converges in
distribution to a standard normal random variable as k →∞.
It is also well-known that, the distribution of the maximum
of n normal random variables, after suitable standardization,
converges weakly to the Gumbel distribution [12] as n→∞.
Therefore, we expect the decoding delay, U, to converge in
distribution to the Gumbel distribution, after suitable standard-
ization, as n → ∞. This is shown to be true in [13] for the

general case of maxima of sum of i.i.d random variables. We
summarize the result for our setting in the following theorem,

Proposition 1: (cf. [13], Proposition 2, p. 961) Let µ(k) =
k

1−p and σ2(k) = k p
(1−p)2 . When k = ω(ln(n)), we have

lim
n→∞

P
(
U − µ(k)

σ(k)
≤ anx+ bn

)
= exp

(
−e−x

)
,

where bn ∼
√

2 ln(n) − ln(ln(n))+ln(4π)

2
√

2 ln(n)
and

an :=
1

bn
∼ 1√

2 ln(n)
as n→∞.

In Section V, we show the above convergence in distribution
using numerical simulations (cf. Figure 10). In general, conver-
gence in distribution does not imply convergence in moments.
However, for the case of distributions belonging to the domain
of attraction of the Gumbel distribution, convergence of mo-

ments holds true [14]. Let Ũ =
U − µ(k)

σ(k)
. Then, ∀r ≥ 0, we

have,

lim
n→∞

E

[
Ũ − bn
an

]r
=

∫ ∞

−∞
xrd exp

(
−e−x

)
. (26)

Now,
∫ ∞

−∞
xd exp

(
−e−x

)
= γ where γ is the Euler’s constant

and
∫ ∞

−∞
x2d exp

(
−e−x

)
=
π2

6
+ γ2. This enables to write

the following approximate expressions for the mean and
variance of decoding delay, when n is large,

E[U ] ≈ k

1− p +

√
kp

1− p

(
√

2 ln(n) + γ
1√

2 ln(n)

)
, (27)

var[U ] ≈ kpπ2

12(1− p)2 ln(n)
. (28)

By using (27) in (4), we can verify that when k = ω(ln(n)),
the throughput converges to 1 − p as n → ∞. In Section V,
using simulations (cf. Figure 6, 7), we show that the above
approximate expressions are accurate even for small values of
n.
In [6], the authors show that, when k is fixed,

lim
n→∞

P
(
U ≤ ãnx+ b̃n

)
= exp

(
−e−x

)
, (29)

where ãn = −1
ln(p) and b̃n ∼ ln(n) as n→∞.

Now, since ãn is a constant, the asymptotic distribution of
the decoding delay, U, is concentrated around the point b̃n
with a fixed variance for all n and hence, there exists a phase
transition with respect to the decoding delay, U, such that there
exists a threshold on the number of transmissions below which
the probability that a block of coded packets can be recovered
by all the nodes in the network is close to zero. On the other
hand, if the number of transmissions is slightly greater than the
threshold, then the probability that every node in the network is
able to reconstruct the block quickly approaches one. However,
when k = ω(ln(n)), var[U ] in (28) increases with n and the
phase transition phenomenon observed in [6] becomes less
evident.

For the case of correlated channels, we analyze the decoding
delay for the case when the channel state of the system is
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s = 1 in the time slot prior to the beginning of the new
block transmission. Let the random variable U denote this
decoding delay as well. In this case too, the decoding delay for
each user can be written as a sum of i .i .d random variables.
Hence, we have a similar proposition as Proposition 1. We can
write the approximate expressions for mean decoding delay
and variance of decoding delay, when n is large, for both the
channel models, concisely, as follows,

E[U ] ≈ k

1− p +

√
d4kp

1− p

(
√

(2 ln(n)) +
γ√

(2 ln(n))

)
,

(30)

var[U ] ≈ kpπ2d4

12(1− p)2 ln(n)
, (31)

where d4 =

(
2

α+ β
− 1

)
. Note that the above expressions

are the same as (27) and (28) for the time invariant channel if
we choose α+β = 1 and p = α

α+β . Although (30) is derived
under the assumption that the channel state of the system
before the beginning of the block transmission is s = 1, we
show, using simulations (cf. Figure 8, 9) in Section V, it is an
accurate upper bound on the decoding delay performance of
the actual system.

