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a b s t r a c t

Strategically prefetching data has been utilized in practice to improve caching perfor-
mance. Apart from caching data items upon requests, they can be prefetched into the
cache before requests actually occur. The caching and prefetching operations compete
for the limited cache space, whose size is typically much smaller than the number of
data items. A key question is how to design an optimal prefetching and caching policy,
assuming that the future requests can be predicted to certain extend. This question is
non-trivial even under an idealized assumption that the future requests are precisely
known.

To investigate this problem, we propose a cost-based service model. The objective is
to find the optimal offline prefetching and caching policy that minimizes the accumu-
lated cost for a given request sequence. By casting it as a min-cost flow problem, we
are able to find the optimal policy for a data trace of length N in expected time O(N3/2)
via flow-based algorithms. However, this requires the entire trace for each request and
cannot be applied in real time. To this end, we analytically characterize the optimal
policy by obtaining an optimal cache eviction mechanism. We derive conditions under
which proactive prefetching is a better choice than passive caching. Based on these
insights, we propose a lightweight approximation policy that only exploits predictions
in the near future. Moreover, the approximation policy can be applied in real time and
processes the entire trace in O(N) expected time. We prove that the competitive ratio of
the approximation policy is less than

√
2. Extensive simulations verify its near-optimal

performance, for both heavy and light-tailed popularity distributions.
© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Proactively prefetching data items instead of passively caching them has been utilized in practice to accelerate data
ccess, e.g., for content data networks [1,2]. This strategy becomes even more appealing given that the advances in learning
echniques provide effective tools to predict various data request patterns [3–6]. For certain applications, the prediction
an be reasonably accurate [7,8]. To design an optimal strategy that combines prefetching and caching demands careful
nvestigation. Proactively prefetching data brings the data into the cache before the actual requests occur. Passively caching
ata, on the other hand, only fetches the missed data from the backend storage after the requests arrive.
There is a trade-off between prefetching and caching. Due to competing the limited cache space, loading a prefetched

ata item into the cache typically has to trigger cache evictions, which may potentially introduce more cache misses
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or future requests. Although great efforts have been put to approximate the short-term and long-term data statistics to
refetch the most popular data [9–14], a fundamental question remains to be answered: even with a perfect knowledge of
uture requests, how to optimally prefetch data items beforehand instead of caching them upon requests?

Knowing the entire request sequence defines an offline algorithm, which nevertheless can help an online deployment.
sing predictions has successfully made optimal offline policies practical in real applications [4–6]. Theoretically, the
ptimal offline policy provides an effective performance bound for online cases [15]. It can also be used to guide the
nline design. For example, by leveraging machine learning, an optimal offline policy can be used to train an online
ecision model using history information [16].
Previous studies on optimal offline prefetching and caching policies mainly focus on file systems [17–22], where

refetching and caching are not clearly distinguished. However, in many other important scenarios, e.g., for CDNs,
refetching and caching have significant differences. First, prefetching and caching can design separate cache update
ules. For prefetching, the prefetched data remain in the cache until the future requests arrive. For caching, when a miss
ccurs, the requested data item is directly fetched from the backend, but whether to put it into the cache or not is up
o the cache policy [15]. Second, prefetching incurs lower costs than caching. If fetching a missed data item is scheduled
fter the arrival of a request, it must be performed urgently to satisfy delay requirements. Prefetching, on the other hand,
s performed beforehand and is not time-sensitive. It can be performed at a lower rate and avoid congestions, which
llows more flexibility for scheduling. For example, data can be prefetched at off-peak times to reduce costs [23,24].
hird, prefetching can achieve a lower service delay by loading the data into the cache in advance. Therefore, the existing
nalysis on prefetching and caching for file systems does not directly apply in the above-mentioned scenarios.
To address this issue, we propose a cost-based service model to jointly optimize prefetching and caching, by assuming

hat prefetching incurs a lower cost than caching, due to less I/O consumption, more flexibility in scheduling and lower
ervice delays. If the requested data is not cached, it can be served by fetching the data from the backend data storage
fter the request arrives, by paying a fetching cost. And the fetched data can be either loaded into the cache, or discarded
o save space. Based on the predictions, we can prefetch the data items before they are requested. The prefetched data
tems need to remain in the cache until the requests arrive. Otherwise, they should not be prefetched at the first place,
ssuming that we know the future requests. With the goal to minimize the accumulated cost, we decide whether to cache
missed data item when a request occurs or prefetch it before the request arrives. We propose flow-based algorithms to
ind the optimal offline policy, as well as a lightweight ‘‘look-ahead’’ approximation policy that only knows the request
nformation in the near future. These new designs not only reveal the fundamental trade-off between prefetching and
aching, but also provide useful insights to improve real applications.
Our contributions are summarized as follows.

• We propose a cost-based caching model where different costs will be incurred depending on whether a missed data
item is prefetched or fetched. With the objective to understand the fundamental trade-off between prefetching and
caching, we investigate the optimal offline policy that minimizes the accumulated cost (see Section 2).

• We reformulate the optimal prefetching and caching problem as a min-cost flow problem. For a given request
sequence of length N , the optimal policy can be obtained by flow-based algorithms in O(N3/2) expected time (see
Section 4).

• We analytically characterize the optimal policy by providing sufficient conditions under which prefetching the
missed data is the optimal choice (see Section 5). Moreover, we prove that consistently prefetching is not always
optimal, with a competitive ratio as high as 2, depending on the future requests and the prefetching cost (see
Section 6).

• We propose a lightweight ‘‘look-ahead’’ approximation policy based on the insights revealed by the characteristics
of the optimal policy. The approximation policy can be executed in real time and processes the entire trace in O(N)
expected time. Performance guarantees are provided by deriving the competitive ratio (see Section 6).

• We conduct extensive experiments using real CDN traces and synthetic data requests that are generated from both
heavy and light-tailed popularity distributions. The approximation policy always achieves near-optimal average
performance (see Section 8).

elated Works: Caching algorithms have been extensively studied. It is known that Belady’s algorithm [25] is an optimal
ffline eviction policy that minimizes the number of misses, assuming that the data items have identical sizes. Specifically,
t evicts the data item that is requested farthest in the future. When the data sizes are not identical, Belady’s algorithm
s no longer optimal, and finding the optimal offline policy is NP-hard. A few approximation policies have been proposed
ith different complexities and performance bounds [20,26–28]. One recent work [15] provides an asymptotically optimal
olution and practical approximation algorithms with tight performance bounds for real traces. It leverages a flow-based
epresentation, and shows that the optimal offline caching policy can be obtained by solving a min-cost flow problem.
hese offline policies have successfully guided the design of online algorithms [16].
Prefetching strategies, together with caching algorithms, have been widely explored in real applications, including

rocessor architectures [29,30], file systems [31,32] and networks [24,33–36]. The optimal offline strategies have been
tudied for disk systems with an objective to minimize the stall time [17–22]. It is shown in [37] that the optimal offline
olution can be found in polynomial time for single-disk systems. This problem is reformulated as a min-cost multi-
ommodity flow problem in [21]. For disk systems, the existing work does not distinguish the costs caused by caching
2



G. Quan, A. Eryilmaz, J. Tan et al. Performance Evaluation 145 (2021) 102149

a
c
p
m

2

p
r

i
t
i
c
m
d
w

P

c
f

P

f

w
f

o
(
C
f

nd prefetching, which makes proactive prefetching almost always a better choice than passive caching. In this paper, we
onsider the scenarios where prefetching and caching can have different costs. Interestingly, we show that consistently
refetching is not always optimal. The new insights can be used to further improve the design of prefetching and caching
echanisms.

