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Abstract—We consider reinforcement learning (RL) in Markov
Decision Processes in which an agent repeatedly interacts with
an environment that is modeled by a controlled Markov process.
At each time step t, it earns a reward, and also incurs a
cost-vector consisting of M costs. We design model-based RL
algorithms that maximize the cumulative reward earned over a
time horizon of T time-steps, while simultaneously ensuring that
the average values of the M cost expenditures are bounded by
agent-specified thresholds cubi , i = 1, 2, . . . ,M . The consideration
on the cumulative cost expenditures departs from the existing
literature, in that the agent now additionally needs to balance
the cost expenses in an online manner, while simultaneously
performing the exploration-exploitation trade-off that is typically
encountered in RL tasks. This is challenging since the dual
objectives of exploration and exploitation necessarily require the
agent to expend resources.

In order to measure the performance of a RL algorithm
that satisfies the average cost constraints, we define an M + 1
dimensional regret vector that is composed of its reward regret,
and M cost regrets. The reward regret measures the sub-
optimality in the cumulative reward, while the i-th component of
the cost regret vector is the difference between its i-th cumulative
cost expense and the expected cost expenditures Tcubi .

We prove that the expected value of the regret vector is upper-
bounded as Õ

(
T 2/3

)
1, where T is the time horizon. We further

show how to reduce the regret of a desired subset of the M
costs, at the expense of increasing the regrets of rewards and
the remaining costs. To the best of our knowledge, ours is the
only work that considers non-episodic RL under average cost
constraints, and derive algorithms that can tune the regret vector
according to the agent’s requirements on its cost regrets.

I. INTRODUCTION

Reinforcement Learning (RL) [1] involves an agent repeat-
edly interacting with an environment modelled by a Markov
Decision Process (MDP) [2]. More specifically, consider a
controlled Markov process [2] st, t = 1, 2, . . . , T . At each
discrete time t, an agent applies control at. State-space, and
action space are denoted by S and A respectively, and are
assumed to be finite. The controlled transition probabilities
are denoted by p := {p(s, a, s′) : s, s′ ∈ S, a ∈ A}. Thus,
p(s, a, s′) is the probability that the system state transitions to
state s′ upon applying action a in state s. The probabilities
p(s, a, s′) are not known to the agent. At each discrete time
t = 1, 2, . . . , T , the agent observes the current state of the
environment st, applies control action at, and earns a reward
rt that is a known function of (st, at). When the agent applies
an action a in the state s, then it earns a reward equal to
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1Here Õ(·) hides factors that are logarithmic in T .

r(s, a) units. The agent does not know the controlled transition
probabilities p(s, a, s′) that describe the system dynamics
of the environment. The performance of an agent or a RL
algorithm is measured by the cumulative rewards that it earns
over the time horizon.

However in many applications, in addition to earning re-
wards, the agent also incurs costs at each time. The underlying
physical constraints impose constraints on its cumulative cost
expenditures, so that the agent needs to balance its reward
earnings with the cost accretion while also simultaneously
learning the choice of optimal decisions, all in an online
manner. As a motivating example, consider a single-hop
wireless network that consists of a wireless node that transmits
data packets to a receiver over an unreliable wireless channel.
The channel reliability, i.e., the probability that a transmission
at time-step t is successful, depends upon the instantaneous
channel state cst and the transmission power at. Thus, for
example, this probability is higher when the channel is in a
good state, or if transmission is carried out at higher power
levels. The transmitter stores packets in a buffer, and its queue
length at time t is denoted by Qt. The wireless node is battery-
operated, and packet transmission consumes power. Hence, it
is desired that the average power consumption is minimal. An
appropriate performance metric for networks [3] is the average
queue length

(
E
∑T
t=1Qt

)
/T , and hence it is required that

the average queue length stays below a certain threshold.
The AP has to choose at adaptively so as to minimize the
power consumption

(
E
∑T
t=1 at

)
/T , or equivalently maxi-

mize
(
E
∑T
t=1−at

)
/T , while simultaneoulsy ensure that the

average queue length is below a user-specified threshold, i.e.(
E
∑T
t=1Qt

)
/T ≤ cub. In this example, the state of the

“environment” at time t is given by the queue length and the
channel state (Qt, cst). Thus, it might be “optimal” to utilize
high transmission power levels only when the instantaneous
queue length Qt is large or the wireless channel’s state cst is
good. Such an adaptive strategy saves energy by transmitting
at lower energy levels at other times. Since channel reliabilities
are typically not known to the transmitter node, it does
not know the transition probabilities p(s, a, s′) that describe
the controlled Markov process (Qt, cst). Hence, it cannot
compute the expectations of the average queue lengths and
average power consumption for a fixed control policy, and
needs to devise appropriate learning policies to optimize its
performance under average-cost constraints. RL algorithms
that we propose in this work solve exactly these classes of
problems.

Many important network control problems can be solved
within the framework of constrained Markov decision pro-
cesses (CMDPs). For example, [4], [5] utilize CMDPs in
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order to maximize the throughput offered by a stochastic
network, where the network operator wants to simultaneously
satisfy constraints on delays, while [6] designs control policies
that make dynamic decisions regarding network access in
networks shared by different types of traffic. Similarly, the
framework of CMDPs has been used in [7], [8] in order to
maximize the timely throughput2 in stochastic networks. The
work [9] addresses the issue of admission control and routing
in networks shared by mutiple flows in which the goal is to
maximize the weighted sum of customers served, while simul-
taneously satisfying constraints on the blocking probability. If
the network/system parameters are known, then a CMDP can
be posed as a linear program (LP), and solved efficiently.
However, in practice, network parameters are seldom known to
the network operator, and it needs to design algorithms which
“learn” the optimal policies in an “optimal” manner. Our work
addresses precisely this issue.

II. PREVIOUS WORKS AND OUR CONTRIBUTIONS

RL Algorithms for unconstrained MDPs: RL problems with-
out constraints are well-understood by now. [10] develops
UCRL2 algorithm using the Upper Confidence Bounds (UCB)
strategy [11], while [12] uses the Reward Biased Maximum
Likelihood Estimation (RBMLE) approach [13], and [14] uses
Thompson Sampling. UCRL2 [10] is a popular RL algorithm
that has a regret bound of Õ(D(p)S

√
AT ), where D(p) is the

diameter [10] of the MDP p; the algorithms proposed in this
work are based on UCRL2.

RL Algorithms for Constrained MDPs: [15] is an early
work on optimally controlling unknown MDPs under average
cost constraints. It utilizes the certainty equivalence (CE)
principle, i.e., it applies controls that are optimal under the
assumption that the true (but unknown) MDP parameters are
equal to the empirical estimates, and also occasionally resorts
to “forced explorations.” This algorithm yields asymptotically
(as T → ∞) the same reward rate as the case when the
MDP parameters are known. However, analysis is performed
under the assumption that the CMDP is strictly feasible. More-
over the algorithm lacks finite-time performance guarantees
(bounds on regret). Unlike [15], we do not assume strict
feasibility; infact we show that the use of confidence bounds
allows us to get rid of the strict feasibility assumption. [16]
derives a learning scheme based on multi time-scale stochastic
approximation [17], in which the task of learning an optimal
policy for the CMDP is decomposed into that of learning
the optimal value of the dual variables, which correspond to
the price of violating the average cost constraints, and that
of learning the optimal policy for an unconstrained MDP
parameterized by the dual variables. However, the proposed
scheme lacks finite-time regret analysis, and might suffer from
a large regret. Prima facie, this layered decomposition might
not be optimal with respect to the sample-complexity of the
online RL problem. Recent works [18], [19] have obtained
concentration bounds for two time-scale stochastic approxi-
mation algorithms, which could be used for deriving regret

2Throughput derived from those packets which reach their destination
within their deadline.