We can observe an interesting fact from expression (30):
we see that the mean decoding delay decreases as the channel
becomes more negatively correlated, i.e, 1 < α + β → 2 and
increases as the channel becomes more positively correlated,
i.e, α + β < 1, α + β → 0. The holding time of any state
is longer when the channel is positively correlated and hence,
the channel remains in a bad state for a longer time hurting the
decoding delay. On the other hand, the state holding times are
shorter for a negatively correlated channel and state transitions
are more frequent leading to a shorter decoding delay.

V. NUMERICAL RESULTS

In this section, we provide numerical results to substantiate
our analysis of the RLNC scheme, both for the case of the
time invariant channel model and the time correlated channel
model. As a representative setup for the case of the time
invariant channel model, we let the OFF probability of erasure
channels p to be 0.1. Note that the broadcast capacity for this
choice of p is (1− p) = 0.9. For the time correlated channel
model, we choose α = β = 0.3. The broadcast capacity
for this choice is 0.5. We note that the scaling behavior of
the throughput and decoding-delay do not change for any
other choice of channel parameters. Our numerical results
are presented under two different scenarios, the first focuses
on confirming the phase transition of the throughput scaling,
and the second focuses on substantiating the accuracy of our
approximation for the mean decoding delay computed using
extreme value theory.
Study 1) Phase transition: In this study, we explore the phase
transition that is suggested by Theorem 1. To that end, Figure 4
depicts the (broadcast) throughput of RLNC in the actual
system operation with increasing n for different types of
scaling of k for the time invariant erasure channel. We see
that this result is in perfect agreement with Theorem 1: when
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Fig. 4. Throughput behavior under
different scalings of k with n when
p = 0.1
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Fig. 5. Throughput behavior under
different scalings of k with n when
α = β = 0.3 and capacity is 0.5.

k = 10 and therefore scales slower than ln(n), we see that
the throughput decays towards zero; when k = 10 ln(n), i.e.
k = Θ(ln(n)), the throughput converges to a constant level
as suggested by Theorem 1; when k = 10 ln2(n) or 10n, i.e.
k = ω(ln(n)), the throughput increases toward the broadcast
capacity of 0.9.

Figure 5 depicts the (broadcast) throughput of RLNC in
the actual system operation for the time correlated erasure
channel model. Once again, we see that this result is in
agreement with Theorem 1.
These two results also reveal that the convergence rate of the
performance to the capacity may be increased by selecting a
faster scaling of k with respect to n. Thus, Study 1 confirms
the phase transition suggested by our analysis. The next study
is aimed at studying the convergence of distribution of the
decoding delay.
Study 2) Convergence in Distribution: Here, we consider
the scaling k = n and compare the probability density
function (pdf) of standardized decoding delay Ũ−bn

an
(recall

that Ũ =
U − µ(k)

σ(k)
) to that of the Gumbel distribution. We

can see from Figure 10, that for n equal to 1500 and 10, 000,
the distribution of the standardized decoding delay is well
approximated by the Gumbel distribution. Next, we study the
accuracy of our approximation for the mean decoding delay
computed using extreme value theory.
Study 3) Approximate Mean Decoding Delay: Here, we
consider two different scalings of k with respect to n, and
compare the mean decoding-delay of the actual system to the
approximate expression obtained using extreme value theory.
In particular, we study the cases when k = 50 ln(n) and
k = n.

First, we consider the case of time invariant channel
model. Figure 6 depicts mean decoding-delay performance
when k = 50 ln(n) of the actual system behavior together
with the approximate mean obtained using extreme value
theory. This demonstrates the accuracy of our approximation
even for small values of n. We also see that a throughput
of approximately 0.85 (see Figure 4) is achievable with
this scaling, leading to a decoding delay that scales only
logarithmically with the network size.
In comparison, Figure 7 depicts the mean decoding-delay
of the actual system and approximate mean when k = n.



