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Abstract

In this paper, we study the generalization performance of overparameterized 3-
layer NTK models. We show that, for a specific set of ground-truth functions
(which we refer to as the “learnable set”), the test error of the overfitted 3-layer
NTK is upper bounded by an expression that decreases with the number of neu-
rons of the two hidden layers. Different from 2-layer NTK where there exists
only one hidden-layer, the 3-layer NTK involves interactions between two hidden-
layers. Our upper bound reveals that, between the two hidden-layers, the test error
descends faster with respect to the number of neurons in the second hidden-layer
(the one closer to the output) than with respect to that in the first hidden-layer (the
one closer to the input). We also show that the learnable set of 3-layer NTK with-
out bias is no smaller than that of 2-layer NTK models with various choices of
bias in the neurons. However, in terms of the actual generalization performance,
our results suggest that 3-layer NTK is much less sensitive to the choices of bias
than 2-layer NTK, especially when the input dimension is large.

1 Introduction

Neural tangent kernel (NTK) models (Jacot et al., 2018) have been recently studied as an impor-
tant intermediate step to understanding the exceptional generalization power of overparameterized
deep neural networks (DNNs). Deep neural networks (DNNs) usually have so many parameters that
they can perfectly fit all train data, yet they still have good generalization performance (Zhang et al.,
2017; Advani et al., 2020). This seems contradicting to the classical wisdom of “bias-variance-
tradeoff” in the statistical machine learning methods (Bishop, 2006; Hastie et al., 2009; Stein, 1956;
James & Stein, 1992; LeCun et al., 1991; Tikhonov, 1943). To understand this distinct behavior of
DNNs, a recent line of work studies the so-called “double-descent” phenomenon, beginning with
overfitted linear models. These results on linear models suggest that the test error indeed decreases
again in the overparameterized region, as the model complexity increases beyond the number of sam-
ples (Belkin et al., 2018, 2019; Bartlett et al., 2020; Hastie et al., 2019; Muthukumar et al., 2019;
Ju et al., 2020; Mei & Montanari, 2019). However, these studies use linear models with simple fea-
tures such as Gaussian or Fourier features, and hence they fail to capture the non-linearity in neural
networks. In contrast, NTK models adopt features generated by non-linear activation functions (i.e.,
neurons of DNNs), and thus they can be viewed as an intermediate step between simple linear mod-
els and DNNs. Along this line, the work in Ju et al. (2021) studies 2-layer NTK models, and shows
that the 2-layer NTK model indeed exhibits better and different descent behavior in the overparam-
eterized region, which might be closer to that of an actual neural network.

Motivated by Ju et al. (2021), it is of great interest to understand whether similar insights extend
to deeper NTK models. In particular, in this paper we study NTK models with 3 layers. Although
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both 2-layer and 3-layer NTK models share similar assumptions (e.g., trained weights do not change
much from initialization, and features are linearized around the initial state), their difference in struc-
ture leads to completely different feature formation. Compared with 2-layer NTK models that only
contain one hidden-layer of neurons, 3-layer NTK models have two hidden-layers, which interact
in more complex ways not observed in 2-layer NTK models. Specifically, let p1 and p2 denote the
number of neurons in the two hidden layers. Then, the ultimate features of the 3-layer NTK models
depend on both p1 and p2. This dependency leads to the following questions. First, the width of
which layer is more important in governing the descent behavior, p1 or p2? Further, to get better
descent behaviors, should p1 and p2 grow at the same speed, or should one of them grow faster
than the other? Second, do 3-layer NTK models have any performance advantage over 2-layer NTK
models?

To answer these questions, in this paper we study the generalization performance of overfitted min-
ℓ2-norm solutions for 3-layer NTK models where the middle layer is trained. For a set of learnable
functions (which we refer to as the “learnable set”), we provide an upper bound on the test error for
finite values of p1 and p2. To the best of our knowledge, this upper bound is the first result that can
reveal the dependency of the descent behavior on p1 and p2 separately. We then compare 3-layer
NTK with 2-layer NTK with respect to the corresponding learnable set and the actual generalization
performance. Our comparison reveals several important differences between 3-layer NTK and 2-
layer NTK, in terms of the descent behavior, the size of the learnable set, and the sensitivity of the
generalization performance to the choice of bias of the neurons.

Analyzing the Generalization Error: First, we show that the generalization error (denoted by the
absolute value of the difference between the model output and the ground-truth for a test input) is up-
per bounded by the sum of several terms on the order of O(1/

√
n) (n denotes the number of training

data), O(1/p2) (p2 denotes the number of neurons in the second hidden-layer), O( 4
√

log p1/p1) (p1
denotes the number of neurons in the first hidden-layer), plus another term related to the magnitude
of noise. Similar to 2-layer NTK (Arora et al., 2019; Ju et al., 2021; Satpathi & Srikant, 2021), our
upper bound suggests that when there are infinitely many neurons, the generalization error decreases
with the number of samples n at the speed of

√
n and will approach zero when n→∞ in the noise-

less situation. Further, the noise term will not explode when the number of neurons goes to infinity,
which is also similar to that for 2-layer NTK. However, our upper bound also reveals new insights
that are different from the results for 2-layer NTK. Specifically, our upper bound decreases slower

with respect to the number of neurons in the first hidden-layer p1 at the speed of 4
√

(log p1)/p1, and

decreases faster with respect to the number of neurons in the second1 hidden-layer p2 at the speed
of 1/

√
p2. Further, our upper bounds hold regardless of how fast p1 and p2 increase relative to each

other (e.g., they could increase at the same speed, or one could increase faster than the other).

Characterizing the Learnable Set: We then show that, even if we only train the middle-layer
weights, the learnable set (i.e., the set of ground-truth functions for which the above upper bound
holds) of the 3-layer NTK without bias contains all finite degree polynomials, which is strictly
larger than that of the 2-layer NTK without bias and is at least as large as the 2-layer NTK with bias.
Recently, Geifman et al. (2020); Chen & Xu (2020) show that when all layers are trained, 3-layer
NTK leads to exactly the same reproducing kernel Hilbert space (RKHS) as 2-layer NTK with biased
ReLU (although they assumed an infinite number of neurons, and did not characterize the descent
behavior of the generalization error). Combining with their results, we can draw the conclusion that
training only the middle-layer weights is at least as effective as training all layers in 3-layer NTK, in
terms of the size of the learnable set.

Sensitivity to the Choices of Bias: Even though a similar learnable set can be attained by 3-layer
NTK (with or without bias) and 2-layer NTK (with bias), our results suggest that the actual gener-
alization performance can still differ significantly in terms of the sensitivity to the choice of bias,
especially when the input dimension d is large. One type of bias setting commonly used in litera-
ture (Ghorbani et al., 2021a; Satpathi & Srikant, 2021) is that the bias has a similar magnitude as
each element of the input vector, which we refer to as “normal bias”. However, we show that such
a normal bias setting has a negative impact on the generalization error for overfitted 2-layer NTK
when d is large. To avoid this negative impact, it is important to use another type of bias setting
where the bias has a similar magnitude as the norm of the whole input vector, which we refer to as

1In this paper, the first hidden-layer denotes the one closer to the input layer, while the second hidden-layer
denotes the one closer to the output layer.
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Figure 1: A fully-connected three-layer neural network where input dimension d = 2, the number
of neurons of the first hidden-layer p1 = 3, and the number of neurons of the second hidden-layer
p2 = 4.

“balanced bias”. In contrast, for 3-layer NTK, different bias settings do not have an obvious effect
on the generalization performance. In summary, compared with 2-layer NTK, the use of an extra
non-linear layer in 3-layer NTK appears to significantly reduce the impact due to the choice of bias,
and therefore makes the learning more robust.

Our work is related to the growing literature on the generalization performance of such shallow
and fully-connected neural network. However, most of these studies focus on 2-layer neural net-
works. Among them, they differ in which layer to train. For example, Mei & Montanari (2019);
d’Ascoli et al. (2020); Mei et al. (2022) consider the “random feature” (RF) model that only trains
the top-layer weights and fixes the bottom-layer weights, while 2-layer NTK trains the bottom-layer
weights. In contrast, our work on 3-layer NTK neither trains the bottom-layer or top-layer weights.
Instead, we train the middle-layer weights, since the middle-layer of a 3-layer model involves the
interaction between two hidden-layers, which does not exist in 2-layer models. The above studies of
2-layer network also differ in how the number of neurons/features p, the number of training samples
n, and the input dimension d grow. Mei & Montanari (2019); Mei et al. (2022) study the generaliza-
tion performance of the RF model where the number of neurons p, the number of training data n,
and the input dimension grow proportionally to infinity. While Ghorbani et al. (2021b) focuses on
the approximation error (i.e., expressiveness) of both RF and NTK models, their analysis on general-
ization error is only on the limit n or p→∞. All of these studies are quite different from ours with
fixed n and finite p. Other works such as Arora et al. (2019); Satpathi & Srikant (2021); Fiat et al.
(2019) study the situation where the number of training samples n is given and the number of neu-
rons p is larger than a threshold, which is closer to our setup. However, these studies usually do
not quantify how the generalization performance depends on the number of neurons p. Specifically,
they usually provide an upper bound on the generalization error when the number of neurons p is
greater than a threshold, while the upper bound itself does not depend on p. Thus, such an upper
bound cannot explain the descent behavior of NTK models. The work in Ju et al. (2021) does study
the descent behavior with respect to p, and is therefore the closest to our work. However, as we have
explained earlier, there are crucial differences between 2 and 3 layers in both the descent behavior
and the learnable set of ground-truth functions. In addition to the above references, our work is
also related to Allen-Zhu et al. (2019) (which studies NTK without overfitting) and Ji & Telgarsky
(2019) (which studies classification by NTK). Their settings are however different from ours in that
we consider overfitted solutions for regression. In summary, our paper is the first to provide a high-
probability upper bound on the generalization error of the overfitted 3-layer NTK (where only its
middle layer weights are trained), and to characterize how the generalization error decreases with
the number of neurons p1 and p2.