. Problem formulation

Consider a set of data items D = {di : 1 ≤ i ≤ M} of unit sizes, and a sequence of data requests that arrive at the time
oints {τn, 1 ≤ n ≤ N}. Let Rn (Rn ∈ D) denote the data item that is requested at time τn and {Rn}

N
n=1 denote the entire

equest sequence. We assume that {Rn}
N
n=1 is known.

If the requested data item is already in the cache, then the request can be served without paying a cost. However, if it
s not cached, we have two options to serve the corresponding data request at different costs. The first option is to fetch
he data from the backend after the request arrives, paying a fetching cost 1. We can decide whether to load the fetched
tem into the cache or not. The second option is to prefetch the data item before it is requested, paying a prefetching cost
, 0 ≤ c ≤ 1. Note that the prefetched data item has to be loaded into the cache. If the cache space is full, other items
ust be evicted before storing a new one. For ease of analysis, we first assume a best-case scenario where the prefetched
ata item is loaded into the cache right before it is requested. In Section 7, we will show that this assumption could be
aived to some extent.
We observe that the optimal offline policy shall satisfy the following two properties.

roperty 1 (Interval Caching Decisions). As illustrated in [15], the optimal offline policy will not evict a cached data item di
between two requests for di. Consider an example where di is initially cached and requested at τ1 and τ5. It is suboptimal to
evict di at some time (e.g., τ3) between τ1 and τ5, because storing di in (τ1, τ3] does not serve any requests and is a waste of
aching resource. A wiser decision will be evicting di right after serving R1 or caching it at least until R5 arrives. Therefore, we
ocus on caching policies that only evict a cached data item immediately after serving a request for it.

roperty 2 (Fetching without Caching). When the optimal policy fetches a missed request, it must not load the fetched data
into the cache and trigger evictions, because otherwise prefetching will be a better option. Therefore, it is sufficient to consider
the policies such that data items will only be loaded into the cache by prefetching.

In the rest of the paper, we restrict the design space by only considering the policies that satisfy these two
properties, and call them feasible policies. An optimal offline policy is guaranteed to exist in this design space. Let
ln = max {i < n : Ri = Rn}, which indicates that τln is the most recent time when Rn is requested. If Rn is the first request
or that item, then set ln = 0. Formally, we define three decision variables for each request Rn, 1 ≤ n ≤ N:

xn ≜ 1(Store Rn in the cache during (τln , τn]),
fn ≜ 1(Fetch Rn),
pn ≜ 1(Prefetch Rn),

here 1(E) is an indicator function that takes value 1 if the event E occurs, and 0 otherwise. The optimal offline policy
or a cache of size b is the solution of the following optimization problem.

min
∑

1≤n≤N

(1 − xn)(fn + c · pn) (1)

subject to pn +

∑
i:li<n≤i

xi ≤ b for ∀n (2)

xn + fn + pn ≥ 1 for ∀n (3)

xn, fn, pn ∈ {0, 1} for ∀n (4)

If xn = 0, i.e., Rn is not stored in cache at τn, then a cost fn + cpn will be induced depending on whether Rn is fetched
r prefetched as shown in the objective function (1). The cache capacity constraint is described by (2). If Rn is prefetched
i.e., pn = 1), then the cache should have an available space to accommodate the prefetched data at τn. Furthermore,
onstraints (3) and (4) guarantee that the request Rn must be either directly served from the cache or prefetched/fetched
rom the backend data storage.

Solving the optimal solution is equivalent to answering the following two questions:
Q1: If a request is not cached, should we prefetch it beforehand or fetch it upon the request?
Q2: If a data item is prefetched and the cache is full, which item should be evicted?
We will analytically answer these two questions in Section 5. And here are the short answers:
A1: Prefetching the requested data is a better choice, if

• there exist requests for popular items in the near future, and the popular items are not cached currently, or
• the prefetching cost is sufficiently low.

A2: The farthest-in-future data item should be evicted, if we choose to prefetch an item and the cache is full.
3



G. Quan, A. Eryilmaz, J. Tan et al. Performance Evaluation 145 (2021) 102149
Fig. 1. Always prefetching before the request.

Fig. 2. Always fetching upon the request.

Fig. 3. Combination of fetching & prefetching.

3. Motivating example

In this Section, we will introduce a motivating example to show that (1) prefetching is not always beneficial; (2) the
optimal policy is non-trivial and depends on the prefetching cost.

Example 1. Consider a cache of size 2. Assume that d1, d2 are initially stored in the cache. For a given sequence of
requests d3, d1, d2, d4, d5, d2, d1, we apply three different strategies and compare their costs.
Strategy 1 (Always prefetching): We always prefetch the requested data that are not cached, and evict the cached item
that is requested farthest in future. The operations as well as the cache content after serving each request are shown in
Fig. 1. Strategy 1 prefetches requests R1, R3, R4, R5, R7 and evicts d2, d3, d1, d4, d5, respectively. The total cost for the given
sequence is 5c .
Strategy 2 (Always fetching): We always fetch the missed data after the request arrives, and apply the farthest-in-future
eviction policy (i.e., Belady’s algorithm) which is optimal for caching without prefetching [38]. For this specific example,
Belady’s algorithm will never update the cache content. As shown in Fig. 2, a total cost 3 will be incurred for the given
sequence.
Strategy 3 (Combination of fetching and prefetching): As shown in Fig. 3, the first request is not stored in the cache and
the requested data d3 is fetched. Then, R4, R5, R7 are prefetched and d1, d4, d5 are evicted, respectively. A total cost 3c +1
is incurred by this strategy.

We have the following two observations from this motivating example.
Observation 1: Prefetching is not always beneficial. If c > 3/5, Strategy 1 (always prefetching) will even incur a larger
accumulated cost than Strategy 2 (always fetching). If the prefetching cost c is considerably small, then prefetching the
data item before the request will be a better choice than fetching it upon the request.
Observation 2: The optimal policy is non-trivial and highly depends on the prefetching costs. Actually, all the three
strategies described above are optimal policies for the given trace and some specific c values. Specifically, Strategies 1, 2,
3 are optimal for c ∈ (0, 1/2], (2/3, 1], (1/2, 2/3], respectively.