9

0 100 200 300 400 500
100

150

200

250

300

350

400

Number of Receivers, n

M
e
a
n
 D

e
c
o
d
in

g
 D

e
la

y

 

 

Actual Decoding Delay

Approximate Delay

Fig. 6. Comparing Actual Mean De-
coding Delay to Approximate Mean
for p = 0.1 and k = 50 ln(n).

0 100 200 300 400 500
0

100

200

300

400

500

600

Number of Receivers, n

M
e
a
n
 D

e
c
o
d
in

g
 D

e
la

y

 

 

Actual Decoding Delay

Approximate Delay
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Again, we observe that our approximation is accurate and
applicable to the actual system performance, as predicted. In
this fast scaling scenario, we also observe that the throughput
increases towards the capacity of 0.9 (see Figure 4) instead
of converging to a constant level as in the case of scaling k
as ln(n). Yet, this asymptotic optimality occurs at the cost of
linearly increasing decoding-delay performance.

Next, we consider the case of time correlated channel
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Fig. 8. Comparing Actual Mean De-
coding Delay to Approximate Mean
for α = β = 0.3 and k = 50 ln(n).
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Fig. 9. Comparing Actual Mean De-
coding Delay to Approximate Mean
for α = β = 0.3 and k = n.

model and compare the actual decoding delay of the RLNC
scheme to the approximate expression in (30). Recall that the
approximate decoding delay is derived under the assumption
that the channel state of the system prior to the beginning of
the current block transmission is s = 1. Nonetheless, we see,
from Figures 8 and 9, that the approximation in (30) is an
accurate characterization of the mean decoding delay of our
system.

Next, we compare the broadcast throughput performance
of RLNC for positively and negatively correlated channels
with the same broadcast capacity of 0.5. From Figure 11,
we see that the throughput performance is better for the
case of negatively correlated channels (α = β = 0.7) while
it is worse for the case of positively correlated channels
(α = β = 0.3). Overall, these numerical studies collectively
confirm the accuracy of estimating the mean decoding delay of
RLNC using extreme value theory when k scales as function
of n.
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Fig. 10. Comparing the pdf of
the standardized decoding delay to
Gumbel Distribution for p = 0.1 and
k = n.
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Fig. 11. Comparing the Rate of Con-
vergence of Throughput when k = n
for three cases of Correlated Chan-
nels: 1) α = β = 0.7, 2) α = β =
0.5, and 3) α = β = 0.3.

VI. EXTENSIONS

In this section, we discuss three important extensions of our
analysis. First, we discuss how our analysis can be extended to
LT codes. Next, we comment on the case where the channels
are not independent across the users. Finally, we comment on
the case of asymmetric channels where the channel of user i
has a steady state erasure probability of pi.

A. LT Codes

LT codes [15] are rateless codes designed such that re-
ceiving any νk(δk) = k + O(

√
k ln2(k/δk)) encoded packets

guarantees that the receiver can decode the original k packets
with probability (1 − δk), where δk ∈ (0, 1). Note that by
decreasing δk, and hence increasing νk(δk), we can increase
the probability of successfully decoding at the receiver. As-
sume that, under the coding strategy of LT codes, the source
starts transmitting the next block only after all the receivers
receive νk(δk) encoded packets each of the current block. The
analysis of Section IV can be repeated for the case of LT codes
by replacing k with νk(δk) in the derivation of the bounds on
the inter-renewal interval E[W ] and the computation of mean
and variance of the decoding delay. However, in the case of LT
codes, the users that receive more than νk(δk) encoded packets
have a higher probability of decoding than the other users.
Therefore, we have to modify our definition of throughput as
follows,

Definition 5 ((Broadcast) Throughput): We let Ri[t] denote
the number of packets successfully decoded by the user i
in a total of t slots. Then, the (broadcast) throughput for a
given n and k obtained using the LT coding scheme, denoted
as η(n, k), is the long-term average number of successfully
transferred data packets to all n users. Hence, we have