bounds. The works [20]–[23] design policy-search algorithms
for constrained RL problems. However unlike our work, they
do not utilize the concept of regret vector, and their theoretical
guarantees need further research. After the first draft of our
work was published online, there appeared a few manuscripts/
works that address various facets of learning in CMDPs, and
these have some similarity with our work. For example [24]
considers episodic RL problems with constraints in which the
reward function is time-varying. Similarly, [25] also considers
episodic RL in which the state is reset at the beginning of each
episode. In contrast, we deal exclusively with non-episodic
infinite horizon RL problems. In fact, as we show in our
work, the primary difficulty in non-episodic constrained RL
arises due to the fact that it is not possible to simultaneously
“control/upper-bound” the reward and M costs during long
runs of the controlled Markov process. Consequently, in order
to control the regret vector, we make the assumption that the
underlying MDP is unichain. However, this problem does not
occur in the episodic RL case [24], [25] since the state is
reset periodically. Secondly, unlike the algorithms provided in
our work [24], [25] do not allow the agent to tune the regret
vector. Very recently, we came to know that [26] has derived
RL algorithms for CMDPs that have Õ(

√
T ) regret guarantees,

and hence improve upon the bounds derived in this work. [27]
also derives model-free learning algorithms for infinite-horizon
average reward CMDPs, and shows that their reward and cost
regrets are Õ(T 5/6). The work [28] claims to attain O(

√
T )

regrets for CMDPs, however unfortunately there seems to be
an error in the derivations of their proofs. More specifically,
in Lemma 11 they bound the span of the CMDP by diameter.
Though this argument works for MDPs [10], it is not true
for CMDPs since now not only does the decision maker
optimize rewards, it also has to satisfy cost constraints. [29]
considers an episodic setup, and derives algorithms which have
Õ(
√
K) reward regret, with a bounded expected number of

constraint violations. [30] proposes a primal-dual algorithm for
discounted RL for CMDPs, and shows that its convergence rate
is O(1/

√
T ). The work [31] summarizes recent approaches to

RL in CMDPs, while [32] applies RL for CMDPs to make
dynamic decisions in network slicing applications.

Our contributions are summarized as follows.

1) We initiate the problem of designing RL algorithms that
maximize the cumulative rewards while simultaneously
satisfying average cost constraints. We propose an al-
gorithm which we call UCRL for CMDPs, henceforth
abbreviated as UCRL-CMDP. UCRL-CMDP is a mod-
ification of the popular RL algorithm UCRL2 of [10]
that utilizes the principle of optimism in the face of
uncertainty (OFU) while making decisions. Since an
algorithm that utilizes OFU does not need to satisfy cost
constraints (this is briefly discussed at the end of this
section), we modify OFU appropriately and derive the
principle of balanced optimism in the face of uncertainty
(BOFU). Under the BOFU principle, at the beginning of
each RL episode, the agent has to solve for (i) an MDP,
and (ii) a controller, such that the average costs of a
system in which the dynamics are described by (i), and
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which is controlled using (ii), are less than or equal to
the cost constraints. This is summarized in Algorithm 1.

2) In order to quantify the finite-time performance of an
RL algorithm that has to perform under average cost
constraints, we define its M + 1 dimensional “regret
vector” that is composed of its reward regret (8) and M
cost regrets (9). More precisely, considering solely the
reward regret (as is done in the RL literature) overlooks
the cost expenditures. Indeed, we show in Theorem 2
that the reward regret can be made arbitrary small (with
a high probability) at the expense of an increase in the
cumulative cost expenditure. Thus, while comparing the
performance of two different learning algorithms, we
also need to compare their cost expenditures. The reward
regret of a learning algorithm is the difference between
its reward and the reward of an optimal policy that
knows the MDP parameters, while the i-th cost regret
is the difference between the total cost incurred until
T time-steps, and the budget on the i-th expected cost
cubi T .

3) We ask the following question in the constrained
setup: What is the set of “achievable” M + 1 dimen-
sional regret vectors? In Theorem 1 we show that the
components of the regret vector of UCRL-CMDP, can
be bounded as Õ(T 2/3).

4) We show that the use of BOFU allows us to over-
come the shortcomings of the CE approach that were
encountered in [15], i.e., there are arbitrarily long time-
durations during which the CMDP in which the sys-
tem dynamics are described by the current empirical
estimates of transition probabilities is infeasible, and
hence the agent is unable to utilize these estimates in
order to make control decisions. As a by-product, BOFU
also allows us to get rid of “forced explorations,” i.e.,
employing randomized controls occasionally, that were
utilized in [15].

5) Analogous to the unconstrained RL setup, in which one
is interested in quantifying a lower bound on the regret
of any learning algorithm, we provide a partial charac-
terization of the set of those M + 1-dimensional regret
vectors, which cannot be achieved under any learning
algorithm. More specifically, in Theorem 3 we show
that a weighted sum of the M + 1 regrets is necessarily
greater than O

(
D(p)S

√
AT log(T )

)
, where D(p) is

the diameter of the underlying MDP, and S,A is the
number of states and control actions respectively.

6) In many applications, an agent is more sensitive to the
cost expenditures of some specific resources as com-
pared to the rest, and a procedure to “tune” the M + 1
dimensional regret vector is essential. In Section VI,
we consider the scenario in which the agent can pre-
specify the desired bounds on each component of the
cost regret vector, and introduce a modification to the
UCRL-CMDP that allows the agent to keep the cost
regrets below these bounds.

Failure of OFU in constrained RL problems: Consider a two-
state S = {1, 2}, two-action A = {0, 1} MDP in which

the controlled transition probabilities p(1, 1, 1) = 1 − θ
and p(1, 1, 2) = θ are unknown, while remaining probabil-
itites are equal to .5. Assume that r(1, a), c(1, a) ≡ 0 and
r(2, a), c(2, a) ≡ 1, i.e., reward and cost depend only upon
the current state. Assume that θ > .5, and the average cost
threshold satisfies cub < 2θ/(1 + 2θ). Since state 2 yields
reward at the maximum rate, and θ > .5 this means that the
optimal action in state 1 is 1. Let θ̂t and εt denote the empirical
estimate of θ, and the radius of confidence interval respectively
at time t. Then UCRL2 sets the optimistic estimate of θ equal
to θ̂t + εt and then implements the control that is optimal
when the true parameter value is equal to this estimate. Thus,
if θ̂t + εt ≥ .5, then it chooses action 1 in state 1. Since with
a high probability we have θ̂t + εt ≥ θ, and θ̂t + εt → θ as
T →∞ [10], we have that when the index of the RL episode
is sufficiently large, the agent implements action 1 in state 1.
Since the average cost of this policy is 2θ/(1+2θ), this means
that UCRL2 violates the average cost constraint.

III. PRELIMINARIES

In our setup, at each time t the agent earns a reward and
also incurs M costs. Reward and cost functions are denoted
by r, {ci}Mi=1,S×A 7→ R. Thus, the instantaneous reward ob-
tained upon taking an action a in the state s is equal to r(s, a),
while the i-th cost is equal to ci(s, a). A controlled Markov
process in which the agent earns reward and incurs M costs is
defined by the tuple CMP = (S,A, p, r, c1, c2, . . . , cM ). The
controlled transition probabilities p(s, a, s′) are not known to
the agent, while the reward and cost functions r, {ci}Mi=1 are
known to the agent. We will now briefly discuss some notions
and results on MDPs. Let P (t)

π,p,s denote the t-step probability
distribution when the policy π is applied to the MDP p and the
initial state is s, while Pπ,p be the corresponding stationary
measure 3. For two measures µ1, µ2, we let ‖µ1−µ2‖V denote
the total variation distance [33] between µ1 and µ2.

Definition 1: (Unichain MDP) The MDP p is unichain if
under any stationary policy there is a single recurrent class. If
an MDP is unichain [2], then for the Markov chain induced
by any stationary policy π, we have

‖P (t)
π,p,s − Pπ,p‖TV ≤ Cρt, ∀s ∈ S, (1)

where C > 0, 1 > ρ > 0 are constants. Let Ts,s′ denotes the
time taken by the Markov chain induced by a stationary policy
to hit state s′, when it starts in state s. The mixing time of an
MDP p is defined as TM (p) := maxπ,s,s′ Eπ,pTs,s′ , where the
sub-script denotes the fact that the expectation is taken with
respect to the measure induced by π when it is applied to the
MDP p. We will occasionally omit its dependence upon p and
denote it by TM .