Therefore, the optimal prefetching and caching decision depends on the joint effect of future requests and the
prefetching cost c. Even for the same given trace, a fixed policy cannot work uniformly well for different c values. When
the trace is long, the design space can be considerably large, since the possible combinations of fetching and prefetching
will increase exponentially. How to efficiently find the optimal policy is a challenging task.
4
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Fig. 4. Notations for the flow network.

Fig. 5. Representative nodes for each request.

Table 1
Example trace of requests for d1 , d2 and d3 .
Trace: d1 d2 d1 d3

4. Optimal policy via min-cost flow

Instead of directly exploring the optimization problem (1), we leverage the underlying structure of prefetching and
aching, and reformulate it as a min-cost flow problem which aims to send a certain amount of flow through a flow
etwork at a smallest cost. We will show that the optimal prefetching and caching policy can be constructed from the
in-cost flow.
In this paper, we use the flow notations that are shown in Fig. 4. A flow network is represented by a directed graph

here each edge is associated with a parameter tuple (capacity, cost). The total amount of flow going through an edge
must not exceed its capacity. And a cost per unit flow will be charged for the flow going through the edge. The node i is
associated with a number βi representing its surplus/demand. If βi > 0, then the node is a source node. If βi < 0, then
the node is a sink node. We will not label βi in the graph if it is zero.

In [15], the min-cost flow representation is used to solve optimal offline caching without prefetching, where each
request is represented by a node. By constructing a proper flow network, the optimal offline caching can be constructed
from the min-cost flow solution. However, the flow network constructed in [15] does not support prefetching operations,
and therefore cannot be applied to our settings. To this end, we propose a more general min-cost flow representation,
which supports both proactive prefetching and passive caching. In Section 4.1, we will show how to construct a flow
network for a given sequence of requests. Then, we will prove that the optimal prefetching and caching policy can be
obtained by finding the min-cost flow in Section 4.2.

4.1. Flow network construction

For a given sequence of requests, a corresponding flow network can be constructed, where each request is represented
by four or five nodes and the nodes are connected by five types of edges including caching edges, fetching edges,
prefetching edges, eviction edges and auxiliary edges. Detailed construction steps are presented as follows. The result
of each step is illustrated in Fig. 6 for the request sequence shown in Table 1 and a cache of size 2.

Step 1 (Generate nodes): For each request in the trace, if it is the first time to request the data, then generate five nodes
where three of them are placed in the first row and two in the second, as shown in Fig. 5. To facilitate the description of
the following steps, we denote these nodes by n0, n1, n2, n3 and n4. If the request is not the first request for the data, then
we will only generate n1, n2, n3 and n4 nodes for that request. Moreover, for each data item, let the n0 node of its first
request be the source node, and the n2 node of its last request be the sink node. These nodes are added for the example
trace in Fig. 6a.

Step 2 (Add caching edges): As shown in Fig. 6a, connect the nodes in the second row by edges with capacity = b,
cost = 0, where b is the cache size. These edges are named caching edges. A flow going through these edges represents
that the corresponding request is stored in the cache.

Step 3 (Add prefetching edges): For each request, add an edge that is directed from the n2 node of the most recent
request for the same data and to the n node of the request. If the request is the first request for that data, then add an
3
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Fig. 6. Flow network construction.

edge directed from its source node n0 to the n3 node. The capacity of the edge is 1 and the cost is c. The flow going through
hese edges means that the corresponding requested data is prefetched. We add these prefetching edges in Fig. 6b.

tep 4 (Add eviction edges): For each request, add an edge directed from its n4 node to its n1 node with capacity = 1
nd cost = 0, as shown in Fig. 6c. The flow going through these edges indicates that the corresponding requested data is
victed.

tep 5 (Add fetching edges): For each request, if it is not the last request for that data item, add an edge directed from the
2 node of the request to the n1 node of the next request for the same data item, as shown in Fig. 6d. Moreover, if it is the
irst request for the corresponding data item, add an edge directed from its n0 node to its n1 node. The parameter tuple
capacity, cost) for these edges is set to be (1, 1). The flow going through these edges indicates that the corresponding
equest is a miss and the requested data is fetched.

tep 6 (Add auxiliary edges): For each request, add an auxiliary edge directed from its n1 node to the n2 node, as
hown in Fig. 6e. The parameter tuple (capacity, cost) is set to be (1, 0). The capacity of the auxiliary edge guarantees
hat the amount of flow going through the prefetching and the fetching edges must not exceed 1. These auxiliary edges
re used to guarantee that an integer flow routing solution can correspond to a feasible prefetching and caching policy
see Section 4.2).

According to the proposed six steps, a flow network can be constructed for a given data trace. See Fig. 6e for the
low network constructed for the example trace in Table 1. In Section 4.2, we will demonstrate how the constructed flow
etwork can be leveraged to solve the caching problem.
6
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.2. Optimal prefetching and caching policy

In this section, we will leverage the constructed flow network to find the optimal offline prefetching and caching policy.
pecifically, we will show that there is a one-to-one correspondence between feasible prefetching and caching policies
nd integer flow routing solutions in the flow network.

heorem 1. For a given data trace, a feasible prefetching and caching policy corresponds to an integer flow routing solution
n the constructed flow network, and vice versa. An optimal prefetching and caching policy corresponds to an integer min-cost
low, and vice versa.

The proof of Theorem 1 is straightforward. For a feasible prefetching and caching policy, we can construct an integer
low routing solution in the constructed flow network where the amount of flow going through each edge is an integer.
pecifically, any cache operation (i.e., fetching, prefetching or eviction) corresponds to an edge (i.e., fetching, prefetching or
viction edge) in the flow network. Based on how the request is served, we can route the flow through the corresponding
dges. Similarly, given an integer flow routing solution, a corresponding feasible prefetching and caching policy can be
onstructed from it. Furthermore, the cost achieved by a prefetching and caching policy is the same as the cost of its
orresponding flow routing solution. Therefore, the optimal prefetching and caching policy can be obtained by finding
he integer min-cost flow solution.

Formally, we define the flow-based optimal offline policy as follows.

low-based optimal offline policy (πOPT ): Given a sequence of data requests, solve the integer min-cost flow for the flow
etwork constructed according to the steps introduced in Section 4.1. Then prefetch, fetch or evict the data item if the
in-cost flow is routed through the corresponding prefetching, fetching or eviction edges, respectively.
Note that the integer min-cost flow always exists, since the capacities, surpluses and demands are all integers in the

low network [39]. Moreover, the integer min-cost flow can be efficiently solved, if the prefetching cost c is assumed to
e a rational number. Given a trace with N requests, there are at most 5N nodes and 6N − 1 edges in the corresponding
low network. For rational prefetching costs, the problem is solvable in O(N3/2) expected time [40–42].

Although the proposed flow-based policy πOPT is offline optimal, the problem is not satisfactorily solved for the
ollowing reasons:

• The flow-based algorithm cannot reveal the underlying insights of the optimal decision. It does not provide analytical
answers to the two questions proposed in Section 2, i.e., whether to prefetch or fetch the missed data, and which
data item to evict.

