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Abstract. A large number of Bluetooth-based mobile apps have been
developed recently to help tracing close contacts of contagious COVID-
19 individuals. These apps make decisions based on whether two users
are in close proximity (e.g., within 6 ft) according to the distance mea-
sured from the received signal strength (RSSI ) of Bluetooth. This paper
provides a detailed study of the current practice of RSSI -based distance
measurements among contact tracing apps by analyzing various factors
that can affect the RSSI value and how each app has responded to them.
Our analysis shows that configurations for the signal transmission power
(TxPower) and broadcasting intervals that affect RSSI vary significantly
across different apps and a large portion of apps do not consider these
affecting factors at all, or with quite limited tuning.

Keywords: Bluetooth · BLE · Proximity measurement · COVID-19 ·
Contact tracing

1 Introduction

COVID-19 has created an unprecedented social and economic crisis across the
globe. As of August 2020, there are more than 25 million infected patients.
and over 840 thousand deaths worldwide. Since COVID-19 will not disappear
shortly, practical techniques must be used to fight this pandemic before vaccines
are available. Contact tracing, i.e., identifying people who have been in close con-
tact with contagious individuals, has been such a practical technique for a long
time. However, existing contact tracing is manual, and is hard to scale to large
and rapidly moved populations. Further, manual tracing may result in delays,
which could limit its utility. Therefore, recently numerous digital contact tracing
systems have been developed and deployed across the globe, by using a variety
of sources including locations measured from cellular networks, WiFi hotspots,
or GPS, and cryptographic tokens exchanged via Bluetooth Low Energy (BLE).

Among the digital contact tracing systems, BLE has emerged as a promising
solution [21] due to its ubiquity (almost everyone holds a smartphone today),
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availability (almost all smartphones have enabled Bluetooth by default), and
privacy preserving (e.g., no real location is involved). The idea of using BLE for
contact tracing is straightforward. When two users encounter, contact tracing
apps automatically exchange information with each other to record such a con-
tact event for both users. A contact event, in general, includes cryptography gen-
erated random tokens that represent users, timestamps for duration estimation,
and information for distance measurements. In particular, most BLE contact
tracing apps use the received signal strength indicator (RSSI ) of the Bluetooth
for distance measurements. In addition, for COVID-19, a close contact refers to
a user who has been in within 6 ft range of a contagious individual for more than
15 min according to the recent CDC guidelines [14]. As such, the effectiveness
of the Bluetooth-based contact tracing crucially depends on the accuracy of the
measured distance from RSSI .

Unfortunately, in practice, numerous factors can affect the RSSI that can
make the distance measurement inaccurate, such as the power of antenna used
for broadcasting (i.e., the TxPower) and the obstacles blocking transmission
paths. Moreover, Bluetooth-based proximity tracing can also raise false positives
because of the potential misinterpretation of various scenarios. For example, a
proximity tracing system may interpret two users have a contact even if they
are separated by a solid wall, where the risk of infection is much lower than the
risk indicated by the measured distance.

Therefore, it is imperative to study how current Bluetooth-based mobile
contact tracing systems perform the proximity measurement. To this end, we
exhaustively collect 20 Bluetooth-based mobile contact tracing apps from var-
ious public sources (e.g., [5,22,31]), systematically inspect the affecting factors
that impact the RSSI , and examine how each app calculates the proximity dis-
tance. Our analysis results have revealed a number of findings:

– Advertising behaviors are highly customized by different mobile apps and the
combination of the level of TxPower and advertising interval is inconsistent
across mobile apps : our analysis have discovered 8 different combinations
of the advertising interval and the level of TxPower from 20 mobile apps
(Sect. 3).

– A large portion of apps do not have an accurate and reliable measured dis-
tance from Bluetooth: (i) our analysis has identified that 4 apps just use RSSI
for distance measurement without any tuning, (ii) 60% of these apps do not
consider affecting factors from hardware specifications, and (iii) none of them
considers environmental factors (Sect. 4).

2 Background

2.1 BLE-based Contact Tracing

Bluetooth Low Energy (BLE) is a wireless communication technology that is
designed to provide basic Bluetooth functionality while consuming considerably
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low amount of energy. Because of its low energy consumption and its wide avail-
ability in almost every smartphone, BLE is considered a promising solution for
mobile contact tracing [21].