2 System Model

Let f : Rd 7→ R denote the ground-truth function. Let (Xi, f(Xi) + ǫi), i = 1, 2, · · · , n denote

n pieces of training data, where X ∈ R
n×d is the matrix, each column of which is the input of one

training sample, ǫ ∈ R
n×1 denotes the noise in the output of training data. We define the training

output vector generated by the ground-truth function as F(X) := [f(X1) f(X2) · · · f(Xn)]
T ∈

R
n.
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We use a[j] to denote the j-th part (sub-vector) of the vector a. The part size depends on a. Specifi-
cally, If a has p1 elements, then each part has 1 elements. If a has dp1 elements, then each part has
d elements. If a has p1p2 elements, then each part has p1 elements.

We consider a fully-connected 3-layer neural network as illustrated in Fig. 1, which consists of
normalized d-dimensional input x ∈ Sd−1 (a unit hyper-sphere), p1 ReLUs (rectifier linear units
max(·, 0)) at the first hidden-layer, p2 ReLUs at the second hidden-layer, bottom-layer weights

(between input and 1st hidden-layer) V ∈ R
(p1d)×1, middle-layer weights (between 1st hidden-layer

and 2nd hidden-layer) W0 ∈ R
(p1p2)×1, and top-layer weights w ∈ R

p2×1 (between 2nd hidden-
layer and output).

2.1 Overfitted NTK solution

In this subsection, we will derive the overfitted solution for this 3-layer neural network using the
NTK approximation. Let hRF

V,x ∈ R
p1×1 denote the output of the first hidden-layer. We then have

hRF
V,x[j] := (xT

V[j])1{xTV[j]>0}, j = 1, 2, · · · , p1. (1)

(We use the superscript “RF” because hRF
V,x is indeed the feature vector of a random feature model

(Mei & Montanari, 2019).) After training the middle-layer weights, W0 changes to W1 := W0 +
∆W. Then, the change of the output is

p2∑

k=1

wk1{W1[k]ThRF
V,x>0}W1[k]

ThRF
V,x −

p2∑

k=1

wk1{W0[k]ThRF
V,x>0}W0[k]

ThRF
V,x.

The NTK model (Jacot et al., 2018) assumes that ∆W is very small and thus the activation pattern
does not change much. In other words, we can approximate 1{W1[k]ThRF

V,x>0} by 1{W0[k]ThRF
V,x>0}.

Define ∆W ∈ R
(p1p2)×1 as ∆W[k] := wk · ∆W[k], k = 1, 2, · · · , p2. Define hThree

V,W0,x
∈

R
1×(p1p2) such that

hThree
V,W0,x[k] := (hRF

V,x)
T · 1{(hRF

V,x)
TW0[k]>0}, (2)

where k = 1, 2, · · · , p2. Therefore, the change of the output can be approximated by

p2∑

k=1

wk1{W0[k]ThRF
V,x>0}∆W[k]ThRF

V,x = hThree
V,W0,x∆W.

We thus obtain a linear model in ∆W. We provide an illustration of the formation and structure
of these vectors in Fig. 4, Appendix A.1 in Supplementary Material. Define the design matrix

H ∈ R
n×(p1p2) such that its i-th row is Hi = hThree

V,W0,Xi
. Notice that overfitted gradient descent on

a linear model converges to the min ℓ2-norm solution2, which is denoted by

∆W
ℓ2 := argmin

w∈R(p1p2)×1

‖w‖2 subject to Hw = F(X) + ǫ.

When H is full row-rank (which holds with high probability under certain conditions), the trained
model is then

f̂ ℓ2(x) = hThree
V,W0,x∆W

ℓ2 = hThree
V,W0,xH

T (HH
T )−1(F(X) + ǫ). (3)

Notice that the trained model is determined by multiple random variables.

In order to analyze the generalization performance of the trained model, we have to make assump-
tions on the distribution of those random variables. Let µ(·), λ(·), and γ(·) denote the probability
density function of x, V[j], and W0[k], respectively. For simplicity, we make the following assump-
tion that all random variables follow uniform distribution.

2As suggested by other prior works Satpathi & Srikant (2021); Hastie et al. (2019); Ju et al. (2021), if we
perform gradient descent training on a linear model from zero initial point until the training error is zero
(i.e., overfitting), then the solution will be exactly the min ℓ2-norm solution. Note that we do not need to be
concerned about the training dynamics here, because the min ℓ2-norm overfitted solution can be written down
exactly as in Eq. (3).

4



Assumption 1. The input x and the bottom-layer initial weights V[j]’s (j = 1, 2, · · · , p1) are i.i.d.

and uniformly distributed in Sd−1. In other words, µ(·) and λ(·) are both unif(Sd−1). The middle-
layer initial weights W0[k]’s (k = 1, 2, · · · , p2) are i.i.d. and uniformly distributed in Sp1−1. In
other words, γ(·) is unif(Sp1−1). The top-layer weights w are all non-zero3.

Remark 1. Readers may be curious why we only train the middle-layer weights. Part of the reason
is technicality: if the bottom layer is also trained, the aggregate output of the first hidden-layer may
have changed so much that the second hidden-layer’s inputs and ReLU activation patterns change
significantly from initialization, which may violate the NTK assumption. The work in Geifman et al.
(2020); Chen & Xu (2020) is not concerned about this difficulty, since they are mostly interested in
the expressive power of the RKHS, assuming an infinite number of neurons. In contrast, we wish to
capture the effect of finite width, and thus train only the middle layer to avoid this difficulty. More
importantly, the middle-layer weights interact with both the first hidden layer and the second hidden-
layer, and are the major structural distinction compared with 2-layer NTK. This setting thus helps
us to answer the following interesting question: will training the middle layer alone already achieve
the same (potential) benefit as training all layers (especially given that the latter encounters more
technical difficulty)?

3 Generalization Performance

In this section, we will show our main results about the generalization performance of the aforemen-
tioned 3-layer NTK model for a specific set of functions. We first introduce a set of ground-truth
functions that may be learnable and then provide a high-probability upper bound on the test error.
We then discuss some useful implications of our upper bound.

3.1 A set of ground-truth functions that may be learnable

We define kernel functions KRF, KTwo, and KThree : [−1, 1] 7→ R as follows (whose meanings will
be explained soon):

KRF(a) :=

√
1− a2 + a · (π − arccos(a))

2dπ
, (4)

KTwo(a) := a · π − arccos(a)

2π
, (5)

KThree(a) :=
KTwo

(
2d ·KRF(a)

)

2d
. (6)

(Notice that 2d · KRF(a) ∈ [0, 1] for all a ∈ [−1, 1] by Lemma 43 in Supplementary Material,

Appendix I, and hence KThree(·) is well defined.) We define a set Fℓ2
(3) of ground-truth functions

based on those kernels:

Definition 1 (learnable set of 3-layer NTK).

Fℓ2
(3)

:=

{

fg : Sd−1 7→ R

∣
∣
∣ fg(x) =

∫

Sd−1

KThree(xTz)g(z)dµ(z), ‖g‖∞ <∞
}

, (7)

where ‖g‖∞ := supz∈Sd−1 |g(z)|.