• The flow-based algorithm requires the knowledge about all future requests to find the optimal policy. Moreover, the
policy cannot be executed in real time, since the optimal decision for a request is unavailable unless the process
for the entire data trace is completed. In real practice, the request sequence could be too long to make this method
practical [15].

hese unanswered questions motivate us to

• analytically characterize the properties of the optimal policy and explicitly answer the questions proposed in
Section 2 (see Section 5);

• design a lightweight approximation policy that requires only near-future information, can be executed in real time
and achieves near-optimal performance (see Section 6).

. Characteristics of optimal policy

In this section, we will analyze the characteristics of the optimal policy and explicitly answer the two questions
roposed in Section 2. Notably, the questions will be addressed in reverse order. We will first show that evicting the
arthest-in-future item is optimal when prefetching. Then, we will provide sufficient conditions under which prefetching
s a better choice than fetching.

.1. Optimal eviction mechanism

The farthest-in-future item is defined as the data item that is stored in the cache and will be reused after the other
ached items. It is known that evicting the farthest-in-future item minimizes the number of misses for caching without
refetching [38]. In this section, we will generalize this result and show that evicting the farthest-in-future item is the
ptimal choice to minimize the accumulated costs for caching with prefetching. We start by proving the following lemma.

emma 1. Assume that a policy πn evicts the farthest-in-future items for the first n prefetching operations. Then, there exists
policy πn+1 that evicts the farthest-in-future items for the first n + 1 prefetching operations and does not incur a larger cost

han πn.
7
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roof. Assume that τm1 is the first time when πn prefetches a request (i.e., Rm1 ) but does not evict the farthest-in-future
tem. We will construct a policy πn+1 that prefetches Rm1 and evicts the farthest-in-future item without incurring a larger
ost than πn. The idea is to let πn+1 eventually have the same cache content as πn at some time point without introducing
dditional costs before that.
Assume that the next request for the farthest-in-future item arrives at τm2 , m2 > m1. We may interchangeably use Rm2

to denote the farthest-in-future item and the request for it. Let πn+1 prefetch Rm1 and evict the farthest-in-future item
Rm2 . Next, we will prove the lemma by considering two possible cases.

Case 1: Consider the case where Rm2 is evicted by πn before τm2 . For each request, let πn+1 make the same prefetch-
ng/fetching decision as πn if the data is not cached by πn+1, and evict the same data as πn if the data evicted by πn is
ot Rm2 . When πn evicts Rm2 , which is not cached by πn+1 according to the described update rule, let πn+1 evict the only
tem that is cached by πn+1 but not by πn. Then the two policies lead to the same cache content, and no additional cost
s introduced by πn+1.

ase 2: Consider the case where πn does not evict Rm2 before τm2 . Similar to Case 1, let πn+1 always make the same
ecisions as πn when possible. There is only one item that is cached by πn+1 but not cached by πn before τm2 . Then, at
m2 , let πn+1 prefetch Rm2 and evict the item that is not cached by πn. So far, the two policies will have the same cache
ontent. Next, we will show that this prefetching operation by πn+1 will not result in a larger accumulated cost. Let di
e the item that is evicted by πn when prefetching Rm1 . Since Rm2 is the farthest-in-future item at τm1 , there must exist
request for di between Rm1 and Rm2 . Note that di should be prefetched or fetched by πn, but can be directly served by
n+1 from the cache. This prefetching/fetching operation by πn compensates for the prefetching operation performed by
n+1 at τm2 . Therefore, πn+1 will not incur a larger cost than πn. □

Next, we will prove the optimal eviction mechanism by leveraging Lemma 1.

heorem 2. There exists an optimal policy that evicts the farthest-in-future items for all prefetching operations.

roof. Let π∗ be an optimal prefetching and caching policy. Assume that π∗ evicts the farthest-in-future items for the
irst n prefetch operations. Applying Lemma 1, we can construct a new policy which evicts the farthest-in-future items
or the first n + 1 prefetching operations without increasing the accumulated cost. Using an induction argument, we can
onclude that there must exist an optimal policy that evicts the farthest-in-future item for all prefetching operations. □

Theorem 2 shows that evicting the farthest-in-future item is optimal when a data item is prefetched and the cache
s full, which provides an explicit answer to the question Q2 proposed in Section 2. In the rest of the paper, we always
dopt the farthest-in-future eviction unless other specific mechanisms are stated.

.2. Optimal conditions for prefetching

In this section, we will analytically answer the question: whether we should prefetch or fetch an item if it is not stored
n cache, assuming that the farthest-in-future eviction is adopted. In particular, we will provide sufficient conditions, under
hich prefetching is the optimal choice.
Let Sn denote the set of cached data items before serving Rn. If Rn /∈ Sn, then Rn should be prefetched or fetched.
ithout loss of generality, assume that the cache is initially full and let S1 denote the initial cache content. It suffices to

nalyze whether R1 should be prefetched or fetched given that R1 /∈ S1. Define

σ = max{n > 1 : Rn ∈ S1 and Rn is not requested in [τ1, τn)}.

σ is the farthest-in-future item, and τσ is the first time when Rσ is requested after τ1. Define

ω = min{n > 1 : Rn ∈ S1 and Rn is not requested in (τn, τσ )}.

ote that Rσ is always the farthest-in-future item in the time interval [τ1, τω], if no prefetching operation is performed.
We start by proving the following lemma.

emma 2. Assume c < 1. For any optimal policy π∗, if π∗ decides to fetch R1, then it must also fetch all requests Rn,
≤ n ≤ ω, such that Rn /∈ S1.

roof. Suppose for the sake of contradiction that there exists an optimal policy π∗ which fetches R1 and prefetches Rn,
≤ n ≤ ω. Assume without loss of generality that Rn is the first prefetched item after R1. Therefore, we have S1 = Si for
ll 1 ≤ i ≤ n. Moreover, the farthest-in-future eviction principle yields Sn+1 = Sn∪{Rn}\{Rσ }. To introduce a contradiction,
e will design a new policy π◦ which achieves the same cache state Sn+1 as π∗, but incurs a lower cost.
For the same request sequence and initial cache state S1, let π◦ prefetch R1 and evict Rσ at τ1. For the requests arrive

n the interval (τ1, τn), let π◦ make the same caching decision as π∗. We have Sn = S1∪{R1}\{Rσ } for π◦, since there is no
refetching operations by π◦ in (τ1, τn). Then, let π◦ prefetch Rn and evict R1. Consequently, it achieves the same cache
tate Sn+1 as π∗. Notably, the caching decisions of π∗ and π◦ in [τ1, τn] are all identical, except that π∗ fetches R1 but π◦

refetches R1. As a result, the cost of π◦ is lower than the cost of π∗ since c < 1, which contradicts to our assumption
∗
hat π is the optimal policy. Therefore, we prove the lemma. □

8
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Leveraging the property of the optimal policy illustrated in Lemma 2, we will show that prefetching before the request
is the optimal choice under some insightful conditions.

