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In this paper, we consider a load balancing system under a general pull-based policy. In particular, each

arrival is randomly dispatched to one of the servers with queue length below a threshold; if none exists,

this arrival is randomly dispatched to one of the entire set of servers. We are interested in the fundamental

relationship between the threshold and the delay performance of the system in heavy traffic. To this end, we

first establish the following necessary condition to guarantee heavy-traffic delay optimality: the threshold

will grow to infinity as the exogenous arrival rate approaches the boundary of the capacity region (i.e., the

load intensity approaches one) but the growth rate should be slower than a polynomial function of the mean

number of tasks in the system. As a special case of this result, we directly show that the delay performance

of the popular pull-based policy Join-Idle-Queue (JIQ) lies strictly between that of any heavy-traffic delay

optimal policy and that of random routing. We further show that a sufficient condition for heavy-traffic delay

optimality is that the threshold grows logarithmically with the mean number of tasks in the system. This

result directly resolves a generalized version of the conjecture by Kelly and Laws.
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1 INTRODUCTION
We consider a classical load balancing system that consists of a central dispatcher and N servers,

each associated with an infinite buffer queue and a service rate µn . The exogenous tasks arrive
with rate λΣ, and upon arrival they must be immediately dispatched to one of the queues. A key to

the performance of such a system is the load balancing policy it uses since it directly determines

which queue the arriving tasks should join.

To design effective load balancing policies and hence provide good delay performance, it is

imperative to develop analytical tools to evaluate the system performance under different load

This work has been funded in part through ONR grant N00014-17-1-2417 and NSF grants CNS-1719371, 1717060, and

1518829.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2019 Association for Computing Machinery.

2476-1249/2019/1-ART44 $15.00

https://doi.org/10.1145/3287323

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 3, Article 44. Publication date: January 2019.

https://doi.org/10.1145/3287323
https://doi.org/10.1145/3287323


44:2 X. Zhou et al.

balancing policies. Towards that goal, one important line of research has focused on the so-called

heavy-traffic regime, where the exogenous arrival rate approaches the boundary of the capacity

region, i.e., the heavy-traffic parameter ϵ =
∑
µn − λΣ approaches zero. An attractive property

of the heavy-traffic regime, as pointed out in [15], is that ‘the important features of good control
policies are often displayed in the sharpest relief’. It has been shown that well-known policies such as

Join-Shortest-Queue (JSQ) and Power-of-d can achieve asymptotically optimal delay performance

in the heavy-traffic regime [5, 7, 8, 19]. Under these two policies, an incoming task is assigned to a

server with the shortest queue among d ≥ 2 servers (d = N for JSQ) sampled uniformly at random.

However, due to the sampling process, the amount of communication overhead is 2d per arrival (d
for query and d for response), which is undesirable for a large value of d , especially in the JSQ policy

when d = N . More importantly, since the dispatching decision can only be made after collecting

the queue length feedback, there exists a non-zero dispatching delay, which contributes to an

increase in the response time. To avoid these drawbacks, an alternative approach, often called pull-

based load balancing, has received significant recent attention. Instead of actively sending queries

to servers and waiting for responses, the dispatcher under a pull-based load balancing scheme

passively listens to the reports from the servers. In particular, each server will report its ID to the

dispatcher when it satisfies a certain condition (e.g., its queue length drops below a threshold from

above). Then, upon task arrival, the dispatcher checks its record. If it is not empty, the dispatcher

randomly removes one ID and sends the arrival to the corresponding server; otherwise, it just

randomly selects a queue to join. The classical pull-based policy is the Join-Idle-Queue (JIQ) policy

investigated in [16, 22], under which the dispatcher maintains a record of IDs of the idle servers (i.e.,

the reporting threshold is one). JIQ has been shown to enjoy a low message overhead (at most one

per arrival), zero dispatching delay, and better delay performance than Power-of-d under medium

loads. Nevertheless, under high loads, its delay performance degrades substantially due to the lack

of idle servers. This directly suggests that a varying reporting threshold with respect to the load is

necessary to guarantee good delay performance in heavy traffic. Motivated by this observation,

in a recent work [30], the authors propose a specific way to update the reporting threshold in a

pull-based policy, which is proven to be heavy-traffic delay optimal, while still enjoying many of

the nice features of JIQ.

In this paper, instead of focusing on another specific way of determining the reporting threshold,

we step back and work towards answering the following fundamental question: How would different
reporting thresholds affect the (heavy traffic) delay performance of a pull-based policy? To address

this question, we take a systematic approach and summarize the main contributions as follows.

• We first present a necessary condition on the reporting threshold for the delay optimality of

a pull-based policy in heavy-traffic. In particular, we show that to achieve heavy-traffic delay

optimality, the reporting threshold r should grow to infinity as the heavy-traffic parameter

ϵ approaches zero, however, it cannot grow too fast (slower than a polynomial function:

see Theorem 3.2). An important corollary of Theorem 3.2 is that the delay performance of

the JIQ policy (i.e., constant threshold r = 1) in heavy traffic lies strictly between that of

any heavy-traffic delay optimal policies (e.g., JSQ) and that of random routing. This result is

somewhat counter-intuitive, since at first glance one may guess that JIQ would degenerate

to random routing in heavy traffic since there are hardly any idle servers in the system.

However, it turns out that it is not true, and allows us to get a sharp characterization of the

JIQ policy in heavy traffic.

• We then establish a sufficient condition on the reporting threshold for heavy-traffic delay

optimality of pull-based policies. Specifically, we show that a logarithmic growth rate of the

reporting threshold with respect to the mean number of tasks in the system is sufficient to
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guarantee the steady-state delay optimality in heavy traffic (see Theorem 3.3). This result

directly resolves a conjecture by Kelly and Laws in [15]. In particular, the authors in [15]

consider a two-server system with Poisson arrivals and exponential service under a varying

reporting threshold. They conjecture that as long as the threshold is greater than a specified

constant times the logarithm of the mean number of tasks in the system, then asymptotic

delay optimality holds in heavy traffic. Thus, our result not only resolves the conjecture

but generalizes it to any fixed finite number of servers with general arrival and service

distributions. It is also worthing noting that the asymptotic delay optimality achieved in our

paper is in steady-state while the result in [15] holds only for a finite time interval.

• The techniques introduced in this paper may be of independent interest for the analysis of

general load balancing policies. More precisely, the key to establishing heavy-traffic delay

optimality in this paper is a notion of state-space collapse, which is different from the state-

space collapse result often adopted in previous works. As a result, it requires us to develop a

new Lyapunov function to conduct the drift analysis. More importantly, due to this new type

of state-space collapse, we have to devise a new approach to relate the state-space collapse

result to the final heavy-traffic delay optimality.

1.1 Related Work
The investigation of queueing delay in heavy traffic with dynamic routing dates back to [8], in

which the authors considered a two-server system under the JSQ policy, and they showed that the

two separate servers under JSQ act as a pooled resource in heavy traffic via diffusion approximations.

Since then, the methodology of diffusion approximations has been adopted in a number of works

on parallel queues [3, 5, 13, 14, 21, 26]. For example, the author in [21] generalized the results in [8]

to the case of renewal arrivals and general service times. The functional central limit theorems

for the JSQ policy in a load balancing system with multiple servers was derived in [13]. In [5], the

Power-of-d policy was shown to have the same diffusion limit as JSQ in the heavy-traffic limit.

Many of the works based on the diffusion approximation method rely on showing that a scaled

version of queue lengths converges to a regulated Brownian motion. This result typically leads

to a sample-path optimality in a finite time interval. However, showing the convergence to the

steady-state distribution requires the additional validation of the interchange of limits, which is

often not taken (some exceptions include [4, 9], in which the authors proved an interchange of limit

argument for generalized Jackson networks with a fixed routing matrix). Motivated by this, the

authors in [7] proposed a Lyapunov drift-based approach, which is able to establish steady-state

heavy-traffic optimality of the load balancing policy JSQ and scheduling policy MaxWeight. One of

the main features of this framework is that it is able to avoid the interchange-of-limits issue by

directly working on the stationary distribution. This approach has been utilized to show steady-

state heavy-traffic delay optimality of Power-of-d in [19]. Moreover, based on this approach, it

has been shown in [25] that a joint JSQ and MaxWeight policy is heavy-traffic delay optimal for

MapReduce clusters.

As discussed in the introduction, while JSQ and Power-of-d enjoy heavy-traffic delay optimality,

they both have non-zero dispatching delay, and a relatively high message overhead. Motivated by

this, a pull-based design of load balancing policies has gained significant recent popularity. The

main feature of pull-based load balancing is the introduction of local memory at the dispatcher,

which maintains a record of servers satisfying a pre-defined condition (e.g., its queue length is below

a threshold in most cases). The dispatching decision is made purely based on the local memory: if

it is nonempty, randomly choosing a server in memory to join; otherwise, randomly choosing a

server from all the servers. For instance, one illustrative example is the JIQ policy proposed and

studied in [16, 22], under which the local memory maintains all the idle servers. As a result, the
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arrival is always dispatched to one of the idle servers if there are any; otherwise, it is dispatched

randomly. It has been shown that JIQ has a low message overhead (at most one per arrival), zero

dispatching delay, and better performance compared to Power-of-2 in medium loads. Nevertheless,

since only the idle servers are stored in memory, when the loads become high, its performance

degrades substantially because the memory is empty and hence random routing is adopted most of

the time. Therefore, this directly suggests that a varying threshold is necessary to guarantee good

performance in heavy traffic for a pull-based policy.

To this end, in a recent work [30], the authors successfully propose a pull-based policy with a

varying threshold, which is proven to be heavy-traffic delay optimal in steady state while keeping

the nice features of JIQ. This naturally raises the question about the fundamental relationship

between the choice of the threshold and the delay performance, which is the main focus of this paper.

In particular, our work is mainly motivated by the seminal paper [15], in which Kelly and Laws give

a conjecture regarding the choice of the threshold that is able to guarantee delay optimality in heavy

traffic. More precisely, they consider a two-server system with Poisson arrivals and exponential

service. The arrival is dispatched randomly, except when one queue is below the threshold r and
the other is above, in which case the arrival is dispatched to the shorter one. Note that this dynamic

policy can be exactly implemented by a pull-based load balancing scheme with a threshold r . Kelly
and Laws conjecture that as long as the threshold r is greater than a specific constant times the

logarithm of the mean number of tasks in the system, then the sum queue lengths process under

this threshold policy has the same diffusion limit as that under JSQ. Therefore, the logarithmic

growth rate result in our sufficient conditions (see Theorem 3.3) not only directly resolves the

conjecture in [15], but generalizes it to systems with any fixed finite number of servers as well as

general arrival and service distributions. Moreover, the diffusion limit result conjectured in [15]

only gives the optimality in a finite time interval while our heavy traffic optimality result obtained

by Lyapunov drift-based approach is in steady state.

It is also worth noting that a logarithmic growth in the threshold is not a coincidence, and has

been found in a wide range of scenarios. For example, the authors in [23] consider an asymmetric

threshold policy for a two-server case. In that setting, only one server has a threshold r (say server

2). The arrivals are always dispatched to server 1 unless the queue length of server 2 is less than the

threshold, in which case the arrival is sent to server 2. One of the main contributions in [23] is that

a logarithmic growth rate of r is sufficient to guarantee that this threshold policy achieves the same

diffusion limit as that under JSQ in heavy traffic. This result can be seen as a first attempt to resolve

the conjecture in [15] with a simpler model. In particular, since there is only one threshold in [23],

the network can be characterized by a one-dimensional reflected Brownian motion in heavy traffic.