To see why functions in Fℓ2
(3) may be learnable, we can check what the learned result f̂ ℓ2 in

Eq. (3) should look like. When there are infinite number of neurons and there is no noise (i.e.,
ǫ = 0), what remains on the right-hand-side of Eq. (3) can be viewed as the product of two
terms, hThree

V,W0,x
H

T and (HH
T )−1

F(X). For the first term hThree
V,W0,x

H
T , note that each row of

H is given by hThree
V,W0,Xi

for i = 1, 2, · · · , n. Thus, when p1, p2 → ∞, the i-th element of

hThree
V,W0,x

H
T , which is the inner product between hThree

V,W0,x
and hThree

V,W0,Xi
, converges in proba-

bility to KThree(hThree
V,W0,x

(hThree
V,W0,Xi

)T ), which is exactly the kernel function of 3-layer NTK. By

representing the second term (HH
T )−1

F(X) with a certain g(·), f̂ ℓ2 must then approach the form

3We do not need to specify the distribution of w, since w is absorbed into the regressor ∆W by definition

∆W[k] := wk ·∆W[k], k = 1, 2, · · · , p2.
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in Eq. (7). (See Supplementary Material, Appendix B for details.) Intuitively, KThree can be thought
of as the composition of the kernels of each of the two layers, which are KTwo and KRF given in
Eq. (5) and Eq. (4). Specifically, suppose that we fix the output of the first hidden layer (i.e., hRF

V,x)
and regard it as the input of a 2-layer NTK formed by the top two layers of the 3-layer neural net-
work. By letting p2 → ∞, we can show that the inner product between hThree

V,W0,x
and hThree

V,W0,Xi

approaches KTwo((hRF
V,x)

ThRF
V,Xi

) (with necessary normalization of hRF
V,x and hRF

V,Xi
), where KTwo

is exactly the kernel of 2-layer NTK in Ju et al. (2021). Second, when p1 → ∞, we can show that
(hRF

V,x)
ThRF

V,Xi
approaches KRF(xT

Xi), where KRF is exactly the kernel of the random-feature

model (Mei & Montanari, 2019). In summary, we expect that functions in Fℓ2
(3) can be approxi-

mated by f̂ ℓ2(·). However, we note that the above deviation is only about the expressiveness of
3-layer NTK and it does not precisely reveal its generalization performance.

3.2 An upper bound on the generalization error

We now present the first main result of this paper, which is an upper bound that quantifies the
relationship between the generalization performance and system parameters.

Theorem 1. For any ground-truth function f(x) = fg(x) ∈ Fℓ2
(3), when d is fixed and p1, p2 are

much larger than n, (with high probability) we have

|f̂ ℓ2(x)− f(x)| = O

(‖g‖∞√
n

)

︸ ︷︷ ︸

Term A

+

(

O

(‖g‖1√
p2

)

︸ ︷︷ ︸

Term B

+

O

(

‖g‖1 4

√

log p1
p1

)

︸ ︷︷ ︸

Term C

+
‖ǫ‖2√

n
︸ ︷︷ ︸

Term D

)

·O
(

n
2

d−1+
1
2 ·
√

log n
)

︸ ︷︷ ︸

Term E

. (8)

A more precise version of the upper bound and the condition of Theorem 1 as well as its derivation
can be found in Supplementary Material, Appendix C.

As we can see, Eq. (8) captures how the test error depends on finite values of parameters n, p1, p2,
‖ǫ‖2, and g. Later in this section we will examine more closely how n, p1, and p2 affect the value
of the upper bound. Regarding the dependency on g, Eq. (8) works as long as ‖g‖1 and ‖g‖∞ are

finite4. Intuitively, the norm of g represents the complexity of the ground-truth function in Fℓ2
(3).

When the norm of g is larger, then the right-hand side of Eq. (8) becomes larger, which indicates
that such ground-truth function is harder to learn. A simple example is that if we enlarge a ground

truth function fg ∈ Fℓ2
(3) by 2 times (which means g is 2 times larger), then since the model is linear,

the test error |f̂ ℓ2(x) − f(x)| will become 2 times larger. We will discuss more about which types
of functions satisfy the condition of finite norm of g in Section 4.

Next, we will discuss some implications of this upper bound of 3-layer NTK. While some of them
are similar to 2-layer NTK, others are significantly different, revealing the complexity due to having
more layers.

3.3 Interpretations similar to 2-layer NTK

Based on the upper bound in Theorem 3, we have the following insights for 3-layer NTK, which
are similar to those for 2-layer NTK shown in Ju et al. (2021). These similarities may reveal some
intrinsic properties of the NTK models regardless of the number of layers.

Zero test error with n→∞ in the ideal situation: In the ideal situation where there are infinitely
many neurons and no noise, the only remaining term in Eq. (8) is Term A. Notice that Term A
decreases to zero as n → ∞, which indicates that the generalization error decreases to zero when

4Indeed, as long as ‖g‖∞ < ∞, then ‖g‖1 < ∞. That is why we only include the condition ‖g‖∞ < ∞
in Eq. (7). Notice that the assumption ‖g‖∞ < ∞ can be relaxed to ‖g‖1 < ∞ by similar methods showing
in Ju et al. (2021). However, as shown in Ju et al. (2021), such relaxation leads to a different upper bound with
slower descent speed with respect to n.
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Figure 2: Curves of MSE for 3-layer NTK (no-bias) with respect to p1 or p2 when there exists
Gaussian noise whose mean is zero and the variance is σ2. The ground-truth function is f(x) =
(
xTe1

)2
+
(
xTe1

)3
where d = 3. Sample size is n = 200. Every curve is the median of 20 random

simulations.

more training data are provided in the ideal situation. Term A suggests that such decreasing speed
is at least 1/

√
n. Such result is consistent with that of 2-layer NTK, e.g., in Arora et al. (2019).

3.4 Insights that are distinct compared with 2-layer NTK

Compared with 2-layer NTK, an important difference for 3-layer NTK is that there are more than
one hidden-layers. Therefore, the speed of the descent of 3-layer NTK involves the interaction
between two hidden-layers.

Descent with respect to the number of neurons: In Eq. (8), Term B and Term C contain p1 and
p2, respectively. For any given n and noise level ‖ǫ‖2, Terms A and D do not change, and Term E
decreases with p1 and p2. (More discussion about Term E can be found in Supplementary Material,
Appendix D, where we discuss the noise effect.) Therefore, by increasing p1 and p2, Term B and
Term C keep decreasing. In summary, right-hand-side of Eq. (8) decreases as the number of neurons
p1 and p2 increases, which validates the descent in the overparameterized region of 3-layer NTK.

Different descent speed: As shown in Eq. (8), p1 and p2 play different roles in the descent of the
generalization error. Comparing Term B and Term C of Eq. (8), we can see that the upper bound of

the test error |f̂ ℓ2(x) − f(x)| decreases faster with respect to p2 (at the speed of
√
p2) and slower

with respect to p1 (at the speed of 4
√

p1/ log p1). We emphasize that this difference is not due to
the number of weights/parameters contributed by the number of neurons in each hidden-layer of
p1 and p2

5. Instead, we conjecture that such difference in the speed of descent may be due to the
different positions in this 3-layer neural network structure, where the second hidden-layer takes the
trained middle-layer weights as its input (and thus utilizes the trained weights better than the first
hidden-layer).

We use numerical results to illustrate the different roles of p1 and p2 in reducing the generalization
error. We fix p2 = 200 and plot the MSE with respect to p1 in Fig. 2(b). Although the test error
decreases when p1 increases, the decreasing speed is slow, especially for the noisy situation. Such a
slow decreasing speed with p1 remains even when p2 is fixed to a much higher value. For example,
in Fig. 2(b), we fix p2 = ∞, we still observe the similarly slow decreasing speed with p1 as shown
by Fig. 2(c). In contrast, the descent with respect to p2 should be easier to observe and can reach a
lower test MSE. In Fig. 2(d), we fix p1 = 200 and increase p2 (i.e., we exchange the values of p1
and p2 in Fig. 2(c)(d)). As we can see, all three curves in Fig. 2(d) have a more obvious descent
and decrease to lower MSE compared with those in Fig. 2(c), which validates our conjecture that
the descent speed with respect to the number of neurons of the second hidden-layer is faster.

Notice that our upper bound Eq. (8) also suggests a descent when both p1 and p2 increase simultane-
ously. We use simulation result by Fig. 2(a) to support this point. We fixed n = 200 and let p1 = p2
increase simultaneously. The ground-truth model in this figure is f(x) = (xTe)2 + (xTe)3 where
d = 3. The green, orange, and blue curves denote the situations of σ2 = 0 (no noise), σ2 = 0.01,
and σ2 = 0.04, respectively. Every point in this figure is the median of 20 simulation runs. We also

5Specifically, the number of weights that get trained equals to p1p2 and the total number of weights for
bottom, middle, and top layers equals to dp1 + p1p2 + p2. In other words, the number of weights (either for
the middle layer or for all layers) does not increase faster by increasing p2 instead of p1.
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provide the box plot6 of the situation of σ2 = 0.01 (correspond to the orange curve). It is obvious
that all three curves descend, which verifies that the generalization error of the overfitted 3-layer
NTK model decreases when p1 and p2 increase simultaneously at the same speed. By observing the
box plot for the situation σ2 = 0.01 (the orange curve), we also notice that when p1 = p2 becomes
large, the variance becomes small. This is because all initial weights are i.i.d. random and a large
number of weights may reduce the variance of the model due to the law of large numbers. Our upper
bound in Theorem 3 also suggests such reduced variance as the probability in Theorem 3 increases
as p1 increases.