Theorem 3. Assume that the upcoming request R1 is not stored in the cache. Prefetching R1 is the optimal choice, if any of
he following two conditions is satisfied:

• C1: There is a request Rn, 1 ≤ n ≤ ω, such that Rn /∈ S1 and Rn is requested at least twice in the time interval [τ1, τσ ];
• C2: The prefetching cost c satisfies c ≤ L/(L + 1), where L =

∑ω

n=1 1(Rn /∈ S1) is the number of requests that arrive in
the time interval [τ1, τω] but do not belong to S1.

roof. Assuming that the upcoming request R1 is a miss, we will prove that under any of the proposed conditions,
refetching R1 is the optimal choice to minimize the accumulated cost.
First, we will show that under Condition C1, prefetching R1 is a better choice than fetching. Assume that R1 is requested

t least twice in the time interval [τ1, τω]. Suppose for the sake of contradiction that the optimal policy π∗ fetches R1.
ext, we will construct a new policy π◦ that prefetches R1 and incurs a lower accumulated cost than π∗.
Consider the case where π∗ evicts Rσ when prefetching some missed request Rk for 1 < k < σ . Then let π◦ prefetch R1

nd evict Rσ , and then prefetch Rk and evict R1. Furthermore, let π◦ perform the same operation as π∗ for other requests.
hen, π◦ will reduce the cost of π∗ by 1 − c .
Then, consider the case where π∗ keeps Rσ in the cache until τσ . Let Rn1 = R1 for some n1 ∈ (1, σ ). If R1 and Rn1 are

etched by π∗, then let π◦ prefetch R1 and evict Rσ , and then prefetch Rσ and evict R1. For other requests, let π◦ perform
he same operation as π∗. Note that Rn1 will be a hit for π◦, and therefore, π◦ reduces the accumulated cost of π∗ by
−2c. Instead, if Rn1 is prefetched by π∗ and meanwhile some cached data di is evicted, then the next request for di must
rrive after τσ due to the farthest-in-future eviction principle. Let π◦ prefetch R1 and evict Rσ , and then prefetch Rσ and
vict di. For other requests, let π◦ make the same decisions as π∗. Then, π◦ reduces the cost of π∗ by 1 − c. Therefore,
e prove that prefetching is the optimal choice if R1 is requested twice before τσ .
Using a similar argument, we can prove that if there is a request Rn, 1 < n < ω, such that Condition C1 holds, then

prefetching Rn is the optimal choice. Moreover, since n < ω, we can conclude that prefetching R1 is also the optimal by
pplying Lemma 2.
Next, we will show that if Condition C2 holds, then prefetching R1 is optimal. Let Rni , 1 ≤ i ≤ L, 1 = n1 < n2 < · · · <

L < ω, denote the L requests that are not in the set S1. Suppose for the sake of contradiction that the optimal policy π∗

etches R1. Then, Lemma 2 indicates that π∗ must also fetch all the L missed data items before τω . Let π◦ prefetch R1 and
vict Rσ , prefetch Rni+1 and evict Rni for 1 ≤ i ≤ L − 1, and then prefetch Rσ and evict RnL . For these requests, π◦ pays a
otal cost (L+1)c and π∗ pay a total cost L. For other requests, let π◦ make the same decisions as π∗. Since c ≤ L/(L+1),
◦ induces a lower cost than π∗. Therefore, we prove that prefetching R1 is the optimal choice if Condition C2 holds. □

Theorem 3 provides sufficient conditions under which prefetching is the optimal choice. And these conditions reveal
he following useful insights that can be leveraged to guide practical designs:

• Prefetching the upcoming request is optimal, if there exist popular items that will be requested in the near future
and are not stored in the cache currently. Note that the upcoming request may not necessarily be popular. The reason
is that the popular data will be prefetched and trigger evictions. Thus, evicting these items earlier can be even more
beneficial, because more prefetching opportunities (e.g., prefetching the upcoming request) will be provided. This
insight is characterized by Condition C1.

• Prefetching is optimal if the prefetching cost c is sufficiently low. This insight is straightforward. Condition C2
characterizes the critical value of c to make prefetching a better choice than fetching. Note that, since 1/2 ≤ L/(L+1)
for L ≥ 1, prefetching is always optimal for any data traces if c ≤ 1/2.

Note that the proposed conditions only depend on the current cache content S1 and the request information between R1
nd Rσ . No information after τσ is required. In Section 6, we will leverage this nice property to propose an approximation
olicy that only requires near-future information. However, if neither C1 nor C2 is satisfied, the optimal decision will
epend on the future requests after Rσ .

. Approximation using near-future information

In this section, we propose an approximation policy using near-future information, and show that it is close to optimal
y deriving the competitive ratio.

.1. Lightweight approximation policy

Based on the analytical results obtained in Section 5, we propose an approximation policy as follows.
Approximation Policy (πA): Prefetch the missed request and evict the farthest-in-future item, if c ≤

√
2/2, or any of

he conditions C1 and C2 introduced in Theorem 3 is satisfied. Otherwise, fetch the missed item but do not store it into
he cache.
9
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Applying Theorem 3, we know that, for c ∈ [0, 1/2] ∪ [
√
2/2, 1], πA prefetches a data item only when prefetching

s the optimal choice. The threshold
√
2/2 is chosen to achieve a better competitive ratio, which will be shown in

Section 6.2. Notably, the proposed approximation policy makes caching and prefetching decisions merely based on the
request information before τσ . If the data requests are generated independently from a popularity distribution (e.g., Zipf’s
istribution as observed in real practice [43]), then τσ is independent of the trace length N . Although τσ can depend on the
ache size b, considering the fact that the cache size is typically fixed and the requests keep coming in real practice, N is
the dominant term in the time complexity and the impact of b is negligible. Therefore, πA has an expected time complexity
O(1) to make decisions for a single request and O(N) to process the entire trace. In Section 8, we verify through simulations
that the required information for πA to make decisions for a single request does not scale with the trace length.

In summary, unlike the flow-based algorithm that need all future requests to make optimal decisions, πA is lightweight
nd practical since

• it only exploits near-future information to make decisions;
• it does not have to process the entire trace to find the optimal decision for a single request and can be executed in

real time.

.2. Competitive ratio analysis

In this section, we will show that the proposed approximation policy achieves near-optimal performance by charac-
erizing its competitive ratio.

We introduce two additional policies (i.e., always prefetching policy and always fetching policy) as benchmarks.

lways Prefetching Policy (πP ): Always prefetch the missed item. If the cache is full, evict the farthest-in-future item.

lways Fetching Policy (πF ): Always fetch the missed item. If the next request for the fetched item arrives before the
farthest-in-future item, then evict the farthest-in-future item and store the fetched one in cache. Otherwise, do not load
the fetched item into the cache.

πP and πF represent two extreme policies that always prefetch or fetch the missed data. πF is also known as the Belady’s
algorithm [38,44], which is the optimal caching policy when prefetching is disabled and data sizes are all identical. Notably,
πA, πP and πF need the same amount of future informaiton (i.e., future requests before τσ ) to make decisions. We will use
πF and πP as benchmarks to show that a wise combination of prefetching and fetching (e.g., policy πA) can yield better
performance. Specifically, we will prove that πA always achieves the smallest competitive ratio among the three policies.