In contrast, the limit process in [15] is a two-dimensional Brownian motion, which is harder to

rigorously prove optimality. Besides dynamic routing, a logarithmic growth rate of the threshold

also critically affects the performance of scheduling policies in [2, 14]. Both authors considered

a system of two parallel servers with dedicated arrivals to each of the queues. One server can

only process tasks in its own queue, while a ‘super-server’ can process tasks from both queues. A

threshold policy is proposed in which the ‘super-server’ processes tasks from its own queue when

the other server’s queue length is below a threshold, and otherwise the ‘super-server’ processes

the tasks from the other queue. This policy can be viewed as the scheduling counterpart of the

asymmetric routing policy considered in [23]. In a ‘discrete review’ setting, the author in [14]

proved that a sufficient condition for the asymptotic optimality of this threshold policy is that the

threshold must grow as a constant times the average number of tasks in the system. The same result

was generalized to a ‘continuous review’ setting with more general arrival and service distributions

in [2]. As in the paper by Kelly and Laws [15], the asymptotic optimality in [2, 14, 23] holds in a

finite time interval since the convergence to the stationary distribution is not validated for the
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diffusion approximations. Considering the similarity between the scheduling policies in [2, 14]

and the routing policy in [23], our approach developed in this paper might be applied to establish

heavy-traffic delay optimality in steady state for dynamic scheduling policies as well.

We shall finally point out that the heavy-traffic regime considered in this paper and all the

aforementioned papers assumes that the number of servers is a constant, which is different from

the Halfin-Whitt heavy-traffic regime (also known as many-server heavy-traffic regime or quality-

and-efficiency-driven regime) [12]. In the latter regime, the heavy-traffic parameter ϵ approaches

zero and the number of servers N goes to infinity at the same time [1, 6, 10, 20]. For example,

it has been shown that, on any finite time interval, the limiting process under the JIQ policy is

indistinguishable from that under the JSQ policy in the Halfin-Whitt heavy-traffic regime [20]. In

contrast, in the conventional heavy-traffic regime considered in this paper, its delay performance is

strictly between that of JSQ and random routing as shown by Theorem 3.2.

1.2 Notations
The dot product in RN is denoted by ⟨x, y⟩ ≜

∑N
n=1 xnyn . For any x ∈ RN , the l1 norm is denoted

by ∥x∥
1
≜

∑N
n=1 |xn | and l2 norm is denoted by ∥x∥ ≜

√
⟨x, x⟩. In general, the lr norm is denoted

by ∥x∥r ≜ (
∑N

n=1 |xn |
r )1/r . Let N denote the set {1, 2, . . . ,N }.

2 SYSTEMMODEL AND PRELIMINARIES
This section first describes the system model and assumptions considered in this paper. Then,

several necessary preliminaries are presented.

2.1 System model
We consider a discrete-time load balancing system consisting of a central dispatcher and N servers.

Each server maintains an infinite capacity FIFO queue. At the central dispatcher, there is also a

local memory denoted asm(t ), through which the dispatcher can have limited information about

the system. In each time-slot, the central dispatcher routes the new incoming tasks to one of the

servers, immediately upon arrival as in [7, 19, 25, 27, 28, 30]. Once a task joins a queue, it will

remain in that queue until its service is completed. Each server is assumed to be work conserving:

a server is idle if and only if its corresponding queue is empty.

2.1.1 Arrival and Service. Let AΣ (t ) denote the number of exogenous tasks that arrive at the

beginning of time-slot t . We assume that AΣ (t ) is an integer-valued random variable, which is

i.i.d. across time-slots. The mean and variance of AΣ (t ) are denoted by λΣ and σ 2

Σ, respectively. We

further assume that there is a positive probability for AΣ (t ) to be zero. Let Sn (t ) denote the amount

of service that server n offers for queue n in time-slot t . Note that this is not necessarily equal to

the number of tasks that leaves the queue because the queue may be empty. We assume that Sn (t )
is an integer-valued random variable, which is i.i.d. across time-slots. We also assume that Sn (t ) is
independent across different servers as well as the arrival process. The mean and variance of Sn (t )
are denoted as µn and ν2n , respectively. Let µΣ ≜ ΣNn=1µn and ν2Σ ≜ ΣNn=1ν

2

n denote the mean and

variance of the hypothetical total service process SΣ (t ) ≜
∑N

n=1 Sn (t ). To illustrate the key ideas

behind the results, we first assume that both the arrival and service processes have a finite support,

i.e., AΣ (t ) ≤ Amax < ∞ and Sn (t ) ≤ Smax < ∞ for all t and n. However, the main results still hold

when the support is infinite, as discussed in Section 4.

2.1.2 Queue Dynamics. Let Qn (t ) be the queue length of server n at the beginning of time slot t .
Let An (t ) denote the number of tasks routed to queue n at the beginning of time-slot t according to
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the dispatching decision. Then the evolution of the length of queue n is given by

Qn (t + 1) = Qn (t ) +An (t ) − Sn (t ) +Un (t ),n = 1, 2, . . . ,N , (1)

whereUn (t ) = max{Sn (t ) −Qn (t ) −An (t ), 0} is the unused service due to an empty queue.

2.2 Preliminaries
In this paper, we are interested in a general pull-based policy formally defined as follows. In words,

under this policy, the arrival is randomly dispatched to one of the servers whose queue lengths are

below a threshold r , if there are any; Otherwise, it is dispatched to one of N queues randomly.

Definition 2.1. Join-Below-Threshold (JBT) policy is composed of the following components:

(a) Each server is initialized with an empty queue, and a corresponding ID in the local memory of

the dispatcher.

(b) Upon new arrivals at the beginning of each time-slot, the dispatcher checks the available IDs in

memory. If one or more IDs exist, it removes one uniformly at random, and sends all the new

arrivals to the corresponding server. Otherwise, all the new arrivals are dispatched uniformly

at random to one of the servers in the system.

(c) Each server reports its ID to the dispatcher at the end of each time-slot if its queue length is

below the threshold, and the dispatcher does not contain its ID (see the remark below on this

condition).

(d) For the case of heterogeneous servers, in (c) each server also sends its µn to the dispatcher

and in (b) instead of choosing the ID uniformly at random, the dispatcher selects the ID in

proportion to the service rate. Specifically, if the ID of server i is inm(t ), the probability for

server i to be chosen is µi/
∑

j ∈m (t ) µ j .

Remark 1. It is easy to see that JIQ is a special case of JBT with r = 1. Morevoer, note that in

(c) the server can easily know whether or not its own ID exists at the dispatcher. This is because

whenever there are new arrivals to a server, the server immediately knows that its own ID at the

dispatcher (if exists) has just been removed in order to dispatch the new arrivals. In addition, after

each successful report, the server knows that the dispatcher has just added its ID in the memory.

Of course, in the analysis of JBT, we can simply assume that the set of servers whose queue lengths

are below the threshold are known at the dispatcher without worrying about the implementational

details.

The considered load balancing system under JBT can be modeled as a discrete-time Markov chain

{Z (t ) = (Q(t ),m(t )), t ≥ 0} with state spaceZ, using the queue length vector Q(t ) together with
the memory statem(t ). We consider a set of load balancing systems {Z (ϵ ) (t ), t ≥ 0} parameterized

by ϵ such that the mean arrival rate of the exogenous arrival process {A(ϵ )
Σ (t ), t ≥ 0} is λ(ϵ )Σ = µΣ −ϵ .

Note that the parameter ϵ characterizes the distance between the arrival rate and the boundary of

the capacity region. We are interested in the throughput performance and more importantly the

steady-state delay performance in the heavy-traffic regime under the JBT policy.

Recall that a load balancing system is stable if the Markov chain {Z (t ), t ≥ 0} is positive recurrent,

and Z = {Q,m} denotes the random vector whose distribution is the same as the steady-state

distribution of {Z (t ), t ≥ 0}. We have the following definition.

Definition 2.2 (Throughput Optimality). A load balancing policy is said to be throughput optimal

if for any arrival rate within the capacity region, i.e., for any ϵ > 0, the system is positive recurrence

and all the moments of
Q

(ϵ ) are finite.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 3, Article 44. Publication date: January 2019.



44:7

Note that this is a stronger definition of throughput optimality than that in [25, 28, 30], because

besides the positive recurrence, it also requires all the moments to be finite in steady state for any

arrival rate within the capacity region.

To characterize the steady-state average delay performance in the heavy-traffic regime when ϵ
approaches zero, by Little’s law, it is sufficient to focus on the summation of all the queue lengths.

First, recall the following fundamental lower bound on the expected sum queue lengths in a load

balancing system under any throughput optimal policy [7].

Lemma 2.3. Given any throughput optimal policy and assuming that (σ (ϵ )
Σ )2 converges to a constant

σ 2

Σ as ϵ decreases to zero, then

lim inf

ϵ ↓0
ϵE



N∑
n=1

Q
(ϵ )
n


≥

ζ

2

, (2)

where ζ ≜ σ 2

Σ + ν
2

Σ.

The right-hand-side of Eq. (2) is the heavy-traffic limit of a hypothetic single-server system with

arrival process A(ϵ )
Σ (t ) and service process

∑N
n Sn (t ) for all t ≥ 0. This hypothetical single-server

queueing system is often called the resource-pooled system. Since a task cannot be moved from one

queue to another in the load balancing system, it is easy to see that the expected sum queue lengths

of the load balancing system is larger than the expected queue length in the resource-pooled system.

However, under a certain load balancing policy, the lower bound in Eq. (2) can actually be attained

in the heavy-traffic limit and hence based on Little’s law this policy achieves the minimum average

delay of the system in steady-state. This directly motivates the following definition of steady-state

heavy-traffic delay optimality as in [7, 19, 25, 27, 28, 30].

Definition 2.4 (Heavy-traffic Delay Optimality in Steady-state). A load balancing scheme is said to

be heavy-traffic delay optimal in steady-state if the steady-state queue length vector Q
(ϵ )

satisfies

lim sup

ϵ ↓0
ϵE



N∑
n=1

Q
(ϵ )
n


≤

ζ

2

,

where ζ is defined in Lemma 2.3.

In the analysis of the delay performance of JBT, the following region R (r )
in RN plays an

instrumental role by the virtue of the JBT policy.

R (r ) = R
(r )
l ∪ R

(r )
u , (3)

where r ≥ 1 and

R
(r )
l ≜

{
x ∈ RN+ : xn ≤ r for all n ∈ N

}

R
(r )
u ≜

{
x ∈ RN+ : xn ≥ r for all n ∈ N

}
.

By the definition of the JBT policy, we have that whenever the queue length vector is within the

region R (r )
, then JBT reduces to (proportionally) random routing. On the other hand, when the

queue lengths vector is outside the region R (r )
, shorter queues are preferred over longer queues.

3 MAIN RESULTS
In this section, we present both necessary and sufficient conditions on the threshold r for the JBT
policy to be heavy-traffic delay optimal in steady-state. We first establish throughput optimality of

the JBT policy, which serves as a basis for the analysis of heavy-traffic delay optimality.
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3.1 Throughput optimality
We first prove the following result, which establishes that a load balancing system under the JBT

policy is stable with bounded moments on the queue lengths for any threshold r ≥ 1.

Lemma 3.1. JBT is throughput optimal with the p-th moment of Q
(ϵ ) being O (1/ϵp ) for any

threshold r ≥ 1 and integer p ≥ 1.

Proof. See Appendix A □

Besides throughput optimality, another important aspect of this lemma is that it serves as the

basis for the discussions on heavy-traffic delay optimality in the following sections. This is because,

firstly, a load balancing policy that cannot stabilize the system is incapable of being heavy-traffic

delay optimal at all. Second, the bounded moments result allows us to set the mean drift of Lyapunov

functions concerning queue lengths to be zero in steady state, which plays a pivotal part in the

framework of Lyapunov drift-based heavy-traffic analysis.

3.2 Necessary condition
In this section, we show that a necessary condition for the JBT policy to achieve heavy-traffic

delay optimality is that the threshold r should grow to infinity as the heavy-traffic parameter ϵ
approaches zero. However, as we show it cannot grow too fast. Formally, it is presented in the

following theorem.

Theorem 3.2. Consider a load balancing system with homogeneous servers under the JBT policy.
(1) Suppose the threshold r is any constant in [1,∞), then we have

lim inf

ϵ ↓0
ϵE



N∑
n=1

Q
(ϵ )
n


>

ζ

2

(4)

and

lim sup

ϵ ↓0
ϵE



N∑
n=1

Q
(ϵ )
n


< lim

ϵ ↓0
ϵE



N∑
n=1

Q
(ϵ )
n,Rand


, (5)

where Q
(ϵ )
Rand is the steady-state vector under random routing policy.