Definition 2: (Control Policy) Let ∆(A) :={
x ∈ R|A| :

∑|A|
i=1 xi = 1, xi ≥ 0

}
be the |A|-simplex

and Ft denote the sigma-algebra [34] generated by the
random variables {(s`, a`)}t−1`=1 ∪ st. A stationary policy
π : S 7→ ∆(A) prescribes randomized controls on the basis
of the current state st. Thus, under policy π, we have that at
is chosen according to the probability distribution π(·|st).

3Under the assumption that a unique stationary measure exists.
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A. Notation

Throughout, we use bold font for denoting vectors; for
example the vector (x1, x2, . . . , xN ) is denoted by x. We
use N to denote the set of natural numbers, RM to denote
the M dimensional Euclidean space, and RM+ to denote non-
negative orthant of RM . Inequalities between two vectors
are to be understood component-wise. If E is an event [34],
then 1(E) denotes its indicator function. For a control policy
π,4 r̄(π) := limT→∞

1
T Eπ

∑T
t=1 r(st, at) , and 5 c̄i(π) :=

limT→∞
1
T Eπ

∑T
t=1 ci(st, at). For x ∈ RN , we let ‖x‖1

denote its 1-norm and ‖x‖∞ be the infinity norm. 0M denotes
the M -dimensional zero vector consisting of all zeros. For
x, y ∈ R, we let x∨y := max{x, y}. Throughout, for M ∈ N,
we abbreviate [M ] := {1, 2, . . . ,M}, S := |S|, A := |A|.

B. Constrained MDPs

We now present some definitions and standard results per-
taining to constrained MDPs. These can be found in [35].

Definition 3 (Occupation Measure): Consider the con-
trolled Markov process st evolving under the applica-
tion of a stationary policy π. Its occupation measure
µπ = {µπ(s, a) : (s, a) ∈ S ×A} is defined as µπ(s, a) :=

limT→∞
1
T Eπ

(∑T
t=1 1 (st = s, at = a)

)
, and describes the

average amount of time that the process (st, at) spends on
each possible state-action pair.

Definition 4 (SR(µ)): Consider a vector µ =
{µ(s, a) : (s, a) ∈ S ×A} that satisfies the constraints (6)
and (7) below. Define SR(µ) to be the following stationary
randomized policy. When the state st is equal to s, the policy
chooses the action a with a probability equal to µ(s,a)∑

a′∈A µ(s,a
′)

if
∑
a′∈A µ(s, a′) > 0. However, if

∑
a′∈A µ(s, a′) = 0, then

the policy takes an action according to some pre-specified
rule (e.g. implement at = 0).
Constrained Markov Decision Process (CMDP): The follow-
ing dynamic optimization problem is a CMDP [35],

max
π

lim inf
T→∞

1

T
Eπ

T∑
t=1

r(st, at) (2)

s.t. lim sup
T→∞

1

T
Eπ

T∑
t=1

ci(st, at) ≤ cubi , i ∈ [M ], (3)

where the maximization above is over the class of all history-
dependent policies, and cubi denotes the desired upper-bound
on the average value of i-th cost expense. The optimal average
reward rate of the CMDP is equal to the optimal value of the
above LP, and is denoted by r?.

Linear Programming approach for solving CMDPs: When
the controlled transition probabilities p(s, a, s′) are known, and

4In case limit does not exist, lim should be replaced by lim inf .
5In case limit does not exist, lim should be replaced by lim sup.

p is unichain, an optimal policy for the CMDP (2)-(3) can be
obtained by solving the following LP [35],

max
µ={µ(s,a):(s,a)∈S×A}

∑
(s,a)∈S×A

µ(s, a)r(s, a), (4)

s.t.
∑

(s,a)∈S×A

µ(s, a)ci(s, a) ≤ cubi , i ∈ [M ] (5)

∑
a∈A

µ(s, a) =
∑

(s′,b)∈S×A

µ(s′, b)p(s′, b, s), ∀s ∈ S, (6)

µ(s, a) ≥ 0, ∀(s, a) ∈ S ×A,
∑

(s,a)∈S×A

µ(s, a) = 1. (7)

If µ? is a solution of the above LP, then SR(µ?) solves (2)-
(3). Moreover, it can be shown that the average reward and M
costs of SR(µ?) are independent of the initial starting state
s0 if the MDP is unichain [35].

C. Learning Algorithms and Regret Vector

We will develop RL algorithms to solve the finite-time
horizon version of the CMDP (2)-(3) when the probabilities
p(s, a, s′) are not known to the agent. A learning policy π
chooses action at on the basis of past operational history
of the system. In order to measure the performance of a
learning algorithm, we define its reward and cost regrets. The
“cumulative reward regret” until time T , denoted by ∆(R)(T ),
is defined as,

∆(R)(T ) := r? T −
T∑
t=1

r(st, at), (8)

where r? is the optimal average reward of the CMDP (2)-(3)
when controlled transition probabilities p(s, a, s′) are known.
Note that r? is the optimal value of the LP (4)-(7). The
“cumulative cost regret” for the i-th cost until time T is
denoted by ∆(i)(T ), and is defined as,

∆(i)(T ) :=

T∑
t=1

ci(st, at)− cubi T. (9)

IV. UCRL-CMDP: A LEARNING ALGORITHM FOR
CMDPS

We propose UCRL-CMDP to adaptively control an un-
known CMDP. It is depicted in Algorithm 1. UCRL-CMDP
maintains empirical estimates of the each transition probability
p(s, a, s′) as follows,

p̂t(s, a, s
′) =

{
Nt(s,a,s

′)
Nt(s,a)

if Nt(s, a) > 0
1
S otherwise,

(10)

where Nt(s, a) and Nt(s, a, s′) denote the number of visits to
(s, a) and (s, a, s′) until t respectively.

Confidence Intervals: Additionally, it also maintains confi-
dence interval Ct associated with the estimate p̂t as follows,

Ct :=
{
p′ :

∑
s′∈S

p′(s, a, s′) = 1 ∀(s, a), p′(s, a, s′) ≥ 0,

|p′(s, a, s′)− p̂t(s, a, s′)| ≤ εt(s, a),∀(s, a)
}
, (11)
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Algorithm 1 UCRL-CMDP

Input: State-space S, Action-space A, Confidence param-
eter δ, Time horizon T

Initialize: Set t := 1, and observe the initial state s1.
for Episodes k = 1, 2, . . . do

Initialize Episode k:
1) Set the start time of episode k, τk := t. For all state-

action tuples (s, a) ∈ S × A, initialize the number of
visits within episode k, nk(s, a) = 0.

2) For all (s, a) ∈ S×A set Nτk(s, a), i.e., the number of
visits to (s, a) prior to episode k. Also set the transition
counts Nτk(s, a, s′) for all (s, a, s′) ∈ S ×A× S.

3) Compute the empirical estimate p̂t of the MDP as
in (10).

Compute Policy π̃k:
1) Let Cτk be the set of plausible MDPs as in (11).
2) Solve (12)-(16) to obtain π̃k.
3) In case (12)-(16) is infeasible, choose π̃k to be some

pre-determined policy (chosen at time t = 0).
Implement π̃k:
while t− τkt < dTαe do

1) Sample at according to the distribution π̃k(·|st). Ob-
serve reward r(st, at), and observe next state st+1.

2) Update nk(st, at) = nk(st, at) + 1.
3) Set t := t+ 1.

end while
end for

where εt(s, a) :=
√

2 log(T b|S||A|)
Nt(s,a)∨1 , b > 1 is an agent-specified

constant.
Episode: UCRL-CMDP proceeds in episodes, and utilizes
a single stationary control policy within an episode. Each
episode is of duration dTαe steps6. Let τk denote the start
time of episode k. k-th episode is denoted by Ek :=
{τk, τk + 1, . . . , τk+1 − 1}, and comprises of τk+1 − τk con-
secutive time-steps. Denote by kt the index of the ongoing
episode at time t. At the beginning of Ek, the agent solves
the following constrained optimization problem in which the
decision variables are (i) Occupation measure µ = {µ(s, a) :
(s, a) ∈ S×A} of the controlled process, and (ii) “Candidate”
MDP p′,

max
µ,p′

∑
(s,a)∈S×A

µ(s, a)r(s, a), (12)

s.t.
∑

(s,a)∈S×A

µ(s, a)ci(s, a) ≤ cubi , i ∈ [M ] (13)

∑
a∈A

µ(s, a) =
∑
(s′,b)

µ(s′, b)p′(s′, b, s), ∀s ∈ S, (14)

µ(s, a) ≥ 0 ∀(s, a),
∑
(s,a)

µ(s, a) = 1, (15)

p′ ∈ Cτk . (16)

6If x ∈ R, we let dxe be the least integer greater than or equal to x.