Using BLE for contact tracing between smartphones is a complicated process.
First, a BLE-based contact tracing mobile app will need to be installed. Then,
the app will periodically generate a random token for each user as an identifier
and constantly advertise this token (which works like a beacon) or BLE-contact
tracing service information (in which establishing connection to exchange infor-
mation is required) to nearby smartphones. Meanwhile, the app also keeps scan-
ning for other smartphones. When two smartphone users encounter each other,
the apps on two phones will automatically exchange the necessary information
to record this contact event, such as the timestamp, the identifier of users, and
most importantly, the data used for distance measurements [17]. In addition,
data can be exchanged via device connections or by directly reading from the
advertising packets. When a user is tested positive, the app will immediately
inform all other users who have close contact with this individual. This expo-
sure notification process is implemented differently according to the different
architectures, i.e., centralized and decentralized architecture.

– Centralized. In a centralized architecture, users receive exposure notifica-
tions from the server that remotely determines the risk of infection. In par-
ticular, a centralized service will require users who have tested positive to
upload their recent contact events to the central server. Then the server will
analyze these events to identify all other users who have been exposed to this
individual, and notify each of them according to the user contact information
(e.g., cell phone number) that is usually collected at user registration. There
are several privacy preserving protocols using this type of architecture, such
as BlueTrace [4] and ROBERT [24].

– Decentralized. In contrast, in a decentralized architecture, it is the client,
instead of the server, that determines its own risk of infection. Only the con-
tact events of the contagious users are shared on a public database, and each
client will synchronize its own data with the database periodically. Whenever
a synchronization is accomplished, the client app will locally check its own
contact events against the updated data to determine its own risk of infection.
Many privacy preserving contact tracing protocols such as DP-3T [28] and
Notification Exposure [3] use such a decentralized architecture.

2.2 Proximity Measurement in BLE-based Contact Tracing

RSSI -based Proximity Measurement. For two BLE devices, their proxim-
ity measurement depends on the received signal strength from each other, also
known as RSSI , which is proportional to the distance of signal transmission in
theory. However, in practice, RSSI can be impacted by many factors that may
result in inaccurate proximity measurements, and these factors can be classified
into internal factors and external factors.
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(I) Internal Factors Affecting RSSI. Factors within a Bluetooth device
including the specifications of both hardware and software can influence the
RSSI value [9]. With respect to smartphones, the internal hardware factors are
the Bluetooth chipset and its antenna layout, and the key software factors include
both configurations of the operating system and the mobile app itself [6].

– Factors from Hardware—chipset and antenna: A Bluetooth chipset
determines the maximum transmission power of the signal and maps the
received signal strength to RSSI values. Such mapping is highly customized
by manufacturers [9] that indicates the same signal can be interpreted as heav-
ily different RSSI values across different chipsets. Additionally, the antenna
layout, orientation, as well as the capability of data transmission can dramat-
ically affect the strength of emitting and receiving signals [7].

– Factors from Software—OS and App: Both Android and iOS can signifi-
cantly change the power consumption of BLE operations [6], e.g., low battery
mode, that could impact the transmission power and the RSSI value. In addi-
tion to the OS, mobile apps can use system APIs to configure its broadcast-
ing attributes, such as TxPower , broadcasting interval, and duration. These
attributes can also impact the reliability of RSSI values.

(II) External Factors Affecting RSSI. In addition to the internal factors,
factors outside the device can also influence the RSSI value. At a high level,
these factors can be classified into two categories: invisible radio waves and
visible physical objects.

– Invisible radio waves: Bluetooth signals can be interfered by other types
of radio waves. For example, if WiFi is mis-configured to use channels that
overlap with channels used in Bluetooth, both signals may interfere with each
other [12] that can make the obtained RSSI value less accurate.

– Visible physical obstacles: Obstacles on the transmission path can result in
fluctuated RSSI . In particular, different materials, such as woods, water, and
glass, as well as different textures on surface of objects can lead to different
levels of signal interference, such as absorption, interference, and diffraction,
that may make the RSSI unstable [11,12].

3 Analysis of BLE Software Configurations

In this section, we analyze the affecting factors of proximity accuracy from mobile
apps. Ideally, we would like to analyze all affecting factors listed in Sect. 2.2. How-
ever, it is extremely challenging to analyze the affecting factors from the operat-
ing system because of their different battery management strategies that rarely
quantitatively clarify the restrictions of BLE usage. Additionally, the affect-
ing factors from hardware specifications have been studied before in TraceTo-
gether [20]. As such, we focus on the available configurations in mobile apps
that control either the settings of advertising or the data included in advertising
packets.
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BLE Advertising Settings. The settings of advertising determine how a
device broadcasts BLE advertising packets. In total, there are three configurable
behaviors (only in Android) that are relevant to proximity measurement.