(2) Suppose the threshold r (ϵ ) = (1/ϵ )1+α for any constant α > 0, then we have

lim

ϵ ↓0
ϵE



N∑
n=1

Q
(ϵ )
n


= lim

ϵ ↓0
ϵE



N∑
n=1

Q
(ϵ )
n,Rand


. (6)

Proof. See Section 5.1 □

Now, we will present the high-level intuitions behind the necessary condition with the illustration

in Fig. 1. These intuitions can not only facilitate understanding of the results, but also motivate the

sufficient condition in the next section.

To start with, let us consider case (2) when r (ϵ ) = (1/ϵ )1+α for any α > 0. In this case, all the

queue lengths are below the threshold r for high loads since the sum queue length in the system is

only on the order of 1/ϵ . As a result, in case (2), the JBT policy completely degenerates to random

routing, which is not heavy-traffic delay optimal [8]. An illustration of case (2) for a two-server

system is presented in Fig. 1(a).

Then, we turn to case (1) for which the threshold is a constant. In particular, combing Eqs. (4)

and (5) yields that the delay performance of JBT under any constant r in heavy-traffic lies strictly
between that of a heavy-traffic delay optimal policy (e.g., JSQ) and that of random routing. This
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⇥(1/✏) Q1

Q2

⇥(1/✏) Q1

Q2

R(r)
l

R(r)
u

(r, r)

R(r)
u

R(r)
l

(r, r)

(a) r = (1/✏)1+↵,↵ > 0 (b) r is a constant in [1,1)

Fig. 1. Geometric illustrations of the necessary condition.

reveals an interesting and kind of counter-intuitive insight about the JBT policy under a constant

threshold. For example, consider the special case r = 1, i.e., the JIQ policy. At first glance, one

might expect that the delay performance of JIQ would downgrade to that of random routing in the

heavy-traffic limit, since in this case there are hardly any idle servers, and hence the dispatcher

under JIQ would just randomly choose one server when allocating arrivals, as in random routing.

However, it turns out that this is not true as shown in Eq. (5). That is, the performance of JIQ is still

strictly better than that of random routing even in the heavy-traffic limit. This demonstrates that

JIQ is able to achieve partial resource pooling due to the fact that it adopts queue length information

to prefer shorter queues whenever possible. To see this, note that by positive recurrence, there

always exists some time when the queue length vector is outside the region R (r )
and hence shorter

queues are preferred (i.e., the orange line in Fig. 1(b)), even though it is much less than the time

within the region R (r )
(i.e., the green line in Fig. 1(b)). This is totally different from the case in Fig.

1(a) in which the queue-length state always completely remains within the R (r )
for high loads, and

hence JBT would downgrade to random routing in the limit.

On the other hand, to explain the liminf result in Eq. (4), we will utilize the following result. That

is, the necessary (and sufficient) condition for the JBT policy to be heavy-traffic delay optimal is

given by

lim

ϵ ↓0
E
[Q

(ϵ )
(t + 1)1

U
(ϵ )

(t )1
]
= 0. (7)

This is a direct application of the results in [29]. Note that since Qn (t + 1)Un (t ) = 0, the above

condition basically means that the key for JBT to be heavy-traffic delay optimal is that it should

guarantee that no server is idling while other servers are busy with high loads. In the case when

r is a constant, the event that one queue is zero while others with high loads (denoted by Ebad)

happens with a non-negligible probability since the axes are close to the region R
(r )
u . As a result,

the left-hand side of Eq. (7) is strictly positive, and hence JBT is not heavy-traffic delay optimal

for a constant r . The intuition that we should guarantee that the event Ebad occurs very rarely in

heavy-traffic also motivates our sufficient condition in the next section where we let the threshold

r grow in a certain rate to guarantee that the axes are far away from the region R
(r )
u .

Remark 2. It is worth noting that in [30], a similar result as Eq. (4) has been established for

the JIQ policy (i.e., the special case r = 1 of JBT) in a two-server system under the constraints

that the service processes are constant and the variance of arrival process should be larger than a

particular value. Thus, our contribution is to generalize the result in [30] to any constant r ≥ 1
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and any finite number of servers without the constraints on service and arrival process as required

in [30]. More importantly, we provide new results given by Eqs. (5) and (6), which give us a sharper

understanding of general pull-based policies.

3.3 Sufficient condition
In this section, we now investigate the sufficient condition. In particular, we show that if the

threshold in JBT grows at a logarithmic rate with respect to the average sum queue lengths, i.e.,

r (ϵ ) ≥ K log(1/ϵ ) for some specified constant K , then the JBT policy is heavy-traffic delay optimal

in steady state, which is formally presented in the following theorem.

Theorem 3.3. Consider a load balancing system under the JBT policy. Suppose that the threshold r
satisfies r (ϵ ) ≥ K log(1/ϵ ) and r (ϵ ) = o(1/ϵ ), where the constant K = 2(1 + α )/θ ∗ for any α > 0 and
θ ∗ is the constant in Eq. (9), then JBT is heavy-traffic delay optimal in steady state.

Proof. See Section 5.2 □

The main contributions of this result can be summarized as follows. First, it directly resolves

and generalizes a conjecture in [15]. More precisely, the authors in [15] consider a two-server

system with Poisson arrivals and exponential service under a threshold policy that has the same

implementation as JBT, and conjecture that as long as the threshold is greater than a specified

constant times log(1/ϵ ), the heavy-traffic asymptotic optimality of the threshold routing strategy

holds. Thus, our result resolves this conjecture and also generalizes it to any finite number of servers

case with general arrival and service distributions. More importantly, the asymptotic optimality

defined in [15] holds only for a finite time interval since the convergence to steady-state distribution

is not touched. In contrast, our result directly gives the steady-state characterization of the delay

optimality in heavy-traffic of the JBT policy.

The key step in establishing the sufficient condition in Theorem 3.3 is the notion of state-

space collapse. In words, it says that in heavy traffic the system state under the JBT policy would

concentrate around the region R (r )
as defined Eq. (3). To that end, we need the following property

of the distance to the region R (r )
. The distance of a point x to the region R (r )

is related to the

distances to the regions R
(r )
l and R

(r )
u as follows.

dR (r ) (x) = min

(
d
R

(r )
l
(x),d

R
(r )
u
(x)

)
, (8)

where the distance of a point x to a set A in RN is defined as

dA (x) ≜ inf

y∈A

{x − y} .
This equality (8) can be established by contradiction. Suppose that

min

(
d
R

(r )
l
(x),d

R
(r )
u
(x)

)
= dR (r ) (x) + α

for some α > 0, then there exists a y∗ ∈ R (r )
such that

dR (r ) (x) ≤ x − y∗ < min

(
d
R

(r )
l
(x),d

R
(r )
u
(x)

)
.

However, since y∗ ∈ R (r ) = R
(r )
l ∪ R

(r )
u , this leads to a contradiction to the right-hand side of the

inequality above.

We say that the system state concentrates around the region R (r )
if all the moments of the

distance dR (r ) (Q) are upper bounded by constants. Formally, we have the following definition.
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Definition 3.4 (State-space collapse to R (r )). Suppose that the system process converges in distri-

bution to a steady-state random vector Q
(ϵ )
. Then, we say that the state-space of a load balancing

system collapses to the region R (r )
if there exist some positive constants ϵ0, θ

∗
andC∗ such that for

all ϵ ∈ (0, ϵ0)

E

[
e
θ ∗d

R (r )

(
Q

(ϵ )
) ]
≤ C∗, (9)

where both θ ∗ and C∗ are independent of ϵ .

Note that this notion of state-space collapse is different from previous works, as will be explained

later. For any constant threshold r , Eq. (9) trivially holds since the distance to the region R (r )
is

always bounded by a constant. Thus, in the following we only consider the interesting case when r
grows to infinity, which is also required by the necessary condition in Theorem 3.2. In this case, we

have the following result regarding state space collapse of the JBT policy, which plays a key role in

the proof of Theorem 3.3.

Proposition 3.5. Consider a load balancing system under the JBT policy. Suppose that the threshold
satisfies limϵ ↓0 r

(ϵ ) = ∞, then the system state-space collapses to the region R (r ) .

Proof. See Section 5.3 □

Remark 3. It should be noted that besides being a key step in proving the sufficient conditions in

Theorem 3.3, Proposition 3.5 has its own contributions. (i) First, the region of state-space collapse

in this paper, i.e., R (r )
is not a single dimensional line as in [7, 19, 25, 27, 28, 30], nor a multi-

dimensional convex cone as in [17, 18, 24, 29]. This not only brings new challenges in proving

state-space collapse itself, but also requires newmethods to relate the collapse result to heavy-traffic

delay optimality. More specifically, on the one hand, in order to prove state-space collapse result,

we need to handle the non-convexity of R (r )
by choosing the minimum of two distances as the

Lyapunov function. The techniques suggested in [29] to handle the non-convex region cannot

apply here since the region R (r )
cannot be covered by the cone defined in [29]. On the other hand,

in order to utilize the state-space collapse result to conclude heavy-traffic delay optimality, the

conventional decompositions of parallel and perpendicular components of the queue length vector

Q would not work. Instead, we need to carefully divide the system state and then apply Chernoff

bound on the random variable dR (r )

(
Q

(ϵ ))
, which is possible by the state-space collapse result in

Eq. (9). (ii) Second, the upper bound result in Eq. (9) holds even when the system is not at the

heavy-traffic limit, and hence it is of independent interest for analyzing the system performance in

the pre-limit regime, especially when combined with optimization techniques.

Now, we turn to provide the high-level intuitions on Proposition 3.5 and Theorem 3.3 with the

help of Fig. 2. This will facilitate the understanding of the results as well as their proofs.

To start with, note that by virtue of the JBT policy, when the queue-length state Q is outside

the region R (r )
, there always exists a positive drift towards the region R (r )

. This is because in this

case there exists a positive drift towards the lower region R
(r )
l and a positive drift towards the

upper region R
(r )
u , respectively (see Fig. 2(a) for an illustration). This provides the key intuition as

to why the system state would concentrate around the region R (r )
since suppose there is no drift

(e.g., under random routing) the expected distance to the region R (r )
would go to infinity as r (ϵ )

goes to infinity (assuming that the growth rate of r (ϵ ) is not too fast). In contrast, under the JBT

policy, the distance remains constant (as shown by the gray color in Fig. 2(b)). This is the reason

why we call it a state-space collapse result, which is different from much of previous works where
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�⌃ � µ

�⌃ � µ

µ

Q1

Q2

R(r)
l
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2r(a)

du = r

dl > r

(b)

Fig. 2. Geometric illustrations of the sufficient condition.

the system state collapses to a lower dimensional space (e.g., a line or a convex cone) while our

state-space collapse region R (r )
is of the same dimension as the original queue-length state vector.

Hence, we need to develop new methods to apply this new type of state-space collapse result to

achieve heavy-traffic delay optimality of the JBT policy, as in Theorem 3.3.