The maximization with respect to p′ denotes that the agent
is optimistic regarding the belief of the “true” (but unknown)
MDP p, while that with respect to µ ensures that the agent
optimizes its control strategy for this optimistic MDP. The
constraints (13) ensure that the cost expenditures do not exceed
the thresholds {cubi }Mi=1, and hence ensure that the agent
also balances the cost expenses while being optimistic with
respect to the rewards about the choice of the MDP thereby
taking a balanced approach to optimism when the underlying
MDP parameters are unknown. If the constraints (13) were
absent, we would recover the UCRL2 algorithm of [10] that
is based on the OFU principle [11]. However, as is shown in
Section II, the OFU principle might fail when it is applied
for learning the optimal controls for CMDPs. Indeed, as is
shown in the example in Section II, the limiting average
cost is greater than the threshold value of cost. The BOFU
principle proposed in this work is a natural extension of the
OFU principle to the case when the agent has to satisfy certain
constraints on costs, in addition to maximizing the rewards. In
case the problem (12)-(16) is feasible, let (µ̃k, p̃k) denote a
solution. The agent then chooses at according to SR(µ̃k)
within Ek. However, in the event (12)-(16) is infeasible, the
agent implements an arbitrary stationary control policy that
has been chosen at time t = 0. In summary, it implements
a stationary controller within Ek, which is denoted by π̃k.
We make the following assumptions on the MDP p while
analyzing UCRL-CMDP.

Assumption 1:
1) The MDP p = {p(s, a, s′) : s, s′ ∈ S, a ∈ A} is

unichain. Thus, under any stationary policy π we have

‖P (t)
π,p,s − Pπ,p‖TV ≤ Cρt, t = 1, 2, . . . , s ∈ S, (17)

where C > 0, 0 ≤ ρ < 1.
2) The CMDP (2)-(3) is feasible.
3) Without loss of generality, we assume that the magnitude

of rewards and costs are upper-bounded by 1, and hence
r? < 1 as well as {cubi }Mi=1 can be taken to be less than
1.

We establish the following bound on the regrets of UCRL-
CMDP. It is proved in the next section.

Theorem 1: Consider the UCRL-CMDP (Algorithm 1) ap-
plied with δ = 1/T 1/3, α = 1/3 to an MDP p that satisfies
Assumption 1. The reward and cost regrets can be bounded as
follows,

E∆(R)(T ),E∆(i)(T ), i ∈ [M ] ≤ 4TM (p)
√

2 log (T b|S||A|)

× ((
√

2 + 1)
√
SAT + T 2/3

√
log(SAT 4/3))

+
CdT 2/3e

1− ρ
+ T 2/3 +

2

T 2b−2|S||A|
. (18)

A detailed proof is provided in Section V. Over here, we
only provide a proofsketch.

Proofsketch: We show that the proposed algorithm can
be interpreted as an “index policy” in which it assigns an
index (20) to each policy that is calculated on the basis of
operational history, and then plays the policy with the highest
index. We use this characterization in order to analyze the
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behaviour of the algorithm on the “good set,” G (21) on which
the following two occur: (i) concentration of the empirical
estimate of p, and (ii) the number of times (s, a) is visited
is proportional to the numer of times those set of policies
are implemented under which (s, a) is visited with a positive
probability. In Lemma 1 and Lemma 2 we show that G occurs
with a high probability; since the regret on Gc is bounded as
O(T ), it suffices to analyze the algorithm on G. Lemma 7
shows that the instantaneous regrets depends on the radius
of the confidence ball. The behaviour of the radius of ball
upon playing a sub-optimal policy is then used to complete
the proof.

Remark 1: In comparison with the Õ(
√
T ) regret bounds

for unconstrained RL our bounds for the constrained case
are Õ(T 2/3). The reason for this is that the proof techniques
of [10] cannot be applied. More specifically, for the former
case, one is able to relate the diameter D(p) of the MDP to a
bound on the span of the relative value function hk(·), of the
optimistic MDP obtained during the k-th episode7 as follows:
Suppose that hk(s)−hk(s′) > D(p), then one would obtain a
contradiction since we can construct a policy for the extended
MDP, which starts in state s′ and reaches s in D(p) steps
(in expectation), so that the “missed rewards” on account of
starting in s′ (as opposed to starting in s) is upper-bounded
by D(p). Indeed, one could always choose the true transition
probabilities p at every step, and implement a policy which
takes from s′ to s in D(p) steps (that such a policy exists,
follows from definition of the diameter). However, in the case
of CMDP the agent is not only maximizing rewards, but also
making sure that the cost expenditures are below their respec-
tive thresholds, i.e. it is solving a multi-objective optimization
problem and it is not clear how to convert this multiobjective
criteria to a scalar objective function. One could argue that
consideration of the Lagrangian would allow us to “scalarize”
this problem, so that we could derive an upper-bound on the
span of the bias function associated with the extended MDP
that maximizes r(x(t), u(t)) +

∑
i λici(x(t), u(t)). However,

this result will then depend upon the values of Lagrange
multiplers λi, i = 1, 2, . . . ,M , and in order for such upper-
bounds to be useful, we would have to derive bounds on these
multiplers. It is not clear how such a bound could be derived.
In order to overcome this difficulty, we instead view UCRL-
CMDP as an index policy, derive upper and lower bounds on
the indices of stationary policies, and upper-bound the number
of times “sub-optimal policy” is played.

V. PROOF OF THEOREM 1
We begin by introducing few notation. If B denotes a

subset of S, then we let ΠB be the set of those stationary
policies for which Pπ,p(s) > 0 for all s ∈ B. Let Bπ denote
the set of states for which Pπ,p(s) > 0. We now derive a
few preliminary results that are used while proving the main
result. The following result can be shown by an application of
Azuma-Hoeffding inequality [36].

Lemma 1: Define G1 :=
{
p ∈ Cτk , ∀k =

1, 2, . . . ,K
}

. Then, P(G1) ≥ 1− 1
T b−1−(1−α) .

7See [10] for more details.

Lemma 2: Let nk(s, a) denote the number of visits to (s, a)
during Ek, and β > 1/2 satisfy 2β − α = 1. Define

G2 :=

{
K∑
k=1

nk(s, a)− E(nk(s, a)|Fτk)√
Nk(s, a)

≤ T β
√√√√log

(
SAT

δ

)
,

∀(s, a) ∈ S ×A

}
, (19)

where K is the total number of episodes. We have P(G2) ≥
1− δ

T .

Proof: Note that nk(s,a)−E(nk(s,a)|Fτk )√
Nk(s,a)

, k = 1, 2, . . . ,K

is a martingale difference sequence. Furthermore, since the
duration of each episode is dTαe, and

√
Nk(s, a) ≥

1, we have nk(s,a)−E(nk(s,a)|Fτk )√
Nk(s,a)

≤ dTαe. By apply-

ing Azuma-Hoeffding’s inequality to this martingale dif-
ference sequence, we get that the probability of the

event
∑K
k=1

nk(s,a)−E(nk(s,a)|Fτk )√
Nk(s,a)

≥ T β

√√√√log

(
SAT
δ

)
can be upper-bounded by exp

(
− T 2β

T 1−αT 2α log SAT
δ

)
=

exp
(
−T 2β−(1+α) log SAT

δ

)
. Since 2β−(1+α) = 0, the above

bound reduces to δ
SAT . The proof then follows by using union

bound for all state-action pairs (s, a).
Lemma 3: If s ∈ Bπk , then8

E (nk(s, a)|Fτk) ≥

⌊
dTαe

2TM (p)

⌋
× πk(a|s)

2
.