η(n, k) = lim
t→∞

∑n
i=1Ri[t]

nt

We have the following result analogous to Theorem 1:
Theorem 2: Using the LT coding scheme, the broadcast

throughput η(n, k) of our system, when α, β > 0, and
α+ β 6= 2, can be characterized as follows,

a) If k = o(ln(n)), then

lim
n→∞

η(n, k) = 0.
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b) If k = ω(ln(n)), and if
i) δk = δ for all k, where δ ∈ (0, 1), then

lim inf
n→∞

η(n, k) ≥ (1− p)(1− δ).

ii) ln(k/δk) = o(k(1/4)), and lim
k→∞

δk = 0, then

lim
n→∞

η(n, k) = (1− p).

c) Furthermore, if k = Θ(ln(n)), and if
i) δk = δ for all k, where δ ∈ (0, 1), then

lim inf
n→∞

η(n, k) ≥ r(1− p)(1− δ),

ii) ln(k/δk) = o(k(1/4)), and lim
k→∞

δk = 0, then

lim inf
n→∞

η(n, k) ≥ r(1− p),

for some 0 < r < 1.

The above theorem is proved in a similar way to Theorem 1.
Hence, we skip the detailed proof and instead provide a
brief outline. The expected reward obtained by the source
in one inter-renewal interval of the renewal process defined

in Section IV-A is given by
∑n
i=1 E[Ri]

n
where E[Ri] is

reward obtained due to user i. Since each user can decode
the current block with at least a probability of (1 − δk), we
have that, E[Ri] ≥ kE[M ](1 − δk). Therefore, we have that,

η(n, k) ≥ kE[M ](1− δk)

E[W ]
. Also, since the maximum reward

that the source can obtain from each block transmission is k,

we have that η(n, k) ≤ kE[M ]

E[W ]
. By replacing k with νk(δk)

in the upper and lower bounds obtained in Section IV-A for
E[W ], we obtain the corresponding bounds for the case of
LT codes. Now, if δk is such that ln(k/δk) = o(k(1/4)), then

lim
k→∞

νk(δk)

k
= 1. In this way, we can obtain the results in

Theorem 2.

Recall that (1 − p) is an upper bound on the throughput
achievable by any scheme. A choice of δk that satisfies the
conditions 1) ln(k/δk) = o(k(1/4)) and 2) lim

k→∞
δk = 0 is

given by δk = 1
ln(k) . Hence, under the scaling regime of k =

ω(ln(n)), this choice of δk would ensure that the throughput
approaches 1− p as n→∞.

B. Dependent channel model

Next, consider the case of symmetric time-invariant chan-
nels that are dependent across the users. For all i, let Ci[t] = 0
with a probability p and Ci[t] = 1 with probability (1 − p).
Lemma 1 holds true even when the random variables χi,
i = 1, . . . , n are dependent. However, Lemmas 2, 3 and 4
are not valid anymore. Nonetheless, we can show that if
k = ω(ln(n)), then lim

n→∞
η(n, k) = 1 − p even when the

user channels are dependent. Next, we prove this sufficient
condition to achieve broadcast capacity.

Once again, we drop the superscript (j) in the following
discussion. Let µ(k) = k

1−p and σ2(k) = k p
(1−p)2 . Define

Ỹi(k) = Yi(k)−µ(k)
σ(k) . Note that U can be rewritten as follows,

U = µ(k) + σ(k) max
1≤i≤n

Ỹi(k) (32)

Consider the case when k = f(n) ln(n) for some function
f(n) > 0. Note that in our analysis we treat k as a continuous
function of n. This assumption does not seriously affect the
analysis and can easily be relaxed. Choose τ = b

√
ln(n)

where b is a constant such that 0 < τ ≤ σ(k) ln( 1
1−p ). Such a

τ lies within the radius of convergence of the m.g.f of Ỹ1(k),
which is then given by:

E[eτỸ1(k)] = eτk/σ(k)e−τµ(k)/σ(k)