4 Types of Ground-Truth Functions

Are 3-layer (i.e., deeper) networks better than 2-layer networks in any way for generalization per-
formance? In the last section, we have seen that both 3-layer NTK and 2-layer NTK can achieve
zero test error when n → ∞ in the ideal noiseless situation, when the ground-truth functions are
in their respective learnable set7. A natural question is then to compare the learnable sets between
these two models, and to compare the generalization performance when the ground-truth function
belongs to both learnable sets. In this section, we provide some answers by studying various types
of ground-truth functions and their effects on the generalization performance.

4.1 Size of the learnable set

For a 2-layer NTK, as shown in Ju et al. (2021), when no bias is used in ReLU, the corresponding

learnable set Fℓ2
(2) contains all even polynomials and linear functions, but does not contain other odd

polynomials. In order to learn both even and odd polynomials, it is critical that bias is added to
ReLU (Satpathi & Srikant, 2021; Ju et al., 2021). In contrast, we prove the following result:

Proposition 2. Fℓ2
(3) (with unbiased ReLU, middle layer being trained) already contains all polyno-

mials with finite degree (i.e., including both even and odd polynomials). Further, the learnable set

Fℓ2
(3) of 3-layer NTK is strictly larger than that of the 2-layer NTK with unbiased ReLU, and is at

least as large as that of the 2-layer NTK with biased ReLU.

This independence to bias shown by Proposition 2 can be seen as one performance advantage of 3-
layer NTK compared to 2-layer NTK. Details (including more precise statement) about this result is
in Supplementary Material, Appendix J. Notice that Geifman et al. (2020); Chen & Xu (2020) show
that when training all layers, 3-layer NTK leads to the same RKHS as 2-layer NTK with biased
ReLU. However, it is unclear whether training one layer is already sufficient for achieving the same
RKHS as training all layers. Our result in Proposition 2 answers this question positively, i.e., only
training the middle layer has already achieved all benefits of training all layers in terms of the size
of the learnable set. (In other words, training all three layers will not expand the learnable set over
training only the middle layer.)

4.2 Different bias settings with high input dimension

Even when a ground-truth function belongs to bothFℓ2
(2),b andFℓ2

(3), their generalization performance

may still exhibit some differences. In this subsection, we will show that when the input dimension d
is high, some specific choice of bias of the 2-layer NTK has better generalization performance than
others. In contrast, the 3-layer NTK is less sensitive to different bias settings.

Notice that adding bias to each ReLU in 2-layer NTK is equivalent to appending a constant to x
while still using ReLU without bias. Specifically, the input vector for biased 2-layer NTK is

xb :=
[√

1−b2·x
b

]

∈ R
d+1, (9)

6From bottom to top, the five horizontal lines of each marker of a box plot represent the minimum (ex-
cluding outliers), first quartile (25%), median (50%), third quartile (75%), and maximum (excluding outliers),
respectively. See (McGill et al., 1978) for more details.

7We illustrate the generalization performance of ground-truth functions outside the learnable set in Supple-
mentary Material, Appendix J.3.
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Model Learnable functions set Category

3-layer NTK, no-bias Fℓ2
(3) =

{∫

Sd−1 K
Three(xT

z)g(z)dµ(z)
}

(i)

2-layer NTK, no-bias Fℓ2
(2) =

{∫

Sd−1 K
Two(xT

z)g(z)dµ(z)
}

(ii)

2-layer NTK, normal-bias Fℓ2
(2),NLB

=
{

∫

Sd−1 K
Two( d

d+1
x

T
z + 1

d+1
)g(z)dµ(z)

}

(i)

2-layer NTK, balanced-bias Fℓ2
(2),BB

=
{∫

Sd−1 K
Two( 1

2
x

T
z + 1

2
)g(z)dµ(z)

}

(i)

Table 1: Learnable functions for different NTK models. Category: (i) can learn both even- and
odd-power polynomials; (ii) cannot learn other odd-power polynomials except linear functions. (We
omit the condition ‖g‖∞ <∞ in the expression of learnable sets to save space.)

101 102 103

n

10−9

10−6

10−3

M
SE

(a) d=2

101 102 103

n

10−2

6×10−3

2×10−2
3×10−2
4×10−2

(b) d=15
null  isk
3-NTK no-bias
3-NTK normal-bias
3-NTK balanced-bias
2-NTK no-bias
2-NTK normal-bias
2-NTK balanced-bias

Figure 3: Comparison of test MSE with respect to n between different NTK models when the num-

ber of neurons is infinite and without noise. The ground-truth function is f(x) = d+2
3

(
xTe1

)3 −
xTe1. Every curve is the average of 10 random simulations.

where b ∈ (0, 1) denotes the initial bias. We also normalize the first d elements of xb by
√
1− b2

in Eq. (9) to make sure that ‖xb‖2 = 1. Under this biased setting, the 2-layer NTK model has the

learnable set Fℓ2
(2),b

:= {
∫

Sd−1 K
Two
(
(1− b2)xTz + b2

)
g(z)dµ(z), ‖g‖∞ <∞}.

A common setup for the initial magnitude of the bias of each ReLU is to use a value that is close
or equal to the average magnitude of each element of input x, e.g., Satpathi & Srikant (2021);
Ghorbani et al. (2021a). Specifically, we let b = 1√

d+1
in Eq. (9), and denote the corresponding

learnable set by Fℓ2
(2),NLB

. We refer to this setting as the “normal-bias” setting. Alternatively, the

initial magnitude of the bias can be chosen to be close or equal to ‖x‖2. Specifically, we let b = 1√
2

in Eq. (9) and denote the corresponding learnable set by Fℓ2
(2),BB

. We refer to this second setting

as “balanced-bias”. The specific expression of Fℓ2
(2), F

ℓ2
(2),NLB

, and Fℓ2
(2),BB

can be derived by using

similar methods shown in Section 3.1 (results are listed in Table 1).

We now discuss how the two different bias settings could affect the generalization performance

when d is large. For 2-layer NTK under the normal-bias setting, the kernel is KTwo( d
d+1x

Tz +
1

d+1 ). Although it contains both even and odd power polynomials, we notice that when d increases,

KTwo approaches its no-bias counterpart KTwo(xTz), which only contains even power polynomials
and linear term. Thus, we conjecture that, by increasing d, the generalization performance of 2-

layer NTK with normal-bias will deteriorate for those ground-truth functions inside Fℓ2
(2),NLB

but far

away from Fℓ2
(2) (e.g., odd-degree non-linear polynomials). In contrast, for 2-layer NTK under the

balanced-bias setting, the kernel is KTwo( 12x
Tz + 1

2 ), which does not change with d. Therefore,
we expect that such deterioration should not happen. Note that in 3-layer NTK, although normal-
bias setting still approaches no-bias setting when d increases, there does not exist such performance

deterioration, because Fℓ2
(3) (the learnable set of 3-layer NTK without bias) already contains both

even and odd power polynomials. These insights will be verified by the numerical results below.

We now use simulation results in Fig. 3 to validate the conjecture that 3-layer NTK models are less
sensitive to different bias settings than 2-layer NTK models. We let the ground-truth function be

f(x) = d+2
3

(
xTe1

)3 − xTe1, which is orthogonal to Fℓ2
(2). In Fig. 3(a) when d = 2, all settings

have similar performance except 2-layer NTK without bias, whose test error is always above the null
risk. In Fig. 3(b) when d = 15, the purple curve of 2-layer NTK with normal bias gets closer to the

9



red curve of 2-layer NTK without bias (and thus the generalization performance becomes worse),
while other curves are still close to each other. This validates our conjecture that 3-layer NTK
models are less sensitive to different bias settings than 2-layer NTK models. Further simulations
can be found in Appendix A.2.

5 Conclusion

In this paper, we studied the generalization performance of overfitted 3-layer NTK models. Com-
pared with 2-layer NTK models, 3-layer NTK is less sensitive to different bias settings. Further,
training only the middle layer can get most of the performance advantage of 3-layer NTK, in terms
of the learnable set. Possible future directions include: (i) studying whether training other layers
will get the same benefit as training the middle layer; (ii) approximating the actual neural network
where the learned result is far away from the initial state; (iii) investigating deeper network as well as
other structures such as convolutional neural network (CNN) and recursive neural network (RNN).
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A Additional Figures

A.1 Formation of features

In Fig. 4, we illustrate the formation and the structure of the features shown in Section 2.

A.2 About the conjecture in Section 4.2

We provide some additional simulation results (in addition to Fig. 3) to validate our conjecture in
Section 4.2 that 2-layer NTK is more sensitive to different bias settings, especially when d is large.
Note that in Fig. 3, we only consider one type of ground-truth functions that contains only odd-power
polynomials. Here, we also examine other types of ground-truth functions.