Proof: Within this proof we use TM to denote
TM (p). Since we have Eπ,pTs′,s ≤ TM , ∀s′ ∈ S, it
follows from Markov’s inequality that the probability with
which st does not hit the state s in 2TM steps, is less
than 1/2, or equivalently the state s is visited atleast
once with a probability greater than 1/2, which yields us
mins′∈S Eπ

(∑2TM
t=1 1{st = s}|s0 = s′

)
≥ 1

2 . The proof is
then completed by dividing the total time of dTαe steps in an
episode into “mini-episodes” of 2TM steps each, and noting
that nk(s, a) is equal to the sum of the number of visits to
(s, a) during each such mini-episode.

We begin by giving an equivalent characterization of the
UCRL-CMDP rule. At each τk, it assigns an index Ik(π) to
each stationary policy π as follows,

Ik(π) := max
θ∈Cτk

{
r̄(π, θ) : c̄i(π, θ) ≤ cubi , i ∈ [M ]

}
. (20)

In case the above optimization problem is infeasible, i.e.
c̄i(π, θ) > cubi , ∀θ ∈ Cτk for some i, then the policy is
assigned an index of −∞. UCRL-CMDP implements a policy
with the largest index during Ek.

Define the “good set”

G := G1 ∩ G2. (21)

8For x ∈ R we let bxc be the greatest integer less than or equal to x.
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Lemma 4: On the set G we have the following for θ ∈ Cτk ,

|r̄(π, p)− r̄(π, θ)|, |c̄i(π, p)− c̄i(π, θ)|, i ∈ [M ]

≤ 2 max
s

∑
a∈A

π(a|s)ετk(s, a). (22)

Proof: Note that P (1)
π,p,s is the vector of transition proba-

bilities from state s of the Markov chain that results when
the policy π is applied to the MDP p. Consider an MDP
θ ∈ Cτk . Since on G, we have p ∈ Cτk , we have ‖P (1)

π,p̂τk ,s
−

P
(1)
π,p,s‖1, ‖P (1)

π,p̂τk ,s
−P (1)

π,θ,s‖1 ≤
∑
a∈A π(a|s)ετk(s, a), where

π(a|s) is the probability with which the policy implements a
in state s. From triangle inequality we have that ‖P (1)

π,p,s −
P

(1)
π,θ,s‖1 ≤ 2

∑
a∈A π(a|s)ετk(s, a). (22) then follows from

Corollary 3.1 of [37].
For a stationary policy π, we say r? − r̄(π, p) is its instanta-
neous reward regret, and c̄i(π, p)−cubi is its instantaneous cost
regret for the i-th cost. We now show that if the instantaneous
reward regret, or an instantaneous cost regret of a policy is
greater than a certain threshold, this threshold depends upon
the radius of the confidence ball at time τk, then it is not
played during Ek. For a stationary policy π, define

δk(π) := 2 max
s∈Bπ

∑
a∈A

π(a|s)ετk(s, a).

Consider the following two possibilities.
Case A) c̄i(π, p) > cubi + δk(π) for some i: From (22)

we have that |c̄i(π, p) − c̄i(π, θ)| ≤ δk(π) which implies
c̄i(π, θ) > cubi for all θ ∈ Cτk . Thus Ik(π) = −∞.

Case B) From (22) we have that |r̄(π, p)− r̄(π, θ)| ≤ δk(π)
for all θ ∈ Cτk , so that the index Ik(π) is bounded by r̄(π, p)+
δk(π).

The following result summarizes this discussion.
Lemma 5: Let π be a stationary randomized policy. On

the set G we have that Ik(π) = −∞ if c̄i(π, p) > cubi +
δk(π), for some i ∈ [M ]. Also, Ik(π) ≤ r̄(π, p) + δk(π).

We now show that if a stationary policy is feasible for the
MDP p, i.e. c̄i(π, p) ≤ cubi , ∀i, then its index Ik(π) is lower-
bounded by r̄(π, p).

Lemma 6: If π is feasible for the true MDP, i.e. it satisfies
c̄i(π, p) ≤ cubi , ∀i ∈ [M ], then on G its index satisfies
Ik(π) ≥ r̄(π, p). With π set equal to the policy which
solves the CMDP maxπ

{
r̄(π, p) : c̄i(π, p) ≤ cubi , ∀i ∈ [M ]

}
,

we obtain that the index of an optimal policy is greater than
r?.

Proof: Note that on the set G, the true MDP p always
belongs to Cτk . If c̄i(π, p) ≤ cubi , ∀i ∈ [M ], we have Ik(π) =

maxθ∈Cτk

{
r̄(π, θ) : c̄i(π, θ) ≤ cubi , i ∈ [M ]

}
≥ r̄(π, p).

Upon combining Lemma 5 and Lemma 6, we obtain the
following result.

Lemma 7: On the set G, the instantaneous regrets during Ek
can be bounded by δk(πk).

Proof: We begin by bounding cost regrets. Consider a
stationary policy π. In case c̄i(π, p) > cubi + δk(πk), then it
follows from Lemma 5 that Ik(π) = −∞. However, it is
shown in Lemma 6 that there is a policy π̃, that is feasible
for the true MDP, and whose index is greater than r?. In case

the index of π is less than the index of π̃, the policy π would
not be played by UCRL-CMDP. This means that in order for
π to be a candidate to be played during Ek, we must have
c̄i(π, p) ≤ cubi +δk(πk), or equivalently the instantaneous cost
regret of π must be bounded by δk(πk).

In order to bound the reward regret, we note that it was
shown in Lemma 6 that the index of an optimal policy is
greater than r?, and since the index Ik(πk) must be greater
than or equal to the index of an optimal policy, we must
have Ik(πk) ≥ r?. From Lemma 5 we have Ik(πk) ≤
r̄(π, p)+δk(πk). Upon combining these inequalities, we obtain
r̄(π, p) + δk(πk) ≥ r?, or r̄(π, p) ≥ r? − δk(πk). This shows
that the instantaneous reward regret r? − r̄(π, p) is bounded
by δk(πk).
We now use the result on instantaneous regrets in order to
bound the cumulative regrets of UCRL-CMDP.

Proof of Theorem 1: We will only derive
upper-bound on the reward regret, since the bound
on cost regrets can be derived by following
similar steps. Now, E

(∑
t∈Ek r

? − r(st, at)
)

=

E
(
E
{∑

t∈Ek r
? − r̄(πk, p) + r̄(πk, p)− r(st, at)

∣∣∣Fτk}).
It follows from (17) that we have
E
{∑

t∈Ek r̄(πk, p)− r(st, at)|Fτk
}

≤ C
1−ρ , and

hence the expected regret during Ek can be bounded
by E

(
E
{∑

t∈Ek r
? − r̄(πk, p)

∣∣∣Fτk}) + C
1−ρ . Let

∆
(R)
k := E

{∑
t∈Ek r

? − r̄(πk, p)|Fτk
}

denote the regret
incurred during the k-th episode. Thus, the cumulative
expected regret can be bounded as follows,

E∆(R)(T ) ≤ E

(
K∑
k=1

∆
(R)
k

)
+K

C

1− ρ
, (23)

where K is the total number of episodes. Henceforth we will
focus on bounding the first term

∑K
k=1 ∆

(R)
k in the r.h.s.

above. This is bounded separately on the sets G,Gc1,Gc2.
We begin by bounding

∑K
k=1 ∆

(R)
k on G. Since from

Lemma 7 the instantaneous regret on G during Ek can be
bounded by δk(πk), we have,

∆
(R)
k ≤ δk(πk)|Ek|

≤ 4TM
∑

(s,a):s∈Bπk

E(nk(s)|Fk)
πk(a|s)

√
2 log (T b|S||A|)√
Nk(s, a)

+ 4TM
∑

(s,a):s∈Bπk

{
|Ek|
2TM

1

2
− E(nk(s)|Fk)

}
×

πk(a|s)
√

2 log (T b|S||A|)√
Nk(s, a)

≤ 4TM×∑
(s,a):s∈Bπk

E(nk(s)|Fk)
πk(a|s)

√
2 log (T b|S||A|)√
Nk(s, a)

, (24)

where the last inequality follows from Lemma 3. We will now
bound the term

∑K
k=1

∑
(s,a):s∈Bπk

E(nk(s)|Fk)πk(a|s)√
Nk(s,a)

. We
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have
K∑
k=1

E(nk(s)|Fk)πk(a|s)√
Nk(s, a)

=

K∑
k=1

E(nk(s, a)|Fk)√
Nk(s, a)

=

K∑
k=1

nk(s, a)√
Nk(s, a)

+

K∑
k=1

E(nk(s, a)|Fk)− nk(s, a)√
Nk(s, a)

(25)

As is shown in [10, p. 1578], the term
∑K
k=1

∑
(s,a)

nk(s,a)√
Nk(s,a)

can be bounded by (
√

2 + 1)
√
SAT on each sample

path, while from (19) we have that on G2, the term∑K
k=1

E(nk(s,a)|Fk)−nk(s,a)√
Nk(s,a)

is bounded by T β

√√√√log

(
SAT
δ

)
.