[
1− p

1− peτ/σ(k)

]k

=

[
(1− p)e−b

√
p/
√
f(n)

1− peb(1−p)/
√
pf(n)

]f(n) ln(n)

(33)

Now, using (13) with τ = b
√

ln(n), and, (32), and (33), we
can bound the expected decoding delay as follows:

E[U ] ≤ µ(k) +
σ(k)

τ

(
ln(n) + ln

(
E[eτỸ1(k)]

))

≤ ln(n)

1− pf(n)

+
ln(n)

√
f(n)p

b(1− p)

(
1 + f(n) ln

(
(1− p)e−b

√
p/
√
f(n)

1− peb(1−p)/
√
pf(n)

))
,

Hence, by using (4), the throughput can be bounded as follows:

η(n, k) =
k

E[U ]
≥ h(n)(1− p), (34)

where (34) follows from (4), and h(n) is given as

1

h(n)
= 1 +

√
p

b
√
f(n)

(
1 + f(n) ln

(1− p)e−b
√
p/
√
f(n)

1− peb(1−p)/
√
pf(n)

)
.

First, let f(n) = b̂ where b̂ ≥ 0 is a constant independent of n.
Then h(n) is a constant independent of n with h(n) < 1 (h(n)
can be expressed explicitly in terms of b, b̂ and p). From (34),
we see that the scaling regime of k = Θ(ln(n)) guarantees
that lim inf

n→∞
η(n, k) is a non-vanishing fraction of the broadcast

capacity (1 − p). Next, let f(n) be such that f(n) → ∞ as



11

n→∞. Then,

lim
n→∞

1

h(n)
− 1

= lim
n→∞

√
p

b
√
f(n)

(
1 + f(n) ln

(1− p)e−b
√
p/
√
f(n)

1− peb(1−p)/
√
pf(n)

)

= lim
n→∞

√
p

b

√
f(n) ln

(1− p)e−b
√
p/
√
f(n)

1− peb(1−p)/
√
pf(n)

= lim
n→∞

−√p
b

√
f(n)

(
1− (1− p)e−b

√
p/
√
f(n)

1− peb(1−p)/
√
pf(n)

)

=
−√p

b(1− p) lim
n→∞

√
f(n)

(
1− peb(1−p)/

√
pf(n)

−(1− p)e−b
√
p/
√
f(n)

)

=
−√p

b(1− p) lim
n→∞

(
−b
√
p(1− p)√
f(n)

eb(1−p)/
√
pf(n)

−−b
√
p(1− p)√
f(n)

e−b
√
p/
√
f(n)

)

(iii)
= 0,

where (iii) is obtained using L′Hôspital′s rule.
Hence, we have h(n) → 1 and η(n, k) → (1 − p) as n →
∞ proving it is sufficient that k = ω(ln(n)) to achieve the
broadcast capacity (1− p).
We can easily see that it is no longer true that if k = o(ln(n)),
then lim

n→∞
η(n, k) = 0. For example, consider the trivial case

of perfectly correlated user channels. Then the system reduces
to the case where there is a single user channel and hence, the
throughput, η(n, k), of this system does not depend on n.
Also, the sufficient condition of k = ω(ln(n)) is unnecessary
in this trivial case as it is always true that η(n, k)→ (1− p)
as k → ∞. Although the sufficiency condition appears to
be a rather weak condition for the trivial example of perfectly
correlated channels, it is still useful when the system has weak
correlations.

C. Asymmetric channel model

Consider the case of asymmetric time-invariant channels
where Ci[t] = 0 with a probability pi and Ci[t] = 1 with
probability (1 − pi). The channels of all users are assumed
to be independent of each other. Suppose that p0 = sup

i
pi

exists. Then the broadcast capacity of our system is (1− p0).
Let E[U1] and η1(n, k) denote the mean decoding delay
and throughput of this system. We can compare this system
with the symmetric system with erasure probabilities p0.
Let E[U0] and η0(n, k) denote the mean decoding delay
and throughput of the symmetric system. By comparing the
cumulative distributions of the decoding delay of the two
systems, we can show that E[U1] ≤ E[U0]. Consequently,
η0(n, k) ≤ η1(n, k) ≤ 1 − p0. From Theorem 1, we have
that, if k = ω(ln(n)), then lim

n→∞
η0(n, k) = 1−p0 and hence,

lim
n→∞

η1(n, k) = 1− p0.