– Level of advertising interval: The advertising interval is configurable in
Android apps and it is controlled by the mode of advertising. In total, there
are three modes of advertising: (i) LOW POWER (0) mode, which is the
default mode and broadcasts packets every 1 s; (ii) BALANCED (1) mode,
which broadcasts every 250 ms; and (iii) LOW LATENCY (2) mode, which
broadcasts every 100 ms [2].

– Duration of advertising: While Android apps can constantly broadcast
advertising packets until being terminated, they are allowed to limit the
broadcasting duration (up to 3 min). The duration of broadcasting is impor-
tant for receivers to read a reliable signal as more samples for adjustment are
supposed to be received in a longer duration.

– Level of transmission power (TxPower): This attribute controls the
emission power of signals. In general, a stronger TxPower can increase the
stability of signal in transmission [11]. In Android, there are four levels of
TxPower : ULTRA LOW (0), LOW (1), MEDIUM (2), and HIGH (3), where
the HIGH level provides the best range of signal visibility and the default
level is LOW [2].

Data Included in Advertising Packets. In addition to configuring broad-
casting behaviors, apps are also allowed to customize the data carried within
their advertising packets. Among a variety of data that can be included in adver-
tising packets, we focus on the data for proximity measurement, i.e., the level of
TxPower . In addition, this value is crucial to accurately determine the distance
between users since the same signal strength can be interpreted as different RSSI
values given different levels of TxPower [10]. In particular, the TxPower value
can be included in a separate filed or in a general field, which is integrated with
other information.

– TxPower included in the separated field: Both Android and iOS allow
mobile apps to include the level of TxPower in a separate field in advertis-
ing packets but with different policies. Specifically, iOS apps are required to
include this value in advertising packets and Android apps can choose whether
to include this value or not.

– TxPower included in integration: Other than being included in adver-
tising packet separately, the level of TxPower can also be integrated with
other information and stored in general data fields, i.e., the field of manu-
facture data and service data. In addition, while both fields are allowed for
customization in Android, only service data can be customized in iOS.
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Table 1. BLE advertising configurations in mobile apps (Note that ∞ represents
infinity).

App name Advertising (Adv.) settings Adv. Data

TxPower Mode Duration Separated Integrated

COVIDSafe HIGH LOW LATENCY ∞ ✔ –

Stopp Corona HIGH LOW LATENCY ∞ ✔ –

BeAware MEDIUM LOW POWER ∞ ✗ ✗

CoronApp HIGH LOW POWER ∞ ✔ –

eRouska MEDIUM LOW POWER ∞ – ✗

StopCovid LOW BALANCED ∞ ✔ –

Aarogya Setu ULTRA LOW LOW POWER ∞ – ✗

MyTrace LOW BALANCED ∞ ✗ ✗

StopKorona HIGH BALANCED ∞ – ✗

Smittestopp MEDIUM LOW POWER ∞ ✔ –

Ehteraz MEDIUM BALANCED ∞ ✗ ✗

TraceTogether HIGH LOW LATENCY ∞ ✔ -

Mor Chana MEDIUM LOW POWER ∞ – ✗

Hayat Eve Sigar LOW BALANCED ∞ ✔ –

NHS COVID-19 App MEDIUM LOW POWER ∞ ✔ –

Healthy together ULTRA LOW LOW POWER ∞ ✔ –

Bluezone LOW LOW LATENCY ∞ ✗ ✗

CovidSafePaths HIGH LOW LATENCY ∞ ✔ –

Coalition network HIGH LOW LATENCY ∞ – ✗

Covid community alert HIGH BALANCED ∞ ✗ ✗

Results. From 20 apps in our dataset, there are 12 apps that intend to broadcast
infinitely until being enforced to close, while 8 have not specified their broad-
casting duration. Given the default setting of this attribute is infinity [2], as pre-
sented in Table 1, all these apps will constantly broadcast advertising packets. In
addition, we have identified that 10 apps have included TxPower separately in
advertising packets, 5 apps are set to not carry this value in an individual field,
and 5 apps have not specified this property. Moreover, neither the manufacturer
nor service data fields in the latter 10 apps include TxPower .

Observation 1. All apps in our analysis intend to broadcast advertising packets
constantly without time limit and half of them have not included the level of
TxPower in advertising packets.