It follows from (25) and the discussion above that on G
we have

∑
(s,a):s∈Bπk

∑K
k=1

E(nk(s)|Fk)πk(a|s)√
Nk(s,a)

≤ (
√

2 +

1)
√
SAT + T β log1/2(SAT/δ). Upon summing (24) over

episodes, and using the above inequality, we obtain that the
regret on G can be bounded as follows,

K∑
k=1

∆
(R)
k ≤ 4TM

√
2 log (T b|S||A|)×

((
√

2 + 1)
√
SAT + T β log1/2(SAT/δ)). (26)

This completes the analysis on G.
We now analyze the regret on Gc2. From Lemma 2, the

probability of Gc2 is bounded by δ. On Gc2, the sample path
regret

∑K
k=1 ∆

(R)
k can be trivially bounded by T , so that its

contribution to the expected regret is bounded by δT .
To analyze the regret on Gc1 we note that if the confidence

ball Cτk at time τk fails, then the regret during Ek can be
bounded by the duration of Ek. Since τk+1 − τk = dTαe, the
regret during Ek is bounded by dTαe. From Lemma 1 we have
that the probability with which confidence ball fails at time t
is upper-bounded by 2

T 2b−1|S||A| . Hence, the expected regret
from the failure of ball (in case an episode starts at t) at time
t is bounded by 2dTαe

T 2b−1|S||A| , so that the cumulative expected
regret is bounded by 2

T 2b−2|S||A| .

VI. LEARNING UNDER BOUNDS ON COST REGRET

The upper-bounds for the regrets of UCRL-CMDP in Theo-
rem 1 are the same for reward and M costs regrets. However,
in many practical applications, an agent is more sensitive to
over-utilizing certain specific costs, as compared to the other
costs. Thus, in this section, we derive algorithms which enable
the agent to tune the upper-bounds on the regrets of different
costs. We also quantify the reward regret of these algorithms.

A. Modified UCRL-CMDP
Throughout this section we assume that p satisfies the

following condition.
Assumption 2: For the MDP p, there exists a stationary

policy under which the average costs are strictly below the
thresholds {cubi : i = 1, 2, . . . ,M}. More precisely, there
exists an ε > 0 and a stationary policy πfeas. such that we
have c̄i(πfeas.) < cubi − ε,∀i ∈ [M ]. Define

η := min
i∈[M ]

{
cubi − ε− c̄i(πfeas.)

}
. (27)

The modified algorithm maintains empirical estimates p̂t and
confidence intervals Ct (11) in exactly the same manner as
UCRL-CMDP (Algorithm 1) does. It also proceeds in episodes
of duration dTαe steps, and uses a single stationary control
policy within an episode. However, at the beginning of each
episode k, it solves an optimization problem which is a modi-
fication of (12)-(16). More concretely, the cost constraints (13)
are replaced by the following modified constraints,∑

(s,a)∈S×A

µ(s, a)ci(s, a) ≤ cubi − di, i ∈ [M ],

where, di := biε, i ∈ [M ], and the parameters bi ∈
(0, 1), i ∈ [M ] are chosen by the agent. If this problem is
feasible, let µ̃k be an optimal occupation measure obtained
by solving it. In this case, the agent implements SR(µ̃k)
within Ek. However, in case the problem is infeasible, then
it implements a stationary controller that has been chosen at
time t = 0. We derive upper-bounds on the regrets of the
modified UCRL-CMDP algorithm in the following result.

Theorem 2: Consider the modified UCRL-CMDP algorithm
with δ = 1/T 1/3, α = 1/3 applied to an MDP p that satisfies
Assumption 1 and Assumption 2. Then, the expected reward
regret can be upper-bounded as follows:

E∆(R)(T )

≤ 4TM ((
√

2 + 1)
√
SAT + T 2/3

√
log(SAT 4/3))

+
CdT 2/3e

1− ρ
+ T 2/3 +

2

T 2b−2|S||A|
+ zT, (28)

where z = (maxi bi)
η̂
η ε, η is as in (27) and

η̂ := max
(s,a)∈S×A

r(s, a)− min
(s,a)∈S×A

r(s, a). (29)

The expected cost regret can be upper-bounded as follows:

E∆(i)(T ) ≤ 4TM

√
2 log (T b|S||A|)×

((
√

2 + 1)
√
SAT + T 2/3

√
log(SAT 4/3))

+
CdT 2/3e

1− ρ
+ T 2/3 +

2

T 2b−2|S||A|
− biεT, i ∈ [M ], (30)

Remark 2: Note that the prefactor in the O(T ) term in (28)
depends upon ε linearly, and this quantity can be tuned by the
agent. When ε = T−1/3, then E∆(R)(T ) can be bounded as
O(T 2/3).

VII. PROOF OF THEOREM 2

Proof closely follows the proof of Theorem 1, hence we
point out only the key differences. The modified UCRL-
CMDP algorithm assigns the following modified index9 to
policy π,

Ik(π) := max
θ∈Cτk

{
r̄(π, θ) : c̄i(π, θ) ≤ cubi − di, i ∈ [M ]

}
.

9To avoid introducing unnecessary notation, we continue to use the same
notation for denoting the modified indices as that used to denote the indices
of UCRL-CMDP.
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If for some i we have c̄i(π, θ) > cubi − di, ∀θ ∈ Cτk , then we
set Ik(π) = −∞.

The proof of next result is omitted since it is similar to that
of Lemma 5.

Lemma 8: Let π be a stationary randomized policy. On the
set G we have that Ik(π) = −∞ if c̄i(π, p) > cubi − di +
δk(π) for some i ∈ [M ]. Also, Ik(π) ≤ r̄(π, p) + δk(π).

The following result allows us to derive bounds on the
instantaneous regrets.

Lemma 9: If a stationary policy π satisfies c̄i(π, p) ≤ cubi −
di, ∀i ∈ [M ], then on G its index satisfies Ik(π) ≥ r̄(π, p).
With π set equal to the policy which solves the CMDP
maxπ r̄(π, p) such that c̄i(π, p) ≤ cubi − di, ∀i ∈ [M ], on
G the index of such a policy satisfies Ik(π) ≥ r? − z, where
z is as in Theorem 2.

Proof: We note that on the set G, the true MDP p always
belongs to Cτk . Since c̄i(π, p) ≤ cubi −di, ∀i ∈ [M ] this means
that the index of π satisfies

Ik(π) = max
θ∈Cτk

{
r̄(π, θ) : c̄i(π, θ) ≤ cubi − di, i ∈ [M ]

}
≥ r̄(π, p).

It follows from Lemma 14 that the optimal value of the CMDP
maxπ r̄(π, p), such that c̄i(π, p) ≤ cubi − di,∀i ∈ [M ], is
greater than or equal to r? − z. Hence, it follows from the
discussion above that the index of the policy which is optimal
for this CMDP is greater than or equal to r? − z.
As earlier, we bound the regret on the sets G,Gc1 and Gc2

separately. On G, the regret is bounded by the time spent
playing sub-optimal policies.