To this end, we will utilize the sufficient (and necessary) condition in Eq. (7) again. As discussed

before, it basically requires us to guarantee that no server is idling while other servers are busy

under high loads. To achieve this, a logarithmic growth rate as in Theorem 3.3 is sufficient. For

an illustration of the main ideas behind the proof, let us consider a simple two-server case. In this

case, Eq. (7) reduces to

lim

ϵ ↓0
E
[
Q

(ϵ )
1

(t + 1)U
(ϵ )
2
+Q

(ϵ )
2

(t + 1)U
(ϵ )
1

]
= 0. (10)

Take the second term above for example, it can be rewritten as the summation of the following

terms (for simplicity we omit the superscript
(ϵ )
)

Q
2
(t + 1)U 1I

(
Q

2
(t + 1) ≤ 2r ,Q

1
(t + 1) = 0

)
(11)

Q
2
(t + 1)U 1I

(
Q

2
(t + 1) > 2r ,Q

1
(t + 1) = 0

)
, (12)

where we use the fact that Qn (t + 1)Un (t ) = 0 again. The expectation of Eq. (11) can be upper

bounded by 2r (ϵ )ϵ since E
[
U 1

]
≤ ϵ . For the expectation of Eq. (12), we first apply Cauchy-Schwartz

inequality and hence obtain its upper bound as

C
1

ϵ2
P

(
Q

2
(t + 1) > 2r ,Q

1
(t + 1) = 0

)
,

where C is a constant independent of ϵ . Now, we can apply the state-space collapse result (i.e.,

Eq. (9)) combined with Chernoff bound to show that the probability that one queue is empty and

another queue length is larger than 2r has an exponential decay rate. In particular, we have

P
(
Q

2
(t + 1) > 2r ,Q

1
(t + 1) = 0

) (a)
≤ P

(
dR (r )

(
Q

(ϵ ))
≥ r

) (b )
≤

C∗

eθ ∗r
,

where (a) holds since in this case the distance to the region R (r )
is r (see Fig. 2(b) for an illustration);

(b) follows directly from state-space collapse result and Chernoff bound. Therefore, combining the

expectations of Eqs. (11) and (12), yields

E
[
Q

(ϵ )
2

(t + 1)U
(ϵ )
1

]
≤ 2r (ϵ )ϵ +C1

1

ϵ2
1

eθ ∗r (ϵ )
,

which approaches zero whenever r (ϵ ) = o( 1ϵ ) and r
(ϵ ) ≥ K log(1/ϵ ) where K = 2(1 + α )/θ ∗ for any

α > 0. By the same arguments, we can establish the same result for the expectation of the first term
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in Eq. (10). Therefore, we have reached the sufficient condition for heavy-traffic delay optimality in

Theorem 3.3.

4 GENERALIZATIONS
For the illustration of the key ideas, the main results in the last section are obtained under the

assumptions that both arrival and service processes have finite support. However, it is worth

pointing out that the same results still hold (with only a change in constants) when the support is

infinite. More specifically, we need the following weak condition on arrival and service processes,

which requires that the tails of both arrival and service processes have an exponential decay.

Condition A (Weaker condition on arrival and service). The i.i.d arrival process AΣ (t ) and service

process Sn (t ) satisfy

E
[
eθ1AΣ (t )

]
≤ D1 and E

[
eθ2Sn (t )

]
≤ D2,

for each n where the constants θ1 > 0, θ2 > 0, D1 < ∞ and D2 < ∞ are all independent of ϵ .

In order to obtain the same main results under the weaker condition above, we should make

some mild changes in our proofs. In the following, we will highlight the key steps involved in this

process.

(i) First, note that in order to establish condition (C1) in Lemma 5.1, we would use the following

upper bound in our proofs based on the finite support assumptions.

E
[
∥A(t0) − S(t0)∥2 | Z (t0)

]
≤ L ≜ N max(Amax , Smax )

2.

However, under the weaker Condition A, we can still bound the left-hand side by a constant

independent of ϵ . This directly follows from the fact that all the moments of a random variable are

finite if its moment generating function is finite in an open interval containing zero.

(ii) Second, we should now replace condition (C2) in Lemma 5.1 with the followingweak stochastic

domination condition (C2
′
),

• (C2
′
) [∆V (X ) | X (t0) = X ] ≺W for all t0 and E

[
eθW

]
= D is finite for some θ > 0.

This condition holds under the weaker Condition A since the arrival and service processes both

have an exponentially bounded tail by the finiteness of their moment generating functions. As

shown by Theorem 2.3 in [11], the combination of (C1) and (C2
′
) is sufficient to guarantee bounded

moments as required in the proof of our main results.

(iii) Third, we now should take a careful treatment of the unused service. For example, the

following result plays a key role in establishing the necessary and sufficient condition in Eq. (7)

lim

ϵ ↓0
E
[U

(ϵ )
2

1

]
= 0.

Under the assumption of finite support for the service process, the left-hand side can be easily

bounded above by NSmaxϵ , which approaches zero as ϵ → 0. Now, under the weak condition,

we need to adopt the truncation trick to handle the unbounded service. More specifically, let us

consider any n ∈ N , we have for any t ≥ 0 and constant S ′

U 2

n (t ) ≤ Un (t )Sn (t )

= Un (t )Sn (t )I (Sn (t ) ≤ S ′) +Un (t )Sn (t )I (Sn (t ) > S ′)

≤ Un (t )S
′ + S2n (t )I (Sn (t ) > S ′) .
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In steady state, we have

E
[
U

2

n

]
≤ E

[
U n

]
S ′ + E

[
S2n (∞)I (Sn (∞) > S ′)

]

(a)
≤ ϵS ′ + E

[
S2n (0)I (Sn (0) > S ′)

]

(b )
≤ ϵS ′ + β ,

where (a) follows from the fact that E
[U

(ϵ )1
]
= ϵ and service process is i.i.d.; in (b), we choose

S ′ such that E
[
S2n (0)I (Sn (0) > S ′)

]
≤ β , which is possible by the exponential decay rate of Sn (0)

under the weak condition. Thus, we have

lim

ϵ ↓0
E
[
U

2

n

]
≤ β ,

for any β > 0. Hence, we have limϵ ↓0 E
[
U

2

n

]
= 0 for each n.

Remark 4. The three highlighted key steps could also demonstrate their generalization power in

previous works where the Lyapunov drift-based framework is adopted under the assumption of

finite supports for the arrival and service processes.

5 PROOFS
In this paper, we will adopt the Lyapunov drift-based approach developed in [7] to derive bounded

moments in steady state. In particular, the following lemma, which follows directly from Lemmas 2

and 3 in [18], will be the main tool in our proofs.

Lemma 5.1. For an irreducible aperiodic and positive recurrent Markov chain {X (t ), t ≥ 0} over a
countable state space X, which converges in distribution to X , and supposeV : X → R+ is a Lyapunov
function. We define the drift of V at X as

∆V (X ) ≜ [V (X (t0 + 1)) −V (X (t0))]I (X (t0) = X ),

where I (.) is the indicator function. Suppose the drift of V satisfies the following conditions:
• (C1) There exists an η > 0 and a κ < ∞ such that for any t0 = 1, 2, . . . and for all X ∈ X with
V (X ) ≥ κ,

E [∆V (X ) | X (t0) = X ] ≤ −η.

• (C2) There exists a constant D < ∞ such that for all X ∈ X,

P( |∆V (X ) | ≤ D) = 1.

Then {V (X (t )), t ≥ 0} converges in distribution to a random variable V for which there exists a
θ ∗ > 0 and a C∗ < ∞ such that

E
[
eθ
∗V
]
≤ C∗,

which directly implies that all the moments of V exist and are finite. More specifically, we have for
any p = 1, 2, . . .

E
[
V (X )p

]
≤ (2κ)p + (4D)p

(
D + η

η

)p
p!. (13)

We would also utilize the following useful result in our proofs.
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Lemma 5.2. For the JBT policy with threshold r ≥ 1, it is heavy-traffic delay optimal if and only if

lim

ϵ ↓0
E
[Q

(ϵ )
(t + 1)1

U
(ϵ )

(t )1
]
= 0. (14)

This lemma is a direct application of the results in [29], which establishes that Eq. (14) is the

sufficient and necessary condition for any load balancing policy to be heavy-traffic delay optimal

if the system is stable with bounded moments. By Lemma 3.1, we have that the JBT policy is

throughput optimal with all the moments being bounded for any r ≥ 1, and hence the above lemma

holds.

5.1 Proof of Theorem 3.2
Before we present our proof, we first give the following useful result, which can be established by

setting the mean drift a chosen Lyapunov function to zero in steady state. For completeness, the

proof is given at Appendix B.

Lemma 5.3. Consider a load balancing system with homogeneous servers under the JBT policy. For
any threshold r ≥ 1, we have

2

N∑
i=1

N∑
j>i

E
[(
(Q
+

i )
(ϵ )U

(ϵ )
j + (Q

+

j )
(ϵ )U (ϵ )

i

)]
= T

(ϵ )
1
+ T

(ϵ )
2
− T

(ϵ )
3
,

where

T
(ϵ )

1
≜ 2

N∑
i=1

N∑
j>i

E
[(
Q

(ϵ )
i −Q

(ϵ )
j

) (
A
(ϵ )
i −A

(ϵ )
j

)]

T
(ϵ )

2
≜

N∑
i=1

N∑
j>i

E

[(
A
(ϵ )
i −A

(ϵ )
j − S

(ϵ )
i + S

(ϵ )
j

)
2

]

T
(ϵ )

3
≜

N∑
i=1

N∑
j>i

E

[(
U

(ϵ )
i −U

(ϵ )
j

)
2

]

Q
+
≜ Q(t + 1)

and A
(ϵ )
i andU

(ϵ )
i are dependent of Q for each i and ϵ > 0.

Now, we are ready to present the proof of Theorem 3.2.

Proof of Theorem 3.2. To start with, we first note that the sufficient and necessary condition

in Lemma 5.2 can be rewritten as follows under the JBT policy.

2E
[Q

(ϵ )
(t + 1)1

U
(ϵ )

(t )1
]

(a)
= 2

N∑
i=1

N∑
j>i

E
[(
(Q
+

i )
(ϵ )U

(ϵ )
j + (Q

+

j )
(ϵ )U (ϵ )

i

)]
(b )
= 4

N∑
i=1

N∑
j>i

E
[(
(Q
+

i )
(ϵ )U

(ϵ )
j

)]
(c )
=4

N∑
i=1

N∑
j>i

*
,

∞∑
k=1

kU
(ϵ )
j P

(
(Q
+

i )
(ϵ ) = k, (Q

+

j )
(ϵ ) = 0,U

(ϵ )
j ≥ 1

)
+
-
, (15)
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in which (a) and (c) follow from the fact Qi (t + 1)Ui (t ) = 0 for each i and t ≥ 0; (b) holds by the

symmetry property of JBT policy for homogeneous servers.

Thus, by Lemma 5.2, Lemma 5.3 and the above equation, in order to analyze heavy-traffic delay

optimality of JBT under any constant threshold, all we need to do is to focus on terms T
(ϵ )

1
, T

(ϵ )
2

and T
(ϵ )

3
, respectively.

Now, let us first focus on case (1) in Theorem 3.2.

For T
(ϵ )

1
, we have

T
(ϵ )

1
≜ 2

N∑
i=1

N∑
j>i

E
[(
Q

(ϵ )
i −Q

(ϵ )
j

) (
A
(ϵ )
i −A

(ϵ )
j

)]

= 2

N∑
i=1

N∑
j>i

E
[(
Q i −Q j

) (
Ai −Aj

)
I

(
Q i ≥ r ,Q j ≥ r

)]
+ 2

N∑
i=1

N∑
j>i

E
[(
Q i −Q j

) (
Ai −Aj

)
I

(
Q i < r ,Q j < r

)]
+ 4

N∑
i=1

N∑
j>i

E
[(
Q i −Q j

) (
Ai −Aj

)
I

(
Q i ≥ r ,Q j < r

)]
(a)
= 4

N∑
i=1

N∑
j>i

E
[(
Q i −Q j

) (
Ai −Aj

)
I

(
Q i ≥ r ,Q j < r

)]
(b )
≥ −4λΣ

N∑
i=1

N∑
j>i

r−1∑
m=0

∞∑
k=r

(k −m)P
(
Q i = k,Q j =m

)
(c )
= −4λΣ

N∑
i=1

N∑
j>i

r−1∑
m=0

∞∑
k=r

(k −m)P
(
Q
+

i = k,Q
+

j =m
)
, (16)

where (a) follows from the definition of the JBT policy, i.e., when both queues are in memory or

both queues are not in memory, they have the same probability to be selected in the homogeneous

case; (b) is true since when the ID of server j is inm(t ) while the ID of server i is not, we have
Ai (t ) = 0 and Aj (t ) ≤ AΣ (t ) by the definition of the JBT policy; (c) holds since Q(t + 1) has the

same distribution as Q(t ) in steady state.

In order to further simplify the term T
(ϵ )

1
, we need to define the following events in which k ≥ r

and 1 ≤ m ≤ r − 1.

E (k,m) ≜
{
Q
+

i = k,Q
+

j =m
}

E+(k,m) ≜
{
Q i (t + 2) = k,Q j (t + 2) =m

}

E (k,0,0) ≜
{
Q
+

i = k,Q
+

j = 0,U j = 0

}

E+(k,0,0) ≜
{
Q i (t + 2) = k,Q j (t + 2) = 0,U

+

j = 0

}

E (k,0,≥1) ≜
{
Q
+

i = k,Q
+

j = 0,U j ≥ 1

}

E+(k,0,≥1) ≜
{
Q i (t + 2) = k,Q j (t + 2) = 0,U

+

j ≥ 1

}
.