Similar to Fig. 3, in Fig. 5, we consider the ideal case where there are infinite number of neurons.
We plot curves of MSE with respect to n when p, p1, p2 → ∞. The simulation setup is similar to
Fig. 3, but here we consider more types of ground-truth functions (whose exact forms are given in
the caption of Fig. 5). In sub-figures (a)(b), Type A function corresponds to even-power polynomials.
We can see that all curves are close to each other in both low-dimensional case (d = 2) and high-
dimensional case (d = 15). This is because the 2-layer NTK without bias can learn even-power
polynomials. In other words, in high-dimensional cases, although the performance of the normal-
bias setting approaches that of the no-bias setting, it does not hurt the generalization performance
because the no-bias setting can already learn the Type A function. Sub-figures (c)(d) are exactly the
same as Fig. 3, which uses the Type B ground-truth function corresponds to odd-power polynomials.
Sub-figures (e)(f) adopt the Type C ground-truth function that contains both odd-power and even-
power polynomials. The generalization performance shown by sub-figures (e)(f) is between that in
sub-figures (a)(b) and that in sub-figures (c)(d). This is expected because Type C functions can be
viewed as a mix of Type A and Type B functions.

We also consider the situation of finite number of neurons. In Fig. 6, we fix the number of training
data and let the x-axis be p (for 2-layer NTK) or p1 (for 3-layer NTK with fixed p2 = 100). The
setup of Fig. 7 is similar to the setup of Fig. 6 except that for 3-layer NTK we fix p1 = 100 and
change p2. Both in Fig. 6 and Fig. 7, when d is large and the ground-truth function is Type B (i.e.,
sub-figure (d)), we can see that the curve of 2-layer NTK with normal-bias (the purple curve marked
by ◭) is closer to the curve of 2-layer NTK without bias (the red curve marked by ◮). This validates
our conjecture in Section 4.2 that 2-layer NTK is more sensitive to different bias settings, especially
when d is large.
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Figure 5: Curves of MSE with respect to n for 2-layer and 3-layer NTK models when p, p1, p2 →∞
and ǫ = 0. Let e1 = [1 0 0 · · · 0]T ∈ R

d. Type A function is f(x) =
(
xTe1

)4−
(
xTe1

)2
. Type B

function is f(x) = d+2
3

(
xTe1

)3 − xTe1. Type C function is f(x) =
(
xTe1

)2
+
(
xTe1

)3
. Every

curve is the average of 10 random simulations.

B Derivation of the learnable set F ℓ2

(3)

For the derivation of the learnable set, we assume that the noise ǫ is zero in Eq. (3). We
first rewrite Eq. (3) as the sum of terms contributed by each sample. Recall that H

T =
[HT

1 · · · HT
n ] ∈ R

(p1p2)×n where Hi ∈ R
1×(p1p2), i = 1, 2, · · · , n. Thus, we have hThree

V,W0,x
H

T =
∑n

i=1

(

hThree
V,W0,x

H
T
i

)

eTi where ei ∈ R
n denotes the i-th standard basis (i.e., the i-th element is 1

while all other elements are 0). Thus, we have

f̂ ℓ2(x) = hThree
V,W0,xH

T (HH
T )−1

F(X) =

n∑

i=1

(
1

p2
hThree
V,W0,xH

T
i

)

p2e
T
i (HH

T )−1
F(X). (10)

For any a, b ∈ R
p1 , we define a set

CW0

a,b :=
{
k ∈ {1, 2, · · · , p2}

∣
∣ aT

W0[k] > 0, bTW0[k] > 0
}
, (11)

whose cardinality is given by

∣
∣
∣CW0

a,b

∣
∣
∣ =

p2∑

k=1

1{aTW0[k]>0, bTW0[k]>0}.

Intuitively, CW0

a,b denotes the indices of the ReLU in the second hidden-layer that are activated both

when the output of the first layer is a and when the output of the first layer is b. Then, by Eq. (2),
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Figure 6: Curves of MSE with respect to p (for 2-layer NTK) or p1 (for 3-layer NTK where p2 =
100). Other settings such as types of ground-truth functions and ǫ = 0 are the same as those in
Fig. 5. Every curve is the average of 10 random simulations.

we have

1

p2
hThree
V,W0,xH

T
i = (hRF

V,x)
ThRF

V,Xi

∣
∣
∣
∣
CW0

hRF
V,x

,hRF
V,Xi

∣
∣
∣
∣

p2
. (12)

By Assumption 1, which gives the distribution of W0, we can calculate the limiting value of Eq. (12)
when there are an infinite number of neurons in the second hidden-layer. Specifically, since

∣
∣
∣
∣
CW0

hRF
V,x

,hRF
V,Xi

∣
∣
∣
∣

p2

P→
π − arccos

(

(hRF
V,x)

T
h

RF
V,Xi

‖hRF
V,x‖2·

∥

∥

∥
hRF

V,Xi

∥

∥

∥

2

)

2π
, as p2 →∞, (13)

where
P→ denotes convergence in probability, we have

Eq. (12)
P→
∥
∥hRF

V,x

∥
∥
2
·
∥
∥hRF

V,Xi

∥
∥
2
·KTwo




(hRF

V,x)
ThRF

V,Xi∥
∥
∥hRF

V,x

∥
∥
∥
2
·
∥
∥
∥hRF

V,Xi

∥
∥
∥
2



 , as p2 →∞.

Note that KTwo is known to be the kernel of 2-layer NTK (Ju et al., 2021). It is natural that KTwo

appears here, since we can regard the output of the first hidden-layer as the input of a 2-layer network
consisting of the top- and middle-layer of the 3-layer network.

To further simplify the above expression, it remains to calculate (hRF
V,x)

ThRF
V,Xi

. Similar to the
derivation above, when the first hidden-layer has an infinite number of neurons, we have

(hRF
V,x)

ThRF
V,Xi

P→ KRF(xT
Xi), as p1 →∞. (14)

(Eq. (13) and Eq. (14) can be derived from integration over a hyper-sphere, which is shown in
Lemma 20 and Lemma 21 in Appendix F.6, respectively.) Note that KRF is also the kernel of the
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Figure 7: Curves of MSE with respect to p (for 2-layer NTK) or p2 (for 3-layer NTK where p1 =
100). Other settings such as types of ground-truth functions and ǫ = 0 are the same as those in
Fig. 5. Every curve is the average of 10 random simulations.

random-feature model (Mei & Montanari, 2019). It is natural that KRF appears here since Eq. (14)
represents the situation that the bottom-layer has infinite width, which also appears in a random
feature model. Notice that KRF(XT

i Xi) = KRF(xTx) = KRF(1) = 1
2d . Thus, we have

∥
∥hRF

V,x

∥
∥
2
·
∥
∥hRF

V,Xi

∥
∥
2

P→ 1

2d
, as p1 →∞. (15)

Plugging Eq. (13)(14)(15) into Eq. (12) and recalling Eq. (6), we thus have

1

p2
hThree
V,W0,xH

T
i

P→ KThree(xT
Xi), as p1, p2 →∞.

If we let

g(z) =

n∑

i=1

p2e
T
i (HH

T )−1
F(X)δXi

(z),

(where δz0
(z) denotes a δ-function, i.e., it has zero value for all z ∈ Sd−1 \ {z0}, but its L1-

norm is ‖δz0
‖1 :=

∫

Sd−1 δz0
(z)dµ(z) = 1), then as p1 and p2 → ∞, Eq. (10) approaches

∫

Sd−1 K
Three(xTz)g(z)dµ(z), which is in the same form8 as functions in Fℓ2

(3).

8We acknowledge that the form here is still not exactly the same as Fℓ2
(3) because the δ-function does not

satisfy the constrain of finite ‖g‖∞. Nonetheless, Fℓ2
(3) can be relaxed to allow finite ‖g‖1, which then includes

the δ-function. See footnote 4 on Page 6.
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C A Precise Form of the Upper Bound in Theorem 1

We first introduce some extra notations and a condition about large p1 that will be used later in our
upper bound of the generalization error. Define

C(n, d, q) :=
π − 1

4π
min

{

1

2
,

(
(d− 1)2

8d

) 1
d−1

(qn)
− 4

d−1

}

, (16)

J(n, p1, p2, d, q) :=
1

16πd

√

C(n, d, q)

log(4n)
−
(

qn2

√

2d

p1
+

q2n3d

p1
+

qn2

√
p2

)

, (17)

Q(p1, d) := 8d

√

2(d+ 1) log(p1 + 1)

p1
. (18)

Condition 1. (Given n, d, and q > 0) p1 and p2 are sufficiently large such that 9d · Q(p1, d) ≤ 1,

p1 ≥
(

10dnq
√
2d

C(n,d,q)

)2

, and J(n, p1, p2, d, q) > 0.