The case of asymmetric time-correlated channels is technically
challenging since it is not easy to obtain a closed form
expression for the mean decoding delay as in the case of time-
invariant channels.

VII. CONCLUSION

We have investigated the throughput and decoding delay
performance of RLNC in a wireless broadcast setting as the
coding window size k scales with the number of receivers n
for a time correlated erasure channel model. We noted that the
broadcast throughput of RLNC vanishes for any fixed k as the
system size increases. Hence, it is important to understand the
scaling of k as a function of n that will guarantee a non-
vanishing throughput.

Our analysis revealed a phase transition in the performance
of our system, namely, if k increases slower than ln(n),
the throughput goes to zero as n increases. However, on
increasing k faster than ln(n), the throughput approaches the
maximum achievable broadcast throughput of (1 − p). Also,
k = Θ(ln(n)) ensures a constant fraction of the maximum
achievable broadcast throughput for the our system. Further,
we have provided approximate expressions for the mean
decoding delay under the scaling regime of k = ω(ln(n))
using extreme value theory. We have shown through numerical
results that our approximation is accurate even for small values
of n. We have also shown that our analysis can be extended to
other rateless block coding schemes such as the LT codes. In
particular, by choosing δk such that lim

k→∞
δk = 0, we see that

under the scaling regime of k = ω(ln(n)), LT codes achieve
the broadcast throughput of (1 − p) as n → ∞. Further, we
commented on the extension of our analysis for the cases
of dependent channels across users, and asymmetric channel
model.

APPENDIX

We first state the optional stopping theorem to be used later
to prove Lemma 3.

Theorem 3: (cf. [10], Theorem 6.2.2, p.300) Let {Zn, n ≥
1} be a martingale process and let M be a stopping time with
respect to the filtration {Fn}. If E[M ] <∞, and there exists
a constant c <∞ such that E[|Zn+1 −Zn||Fn] < c, then the
process stopped at M, i.e.,

Z̄n =

{
Zn if n ≤M
ZM if n > M

is also a martingale and E[ZM ] = E[Zn].

A. Proof of Lemma 2

Proof: We note that we cannot apply Lemma 1 here
since for h = 1, i.e, the first linear combination in any block
transmission, the random variables X(j)

ih , for i = 1, . . . , n,
are not identically distributed. Recall that β is the transition
probability from channel state off to channel state ON (see
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Figure 2). Fix a τ0 < ln( 1
1−β ). Then,

E
[
eτ0X

(j)
ih

]
= E

[
eτ0X

(j)
ih |B(j)

i = 0
]
P(B

(j)
i = 0)

+ E
[
eτ0X

(j)
ih |B(j)

i = 1
]
P(B

(j)
i = 1)

=

[
e2τ0β

∞∑

v=0

evτ0(1− β)v

]
P(B

(j)
i = 0)

+ eτ0P(B
(j)
i = 1)

<∞.
∑∞
v=0 e

vτ0(1 − β)v < ∞ because eτ0(1 − β) < 1 by our
choice of τ0 and hence, E

[
eτ0X

(j)
ih

]
exists and is finite.