Note that by the assumptions of arrival and service processes, there exists a positive probability p̂
(independent of ϵ) such that there is no arrival during one time-slot and meanwhile the potential
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service of all the servers are d for some d between 1 and Smax . For ease of exposition, we take d = 1

in the following proof, and the same techniques apply for the case where d , 1. Now, for each

occurrence of event E (k,m) , there exists a positive probability p̂ such that E+
(k−1,m−1) will happen.

Therefore, we have

P
(
E (k−1,m−1)

) (a)
= P

(
E+(k−1,m−1)

)
≥ p̂P

(
E (k,m)

)
, (17)

where (a) holds due to the fact that both events are defined in steady state. Similarly, we have

P
(
E (k−1,0,0)

)
= P

(
E+(k−1,0,0)

)
≥ p̂P

(
E (k,1)

)
(18)

P
(
E (k−1,0,≥1)

)
= P

(
E+(k−1,0,≥1)

)
≥ p̂P

(
E (k,0,0)

)
. (19)

Now, we can further simplify T
(ϵ )

1
as follows

T
(ϵ )

1

(a)
≥ −4λΣ

N∑
i=1

N∑
j>i

*
,

∞∑
k=r

kP
(
E (k,0,≥1)

)
+
1

p̂

∞∑
k=r

kP
(
E (k−1,0,≥1)

)+
-

− 4λΣ

N∑
i=1

N∑
j>i

*
,

r−1∑
m=1

∞∑
k=r

1

p̂m+1
(k −m)P

(
E (k−m−1,0,≥1)

)+
-

= −4λΣ

N∑
i=1

N∑
j>i

*
,

r∑
l=0

∞∑
h=r−l

1

p̂l
hP

(
E (h,0,≥1)

)+
-

− 4λΣ

N∑
i=1

N∑
j>i

*
,

r∑
l=1

∞∑
h=r−l

1

p̂l
P

(
E (h,0,≥1)

)+
-

(b )
≥ −4λΣ

N∑
i=1

N∑
j>i

*
,

r∑
l=0

1

p̂l

∞∑
h=0

hU jP
(
E (h,0,≥1)

)+
-

− 4λΣ

N∑
i=1

N∑
j>i

*
,

r∑
l=1

1

p̂l
ϵ+
-
, (20)

where (a) follows from eqs. (17) to (19); (b) holds sinceUj (t ) ≥ 1 and E
[
U j

]
≤ E

[U
(ϵ )1

]
= ϵ . The

latter fact can be easily obtained by setting mean drift of V̂ (Z (t )) ≜ Q(t )1 to be zero in steady

state, which is true since all the moments of
Q

 are bounded.
For T

(ϵ )
2

, we can simplify it as follows.

T
(ϵ )

2
≜

N∑
i=1

N∑
j>i

E

[(
A
(ϵ )
i −A

(ϵ )
j − S

(ϵ )
i + S

(ϵ )
j

)
2

]

(a)
=

N∑
i=1

N∑
j>i

E

[(
A
(ϵ )
i −A

(ϵ )
j

)
2

+

(
S
(ϵ )
i − S

(ϵ )
j

)
2

]

(b )
= (N − 1)

((
σ (ϵ )
Σ

)
2

+
(
λ(ϵ )Σ

)
2

+ ν2Σ

)
, (21)

where (a) holds since the arrival and service are independent and the servers are homogeneous;

(b) is true because Ai (t )Aj (t ) = 0 for all i , j and t ≥ 0, and the service is independent and

homogeneous.
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For T
(ϵ )

3
, we can simplify it as follows.

T
(ϵ )

3
≜

N∑
i=1

N∑
j>i

E

[(
U

(ϵ )
i −U

(ϵ )
j

)
2

]

(a)
≤ (N − 1) E

[U
(ϵ )

2

1

]

(b )
≤ ϵ (N − 1) Smax , (22)

where (a) follows from the fact that Un (t ) ≥ 0 for any n ∈ N ; (b) holds because of Un (t ) ≤ Smax

for any n ∈ N and the fact E
[U

(ϵ )1
]
= ϵ .

Now, substituting Eqs. (15), (20), (21) and (22) into the equation in Lemma 5.3, yields

4

N∑
i=1

N∑
j>i

*
,

∞∑
k=1

kU
(ϵ )
j P

(
(Q
+

i )
(ϵ ) = k, (Q

+

i )
(ϵ ) = 0,U

(ϵ )
j ≥ 1

)
+
-

=4

N∑
i=1

N∑
j>i

*
,

∞∑
k=1

kU jP
(
E (k,0,≥1)

)+
-

≥ − 4λΣ

N∑
i=1

N∑
j>i

*
,

r∑
l=0

1

p̂l

∞∑
h=0

hU jP
(
E (h,0,≥1)

)+
-
− 4λΣ

N∑
i=1

N∑
j>i

*
,

r∑
l=1

1

p̂l
ϵ+
-

+ (N − 1)
((
σ (ϵ )
Σ

)
2

+
(
λ(ϵ )Σ

)
2

+ ν2Σ

)
− Smax (N − 1) ϵ,

which can be simplified as

*
,
4 + 4λΣ

r∑
l=0

1

p̂l
+
-

N∑
i=1

N∑
j>i

*
,

∞∑
k=1

kU jP
(
E (k,0,≥1)

)+
-
≥ −Smax (N − 1) ϵ

− 4λΣ

N∑
i=1

N∑
j>i

*
,

r∑
l=1

1

p̂l
ϵ+
-
+ (N − 1)

((
σ (ϵ )
Σ

)
2

+
(
λ(ϵ )Σ

)
2

+ ν2Σ

)
.

Then taking liminf on both sides gives

lim inf

ϵ ↓0

N∑
i=1

N∑
j>i

*
,

∞∑
k=1

kU jP
(
E (k,0,≥1)

)+
-
≥

(N − 1)
(
σ 2

Σ + µ
2

Σ + ν
2

Σ

)
4 + 4µΣ

∑r
l=0

1

p̂l
> 0 (23)

which holds since threshold r is a constant and p̂ would not vanish as ϵ → 0. Therefore, by Lemma

5.2 and Eq. (15), we have

lim inf

ϵ ↓0
ϵE



N∑
n=1

Q
(ϵ )
n


>

ζ

2

,

where ζ is the constant defined as in Lemma 2.3.

To establish the inequality (5) in Theorem 3.2, note that the term T
(ϵ )

1
is equal to 0 for any ϵ > 0

under random routing, and T
(ϵ )

2
and T

(ϵ )
3

converge to the same constant for both random routing

and JBT. Thus, based on Lemma 5.2 and Lemma 5.3, all we need to show is that under the JBT

policy lim supϵ ↓0 T
(ϵ )

1
< 0. To this end, we can upper bound it as follows by reusing the equation
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(a) in Eq. (16).

T
(ϵ )

1
= 4

N∑
i=1

N∑
j>i

E
[(
Q i −Q j

) (
Ai −Aj

)
I

(
Q i ≥ r ,Q j < r

)]
(a)
≤ −

4λΣ
N − 1

N∑
i=1

N∑
j>i

r−1∑
m=0

∞∑
k=r

(k −m)P
(
Q i = k,Q j =m

)
≤ −

4λΣ
Smax (N − 1)

N∑
i=1

N∑
j>i

*
,

∞∑
k=1

kU jP
(
E (k,0,≥1)

)+
-
,

where (a) holds since when Qi (t ) ≥ r and Q j (t ) < r , the lower bound on the probability of server j
being chosen under JBT is 1/(N − 1). Now, taking limsup on both sides, yields

lim sup

ϵ ↓0
T

(ϵ )
1
≤ −

4λΣ
Smax (N − 1)

lim inf

ϵ ↓0

N∑
i=1

N∑
j>i

*
,

∞∑
k=1

kU jP
(
E (k,0,≥1)

)+
-

< 0,

where the last inequality follows directly from Eq. (23). Hence, we have completed the proof of the

first case in Theorem 3.2.

Now, let us turn to case (2) in Theorem 3.2. Based on the discussions above, in order to show

that the JBT policy with r (ϵ ) = (1/ϵ )1+α and α > 0 achieves the same limit as random routing, all

we need to show is that limϵ ↓0 T
(ϵ )

1
= 0. Again, using the equation (a) in Eq. (16), we obtain

T
(ϵ )

1
= 4

N∑
i=1

N∑
j>i

E
[(
Q i −Q j

) (
Ai −Aj

)
I

(
Q i ≥ r ,Q j < r

)]
≥ −4λΣ

N∑
i=1

N∑
j>i

r−1∑
m=0

E
[
(Q i −m)I

(
Q i ≥ r ,Q j =m

)]
≥ −4λΣ

N∑
i=1

N∑
j>i

r−1∑
m=0

E
[
Q iI

(
Q i ≥ r ,Q j =m

)]
≥ −4λΣ

N∑
i=1

N∑
j>i

r−1∑
m=0

√
E
[
Q

2

i

]
P

(
Q i ≥ r ,Q j =m

)
(a)
≥ −4λΣ

N∑
i=1

N∑
j>i

r−1∑
m=0

√
M ′

ϵ2
eθ ∗ (1/ϵ )

eθ ∗r
,

where (a) follows from the bounded moments in Lemma 3.1 and Chernoff bound based on Eq. (32)

in the proof of Lemma 3.1. Thus, if r (ϵ ) = (1/ϵ )1+α for any constant α > 0, we have limϵ ↓0 T
(ϵ )

1
= 0.

Hence, we have established the second case in Theorem 3.2. □
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5.2 Proof of Theorem 3.3
Proof of Theorem 3.3. Based on the result in Lemma 5.2, in order to prove Theorem 3.3, we

need just focus on the left-hand side of Eq. (14). Let us first define

T (ϵ ) ≜ E
[Q

(ϵ )
(t + 1)1

U
(ϵ )

(t )1
]

= E



N∑
i=1

U i
*.
,

N∑
j=1

Q
+

j
+/
-


,

in which for brevity we omit the references t and ϵ , and use Q
+
to denote Q(t + 1). Thus, all we

need to show is that limϵ ↓0 T
(ϵ ) = 0 under the assumptions of Theorem 3.3. SinceU iQ

+

i = 0 by the

queue-length dynamic in Eq. (1), we have for each i ∈ N ,

E


U i

*.
,

N∑
j=1

Q
+

j
+/
-



=E


U i

*.
,

N∑
j=1

Q
+

j
+/
-
I

(
Q
+

i = 0

)
=E


U i

*.
,

N∑
j=1

Q
+

j
+/
-
I

(
Q
+

i = 0,max

j
Q
+

j ≤ r
√
N − 1 + r

) (24)

+ E


U i

*.
,

N∑
j=1

Q
+

j
+/
-
I

(
Q
+

i = 0,max

j
Q
+

j > r
√
N − 1 + r

) . (25)

Now, it remains to show that both Eqs. (24) and (25) approach 0 as ϵ → 0. To start with, we can

bound Eq. (24) as follows.

E


U i

*.
,

N∑
j=1

Q
+

j
+/
-
I

(
Q
+

i = 0,max

j
Q
+

j ≤ r
√
N − 1 + r

)
≤r (N − 1) (

√
N − 1 + 1)E

[
U i

]

≤r (N − 1) (
√
N − 1 + 1)ϵ,

where the last inequality follows from the fact E
[U

(ϵ )1
]
= ϵ . Thus, Eq. (24) approaches 0 as

ϵ → 0 since r (ϵ ) = o(1/ϵ ).
Then, we can turn to bound Eq. (25) in the following way.