Theorem 3. Given a ground-truth function f(x) = fg(x) ∈ Fℓ2
(3), for any q > 0, under Condition 1,

we must have

Pr
V,W0,X

{

|f̂ ℓ2(x)− f(x)| ≤ q‖g‖∞√
n

+
q‖g‖1√

p2
+

√

Q(p1, d)

d
‖g‖1

+

√
n‖g‖1

(

q√
p2

+
√

Q(p1,d)
d

)

+ ‖ǫ‖2
√

J(n, p1, p2, d, q)

}

≥ 1− 10

q2
− 2d2

(p1 + 1)ed+1
.

A proof sketch can be found in Appendix E. To better illustrate the meaning of this upper bound,
we provide a simplification in Theorem 1 when p1 and p2 are much larger than n. If we view d

as a constant, we have C(n, d, q) = O(n− 4
d−1 ). When p1 and p2 are much larger than n, we have

√
n√

J(n,p1,p2,d,q)
= O

(

n
2

d−1+
1
2 ·
√

log(n)
)

and

√
Q(p1,d)

d = O
(

4

√
log p1

p1

)

. Therefore, when d is

fixed and when both p1 and p2 are much larger than n, Theorem 3 can be simplified to Eq. (8) (with
high probability).

(In the above reduction to Eq. (8), we ignore the stand-alone term
q‖g‖1√

p2
appeared in Theorem 3,

since it is much smaller than the product of Term B and Term E. Similarly, we ignore the stand-

alone term

√
Q(p1,d)

d ‖g‖1, since it is much smaller than the product of Term C and Term E.)

D Noise Effect

Before we present the proof of Theorem 3 in Appendix E, we elaborate on how Theorem 3 reveals
the impact of noise on the generalization error. Note that in Eq. (8), Term D denotes the average
noise power in each training sample, and Term E denotes the extra multiplication factor with which
the noise impacts the generalization error. As we see in Theorem 3 in Appendix C, the precise form

of Term E is
√
n√

J(n,p1,p2,d,q)
. Therefore, we will refer to the multiplication of ‖ǫ‖2/

√
n with this

factor as the “noise effect”. Note that although the precise form
√
n√

J(n,p1,p2,d,q)
of this factor in

Theorem 3 decreases with respect to both p1 and p2 by Eq. (17), when p1 and p2 are much larger
than n, it can be simplified to Term E, which does not depend on p1 and p2.

In the following, we will analyze the relationship between the noise effect and various system pa-
rameters. First, we are interested in know how the numbers of neurons in two hidden-layers p1 and
p2 impact the noise effect. Since Term E is an approximation when p1 and p2 are large and it does
not contain p1 or p2, we conjecture that even when p1 and p2 are extremely large (e.g., p1, p2 →∞),
the noise effect will neither grow dramatically nor go to zero. Further, when p1 and p2 are not so
large, by Eq. (17), we know that the precise form of Term E in Theorem 3 decreases when p1 and
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Figure 8: Noise effect on the test MSE of 3-layer NTK (no-bias) with respect to n. The noise
follows i.i.d. Gaussian distribution with zero mean and variance σ2. The ground-truth function is

f(x) =
(
xTe1

)2
+
(
xTe1

)3
where d = 3. Every curve is the average of 20 random simulations.

p2 increase, which suggests that the noise will likely contribute more to the test error when the num-
ber of neurons is small. An intuitive explanation of such effect is that when p1 and p2 are small,
the randomness of the initial weights brings some extra “pseudo-noise” to the model, and thus the
generalization performance deteriorates.

Second, we are interested in how the noise effect changes with the number of training data n. We
notice that Term E increases with n at a speed faster than

√
n. However, since it is only an upper

bound, the actual noise effect may grow much slower than
√
n. Therefore, precisely estimating the

relationship between n and the noise effect of NTK model would be an interesting future research
direction.

We then use simulation to study the noise effect and compare them with the implications derived
from our upper bound. In Fig. 8, we plot the curves of the test MSE with respect to n. The noise
follows i.i.d. Gaussian N (0, σ2). The blue curve denotes the situation where the noise level is
σ2 = 0.01. The orange curve denotes the noiseless situation. The noise effect (the value of the
gap between the blue and the orange curves) is denoted by the dashed black curve. As we can see,
when n is large, the value of the black curve in Fig. 8(a) (fix p1 = 200, p2 = 500) is higher than
that in Fig. 8(b) (p1, p2 →∞), which validates our conjecture that the noise contributes more to the
test error when the number of neurons is small. Further, Fig. 8(b) shows that an infinite number of
neurons does not make the noise effect diminish or explode for every n, which also confirms our
previous analysis on the relationship between the number of neurons and the noise effect. We also
notice that the black curve in Fig. 8(b) (where p1, p2 → ∞) does not increase significantly with n,
which suggests that our estimate on how fast Term E increases with n could be further improved.

E Proof of Theorem 3

Recall that Theorem 3 is the precise form of Theorem 1, and is stated in Appendix C. To prove
Theorem 3, we follow the line of analysis in Ju et al. (2021). We first study the class of the ground-
truth functions that can be learned when weights V and W0 are fixed and there is no noise. We refer

to them as pseudo ground-truth in the following definition, to differentiate them with the set Fℓ2
(3) of

learnable functions for random V and W0.

Definition 2. Given V and W0, for any learnable ground-truth function fg ∈ Fℓ2
(3) with the corre-

sponding function g(·), define the corresponding pseudo ground-truth as

fg
V,W0

(x) :=

∫

Sd−1

(hThree
V,W0,z

)ThThree
V,W0,x

p1p2
g(z)dµ(z)

=

∫

Sd−1

(hRF
V,z)

ThRF
V,x

∣
∣
∣CW0

hRF
V,x,h

RF
V,z

∣
∣
∣

p1p2
g(z)dµ(z). (19)

The last equality of Eq. (19) follows from Eq. (2) and Eq. (11). (The form of Eq. (19) can be derived
using the similar process shown in Appendix B.)
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We prove Theorem 3 in several steps as follows.

Step 1: use pseudo ground-truth as a “intermediary” .

Recall the definition of pseudo ground-truth fg
V,W0

(·) in Eq. (19). We define

F
g
V,W0

(X) := [fg
V,W0

(X1) f
g
V,W0

(X2) · · · fg
V,W0

(Xn)]
T ∈ R

n. (20)

We then have

f̂ ℓ2(x) =hThree
V,W0,xH

T (HH
T )−1 (F(X) + ǫ) (by Eq. (3))

=hThree
V,W0,xH

T (HH
T )−1

F
g
V,W0

(X) + hThree
V,W0,xH

T (HH
T )−1

(

F(X)− F
g
V,W0

(X)
)

+ hThree
V,W0,xH

T (HH
T )−1ǫ. (21)

Thus, we have

|f̂ ℓ2(x)− f(x)|
=|f̂ ℓ2(x)− fg

V,W0
(x) + fg

V,W0
(x)− f(x)|

=|hThree
V,W0,xH

T (HH
T )−1

F
g
V,W0

(X)− fg
V,W0

(x)

+ hThree
V,W0,xH

T (HH
T )−1

(

F(X)− F
g
V,W0

(X)
)

+ fg
V,W0

(x)− f(x) + hThree
V,W0,xH

T (HH
T )−1ǫ| (by Eq. (21))

≤ |hThree
V,W0,xH

T (HH
T )−1

F
g
V,W0

(X)− fg
V,W0

(x)|
︸ ︷︷ ︸

term A

+ |hThree
V,W0,xH

T (HH
T )−1

(

F(X)− F
g
V,W0

(X)
)

|
︸ ︷︷ ︸

term B

+ |fg
V,W0

(x)− f(x)|
︸ ︷︷ ︸

term C

+
∣
∣hThree

V,W0,xH
T (HH

T )−1ǫ
∣
∣

︸ ︷︷ ︸

term D

. (22)

In Eq. (22), term A denotes the test error when using the pseudo ground-truth function, term B
denotes the effect of replacing the original ground-truth function by the pseudo ground-truth function
in the training samples, term C denotes the difference between the original ground-truth function and
the pseudo ground-truth function on the test input, term D denotes the noise effect. Next, we bound
these terms one by one.

Step 2: estimate term A.

The following proposition gives an upper bound of the test error when the data model is based on
the pseudo ground-truth and the NTK model uses exactly the same V and W0.

Proposition 4. Assume fixed V and W0, (thus p1, p2 and d are also fixed), and there is no noise.
If the ground-truth function is f = fg

V,W0
in Definition 2 and ‖g‖∞ < ∞, then for any x ∈ Sd−1

and q > 0, we must have

Pr
X

{

|fg
V,W0

(x)− f̂ ℓ2(x)| ≥ q‖g‖∞√
n

}

≤ 1

q2
.

The proof of Proposition 4 is in Appendix G. Proposition 4 captures how the test error decreases with
the number of training samples n, if the data model is based on a pseudo ground-truth function with
the same V and W0 as the NTK. The result shown in Proposition 4 contributes to Term A in Eq. (8).