Lemma 10: For the modified UCRL-CMDP algorithm, on
the set G the instantaneous reward regret during Ek can be
bounded by δk(πk) + z, while the instantaneous cost regret
associated with the i-th cost can be bounded by δk(πk)− di.

Proof: Consider a stationary policy π for which
c̄i(π, p) > cubi − di + δk(πk). It follows from Lemma 8 that
the index of this policy satisfies Ik(π) = −∞. However, it
is shown in Lemma 9 that there is a policy π̃ that has index
greater than r? − z. Since Ik(π) is less than the index of π̃,
π will not be played by UCRL-CMDP during Ek. Thus, in
order π to be a c means that c̄i(π, p) ≤ cubi − di + δk(πk),
which shows that the instantaneous cost regret is bounded by
δk(πk)− di.

In order to bound the instantaneous reward regret, note that
it was shown in Lemma 9 that there is a policy with index
greater than r? − z. Hence, the index of πk is necessarily
greater than r? − z. Since from Lemma 8 we have that the
index of πk is upper-bounded by r̄(π, p) + δk(πk), we must
have r̄(π, p)+δk(πk) ≥ r?−z, or equivalently r?− r̄(π, p) ≤
δk(πk) + z. This shows that the instantaneous reward regret is
bounded by δk(πk) + z.

Proof of Theorem 2: Since the proof closely follows that
of Theorem 1, we only point out the key differences. The
regret decomposition result (23) holds for reward as well cost
regrets. Similarly, the regrets on Gc2 and Gc1 can be bounded
by δT and 2

T 2b−2|S||A| respectively. The only difference from

proof of Theorem 1 arises while bounding the terms
∑
k ∆

(R)
k

and
∑
k ∆

(i)
k . It follows from Lemma 10 that the bound on

∑
k ∆

(R)
k differs from (24) by an additional term zT , and

similarly the bound on
∑
k ∆

(i)
k differs from the earlier bound

by an additional term εbiT . The proof is then completed by
summing the bounds on regrets over the sets G,Gc1,Gc2.

VIII. ACHIEVABLE REGRET VECTORS

Let λ ≥ 0M . Consider the Lagrangian relaxation of (2)-(3),

L(λ;π) := lim inf
T→∞

Eπ
∑T
t=1 r(st, at) + λ ·

(
cub − c(st, at)

)
T

,

where c(st, at) is the vector that consists of costs
ci(st, at), i ∈ [M ]. Consider its associated dual function [38],
D(λ) := maxπ L(λ;π), and the dual problem

min
λ≥0

D(λ). (31)

Define the diameter D(p) of MDP p as follows, D(p) :=
maxs,s′ minπ Eπ,pTs,s′ . D(p) is finite if p is communicat-
ing [2].

Theorem 3: There is a problem instance such that the regrets
∆(R)(T ), {∆(i)(T )}Mi=1 under any learning algorithm φ satisfy

Eφ∆(R)(T ) +

M∑
i=1

λ?iEφ∆(i)(T ) ≥ .015 ·
√
D(p)SAT ,

(32)

where λ? is an optimal solution of the dual problem (31),
and sub-script denotes that expectation is taken with respect
to probability measure induced by φ.

Proof: We begin by considering an auxiliary reward
maximization problem that involves the same MDP p, but in
which the reward received at time t by the agent is equal to
r(st, at) +λ ·

(
cub − c(st, at)

)
instead of r(st, at). However,

there are no average cost constraints in the auxiliary problem.
Let φ′ be a history dependent policy for this auxiliary problem.
Denote its optimal reward by r?(λ). Then, the regret for cumu-
lative rewards collected by φ′ in the auxiliary problem is given
by r?(λ) T −Eφ′

[∑T
t=1 r(st, at) + λ ·

(
cub − c(st, at)

)]
. It

follows from Theorem 5 of [10] that the controlled transi-
tion probabilities p(s, a, s′) of the underlying MDP can be
chosen so that this regret is greater than .015

√
D(p)SAT ,

i.e., r?(λ) T−Eφ′
[∑T

t=1 r(st, at) + λ ·
(
c(st, at)− cub

)]
≥

.015
√
D(p)SAT . We observe that any valid learning algo-

rithm for the constrained problem is also a valid algorithm for
the auxiliary problem. Thus, if φ is a learning algorithm for
the problem with average cost constraints, then we have

r?(λ) T − Eφ

[
T∑
t=1

r(st, at) +

M∑
i=1

λi
(
cubi − ci(st, at)

)]
≥ .015

√
D(p)SAT . (33)

We now substitute (34) in the above to obtain Eφ ∆(R)(T ) +∑M
i=1 λi Eφ ∆(i)(T ) ≥ .015

√
D(p)SAT + r?T − r?(λ) T .

Since the r.h.s. is maximized for values of λ which are
optimal for the dual problem (31), we set it equal to λ?,
and then use Lemma 11 in order to obtain Eφ ∆(R)(T ) +∑M
i=1 λiEφ ∆(i)(T ) ≥ .015

√
D(p)SAT .
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IX. SIMULATION RESULTS

We compare the performance of the proposed UCRL-CMDP
algorithm with the Actor-Critic algorithm for CMDPs that was
proposed in [16]. Actor-Critic algorithms are a popular class of
online learning algorithms [39]–[41] that are based on multi-
time-scale stochastic approximation [42]. Note that since the
algorithms proposed in [24], [25] are for an episodic RL setup,
we do not compare the performance of UCRL-CMDP with
algorithms proposed therein.

Experiment Setup: We consider the single-hop wireless
network that was discussed in Section I. For simplicity, we
let the action set A be binary, and take the channel state to
be static. Thus, at = 0 means no packet was transmitted,
while at = 1 means one packet is attempted. Let At ∈
{0, 1, 2, 3} be the number of packet arrivals, that are assumed
i.i.d. across times with mass function (.65, .2, .1, .05) for the
experiments shown in Fig. 1, Fig. 2. Queue length evolves
as Qt+1 = (Qt +At −Dt)

+ ∧ B, t = 0, 1, 2, . . . , where B
is the capacity of the buffer10, while Dt is the number that are
delivered to destination at time t. In our experiments we use
B = 6, and take the channel reliability as .9.

Actor-Critic Algorithm for CMDPs: Let a(n) = 1/
n, b(n) = 1/(n log n) and c(n) = 1/(n log2 n). Let
Q :=

{
x ∈ R|A|−1 : xi ≥ 0 ∀i,

∑|A|−1
j=1 xj ≤ 1

}
denote

the simplex of subprobability vectors. Let Γ(·) denote the
map that projects a vector onto Q. It begins by replacing
the original constrained MDP by an unconstrained one
by imposing a penalty upon constraint violation. The
instantaneous reward for this modified MDP is equal
to r(st, at) − λ̃t

(
c(st, at)− cub

)
where λ̃t ≥ 0 is the

price associated with the constraint violation. In order
to solve this unconstrained MDP, the algorithm keeps
an estimate of the value function Vt : S 7→ R, which
is updated as Vt+1(s) = Vt(s) + a(Nt(s))1{st =

s}
(
r(s, ut) + λ̃tc(s, ut)− Vt(s)− Vt(s?) + Vt(st+1)

)
,

where s? is a designated state. Let πt(a|s) denote
the probability with which action a is implemented in
state s at time t. Let a? be a designated action. These
probabilities are generated as follows. The algorithm
maintains vectors π̂t(s) = {π̂t(a|s) : a ∈ A}, s ∈ S , and
updates it as π̂t+1(s) = Γ

(
π̂t(s) + ?

)
, t = 1, 2, . . . , where,

? =
∑
a 6=a? b(Nt(s, a)) × 1 {st = s, at = a} π̂t(s, a) ×[

Vt(s) + Vt(s
?) − r(s, a) + λ̃tc(s, a) − Vt(st+1)

]
ej ,

where ea is the unit vector with a 1 in the place
corresponding to action a11. The probability for action
a? is computed as π̂t(a

?|s) = 1 −
∑
a 6=a? π̂t(a|s). The

action probabilities πt are then generated from π̂t as
πt(a|s) = (1 − εt)π̂t(a|s) + εt

|A| , a ∈ A, where
εt → 0. Finally, the price λ̃t is updated as

λ̃t+1 =
[
λ̃t + γt

(
c(st, at)− cub

)]+
, where cub is the

threshold on average queue length. In our experiments we
use s? = B, a? = 0 and εt = 1/t.