In terms of advertising interval, we have identified three apps—BeAware,
eRouska, and Aarogya Setu—that have not explicitly specified their advertising
interval (the default value is lower power mode [2] , while the remaining 17 apps
have specified this attribute. Among these 17 apps, there are 6 apps that are
set to broadcast advertising packet with minimum intervals, 6 apps that use the
balanced mode, and 5 apps that apply the low power mode. Moreover, BeAware,
eRouska, and Mor Chana are the only 3 apps that do not explicitly specify their
level of TxPower in broadcasting (the default value medium will be used in this
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case). For the remaining 17 apps that specify the TxPower , there are 8 apps that
specify the highest transmission power, 3 apps that specify it to be medium, 4
apps that set themselves as low level, and 2 apps that apply the lowest level.

Surprisingly, from Table 1, we also observed that the combination of the
level of TxPower and advertising interval is inconsistent across different apps.
In particular, (i) among 8 apps that use the high level of TxPower , there are 5
apps that broadcast with the minimum interval, 2 apps with medium interval,
and 1 app with the maximum interval; (ii) among 6 apps using the medium
level of TxPower , we have identified that 5 apps are set with the maximum
broadcasting interval and 1 apps is set with medium interval; (iii) for the 4 apps
using low TxPower , 3 of them broadcast with medium interval and 1 app with
the maximum interval; and (iv) the remaining 2 apps share the same combination
of the lowest level of TxPower and the maximum interval.

In general, the combination of TxPower and advertising interval can impact
the accuracy of RSSI value read at receivers [11]. However, in practice, we have
not observed a consensus view toward this combination across contact tracing
apps. Additionally, the magnitude of the impact on the RSSI value from different
combinations remains unclear.

Observation 2. The combination of the level of TxPower and advertising inter-
val is inconsistent across contact tracing apps. Meanwhile, the impact on distance
measurement from different combinations is also unclear.

4 Analysis of Proximity Measurement Approaches

After analyzing the BLE software configurations, we next understand how each
app measures the proximity. To this end, we first recognize which type of data
is collected in Sect. 4.1, and then uncover how the collected data is used in the
proximity measurement in Sect. 4.2.

4.1 Data Collected for Proximity Measurement

The first step to understand how each app measures the distance is to recog-
nize which type of relevant data would be collected. Unfortunately, proximity
measurements are rarely mentioned or vaguely expressed in the documentation
(e.g., app description and privacy policy) of an app. As such, we need to analyze
the code of an app to understand the semantics of its collected data. However,
identifying which one is used for proximity measurement is challenging since mul-
tiple types of data are processed within an app. Fortunately, we have observed
a special feature in BLE-based contact tracing services that can narrow down
the scope. That is, the contact events will be temporarily stored locally and all
necessary data of each event will be stored together as an entry in a database
or a local file. Therefore, we focus on the database or file operations, e.g., read
and write, of an app to uncover which type of data is collected for proximity
measurement.
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Table 2. Data collected for distance measurement (Note that � represents collection).

App name RSSI Affecting factors

Software Hardware Others

COVIDSafe � Level of TxPower modelP; modelC

CoronApp � Level of TxPower modelP; modelC

eRouska �
StopCovid � BuildNumber; Version

Manufacturer; Model

Aarogya Setu � Level of TxPower GPS

StopKorona �
Smittestopp � Level of TxPower GPS, Altitude

Speed, Accuracy

Ehteraz � GPS

TraceTogether � Level of TxPower modelP; modelC

Mor Chana �
NHS COVID-19 App � Level of TxPower

Healthy together � Level of TxPower

Bluezone � Level of TxPower

CovidSafePaths � Level of TxPower

Covid community alert � BuildNumber; Version

Manufacturer; Model

Coalition network �

Results. We have uncovered the data collected for proximity measurement from
16 apps (note that the rest 4 use native code and reflection to collect data, and
we leave them in future work) and present them in Table 2. In addition, we have
classified the uncovered data into the following three categories.

– RSSI : Our analysis reveals that all 16 apps collect RSSI value. In addition,
4 of them collect this value exclusively and the remaining apps collect other
types of data such as TxPower as well.

– Affecting Factors: Our analysis has identified that 9 apps collect the level of
TxPower and 5 apps gather phone models. Specifically, among these 5 apps,
3 of them collect phone models of senders and receivers, which are required
by BlueTrace protocol [4], and 2 apps only collect its own (receiver) phone
model, which is needed by the AltBeacon library [1] for distance calculation.

– Other Distance Measurements: There are 3 apps even collecting GPS
coordinates for distance measurement. In particular, unlike Ehteraz and Aaro-

gya Setu that only collect GPS coordinates, Smittestopp also collects altitude,
speed, and their degrees of accuracy.