Let cost(π, {Rn}
N
n=1) denote the accumulated cost achieved by a policy π for a given trace {Rn}

N
n=1. The competitive ratio

or a given prefetching policy π is defined as

rπ = sup
{Rn}

N
n=1

cost
(
π, {Rn}

N
n=1

)
cost

(
π∗, {Rn}

N
n=1

) ,

where π∗ represents the optimal policy. The competitive ratio evaluates the worst-case performance of a policy. From
the definition, we have rπ ≥ 1 for any policy π . Let rA, rP , rF denote the competitive ratio of the proposed approximation
policy, always prefetching policy and always fetching policy, respectively.

Theorem 4. Given the prefetching cost c, the competitive ratios of πF , πP and πA can be computed as

rF = 1/c for c ∈ (0, 1],

rP =

{
1 for c ∈ (0, 1/2],
2c for c ∈ (1/2, 1],

rA =

{
1 for c ∈ [0, 1/2],
2c for c ∈ (1/2,

√
2/2].

In addition, for c ∈ (
√
2/2, 1], rA can be bounded as

b
b + 1

·
1
c

≤ rA ≤
1
c
,

where b is the cache size.

Proof. For compactness, we omit the term {Rn}
N
n=1 in the cost expression cost(π, {Rn}

N
n=1). The competitive ratio results

for πF , πP and πA are proven as follows.

Competitive ratio for πF :
For the πF policy, we will first show that its competitive ratio is upper bounded by 1/c. Consider a new setting where

fetching cost is the same as the prefetching cost c , 0 ≤ c ≤ 1. Let π◦ and cost ′(π◦) denote the optimal policy and the
minimum cost under the new setting. Then, for any request sequence, we have cost ′(π◦) ≤ cost(π∗). Note that there is no
10
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dditional benefits to prefetch in the new scenario. Therefore, there must exist a π◦ that always makes the same decision
s πF for the same request sequence. As a result, we have, for any request sequence

cost(πF )
cost(π∗)

≤
cost(πF )
cost ′(π◦)

=
1
c
.

Next, we will show that for any ϵ > 0, πF can achieve a competitive ratio larger than 1/c − ϵ. For a given cache size
b, assume without loss of generality that the set of items {di : 1 ≤ i ≤ b} is initially stored in the cache. Consider the
equest sequence db+1, db+2, . . . , db+k, d1, d2, . . . , db. πF will choose to fetch di, for b + 1 ≤ i ≤ b + k and achieves a cost
. In contrast, if we choose to prefetch every missed item and evict the farthest-in-future item, a cost (k + 1)c will be
ntroduced. Thus, we have

rF ≥
k

(k + 1)c
.

By choosing the k ≥ 1/(ϵc), a lower bound 1/c − ϵ can be achieved for ∀ϵ > 0. Combining the upper and the lower
ounds, we prove the tight competitive ratio for πF .

ompetitive ratio for πP :
For c ∈ [0, 1/2], we will show that πP is the optimal policy. Assume that R1 is a miss. A cost 1 will be induced if R1 is

etched. However, the request can be served at a lower cost 2c , if we choose to prefetch R1 and evict some cached data
aying di, and then after serving R1, prefetch di back to the cache and evict R1. Therefore, when c ∈ [0, 1/2], the optimal
olicy always choose to prefetch if the requested data is not cached. Moreover, according to Theorem 2, we can conclude
hat πP is the optimal policy for c ∈ [0, 1/2].

For c ∈ (1/2, 1], we will first show that rP is upper bounded by 2c. We know that πP is the optimal policy for c = 1/2.
or a given request sequence, let cost ′(πP ) denote the cost achieved by πP with c = 1/2. Then, we have, for the same
equest sequence and c > 1/2

cost ′(πP ) ≤ cost(π∗) ≤ cost(πP ),

nd therefore
cost(πP )
cost(π∗)

≤
cost(πP )
cost ′(πP )

=
c

1/2
= 2c,

which implies rP ≤ 2c.
Next, we will show that there exists a request sequence such that a competitive ratio 2c is achieved, if M ≥

+ 1, where M is the total number of data items and b is the cache size. Assume without loss of generality that di,
1 ≤ i ≤ b, are initially stored in the cache. Consider a periodic request sequence that repeats the request pattern
db+1, d1, d2, . . . , db, d1, d2, . . . , db. πP will induce a cost 2c in each period. And the optimal policy is always fetching the
missed data, which induces a cost 1 in each period. Therefore, a competitive ratio 2c is achieved and we can conclude
that rP = 2c .

Competitive ratio for πA:
For c ≤

√
2/2, πA always makes the same decision as πP , and therefore, achieve the same competitive ratio. We have

rA =

{
1 for c ∈ [0, 1/2],
2c for c ∈ (1/2,

√
2/2].

For
√
2/2 < c ≤ 1, we will first show that rA is upper bounded by 1/c. According to Theorem 3, we know that if

A decides to prefetch the missed item, then prefetching must be the optimal choice. Therefore, πA only yields worse
erformance than π∗, if πA decides to fetch the missed item while π∗ decides to prefetch.
We will introduce a new policy π◦ to bound the competitive ratio. Given a request sequence, let π◦ make the same

ecision as πA if the decision is optimal. However, when the decision of πA is not optimal (i.e., when πA decides to fetch,
hile π∗ decides to prefetch), let π◦ prefetch the missed data without evicting any cached items. Then, after serving the
equest, let π◦ evict the prefetched data. Note that π◦ breaks the cache capacity constraint and is not a feasible solution.
e will use π◦ to provide a lower bound for the cost achieved by the optimal policy π∗. Specifically, for a given request

equence, let cost ′(π◦) denote the cost induced by π◦. We will show cost ′(π◦) ≤ cost(π∗) for any given request sequence.
Assume without loss of generality that R1 is a miss and πA decides to fetch R1, while the optimal choice is to prefetch.

ccording to Theorem 2, the optimal policy π∗ will evict the farthest-in-future item Rσ and serve R1 at a cost c. In contrast,
he policy π◦ will keep Rσ in cache and serve R1 at the same cost c. Since πA chooses to fetch R1, according to Condition C1,
he next request for R must arrive after the farthest-in-future item R . Based on the farthest-in-future principle, the cache
1 σ

11
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Fig. 7. Competitive ratios of the proposed policies.

ontent of π◦ is more beneficial than that of π∗. Therefore, we have cost ′(π◦) ≤ cost(π∗). In addition, since πA and π◦

lways have the same cache content before serving each request, we have cost(πA)/cost ′(π◦) ≤ 1/c , which yields
cost(πA)
cost(π∗)

≤
cost(πA)
cost ′(π◦)