Here we sketch the proof of Proposition 4. By Eq. (19), we can find a vector ∆W
∗ ∈ R

(p1p2)×1 and
rewrite fg

V,W0
as fg

V,W0
= hThree

V,W0,x
∆W

∗. The specific form of ∆W
∗ can be found in Eq. (34)

in Appendix G. Then, by Eq. (3), we can see that the learned model is f̂ ℓ2(x) = hThree
V,W0,x

P∆W
∗

where P := H
T (HH

T )−1
H (an orthogonal projection to the row-space of H). Thus, we have

|fg
V,W0

(x) − f̂ ℓ2(x)| = |hThree
V,W0,x

(P − I)∆W
∗| ≤ ‖hThree

V,W0,x
‖2 · ‖(P− I)∆W

∗‖2. Further, it

is easy to show that ‖hThree
V,W0,x

‖2 ≤ √p1p2. It then remains to estimate ‖(P− I)∆W
∗‖2, which is
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upper bounded by mina∈Rn

∥
∥∆W

∗ −H
Ta
∥
∥
2

(because P is an orthogonal projection). The rest of

proof focuses on how to choose a vector a to make
∥
∥∆W

∗ −H
Ta
∥
∥
2

as small as possible. Notice
that although the similar method of choosing a suitable a is also used for 2-layer NTK (Ju et al.,
2021), the process of estimating

∥
∥∆W

∗ −H
Ta
∥
∥
2

is much more complicated than that in Ju et al.

(2021), since the feature vector hThree
V,W0,x

of 3-layer NTK involves non-linear activation for two

hidden-layers (instead of one in 2-layer NTK).

With Proposition 4, now we are ready to estimate term A of Eq. (22). We have

Pr
X,V,W0

{

term A ≥ q‖g‖∞√
n

}

=

∫

Rdp1

∫

Rp1p2

Pr
X

{

term A ≥ q‖g‖∞√
n

}

dΛw(W0)dΛv(V)

(where Λw(·) and Λv(·) are probability distribution of W0 and V, respectively)

≤ 1

q2
(by Proposition 4).

Step 3: estimate term C.

Intuitively, when p1 and p2 become larger, the randomness brought by V and W0 in the pseudo
ground-truth fg

V,W0
will be “averaged out”, and thus fg

V,W0
(x) will approach f(x) (i.e., term C

will approaches zero). The following proposition makes this statement rigorous.

Proposition 5. For any x ∈ Sd−1 and q > 0, we must have

Pr
V,W0

{
∣
∣
∣f

g
V,W0

(x)− f(x)
∣
∣
∣ ≥ q‖g‖1√

p2
+

√

Q(p1, d)

d
‖g‖1

}

≤ d2

(p1 + 1)ed+1
+

1

q2
.

The proof of Proposition 5 is in Appendix I.1. Note that as p1 and p2 increase, both
q‖g‖1√

p2
and

√
Q(p1,d)

d ‖g‖1 decrease, which implies that the pseudo ground-truth fg
V,W0

(x) approaches f(x)

with high probability. The above result thus directly bounds term C.

Step 4: estimate terms B and D.

We note that both terms B and D are of a similar form. Specifically, we can view the difference
between F(X) and F

g
V,W0

(X) as a special type of “noise” due to random V and W0 (which

will approaches zero when p1, p2 → ∞). Then, both terms B and D are the multiplication of
hThree
V,W0,x

H
T (HH

T )−1 with the noise (either real noise or the special “noise” above). Further,

we can show that the magnitude of hThree
V,W0,x

H
T (HH

T )−1 can be upper bounded by a quantity

inversely proportional to the minimum eigenvalue of HH
T . Thus, a key step of the proof is to esti-

mate the minimum eigenvalue of HH
T . We prove the following proposition about min eig(HH

T )
in Appendix H.

Proposition 6. Recall the definition of J(·) in Eq. (17). For any q > 0, when Condition 1 is satisfied,
we must have

Pr
X,V,W0

{
1

p1p2
min eig(HH

T ) ≤ J(n, p1, p2, d, q)

}

≤ 7

q2
.

Using Proposition 6, we can then bound terms B and D by the following Proposition 7.

Proposition 7. For any q > 0, when Condition 1 is satisfied, we must have

Pr
X,V,W0







term D + term B of Eq. (22) ≥

√
n‖g‖1

(

q√
p2

+
√

Q(p1,d)
d

)

+ ‖ǫ‖2
√

J(n, p1, p2, d, q)







≤ d2

(p1 + 1)ed+1
+

8

q2
.
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Note that
√
n‖g‖1

(

q√
p2

+
√

Q(p1,d)
d

)

and ‖ǫ‖2 correspond to the magnitude of the special “noise”

(F(X) − F
g
V,W0

(X)) (which can be bounded just like Proposition 5) and the real noise ǫ, respec-

tively. The proof of Proposition 7 is in Appendix I.2.

Plugging the results in Steps 2, 3, and 4 into Eq. (22), the result of Theorem 3 thus follows. Ap-
pendices G to I will prove the above propositions, after we present some supporting lemmas in
Appendix F.

F Useful Notations and Lemmas

We first collect some useful notations and lemmas, which will be used in the proofs of propositions
appeared in Appendix E, as well as the analysis of learnable functions. Let I·(·, ·) denote the regu-
larized incomplete beta function Dutka (1981). Let B(·, ·) denote the beta function Chaudhry et al.
(1997). Specifically,

B(x, y) :=

∫ 1

0

tx−1(1− t)y−1dt, (23)

Ix(a, b) :=

∫ x

0
ta−1(1− t)b−1dt

B(a, b)
. (24)

Define a cap on a unit hyper-sphere Sd−1 as the intersection of Sd−1 with an open ball in R
d

centered at v∗ with radius r, i.e.,

Br
v∗

:=
{
v ∈ Sd−1 | ‖v − v∗‖2 < r

}
. (25)

Remark 2. For ease of exposition, we will sometimes neglect the subscript v∗ of Br
v∗

and use Br
instead, when the quantity that we are estimating only depends on r but not v∗. For example, where
we are interested in the area of Br

v∗
, it only depends on r but not v∗. Thus, we write λd−1(Br)

instead.

F.1 Quantities related to the area of a cap on a hyper-sphere

The lemmas of this subsection support for the proof of Proposition 6. The following lemma is intro-
duced by Li (2011), which gives the area of a cap on a hyper-sphere with respect to the colatitude
angle.

Lemma 8. Let φ ∈ [0, π
2 ] denote the colatitude angle of the smaller cap on the unit hyper-sphere

Sa−1, then the area (in the measure of λa−1) of this hyper-spherical cap is

1

2
λa−1(Sa−1)Isin2 φ

(
a− 1

2
,
1

2

)

,

or equivalently9,

λa−1(Br) =
1

2
λa−1(Sa−1)I

r2(1− r2

4 )

(
a− 1

2
,
1

2

)

.

where r ≤
√
2.

The following lemma is shown by Lemma 35 of Ju et al. (2021).

Lemma 9. For any x ∈ [0, 1], we must have

Ix

(
a− 1

2
,
1

2

)

∈
[

2x
a−1
2

B(a−1
2 , 1

2 ) · (a− 1)
,

2x
a−1
2

B(a−1
2 , 1

2 ) · (a− 1)
√
1− x

]

.

The following lemma is shown by Lemma 32 of Ju et al. (2021).

9Proof of this equivalence can be found in Lemma 9 of Ju et al. (2021).
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Lemma 10. For any integer a ≥ 2,

B

(
a− 1

2
,
1

2

)

∈
[

1√
a
, π

]

.

Further, if a ≥ 5, we have

B

(
a− 1

2
,
1

2

)

∈
[

1√
a
,

4√
a− 3

]

.

F.2 Estimation of certain norms

In our proofs, we will often need to estimate the norms of the NTK feature vectors. We list some
useful lemmas below.

Lemma 11. For any x ∈ Sd−1, we have

‖hRF
V,x‖2 ≤

√
p1, ‖hThree

V,W0,x‖2 ≤
√
p1p2.

Proof. Notice that ‖x‖2 = 1 and ‖V[j]‖2 = 1 for all j ∈ {1, 2 · · · , p1}. By Eq. (1), we have

‖hRF
V,x‖2 =

√
√
√
√

p1∑

j=1

(
(xTV[j])1{xTV[j]>0}

)2 ≤ √p1.

Thus, by Eq. (2), we have

‖hThree
V,W0,x‖2 =

√
√
√
√

p2∑

k=1

‖hRF
V,x1{(hRF

V,x)
TW0[k]>0}‖22 ≤

√
√
√
√

p2∑

k=1

‖hRF
V,x‖22 ≤

√
p1p2.

The following lemma is from Lemma 12 of Ju et al. (2021), but we repeat here for the convenience
of the readers.