Based on the uncovered data collection from these apps, it would be chal-
lenging to obtain an accurate distance. That is, only 5 apps have considered the
affecting factors from hardware specifications but the number of specifications is
limited. Moreover, 3 apps only use RSSI for distance calculation without consid-
ering the level of TxPower , and none of them considers external affecting factors
from the environment, such as having a phone in a pocket.
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Observation 3. Data collection for proximity measurement is inconsistent
across different contact tracing apps. Unfortunately, only a few of them consider
the affecting factors from hardware specifications, e.g., phone models, some apps
do not consider the affecting factors from software configurations, e.g., TxPower,
and there is no evidence indicating that external affecting factors have been con-
sidered.

4.2 Data Used in Distance Calculation

In addition to understanding the types of data collected for distance measure-
ment, we also seek to know how such data is exactly used. In this regard, directly
checking the formula used for distance calculation is a reliable solution. Because
the distance measurement is based on RSSI , the formula must use this value in
the calculation. As such, we can track the dataflow of RSSI value within mobile
apps to discover the formula. We follow such an approach in our analysis.

Results. Uncovering this formula from contact tracing apps is challenging.
First, in a centralized service, the formula is supposed to exist on the server
side whose code is inaccessible to us. Additionally, in a decentralized service, it
is also non-trivial to uncover the distance calculation formula from mobile apps
because of a variety of obfuscations on the code (e.g., 4 out 6 decentralized apps
in our dataset use obfuscation), from variable and method renaming to using
reflections. In the end, with our best effort, we have uncovered the distance
calculation formula from three apps. Interestingly, they use the same distance
measurement model as the following:

(
RSSI

TxPower
)
Coef1

× Coef2 + Coef3

where the three coefficients are used to tune the accuracy for different hardware
specifications. Among the apps we analyzed, StopCovid and Covid Community Alert

use the AltBeacon library [1] for proximity measurement whose coefficients for
4 phone models are available online1.

Observation 4. Different contact tracing apps may use the same formula to
measure the proximity. However, their tuning is quite limited to only a few phone
models or without tuning at all.

5 Discussion

From our analysis, a large portion of BLE-based contact tracing apps do not
have an accurate and reliable proximity measurement from Bluetooth.

A practical and effective solution to improve the accuracy could be tuning
RSSI for different phone models, because different models provide a variety of
1 https://s3.amazonaws.com/android-beacon-library/android-distance.json.

https://s3.amazonaws.com/android-beacon-library/android-distance.json
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BLE hardware specifications and their impacts on the robustness of the RSSI
values are significant. Fortunately, some groups (e.g., OpenTrace [6] have started
conducting experiments and collecting data for this tuning. However, only a
limited number of phone models have been involved. More efforts are needed to
cover more phone models.

Additionally, we have identified a variety of advertising behaviors with dif-
ferent combinations of the advertising interval and the power of transmission.
Unfortunately, it is unclear whether these different behaviors can impact the
RSSI value as well as their corresponding magnitude of influence. Further stud-
ies in this direction could help identify an effective BLE advertising behavior
that improves the robustness of RSSI values.

6 Related Work

Recently, there are multiple privacy-preserving contact tracing protocols hav-
ing been proposed. Some of them [4,8] are centralized and some [3,15,19,23,28]
are decentralized. Accordingly, there is also a body of research [13] analyzing
the potential privacy issues in these protocols. In addition, many studies have
focused on the analysis of COVID-19 themed apps. For instance, several stud-
ies [16,29] focus on privacy issues of one specific contact tracing app (e.g., Trace-
Together [16]), and the rest (e.g., [18,25,27,30]) present empirical analysis with
these apps. Similarly, there are also many efforts (e.g., [26,32]) that focus on
security issues in BLE mobile apps in general. Unlike these efforts that aim at
analyzing privacy and security issues, we focus on the accuracy of proximity
measurement in contact tracing apps.

7 Conclusion

To fight COVID-19 pandemic, a large number of BLE proximity tracing apps
have been developed and deployed. These apps use the received signal strength
indicator, RSSI , to measure the proximity between two smartphones. However,
multiple factors can impact the RSSI value that makes the proximity measure-
ment challenging. In this paper, we provide a detailed study on the accuracy of
RSSI -based proximity measurements that are applied in 20 BLE-based contact
tracing apps. Our study has revealed that different apps configure a variety of
BLE broadcasting behaviors and only a small portion of them have tuned RSSI
to improve the accuracy of measured proximity.
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