10For x ∈ R, we let (x)+ := max{x, 0}, x ∧B := min{x,B}
11We enumerate the available actions as 1, 2, . . . , |A|.

Results: Fig. 1 compares the cumulative regrets incurred
by these algorithms. We observe that the reward regret as
well as the cost regret of UCRL-CMDP are low. We ob-
serve the following drawback of the Actor-Critic algorithm’s
performance, that the cost regret is prohibitively high. We
then vary the budget cub on the average queue length. These
results are shown in Fig. 2. Once again, we make a similar
observation, that UCRL-CMDP is effective in balancing both,
the reward regret ∆(R)(t) and the cost regret ∆(1)(t), while
the Actor-Critic algorithm yields a high cost regret. In both
of these experiments the probability vector of arrivals was
held fixed at (.65, .2, .1, .05). We vary this probability vector,
and plot the regrets in Fig. 3. Once again, UCRL-CMDP
outperforms the Actor-Critic algorithm. Though the reward
regret of Actor-Critic algorithm is lower than that of the
UCRL-CMDP algorithms, this occurs at the expense of an
undesireable much larger cost regret. In contrast, the reward
regret as well as the cost regret of UCRL-CMDP is low. All
plots are obtained after averaging over 100 runs.
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Fig. 1: Plot of the reward regret (a) and cost regret (b) for the
network in which the and desired delay is cub = 4.5.
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Fig. 2: Plot of the normalized reward regret (a) and cost regret
(b), as the desired delay cub is varied.
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Fig. 3: Plot of the reward regret (a) and cost regret (b), as the
probability distribution of the arrivals is varied. The probability

vector of At is equal to (.65− .02i, .2, .1+ .01i, .05+ .01i), where
the parameter i is varied from 0 to 9. The desired delay cub is held

fixed at 4.5, and channel reliability at .9.
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X. CONCLUSIONS AND FUTURE WORK

In this work, we initiate a study to develop learning
algorithms that simultaneously control all the components
of the regret vector while controlling unknown MDPs. We
devised algorithms that are able to tune different components
of the cost regret vector, and also obtained a non-achievability
result that characterizes those regret vectors that cannot be
achieved under any learning rule. In our work, we assume
that the underlying MDP is unichain. An interesting research
problem is to characterize the set of achievable regret vectors
under the weaker assumption that the underlying MDP is
communicating.

APPENDIX A
RESULTS USED IN THE PROOF OF THEOREM 3

Lemma 11: Consider the dual problem (31) associated with
the CMDP (2)-(3), and let λ? be a solution of the dual
problem. If Assumption 2 holds true, then D(λ?) = r?.

Proof: Under Assumption 2, the CMDP (2)-(3) is strictly
feasible, so that Slater’s constraint [43] is satisfied, and conse-
quently strong duality holds true. Thus, if λ? solves the dual
problem (31), we then have that D(λ?) = r?.

Lemma 12: Let λ ≥ 0M and φ be a learning algorithm for
the problem of maximizing cumulative rewards under average
cost constraints. We then have the following,

Eφ
T∑
t=1

(r(st, at) +

M∑
i=1

λi(c
ub
i − ci(st, at)))

= r?T − Eφ∆(R)(T )−
M∑
i=1

λiEφ ∆(i)(T ). (34)

Proof: We have, Eφ
∑T
t=1(r(st, at) +∑M

i=1 λi(c
ub
i − ci(st, at))) = Eφ

∑T
t=1 r(st, at) +∑M

i=1 λi Eφ
∑T
t=1

(
cubi − ci(st, at)

)
= r?T − Eφ∆(R)(T ) −∑M

i=1 λiEφ ∆(i)(T ).

APPENDIX B
PERTURBATION ANALYSIS OF CMDPS

We derive some results on the variations in the value of
optimal reward of the CMDP (2)-(3) as a function of the
cost budgets cub. Consider a vector ĉub of cost budgets that
satisfies

cubi − ε ≤ ĉubi ≤ cubi , ∀i ∈ [M ], (35)

where ε > 0. Now consider the following CMDP in which the
upper-bounds on the average costs are equal to {ĉubi }Mi=1.

max
π

lim inf
T→∞

1

T
Eπ

T∑
t=1

r(st, at) (36)

s.t. lim sup
T→∞

1

T
Eπ

T∑
t=1

ci(st, at) ≤ ĉubi , i ∈ [1,M ]. (37)

Lemma 13: Let the MDP p satisfy Assumption 1 and
Assumption 2. Let λ? be an optimal dual variable/Lagrange
multiplier associated with the CMDP (36)-(37). Then, λ?

satisfies
∑M
i=1 λ

?
i ≤

η̂
η , where the constant η is as in (27),

while η̂ is as in (29).
Proof: Within this proof, we let π?(ĉub) denote an

optimal stationary policy for (36)-(37). Recall that the policy
πfeas. that was defined in Assumption 2 satisfies c̄i(πfeas.) ≤
cubi − η. We have

max
(s,a)∈S×A

r(s, a) ≥ r̄(π?(ĉub))

= r̄(π?(ĉub)) +

M∑
i=1

λ?i
(
ĉubi − c̄i(π?(ĉub)

)
≥ r̄(πfeas.) +

M∑
i=1

λ?i
(
ĉub − c̄(πfeas.)

)
≥ min

(s,a)∈S×A
r(s, a) +

M∑
i=1

λ?i
(
ĉub − c̄(πfeas.)

)
≥ min

(s,a)∈S×A
r(s, a) + η

M∑
i=1

λ?i ,

where the second inequality follows since a policy that is
optimal for the problem (36)-(37) maximizes the Lagrangian
r̄(π) +

∑M
i=1 λi

(
ĉubi − c̄i(π)

)
when the Lagrange multiplier

λ is set equal to λ? [38]. Rearranging the above inequality
yields the desired result.

Lemma 14: Let the MDP p satisfy Assumption 1 and As-
sumption 2. If r?(ĉub) denotes optimal reward value of (36)-
(37), and r? is optimal reward of problem (2)-(3), then we
have that r?− r?(ĉub) ≤

(
maxi∈[1,M ]

{
cubi − ĉubi

})
η̂
η , where

η̂ is as in (29), η is as in (27), and ĉ satisfies (35).
Proof: As discussed in Section III-B, a CMDP can be

posed as a linear program. Since under Assumption 2, both
the CMDPs (2)-(3) and (36)-(37) are strictly feasible, we can
use the strong duality property of linear programs [38] in order
to conclude that the optimal value of the primal and the dual
problems for both the CMDPs are equal. Thus,

r? = sup
π

inf
λ

r̄(π) +

M∑
i=1

λi
(
cubi − c̄i(π)

)
, (38)

r?(ĉub) = sup
π

inf
λ

r̄(π) +

M∑
i=1

λi
(
ĉubi − c̄i(π)

)
. (39)

Let π(1), π(2) and λ(1), λ(2) denote optimal policies
and vector consisting of optimal dual variables for
the two CMDPs. It then follows from (38) and (39)
that, r? ≤ r̄(π(1)) +

∑M
i=1 λ

(2)
i

(
cubi − c̄i(π(1))

)
, and

r?(ĉub) ≥ r̄(π(1)) +
∑M
i=1 λ

(2)
i

(
ĉubi − c̄i(π(1))

)
. Sub-

tracting the second inequality from the first
yields r? − r?(cub) ≤

∑M
i=1 λ

(2)
i

(
cubi − ĉubi

)
≤

(
maxi∈[1,M ]

{
cubi − ĉubi

})(∑M
i=1 λ

(2)
i

)
≤(

maxi∈[1,M ]

{
cubi − ĉubi

})
η̂
η , where the last inequality

follows from Lemma 13. This completes the proof.
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