E


U i

*.
,

N∑
j=1

Q
+

j
+/
-
I

(
Q
+

i = 0,max

j
Q
+

j >
√
N − 1r + r

)
(a)
≤SmaxE

[
Q

1 I
(
Q i = 0,max

j
Q j >

√
N − 1r + r

)]
(b )
≤Smax

√
E
[Q


2

1

]
P

(
dR (r )

(
Q
)
≥ r

)
(c )
≤Smax

√
M2

1

ϵ2
C∗

eθ ∗r
,
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where (a) follows from the fact that Ui (t ) ≤ Si (t ) ≤ Smax for any i ∈ N and t ≥ 0; (b) holds due

to Cauchy-Schwartz inequality and the following facts. For any system state Z (t ) that satisfies

Qi (t ) = 0 for some i and maxj Q j >
√
N − 1r + r , we have

d
R

(r )
l
(Q(t )) > r

√
N − 1

r ≤ d
R

(r )
u
(Q(t )) ≤ r

√
N − 1.

Thus,

dR (r ) (Q(t )) = min{d
R

(r )
l
(Q(t )),d

R
(r )
u
(Q(t ))} ≥ r ,

and hence we have (b). The inequality (c) comes from the Chernoff bound, the moments bound in

Lemma 3.1 and state-space collapse in Proposition 3.5, in which the constantsM2, C
∗
and θ ∗ are

all independent of ϵ . Now, under the condition that r (ϵ ) ≥ K log(1/ϵ ) where K = 2(1 + α )/θ ∗ and
α > 0, we have that Eq. (25) approaches zero as ϵ → 0. Hence, we have completed the proof of

Theorem 3.3.

□

5.3 Proof of Proposition 3.5
Before we present the proof, let us first introduce some useful results. First, let us define

V⊥ (Z (t )) ≜ dR (r ) (Q(t ))

V⊥l (Z (t )) ≜ d
R

(r )
l
(Q(t ))

V⊥u (Z (t )) ≜ d
R

(r )
u
(Q(t )).

By Eq. (8), we have V⊥ (Z (t )) = min{V⊥l (Z (t )),V⊥u (Z (t ))}. As a result, the drift of V⊥ (Z ) has the
following four cases.

Case 1: ∆V⊥ (Z ) = ∆V⊥l (Z )
Case 2: ∆V⊥ (Z ) = ∆V⊥u (Z )
Case 3: ∆V⊥ (Z ) = [V⊥l (Z (t0 + 1)) −V⊥u (Z (t0))]I (Z (t0) = Z )
Case 4: ∆V⊥ (Z ) = [V⊥u (Z (t0 + 1)) −V⊥l (Z (t0))]I (Z (t0) = Z ).
Note that the drift in Case 3 can be upper bounded by ∆V⊥u (Z ) and the drift in Case 4 can be

upper bounded by ∆V⊥l (Z ). Thus, in order to establish upper bounds on the drift ofV⊥ (Z ), we only
need to focus on the first two cases. In the following, we might omit the superscript (r ) for ease of
exposition, and revive it when necessary.

Let us also define

R ′l ≜ R
(r )
l − r and R

′
u ≜ R

(r )
u − r.

where r = r1. Correspondingly, we shift the queue-length vector in the same direction. That is, we

let

Q′ = Q − r. (26)

The main motivation behind this shifting process is that it allows us to decompose queue-length

vector into parallel and perpendicular components. In particular, given a queue length vector Q,
we have the following decompositions

Q′ = Q′
∥R′l
+ Q′

⊥R′l

Q′ = Q′
∥R′u
+ Q′

⊥R′u
,
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where Q′
∥R′l

and Q′
∥R′u

are the projections of Q′onto R ′l and R
′
u , referred as parallel components.

Q′
⊥R′l

and Q′
⊥R′u

are the corresponding remainders, referred as perpendicular components. Note

that the two decompositions are well defined and unique because R ′l and R
′
u are both closed and

convex. Moreover, we have

V⊥l (Z (t )) =
Q
′
⊥R′l

 and V⊥u (Z (t )) =
Q
′
⊥R′u

. (27)

This follows directly from the fact that the shifting process would not change the distance.

Now, we are ready to present our proof.

Proof of Proposition 3.5. Since the chain {Z (t ), t ≥ 0} is ergodic under JBT for any r ≥ 1 by

Lemma 3.1, we can apply Lemma 5.1 to establish bounded moments ofV⊥. In particular, all we need

to do is to check the drift conditions (C1) and (C2), respectively. As discussed above, we should

only focus on the drifts ∆V⊥l (Z ) and ∆V⊥u (Z ).
For condition (C2), we have the following result, the proof of which is relegated to Appendix C.

Claim 1. For any t ≥ 0, we have

|∆V (Z (t )) | ≤
√
N max(Amax , Smax ).

This directly verifies condition (C2) in Lemma 5.1. Now, we turn to check condition (C1) for

V⊥ (Z ). To this end, we need the following result, the proof of which is relegated to Appendix D.

Claim 2. For any t ≥ 0, we have

E [∆V⊥l (Z ) | Z (t ) = Z ]

≤
1

2∥Q′
⊥R′l

(t )∥
E
[(
2⟨Q′

⊥R′l
(t ),A(t ) − S(t )⟩ + L

)
| Z (t ) = Z

]
(28)

and

E [∆V⊥u (Z ) | Z (t ) = Z ]

≤
1

2∥Q′
⊥R′u

(t )∥
E
[(
2⟨Q′

⊥R′u
(t ),A(t ) − S(t )⟩ + L

)
| Z (t ) = Z

]
(29)

where L = N max(Amax , Smax )
2.

From Claim 2, we can see that the upper bounds on the mean drifts of ∆V⊥l (Z ) and ∆V⊥u (Z )
have the same formula. Thus, we can rewrite it in a compact way as follows.

E [∆V⊥s (Z ) | Z (t ) = Z ]

≤
1

2∥Q′
⊥R′s

(t )∥
E
[(
2⟨Q′

⊥R′s
(t ),A(t ) − S(t )⟩ + L

)
| Z (t ) = Z

]
(30)

where the subscript s ∈ {l ,u}. To upper bound the right-hand side of Eq. (30), we resort to the

following result, the proof of which is relegated to Appendix E.

Claim 3. For s ∈ {l ,u} and any system state Z (t ) with V⊥ (Z (t )) > 0, we have

E
[
⟨Q′
⊥R′s

(t ),A(t ) − S(t )⟩ | Z (t ) = Z
]
≤ −

µΣδ

2N
Q
′
⊥R′s

(t ),

whenever ϵ ≤ µΣδ
2N+δ , in which

δ =
µminµmin,2

µΣ (µΣ − µmin )
,
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where µmin = minn∈N µn , i.e., the smallest service rate among all servers. µmin,2 is the second smallest
service rate among all the servers. Hence, δ is a constant independent of ϵ .

Now substituting the upper bound in Claim 3 into Eq. (30), yields

E [∆V⊥s (Z ) | Z (t ) = Z ]

≤
1

2∥Q′
⊥R′s

(t )∥
E
[(
2⟨Q′

⊥R′s
(t ),A(t ) − S(t )⟩ + L

)
| Z (t ) = Z

]

≤ −
µΣδ

2N
+

L

2V⊥s (Z )
whenever ϵ ≤

µΣδ

2N + δ

≤ −
µΣδ

4N
,

for s ∈ {l ,u} and for any Z (t ) such that V⊥ (Z (t )) > 0 and V⊥s (Z (t )) ≥
2NL
µΣδ

.

Therefore, since the drift of V⊥ (Z (t )) is either upper bounded by the drift of V⊥l (Z (t )) or the
drift V⊥u (Z (t )), and V⊥ (Z (t )) = min{V⊥l (Z (t )),V⊥u (Z (t ))}, we have

E [∆V⊥ (Z ) | Z (t ) = Z ] ≤ −
µΣδ

4N
whenever V⊥ (Z (t )) ≥

2NL

µΣδ

for any ϵ ≤ ϵ0 ≜
µΣδ
2N+δ .

Thus, condition (C1) in Lemma 5.1 is validated with κ = 2NL
µΣδ

and η =
µΣδ
4N , both of which are

independent of ϵ (since δ is independent of ϵ by Claim 3). Having established conditions (C1)

and (C2) for the Lyapunov function V⊥ (Z ), by Lemma 5.1, we have that there exist some positive

constants ϵ0, θ
∗
and C∗ such that for all ϵ ∈ (0, ϵ0)

E

[
e
θ ∗d

R (r )

(
Q

(ϵ )
) ]
≤ C∗,

where both θ ∗ and C∗ are independent of ϵ . Hence, we have completed the proof of Proposition

3.5. □

6 CONCLUSION
We have investigated the performance of load balancing systems under a general pull-based policy

with a varying threshold. In particular, we have shown that a necessary condition for steady-state

heavy-traffic delay optimality is that the threshold must grow to infinity as the load intensity

approaches one but its growth rate should be slower than a certain polynomial function of the

mean number of tasks in the system. We then showed that a sufficient condition to guarantee

steady-state heavy-traffic delay optimality in pull-based load balancing systems is that the threshold

must grow logarithmically with the mean number of tasks in the system, which directly resolves a

generalized version of the conjecture by Kelly and Laws [15]. Both of the necessary and sufficient

conditions are achieved by overcoming various technical challenges, and the methods developed

in this paper could be of independent interest. In particular, the methods developed in this paper

might provide new directions on establishing steady-state delay optimality for dynamic threshold

based scheduling policies in [2, 14].

We finally conjecture that a logarithmic growth rate of the threshold is also necessary for

heavy-traffic delay optimality in pull-based load balancing systems, and one possible future work

is to extend the current proof of Theorem 3.2 to prove this result, hence providing a tighter

characterization of general pull-based load balancing schemes in heavy traffic.
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APPENDIX
A PROOF OF LEMMA 3.1

Proof. To begin with, we first show that the Markov chain {Z (t ) = (Q(t ),m(t )), t ≥ 0} is

irreducible and aperiodic. Let the initial state be Z (0) = (Q(0),m(0)) = (01×N ,m0) where m0

is the memory state in which all the N IDs of servers are in the memory. The Markov chain is

irreducible since for any state Z in the state space, the Markov chain is able to reach the initial

state within a finite step. This happens when there are no exogenous arrivals and all the offered

service is at least one during each time-slot, which has a positive probability under our assumptions.

The aperiodicity of the Markov chain {Z (t ) = (Q(t ),m(t )), t ≥ 0} follows from the fact that the

transition probability from the initial state to itself is positive. In order to show positive recurrence,

we adopt the Foster-Lyapunov theorem. In particular, we only need to consider the Lyapunov

functionW (Z ) ≜ Q2 since the memory state is finite. Now for any t0, the one-step drift is given

by

E [W (Z (t0 + 1)) −W (Z (t0)) | Z (t0)]

=E
[Q(t0) + A(t0) − S(t0) + U(t0)2 − Q(t0)2 | Z (t0)

]

(a)
≤E

[Q(t0) + A(t0) − S(t0)2 − Q(t0)2 | Z (t0)
]

=E
[
2⟨Q(t0),A(t0) − S(t0)⟩ + ∥A(t0) − S(t0)∥2 | Z (t0)

]

(b )
≤E [2⟨Q(t0),A(t0) − S(t0)⟩ | Z (t0)] + L

(c )
≤2

N∑
n=1

Qn (t0)

(
−ϵ

µn
µΣ

)
+ L

(d )
≤ − 2ϵ

µmin

µΣ
Q(t0) + L, (31)

where (a) follows from the facts thatQn (t )+An (t )−Sn (t )+Un (t ) = max(Qn (t )+An (t )−Sn (t ), 0) for
any t ≥ 0, and (max(a, 0))2 ≤ a2 for any a ∈ R; (b) holds since both the arrival and service processes
have finite supports and L = N max(Amax , Smax )

2
; (c) is true since under the JBT policy the worst

case is when (proportionally) random routing is adopted, which happens if the ID in memory is

either empty or full; (d) comes from the fact that ∥x∥
1
≥ ∥x∥ for any x ∈ RN . Therefore, by the

Foster-Lyapunov theorem, the Markov chain {Z (t ) = (Q(t ),m(t )), t ≥ 0} is positive recurrent.