Let B
(j)
i be the channel state of the ith user at the

beginning of the jth block transmission. Let µ0 =

max
si∈{0,1}

E
[
eτ0X

(j)
ih |B(j)

i = si

]
. Now, since the channel state

of any user is independent of other users’ channels,
E
[
eτ0X

(j)
ih |B(j) = s

]
= E

[
eτ0X

(j)
ih |B(j)

i = si

]
≤ µ0 for all

i, j, and, h ∈ {1, . . . , k}. Hence, we have,

E
[

max
1≤i≤n

X
(j)
ih |B(j) = s

]

= E
[

1

τ0
ln

(
max

1≤i≤n
eτ0X

(j)
ih

)
|B(j) = s

]

≤ 1

τ0
ln
(
E
[
eτ0X

(j)
1h + . . .+ eτ0X

(j)
nh |B(j) = s

])

=
1

τ0
ln

(
n∑

i=1

E
[
eτ0X

(j)
ih |B(j) = s

])

≤ 1

τ0
(ln(n) + ln(µ0))

B. Proof of Lemma 3

Proof: Let ξ(j) = max
1≤i≤n

X
(j)
i1 . Recall that E(j) ∈ Sn

is the channel state of the system at the end of the jth

block transmission, where S = {0, 1}. Let Fj be the small-
est σ−field of events containing the σ−fields generated by
the random variables {X(1)

ih , . . . , X
(j)
ih , i = 1, . . . , n, h =

1, . . . , k} and E(1), . . . ,E(j). Let Z0 = 0. Define Z(m) =
m∑

j=1

(ξ(j) − µ(j)) where µ(j) = E[ξ(j)|Fj−1]. Also,

µ(j) = E[ξ(j)|Fj−1]

=
∑

s∈S
E[ξ(j)|B(j) = s,Fj−1]P(B(j) = s|Fj−1)

=
∑

s∈S
E[ξ(j)|B(j) = s]P(B(j) = s|Fj−1)

≤ µ,

where the last inequality follows from Lemma 2. Then
E[ξ(j)] = E[µ(j)] ≤ µ. We have that {Z(m)} is a martingale
by definition. Also, M is a stopping time with respect to the

filtration {Fj} with E[M ] <∞ and

E[|Z(m+1) − Z(m)||Fm] = E[|ξ(m+1) − µ(m+1)||Fm]

≤ E[ξ(m+1)|Fm] + µ(m+1)

= 2µ(m+1) ≤ 2µ <∞.
Hence, using the optional stopping theorem (Theorem 3), we
have E[Z(M)] = E[Z(1)] = 0. Therefore,

0 = E[Z(M)] = E



M∑

j=1

ξ(j)


− E



M∑

j=1

µ(j)




≥ E



M∑

j=1

ξ(j)


− E [Mµ] .

Thus, we have E



M∑

j=1

ξ(j)


 ≤ E[M ]µ as required.

C. Proof of Lemma 4

Proof: We have that P(X
(j)
i2 = 1) = 1−α and P(X

(j)
i2 =

u) = αβ(1− β)u−2, for all u ≥ 2. Hence,

P(X
(j)
i2 ≤ u) = (1− α) +

u∑

v=2

αβ(1− β)v−2

= 1− α(1− β)u−1

Therefore,

P
(

max
1≤i≤n

X
(j)
i2 ≤ u

)
=
(
1− α(1− β)u−1

)n ∀u ≥ 1,

and E
[

max
1≤i≤n

X
(j)
i2

]
is given as

E
[

max
1≤i≤n

X
(j)
i2

]
= 1 +

∞∑

u=1

(
1−

[
1− αe−λ(u−1)

]n)

≥ 1 +

∫ ∞

0

(
1− (1− αe−λx)n

)
dx

By setting w = 1 − αe−λx ∈ [0, 1) in the above integral, we
have the following inequalities,

E
[

max
1≤i≤n

X
(j)
i2

]
≥ 1 +

∫ 1

1−α

1− wn
λ(1− w)

dw

= 1 +
1

λ

∫ 1

1−α

n−1∑

z=0

wzdw

= 1 +
1

λ

n−1∑

z=0

∫ 1

1−α
wzdw

= 1 +
1

λ

n−1∑

z=0

1

z + 1
− 1

λ

n−1∑

z=0

(1− α)z+1

z + 1

≥ 1 +
1

λ

n−1∑

z=0

1

z + 1
− 1

λ

n−1∑

z=0

1− α
z + 1

≥ 1 +
α

λ
[ln(n) + γ] .
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