≤
1
c
,

for any request sequence.
Next, we will show the lower bound for rA when

√
2/2 < c ≤ 1. Assume without loss of generality that {di, 1 ≤ i ≤ b}

re stored in the cache initially. The lower bound can be achieved by a periodic trace that repeats the request pattern
db+1, d1, d2, . . . , db}. πA will always choose to fetch the missed item. And the cache content under πA is also updated
eriodically with period b(b+ 1). For the first b(b+ 1) requests, the approximation policy achieves a total cost b, and the
ptimal policy is to always prefetch the missed item which yields a cost (b+1)c . Therefore, we have rA ≥ b/((b+1)c). □

In Theorem 4, we provide upper and lower bounds for the competitive ratio achieved by πA, as well as the exact
competitive ratios for πF and πP . Moreover, the upper and the lower bounds for rA are asymptotically tight as the cache
size goes to infinity. We plot rF , rP and the upper bound of rA in Fig. 7. It is easy to conclude from Theorem 4 and observe
in Fig. 7 that

rA ≤ min{rF , rP } ≤
√
2,

or ∀c ∈ [0, 1]. The proposed approximation policy always achieves the smallest competitive ratio which is at most√
2 ≈ 1.414. Therefore, πA is near optimal in terms of the worst-case performance. Furthermore, in Section 8, we will

verify that πA also achieves near-optimal average performance for both synthetic and real data traces.
Note that applying πP for c ≤

√
2/2 and πF for c >

√
2/2 can achieve the same competitive ratio as πA. However,

xperiments in Section 8 show that simply switching πF and πP at the threshold c =
√
2/2 will incur considerably larger

average costs than the proposed approximation policy πA.

7. Discussion and generalization

In this section, we discuss the possibility of waiving the perfect prefetching time assumption, and the generalization
of the proposed min-cost flow representation to support heterogeneous prefetching and fetching costs and variable data
sizes.

7.1. Imperfect prefetching time

In our previous model, a perfect prefetching time is assumed to facilitate the analysis. Specifically, we assume that
the prefetched data item is loaded into the cache right before it is requested. In this section, we will argue that all the
previous results will still hold, even when the prefetched data is loaded some time ahead of the request.

Recall that R1 is the upcoming request and Rσ is the farthest-in-future item. Let {R−n}n≥1 be the sequence of historical
equests as shown in Fig. 8. Define

θ = min{n ≥ 1 : R−n = Rσ }.

R−θ is the most recent request that is identical to Rσ . Assume that the policy decides to prefetch R1. We claim that, it is
quivalent to load R1 into the cache at any time point in the interval (τ−θ , τ1), as long as the farthest-in-future eviction
olicy is adopted. According to the definition of θ , the farthest-in-future item is not requested in the time interval (τ−θ , τ1).
onsequently, evicting Rσ (i.e., R−θ ) and loading R1 at any time between τ−θ and τ1 does not impact the cost or the future
ecisions. In contrast, if R1 is prefetched and loaded into the cache before τ−θ with Rσ evicted, then R−θ will be a miss
nd can incur additional costs.
Since the pre-mentioned policies all adopt the farthest-in-future eviction, the main results of this paper still hold, if

he prefetched data is loaded into the cache in the time interval (τ , τ ). Specifically,
−θ 1

12
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Fig. 8. Timeline for data requests.

• The proposed policies still work. In particular, πA and πP will first make the decision of whether a data item should be
prefetched or not. Then, we can find the τ−θ for each prefetched item and schedule the prefetching time accordingly.
πF is not affected, since it will never prefetch.

• πOPT is still optimal, and the competitive ratio analysis for πA, πP and πF still hold, since the optimal decision and
the incurred cost will not be impacted if the prefetched data is loaded between τ−θ and τ1.

The value of θ indicates the flexibility of choosing the prefetching time. When the requests are independently generated
rom a popularity distribution, θ is a random variable that depends on the cache size and is independent of the trace length
nd the prefetching cost. In Section 8, we will show that θ could be considerably large through simulations.

.2. Heterogeneous costs

In the previous setting, we assume that the prefetching/fetching costs are identical for every requests. However, in real
ractice, the cost to fetch a data item can depend on the traffic load and be time-varying. Similarly, the prefetching costs
ay also take different values to support more flexible model settings. Our flow-based method can be easily generalized to
eterogeneous prefetching and fetching costs by setting the costs for prefetching and fetching edges in the flow network
s the corresponding values. Existing algorithms [40–42] can still find the optimal solution as long as the costs are rational
umbers.

.3. Variable data sizes

For real CDN traces, data sizes can take disparate values ranging from a few bytes to gigabytes [45,46]. The constructed
low network can be modified to accommodate variable data sizes. Specifically, for each data item, we can set its
urplus/demand and the capacities of prefetching, fetching, eviction and auxiliary edges as the data size. However, we may
ot be able to find the optimal policy via the min-cost flow, since it is possible that the min-cost flow prefetches/fetches
fraction of the data item, which is not feasible for a caching policy. Instead, by leverage the min-cost flow, we can
onstruct the upper and lower bounds for the performance of the optimal offline policy using a similar approach in [15].
The cost achieved by the min-cost flow is a lower bound for the cost achieved by the optimal policy, since fractional

olutions are allowed for the min-cost problem. Additionally, we can construct a feasible caching policy from the min-cost
low by rounding up the fractional solution. Specifically, if a fraction of some request goes through the fetching edge in the
low network, then we will fetch the whole item. Otherwise, we will perform the same operation as the min-cost flow. The
ounded solution is a feasible prefetching and caching policy and therefore provides an upper bound for the performance
f the optimal policy. Notably, if the lower and upper bounds coincide, the rounded solution becomes optimal. It is shown
n [15] that for caching without prefetching, the bounds are asymptotically tight under mild assumptions. Whether similar
symptotic results hold for prefetching deserves future investigations.

. Evaluation

In this section, we evaluate the average performance for various policies of interest using both synthetic and real data
races. Specifically, in Experiment 1, we evaluate the policies for data requests generated from light and heavy-tailed
opularity distributions. Real CDN traces are used for evaluation in Experiment 2. In Experiment 3, we illustrate the
mount of future information that is required by the approximation policy. In Experiment 4, we evaluate the flexibility
f choosing prefetching times.
In addition to the pre-mentioned policies (πOPT , πA, πP and πF ), we also simulate the optimal static policy (denoted by

S). The optimal static policy only knows the data popularities and has no information about the exact request sequence.
t caches the most popular data items, and will neither update the cache content nor prefetch future requests. When the
equests are generated independently from a popularity distribution, the optimal static policy can provide a lower bound
or the costs incurred by a bunch of statistic-based policies (e.g., LRU, LFU) that only exploit data statistics and are unaware
f the exact request sequence. In the following experiments, the cache is initially empty. During the initialization period
hen the cache is not full, the data items are prefetched for π , π , π , and fetched for π .
OPT A P F
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Fig. 9. Average costs under different popularities.

Fig. 10. Popularity of CDN trace.