Having established the fact that {Z (t ) = (Q(t ),m(t )), t ≥ 0} is irreducible, aperiodic and positive

recurrent, we are now ready to apply Lemma 5.1 to show bounded moments of
Q

. Let us consider
the Lyapunov function V (Z ) = Q, and check the two conditions (C1) and (C2) in Lemma 5.1,

respectively.
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For condition (C1), we have

E [∆V (Z ) | Z (t0) = Z ]

=E [Q(t0 + 1) − Q(t0) | Z (t0) = Z ]

=E

[√
Q(t0 + 1)2 −

√
Q(t0)2 | Z (t0) = Z

]

(a)
≤

1

2
Q(t0)

E
[Q(t0 + 1)2 − Q(t0)2 | Z (t0) = Z

]

(b )
≤ − ϵ

µmin

µΣ
+

L

2
Q(t0)

,

where (a) follows from the fact that f (x ) =
√
x is concave; (b) comes from Eq. (31). Thus, condition

(C1) is valid with κ =
LµΣ

ϵ µmin
and η =

ϵ µmin
2µΣ

.

For condition (C2), we have

|∆V (Z ) | = | Q(t0 + 1) − Q(t0) |I (Z (t0) = Z )

(a)
≤ Q(t0 + 1) − Q(t0)I (Z (t0) = Z )

(b )
≤
√
N max(Amax , Smax ),

where (a) holds since | ∥x∥ − y | ≤ x − y for each x, y in RN ; (b) follows from the assumptions

that AΣ (t ) ≤ Amax and Sn (t ) ≤ Smax for any t ≥ 0 and n ∈ N . Thus, condition (C2) is valid with

D =
√
N max(Amax , Smax ).

Therefore, according to Eq. (13) in Lemma 5.1, we get for p = 1, 2, . . . ,

E
[Q

(ϵ )
p
]
≤

1

ϵp

(
2LµΣ
µmin

)p
+

1

ϵp

(
8DµΣ
µmin

)p
(D + µmin )

pp!

≤
Mp

ϵp
,

where the constantMp =
(
2LµΣ
µmin

)p
+ p!

(
8DµΣ
µmin

)p
(D + µmin )

p
.

In addition, if we apply Theorem 2.3 in [11], we can obtain that

E
[
eθ
∗ ∥Q

(ϵ )
∥
]
≤ K1e

θ ∗K2/ϵ , (32)

where the positive constants θ ∗, K1 and K2 are all independent of ϵ . □

B PROOF OF LEMMA 5.3
Proof. Let us consider the following Lyapunov function:

V1 (Z ) ≜
N∑
i=1

N∑
j>i

(
Qi −Q j

)
2

.
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We start with the conditional mean drift of V1 (Z ). Note that we shall omit the time reference (t )
after the first step and Q+ ≜ Q(t + 1).

E [V1 (Z (t + 1)) −V1 (Z (t )) | Z (t ) = Z ]

=

N∑
i=1

N∑
j>i

E
[(
Qi (t + 1) −Q j (t + 1)

)
2

−
(
Qi (t ) −Q j (t )

)
2

| Z (t ) = Z
]

=

N∑
i=1

N∑
j>i

E
[
2

(
Qi −Q j

) (
Ai −Aj − Si + S j

)
−

(
Ui −Uj

)
2

| Z
]

+

N∑
i=1

N∑
j>i

E
[(
Ai −Aj − Si + S j

)
2

+ 2
(
Q+i −Q

+
j

) (
Ui −Uj

)
| Z

]

(a)
=

N∑
i=1

N∑
j>i

E
[
2

(
Qi −Q j

) (
Ai −Aj

)
−

(
Ui −Uj

)
2

| Z
]

+

N∑
i=1

N∑
j>i

E
[(
Ai −Aj − Si + S j

)
2

− 2
(
Q+i Uj +Q

+
j Ui

)
| Z

]
,

in which (a) follows from the fact that the service is independent of queue lengths and homogeneous,

as well as Qn (t + 1)Un (t ) = 0 for all n and t > 0.

Since
Q has a finite second moment in steady state under JBT by Lemma 3.1, the steady-state

mean E
[
V1 (Z

(ϵ )
)
]
is finite for any ϵ > 0. As a result, the mean drift of V1 (·) is zero in steady state,

which directly implies the result in Lemma 5.3. □

C PROOF OF CLAIM 1
Proof. For any t0 ≥ 0, we have

|∆V⊥l (Z ) |

(a)
= |∥Q′

⊥R′l
(t0 + 1)∥ − ∥Q′⊥R′l

(t0)∥|I (Z (t0) = Z )

(b )
≤ ∥Q′

⊥R′l
(t0 + 1) − Q′⊥R′l

(t0)∥I (Z (t0) = Z )

(c )
≤ ∥Q′(t0 + 1) − Q′(t0)∥I (Z (t0) = Z )

(d )
= ∥Q(t0 + 1) − Q(t0)∥I (Z (t0) = Z )

(e )
≤
√
N max(Amax , Smax ),

where (a) follows from Eq. (27); (b) comes from the fact that | ∥x∥ − y | ≤ x − y holds for any
x, y ∈ RN ; (c) is due to the non-expansive property of projection and the fact that Q′

⊥R′l
is the

projection of Q′ onto the polar cone of R ′l ; (d) follows from the definition of Q′ in Eq. (26); (e) holds

due to the assumptions that the AΣ (t ) ≤ Amax and Sn (t ) ≤ Smax for all t ≥ 0 and all 1 ≤ n ≤ N .

With the same arguments, we can establish that

|∆V⊥u (Z ) | ≤
√
N max(Amax , Smax ).

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 3, Article 44. Publication date: January 2019.



44:28 X. Zhou et al.

Since the drift of V⊥ (Z ) is either upper bounded by ∆V⊥l (Z ) or ∆V⊥u (Z ), we finally get

|∆V⊥ (Z ) | ≤
√
N max(Amax , Smax ).

□

D PROOF OF CLAIM 2
Proof. We first start with inequality (29) in Claim 2. Let us define

∆W (Z ) =
[
∥Q′(t + 1)∥2 − ∥Q′(t )∥2

]
I (Z (t ) = Z )

∆W∥u (Z ) =
[
∥Q′
∥R′u

(t + 1)∥2 − ∥Q′
∥R′u

(t )∥2
]
I (Z (t ) = Z ).

.

Then, the mean drift of ∆V⊥u (Z ) can be decomposed as follows.

E [∆V⊥u (Z ) | Z (t ) = Z ]

(a)
=E

[
∥Q′
⊥R′u

(t + 1)∥ − ∥Q′
⊥R′u

(t )∥ | Z (t ) = Z
]

=

[√
∥Q′
⊥R′u

(t + 1)∥2 −
√
∥Q′
⊥R′u

(t )∥2
]
I (Z (t ) = Z )

(b )
≤

1

2∥Q′
⊥R′u

(t )∥
E
[
∥Q′
⊥R′u

(t + 1)∥2 − ∥Q′
⊥R′u

(t )∥2 | Z (t ) = Z
]

(c )
=

1

2∥Q′
⊥R′u

(t )∥
E

[
∆W (Z ) − ∆W∥u (Z ) | Z (t ) = Z

]
(33)

where (a) follows from Eq. (27); (b) holds due to the concavity of function f (x ) =
√
x for x ≥ 0; (c)

comes from the Pythagorean theorem. Next, we will bound each term in Eq. (33), respectively. To

begin with, we have an upper bound for the first term as follows.

E [∆W (Z ) | Z (t ) = Z ]

=E
[
∥Q′(t + 1)∥2 − ∥Q′(t )∥2 | Z (t ) = Z

]

(a)
=E

[
∥Q(t + 1) − r∥2 − ∥Q(t ) − r∥2 | Z (t ) = Z

]

=E
[
∥Q(t ) + A(t ) − S(t ) + U(t ) − r∥2 − ∥Q(t ) − r∥2 | Z (t ) = Z

]

=E
[
∥Q(t ) + A(t ) − S(t ) − r∥2 − ∥Q(t ) − r∥2 | Z (t ) = Z

]

+ E
[
∥U(t )∥2 + 2⟨Q(t + 1) − r − U(t ),U(t )⟩ | Z (t ) = Z

]

(b )
≤E

[
2⟨Q′(t ),A(t ) − S(t )⟩ + ∥A(t ) − S(t )∥2 − 2⟨r,U(t )⟩ | Z (t ) = Z

]

(c )
≤E

[
2⟨Q′(t ),A(t ) − S(t )⟩ − 2⟨r,U(t )⟩ | Z (t ) = Z

]
+ L, (34)

where (a) follows from Eq. (26); (b) holds because of ⟨Q(t + 1),U(t )⟩ = 0 and the dropping of

−∥U(t )∥2; in (c), L = N max(Amax , Smax )
2
, which is true since both the arrival and service processes

have finite support.
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We now turn to provide a lower bound on the second term in Eq. (33) as follows.

E
[
∆W∥u (Z ) | Z (t ) = Z

]
=E

[
∥Q′
∥R′u

(t + 1)∥2 − ∥Q′
∥R′u

(t )∥2 | Z (t ) = Z
]

=E
[
2⟨Q′

∥R′u
(t ),Q′

∥R′u
(t + 1) − Q′

∥R′u
(t )⟩ | Z

]

+ E
[Q

′
∥R′u

(t + 1) − Q′
∥R′u

(t )
2

| Z
]

≥E
[
2⟨Q′

∥R′u
(t ),Q′

∥R′u
(t + 1) − Q′

∥R′u
(t )⟩ | Z

]

=2E
[
⟨Q′
∥R′u

(t ),Q′(t + 1) − Q′(t )⟩ | Z
]

− 2E
[
⟨Q′
∥R′u

(t ),Q′
⊥R′u

(t + 1) − Q′
⊥R′u

(t )⟩ | Z
]

(a)
≥E

[
2⟨Q′

∥R′u
(t ),Q′(t + 1) − Q′(t )⟩ | Z

]

(b )
≥E

[
2⟨Q′

∥R′u
(t ),A(t ) − S(t )⟩ | Z

]
, (35)

where (a) holds because ⟨Q′
∥R′u

(t ),Q′
⊥R′u

(t )⟩ = 0 and ⟨Q′
⊥R′u

(t + 1),Q′
∥R′u

(t )⟩ ≤ 0 since Q′
⊥R′u

(t + 1)

is in the polar cone of R ′u ; (b) follows from Eq. (26) and the fact that all the components of Q′
∥R′u

(t )

and U(t ) are nonnegative. Thus, substituting Eqs. (34) and (35) into Eq. (33), yields

E [∆V⊥l (Z ) | Z (t ) = Z ]

≤
1

2∥Q′
⊥R′l

(t )∥
E
[(
2⟨Q′

⊥R′l
(t ),A(t ) − S(t )⟩ + L

)
− 2⟨r,U(t )⟩ | Z

]

(a)
≤

1

2∥Q′
⊥R′l

(t )∥
E
[(
2⟨Q′

⊥R′l
(t ),A(t ) − S(t )⟩ + L

)
| Z

]

where (a) holds since all the components of r and U(t ) are nonnegative. Thus, we have the bound
in Eq. (29) of Claim 2.

Next, we turn to the bound in inequality (28). Let us define

∆W∥l (Z ) =
[
∥Q′
∥R′l

(t + 1)∥2 − ∥Q′
∥R′l

(t )∥2
]
I (Z (t ) = Z ).

With the same arguments as in Eq. (33), the mean drift of ∆V⊥l (Z ) can be decomposed into two

terms.

E [∆V⊥l (Z ) | Z (t ) = Z ]

=E
[
∥Q′
⊥R′l

(t + 1)∥ − ∥Q′
⊥R′l

(t )∥ | Z (t ) = Z
]

≤
1

2∥Q′
⊥R′l

(t )∥
E

[
∆W (Z ) − ∆W∥l (Z ) | Z (t ) = Z

]
. (36)
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The first term can be upper bounded as in Eq. (34). The second term can be lower bonded in a

similar way as in Eq. (35) except the last step.

E
[
∆W∥l (Z ) | Z (t ) = Z

]
(a)
≥E

[
2⟨Q′

∥R′l
(t ),Q′(t + 1) − Q′(t )⟩ | Z

]

(b )
=E

[
2⟨Q′

∥R′l
(t ),A(t ) − S(t ) + U(t )⟩ | Z

]

(c )
≥E

[
2⟨Q′

∥R′l
(t ),A(t ) − S(t )⟩ − 2⟨r,U(t )⟩ | Z

]
, (37)

where (a) follows from the same arguments as in Eq. (35); (b) comes from the definition of Q′ in Eq.

(26); (c) is true since any component of Q′
∥R′l

(t ) is greater or equal to −r by the definition of R ′l .

Thus, substituting Eqs. (34) and (37) into Eq. (36) yields the bound in Eq. (28) of Claim 2. Hence, we

complete the proof of Claim 2. □

E PROOF OF CLAIM 3
Proof. In order to analyze the inner product in Eq. (30), it is advantageous to reorder the

queue-length vector Q(t ). More precisely, let σt (·) be a permutation of (1, 2, . . . ,N ) such that

Qσt (1) (t ) ≤ Qσt (2) (t ) ≤ . . . ≤ Qσt (N ) (t ) and ties are broken randomly. We define the permutation

vectors as follows

Q̂(t ) ≜ (Qσt (1) (t ),Qσt (2) (t ), . . . ,Qσt (N ) (t ))

Â(t ) ≜ (Aσt (1) (t ),Aσt (2) (t ), . . . ,Aσt (N ) (t ))

Ŝ(t ) ≜ (Sσt (1) (t ), Sσt (2) (t ), . . . , Sσt (N ) (t )).

Let pn (t ) be the probability that the new arrivals are dispatched to queue n at time-slot t , and

P̂(t ) = (pσt (1) (t ),pσt (2) (t ), . . . ,pσt (N ) (t )), i.e., the i-th component of P̂(t ) is the probability of

dispatching arrivals to the i-th shortest queue at time-slot t . We define

∆(t ) = P̂(t ) − P̂rand (t ), (38)

where P̂rand (t ) denotes the permutation of the dispatching distribution p(t ) under proportionally
random routing, i.e., the i-th component of P̂rand (t ) is µσt (i )/µΣ.

As before, we let Q̂′(t ) = Q̂(t )−r. By the symmetry of R ′s with respect to the line 1 = (1, 1, . . . , 1),
we have that the permutation of the perpendicular componentQ′

⊥R′s
(t ) is equal to the perpendicular

component of the permutation of Q′(t ), which is denoted by Q̂′⊥s (t ). That is, Q̂
′
⊥s (t ) = Q̂′(t ) −

Q̂′
∥R′s

(t ) in which Q̂′
∥R′s

(t ) is the projection of the vector Q̂′(t ) onto R ′s and s ∈ {l ,u}.
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Based on the notions introduced above, the inner product in Eq. (30) can be rewritten as follows.

E
[
⟨Q′
⊥R′s

(t ),A(t ) − S(t )⟩ | Z (t ) = Z
]

(a)
=E

[
⟨Q̂′⊥s (t ), Â(t ) − Ŝ(t )⟩ | Z (t ) = Z

]

(b )
=

N∑
n=1

Q̂ ′⊥s,n (t )

[
λΣ

(
∆n (t ) +

µσt (n)

µΣ

)
− µσt (n)

]

(c )
=

N∑
n=1

Q̂ ′⊥s,n (t )∆n (t )λΣ +
N∑
n=1

Q̂′⊥s,n (t )
(
−ϵ

µσt (n)

µΣ

)

≤

N∑
n=1

Q̂ ′⊥s,n (t )∆n (t )λΣ + ϵ
Q̂
′
⊥s (t )

1, (39)

where (a) follows from the fact inner product remains the same under permutation and the fact

that the permutation of Q′
⊥R′s

(t ) is equal to Q̂′⊥s (t ) as shown above; (b) holds due to the definition

of ∆(t ) and Q̂ ′⊥s,n (t ) is the n-th component of Q̂′⊥s (t ); (c) simply follows from λΣ = µΣ − ϵ .
In order to further analyze Eq. (39), we need the following results, which are proved at the end

of this proof.

Claim 4. Regarding the vectors Q̂′⊥s (t ) and ∆(t ) in Eq. (39), we have the following properties for
any system state Z (t ) such that V⊥ (Z (t )) > 0.

(a) The vector Q̂′⊥s (t ) satisfies Q̂
′
⊥s,1 (t ) ≤ Q̂ ′

⊥s,2 (t ) ≤ . . . ≤ Q̂ ′
⊥s,N (t ) and Q̂ ′

⊥s,1 (t ) ≤ 0, Q̂ ′
⊥s,N (t ) ≥ 0,

where s ∈ {l ,u}. More precisely, we have

Q̂ ′
⊥l,1 (t ) = 0 and Q̂′

⊥l,N (t ) > 0 (40)

Q̂ ′⊥u,1 (t ) < 0 and Q̂′⊥u,N (t ) = 0. (41)

(b) The vector ∆(t ) satisfies for some k ∈ {2, 3, . . . ,N }

∆n (t ) ≥ 0,n < k and ∆n (t ) ≤ 0,n ≥ k

and

min ( |∆1 (t ) |, |∆N (t ) |) ≥ δ ,

for some constant δ that is independent of ϵ .

Based on Claim 4, we can bound the first term in Eq. (39) for any system state Z (t ) such that

V⊥ (Z (t )) > 0 as follows

N∑
n=1

Q̂ ′⊥s,n (t )∆n (t )λΣ ≤ −λΣδ
(
|Q̂ ′⊥s,1 (t ) | + |Q̂

′
⊥s,N (t ) |

)
. (42)

This inequality can be verified as follows. Since ∆(t ) satisfies the property (b) in Claim 4, it can be

constructed in the following way. To start with, all the ∆n (t ) is equal to 0. Then, we decrease ∆N (t )
and increase ∆1 (t ) by the same amount of δ . After this process, the left-hand side of Eq. (42) is

equal to λΣ (δQ̂
′
⊥s,1 (t ) − δQ̂

′
⊥s,N (t )), which is equivalent to the right-hand side of Eq. (42) because

of Q̂ ′
⊥s,1 (t ) ≤ 0, Q̂ ′

⊥s,N (t ) ≥ 0 in (a) of Claim 4. Then, due to the first condition in (b) of Claim 4

and the fact that

∑N
n=1 ∆n (t ) = 0, any further construction (if necessary) for ∆(t ) can only take the

following way: it decreases some amount (say β) from ∆i (t ) where i ≥ k , and then increase the

same amount, i.e., β for some ∆j (t ) where j < k . Through this process, the left-hand side of Eq. (42)
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can only further decrease due to the monotone nondecreasing property of Q̂′⊥s (t ) in (a) of Claim 4.

As a result, we have established the upper bound in Eq. (42).

Next, we can further bound the right-hand side of Eq. (42) in terms of ∥Q̂′⊥s (t )∥1. First, consider
the case when s = l , we have

N∑
n=1

Q̂ ′
⊥l,n (t )∆n (t )λΣ ≤ −λΣδ

(
|Q̂ ′
⊥l,1 (t ) | + |Q̂

′
⊥l,N (t ) |

)
≤ −λΣδ |Q̂

′
⊥l,N (t ) |

(a)
≤
−λΣδ

N
Q̂
′
⊥l (t )

1 (43)

where (a) holds since ∥Q̂′
⊥l (t )∥1 ≤ N |Q̂ ′

⊥l,N (t ) | by the monotone nondecreasing property of Q̂′⊥s (t )
and Eq. (40) in (a) of Claim 4. Similarly, when s = u, we have

N∑
n=1

Q̂ ′⊥u,n (t )∆n (t )λΣ ≤ −λΣδ
(
|Q̂ ′⊥u,1 (t ) | + |Q̂

′
⊥u,N (t ) |

)
≤ −λΣδ |Q̂

′
⊥u,1 (t ) |

(a)
≤
−λΣδ

N
Q̂
′
⊥u (t )

1 (44)

where (a) holds since ∥Q̂′⊥u (t )∥1 ≤ N |Q̂ ′
⊥l,N (t ) | by the monotone nondecreasing property of Q̂′⊥s (t )

and Eq. (41) in (a) of Claim 4.

Therefore, based on Eqs. (43) and (44), the left-hand side of Eq. (42) can be upper bounded in

terms of ∥Q̂′⊥s (t )∥1 as follows.

N∑
n=1

Q̂ ′⊥s,n (t )∆n (t )λΣ ≤
−λΣδ

N
Q̂
′
⊥s (t )

1 (45)

for s ∈ {l ,u} and any system state Z (t ) with V⊥ (Z (t )) > 0. Now, substituting Eq. (45) into Eq. (39),

yields

E
[
⟨Q′
⊥R′s

(t ),A(t ) − S(t )⟩ | Z (t ) = Z
]

≤

(
ϵ −

λΣδ

N

)
Q̂
′
⊥s (t )

1

≤ −
µΣδ

2N
Q̂
′
⊥s (t )

1 whenever ϵ ≤
µΣδ

2N + δ

≤ −
µΣδ

2N
Q
′
⊥R′s

(t ),

for s ∈ {l ,u} and any system state Z (t ) with V⊥ (Z (t )) > 0, in which the last inequality follows

from the fact ∥Q′
⊥R′s

(t )∥1 = ∥Q̂′⊥s (t )∥1 and ∥x∥1 ≥ ∥x∥ for any x ∈ RN . Hence, we establish the

result in Claim 3.

Now, we give the proof of Claim 4.

For (a), by the definition of Q̂′(t ), we have Q̂ ′
1
(t ) ≤ Q̂ ′

2
(t ) ≤ . . . ≤ Q̂ ′N (t ). The projection of Q̂′(t )

onto R ′u , which is equal to Q̂′
⊥l (t ), is given by

Q̂′
⊥l (t ) = Q̂′

∥u (t ) = max

(
Q̂′(t ), 0

)
. (46)
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As a result, we have

Q̂′⊥u (t ) = Q̂′(t ) − Q̂′
∥u (t ) = min

(
Q̂′(t ), 0

)
. (47)

Therefore, we have Q̂ ′
⊥s,1 (t ) ≤ Q̂ ′

⊥s,2 (t ) ≤ . . . ≤ Q̂ ′
⊥s,N (t ) for s ∈ {l ,u}. Moreover, sinceV⊥ (Z (t )) >

0, we have Q(t ) < R (r )
, which implies that Q′(t ) < R ′l and Q′(t ) < R ′u . Thus, we have there exist

queues i and j such that Q ′i (t ) < 0 and Q ′j (t ) > 0, which further gives Q̂ ′
1
(t ) < 0 and Q̂ ′N (t ) > 0. As

a result, by Eqs. (46) and (47), we have

Q̂ ′
⊥l,1 (t ) = 0 and Q̂′

⊥l,N (t ) > 0

Q̂ ′⊥u,1 (t ) < 0 and Q̂′⊥u,N (t ) = 0,

which establishes Q̂ ′
⊥s,1 (t ) ≤ 0 and Q̂ ′

⊥s,N (t ) ≥ 0, where s ∈ {l ,u}. Hence, we have completed the

proof of (a) in Claim 4.

Now let us consider (b) in Claim 4. First, sinceV⊥ (Z (t )) > 0, we have Q(t ) < R (r )
, which implies

that there exists queues i and j such that Qi (t ) < r and Q j (t ) > r . This means that the number of

IDs in memory denoted by |m(t ) | is between 1 and N − 1. Suppose |m(t ) | = M ∈ {1, 2, . . . ,N − 1},
then we have

∆n (t ) > 0,n < k and ∆n (t ) < 0,n ≥ k,

where k = M + 1. This is because for n < k

∆n (t )
(a)
=

µσt (n)∑M
i=1 µσt (i )

−
µσt (n)

µΣ

(b )
> 0,

and for n ≥ k

∆n (t )
(c )
= 0 −

µσt (n)

µΣ
< 0,

where (a) and (c) follow from the definition of ∆(t ) in Eq. (38) and the JBT policy; (b) holds due to

µΣ =
∑N

i=1 µσt (i ) andM < N . Moreover, with simple calculations, we get

min ( |∆1 (t ) |, |∆N (t ) |) ≥
µminµmin,2

µΣ (µΣ − µmin )
,

where µmin = minn∈N µn , i.e., the smallest service rate among all servers. µmin,2 is the second

smallest service rate among all the servers. Hence, we complete the proof of Claim 4. □
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