Experiment 1. In this experiment, we compare the average performance of the proposed policies under both light and
heavy-tailed data popularity distributions. In particular, we consider three popularity distributions with different tails.
The first one is an exponential distribution with P[Rn = di] = c1 · exp(−0.3i), 1 ≤ n ≤ 105, 1 ≤ i ≤ 106, where
1 = 1/

∑106
i=1 exp(−0.3i) ≈ 0.3499 is a normalization factor. The second popularity distribution is a heavy-tailed Weibull

istribution with P[Rn = di] = c2 · exp(−i0.6), 1 ≤ n ≤ 105, 1 ≤ i ≤ 106, where c2 ≈ 0.8671. The third one is a Zipf’s
istribution with P[Rn = di] = c3/i2, 1 ≤ n ≤ 105, 1 ≤ i ≤ 106, where c3 ≈ 0.6079. For each popularity distribution, we
enerate a sequence of 105 requests independently and test the proposed policies for a cache of size 20. The average cost
ncurred by a request is plotted in Fig. 9.

It can be observed from Fig. 9a that the flow-based optimal offline policy πOPT always incurs the smallest cost, and
he proposed approximation policy πA achieves near-optimal performance. The always-prefetching policy πP achieves the
ptimal performance when c = 0.5. For c > 0.5, πP always incurs larger costs than πOPT . Note that when c is close to 1, πP
an incur as high costs as πS , which loses the advantage of knowing the request sequence. Moreover, the always-fetching
olicy πF (a.k.a. the Belady’s algorithm [38]) only achieves the optimal performance when c = 1. Moreover, although πF
nd πA have almost the same competitive ratios for c ∈ [

√
2/2, 1], πA achieves significantly better average performance

hen c < 1. Therefore, simply switching πF and πP at the threshold
√
2/2 (≈ 0.71) can incur much larger average costs

than πA and πOPT , as commented in Section 6.2.
The same trend can be observed for heavy-tailed Weibull distributions in Fig. 9b. However, the performance difference

between πA and πP are not as large as those for exponential distributions. Furthermore, when the distribution tail is even
heavier (e.g., for Zipf’s popularities), both πA and πP achieve almost optimal performance as shown in Fig. 9c. An intuitive
explanation is that when the popularity is heavy-tailed, the requests will be less concentrated. As a result, it is more likely
to have an unpopular data item stored in the cache, which provides a harmless eviction opportunity for prefetching. In
such scenarios, prefetching is almost always the optimal choice, and therefore, πA, πP and πOPT could achieve similar
performance.

Experiment 2. In this experiment, we test the proposed policies using a real CDN data trace.1 The trace contains a
million requests for 449380 distinct data items where the data sizes are set to be 1. In Fig. 10, we plot the empirical

1 The trace is originally used for evaluation and labeled as ‘‘cdn1’’ in [15]. We use the first one million requests in the trace.
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Fig. 11. Average costs under CDN trace.

Fig. 12. Required information for making prefetching decisions. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

data popularities which can be approximated by a Zipf’s distribution with P[Rn = di] = 0.0313/i0.88, 1 ≤ i ≤ 449380,
1 ≤ n ≤ 106. We simulate the proposed policies for a cache of size 20000 using the request sequence in the CDN trace.
The average costs are plotted in Fig. 11. It can be observed that πA and πP achieve almost the same performance as πOPT ,
hich agrees with the observation in Experiment 1 for Zipf’s popularities.
Experiment 3. In this experiment, we will verify that the approximation policy πA only requires near-future informa-

ion to make decisions for a single request. Let T denote the number of future requests that is required by πA to identify
he farthest-in-future item and make prefetching decisions. We will evaluate the statistics of T under different trace
engths, prefetching costs and cache sizes. Data requests are generated from the Zipf’s popularity distribution considered
n Experiment 1. We omit the experiments for exponential and Weibull distributions, since the results are similar. First,
et c = 0.85, b = 50. We collect the statistics of T for multiple traces with different lengths. The results are presented as
ox plots in Fig. 12a, where the central red bar and the green ‘‘+’’ sign represent the median and the mean, respectively.
he top and bottom edges of the box indicate the 75th and 25th percentiles. The whiskers extend to the extreme values
ithin 1.5 × IQR (interquartile range) [47]. All these statistics of T do not scale with the trace length N , which verifies
he analysis in Section 6.1.

Furthermore, we investigate how the cache size and the prefetching cost can impact T . Set N = 5 × 105. For a fixed
= 50, we collect the statistics of T under different prefetching costs. The results are plotted in Fig. 12b. For a fixed
= 0.85 and repeat the experiments for different cache sizes, and present the results in Fig. 12c. It can be observed that
he prefetching cost does not have a significant impact on T . However, T can scale considerably with the cache size. When
he cache size increases, more future observations are required to identify the farthest-in-future item and check whether
onditions C1 and C2 hold. For a typical scenario where the policy is applied for a fixed cache size and processes requests
hat keep arriving, the future information required by πA will not scale up.

Experiment 4. It is shown in Section 7 that the main results will still hold as long as the prefetched data is loaded into
he cache in the time interval (τ−θ , τ1) for R1. The value of θ could represent the flexibility of choosing the prefetching
ime. In this experiment, we show that θ could be considerably large by evaluating its statistics for the Zipf’s popularity
istribution defined in Experiment 1. Specifically, we first set c = 0.85 and b = 50, and conduct simulations for different
race lengths. Then, we repeat the experiment for N = 5× 105, b = 50 and different prefetching costs. Next, we conduct
imulations for N = 5 × 105, c = 0.85 and different cache sizes. The results are shown as the box plots in Fig. 13, where
15
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Fig. 13. Flexibility of choosing prefetching times.

he symbols represent the same statistics as those in Experiment 3. It can be observed from Figs. 13a and 13b that θ will
ot be impacted by the trace length or the prefetching cost. The mean of θ is round 250, which is considerably large.
oreover, as shown in Fig. 13c, θ will increase with the cache size. For b = 250, the mean of θ could be as large as
907, which brings even more flexibility to choose the prefetching time. The intuition is that, for large cache sizes, the
arthest-in-future item will be less popular. And therefore, the most recent time when the farthest-in-future item was
equested (i.e., τ−θ ) is far in the past.

. Conclusion

To characterize the fundamental trade-off between prefetching and caching, we developed a cost-based service model
nd investigated the optimal offline policy, assuming that the entire request sequence is known. We cast it as a min-cost
low problem, and found the optimal policy for a data trace of length N via flow-based algorithms in O(N3/2) expected
time. To apply this offline algorithm without the precise knowledge on future requests, we utilized the characteristics
of the optimal solution and derived non-trivial conditions for an optimal prefetching and eviction policy. Based on
these insights, we proposed a lightweight approximation policy using the predicted requests in the near future. The
approximation policy can be applied in real time and process the entire trace in O(N) expected time, with a competitive
atio

√
2 ≈ 1.4. Extensive experiments verified that it achieves near-optimal average performance for both light and

heavy-tailed popularity distributions.
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