Lemma 12. If C = AB, then ‖C‖2 ≤ ‖A‖2 · ‖B‖2. Here A, B, and C could be scalars, vectors,
or matrices.

Proof. This lemma directly follows the definition of matrix norm.

Remark 3. Note that the (ℓ2) matrix-norm (i.e., spectral norm) of a vector is exactly its ℓ2 vector-
norm (i.e., Euclidean norm)10. Therefore, when applying Lemma 12, we do not need to worry about
whether A, B, and C are matrices or vectors.

Lemma 13. For any A,B ∈ R
k×k, we must have

‖A−B‖2 ≤ k ·max
i,j
|Ai,j −Bi,j |.

Consequently, if both A and B are positive semi-definite, then

|min eig(A)−min eig(B)| ≤ k ·max
i,j
|Ai,j −Bi,j |.

10To see this, consider a (row or column) vector a. The matrix norm of a is

max
|x|=1

‖ax‖2 (when a is a column vector),

or max
‖x‖2=1

‖ax‖2 (when a is a row vector).

In both cases, the value of the matrix-norm equals to
√

∑

a2
i , which is exactly the ℓ2-norm (Euclidean norm)

of a.
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Proof. Let C := A−B. For any a ∈ Sk−1, we have

‖Ca‖22 =

k∑

i=1





k∑

j=1

Ci,jaj





2

≤k(max
i,j

Ci,j)
2





k∑

j=1

aj





2

≤k2(max
i,j

Ci,j)
2

k∑

j=1

a2j (by Cauchy–Schwarz inequality)

=k2(max
i,j

Ci,j)
2 (because ‖a‖2 = 1).

Because ‖C‖2 = maxa∈Sk−1 ‖Ca‖2, we have ‖A−B‖2 ≤ k ·maxi,j |Ai,j −Bi,j |.
Let a∗ ∈ argmina∈Sk−1 ‖Ba‖2. We have

min eig(A) = min
a∈Sk−1

‖Aa‖2
≤‖Aa∗‖2
=‖(A−B)a∗ +Ba∗‖2
≤‖(A−B)a∗‖2 + ‖Ba∗‖2
≤‖A−B‖2 +min eig(B) (by the definition of a∗).

Thus, we have min eig(A) − min eig(B) ≤ ‖A − B‖2 ≤ k · maxi,j |Ci,j |. Similarly, we have
min eig(B)−min eig(A) ≤ k ·maxi,j |Ci,j |. The result of this lemma thus follows.

F.3 Estimates of certain tail probabilities

Lemma 14 (Chebyshev’s inequality on the sum of i.i.d. random variables/vectors). Let
X1, X2, · · · , Xk be i.i.d. random variables and |Xi| ≤ U for all i = 1, 2, · · · , k. Then, for any
m > 0,

Pr

{∣
∣
∣
∣
∣

(

1

k

k∑

i=1

Xi

)

− EX1

∣
∣
∣
∣
∣
≥ mU√

k

}

≤ 1

m2
.

This inequality also holds when X1, X2, · · · , Xk are i.i.d. random vectors and ‖Xi‖2 ≤ U for all
i = 1, 2, · · · , k.

Proof. Because |X1| ≤ U , we have

Var[X1] = E[(X1 − E[X1])
2] = E[X2

1 ]− (E[X1])
2 ≤ E[X2

1 ] ≤ U2.

Because all Xi’s are i.i.d., we have

Var

[

1

k

k∑

i=1

Xi

]

≤ U2

k
, E

[

1

k

k∑

i=1

Xi

]

= E[X1].

The result of this lemma thus follows by applying Chebyshev’s inequality on 1
k

∑k
i=1 Xi. For the sit-

uation that X1, X2, · · · , Xk are vectors, the proof is the same by using the generalized Chebyshev’s
inequality for random vectors which we state in Lemma 15 as follows.

The following is the Chebyshev’s inequality for random vectors that can be found in many textbooks
of probability theory (see, e.g., pp. 446-451 of Laha & Rohatgi (1979)).

Lemma 15 (Chebyshev’s inequality for random vectors). For a random vector w ∈ R
a with prob-

ability distribution Λ(·), for any δ > 0, we must have

Pr {‖w − E(w)‖2 ≥ δ} ≤ Var(w)

δ2
,

where

Var(w) :=

∫

v∈Ra

‖v − E(w)‖22 dΛ(v).
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F.4 Estimation about double factorial

Let m be a positive integer. A double factorial can be defined by

(2m)!! :=
m∏

i=1

(2i), (2m− 1)!! :=
m∏

i=1

(2i− 1). (26)

They are useful in our study of learnable functions. The following lemma is proven by Chen & Qi
(2005).

Lemma 16 (Improved Wallis’ Inequality). For all natural numbers k, let k!! denote a double facto-
rial. Then

1
√

π
(
k + 4

π − 1
) ≤

(2k − 1)!!

(2k)!!
<

1
√

π
(
k + 1

4

) .

Further, the constants 4
π − 1 and 1

4 are the best possible.

F.5 Taylor expansion of kernels

The following Taylor expansions are related to the NTK kernel functions, which will also be used in
our characterization of the learnable functions.

Lemma 17. For any θ ∈ [0, π],

cos θ
(π − θ)

2π
=

cos θ

4
+

1

2π

∞∑

k=0

(2k)!

(k!)2
4

2k + 1

(
cos θ

2

)2k+2

,

sin θ + (π − θ) cos θ

π
=

1

π

(

1 +
π

2
cos θ +

∞∑

k=0

2(2k)!

(k + 1)(2k + 1)(k!)2

(
cos θ

2

)2k+2
)

.

Consequently, recalling Eq. (5) and Eq. (4), by letting a = cos θ, we have

KTwo(a) =a
π − arccos a

2π
=

a

4
+

1

2π

∞∑

k=0

(2k)!

(k!)2
4

2k + 1

(a

2

)2k+2

,

2d ·KRF(a) =

√
1− a2 + a(π − arccos a)

π

=
1

π

(

1 +
π

2
a+

∞∑

k=0

2(2k)!

(k + 1)(2k + 1)(k!)2

(a

2

)2k+2
)

.

Proof. Using Taylor expansion on arccosx, we have

arccos(x) =
π

2
−

∞∑

k=0

(2k)!

22k(k!)2
x2k+1

2k + 1
.

We then have

θ = arccos(cos θ) =
π

2
−

∞∑

k=0

(2k)!

(k!)2
2

2k + 1

(
cos θ

2

)2k+1

.

Thus, we have

cos θ
(π − θ)

2π
=cos θ ·

(

1

2
− 1

2π

(

π

2
−

∞∑

k=0

(2k)!

(k!)2
2

2k + 1

(
cos θ

2

)2k+1
))

=
cos θ

4
+

1

2π

∞∑

k=0

(2k)!

(k!)2
4

2k + 1

(
cos θ

2

)2k+2

. (27)
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Using Taylor expansion on
√
1 + x, we have

√
1 + x = 1−

∞∑

k=0

2

k + 1

(
2k

k

)(

−x

4

)k+1

,

Replacing x by − cos2 θ, we thus have

sin θ =
√

1− cos2 θ = 1−
∞∑

k=0

2

k + 1

(
2k

k

)(
cos θ

2

)2k+2

.

Therefore, using Eq. (27) again, we have

sin θ + (π − θ) cos θ

π
=

1

π

(

1 +
π

2
cos θ +

∞∑

k=0

(
2

2k + 1
− 1

k + 1

)
2(2k)!

(k!)2

(
cos θ

2

)2k+2
)

=
1

π

(

1 +
π

2
cos θ +

∞∑

k=0

2(2k)!

(k + 1)(2k + 1)(k!)2

(
cos θ

2

)2k+2
)

.

The result of this lemma thus follows.

F.6 Calculation of certain integrals

Lemma 18. For any integer k ≥ 2, we have
∫ π

0

sink ϕ dϕ =
k − 1

k

∫ π

0

sink−2 ϕ dϕ.

Proof. We have
∫ π

0

sink ϕ dϕ =

∫ π

0

sinϕ · sink−1 ϕ dϕ

=− cosϕ · sink−1 ϕ
∣
∣
π

0
+ (k − 1)

∫ π

0

cos2 ϕ · sink−2 ϕ dϕ

(integration by parts)

=(k − 1)

∫ π

0

(1− sin2 ϕ) sink−2 ϕ dϕ

=(k − 1)

∫ π

0

sink−2 ϕ dϕ− (k − 1)

∫ π

0

sink ϕ dϕ.

Moving the second term of the right hand side to the left hand side, we have

k

∫ π

0

sink ϕ dϕ = (k − 1)

∫ π

0

sink−2 ϕ dϕ.

The result of this lemma thus follows.

Lemma 19. For any θ ∈ [0, π],

∫ π
2

−π
2 +θ

cos(α) cos(α− θ) dα =
sin θ

2
+

(π − θ) cos θ

2
.

Proof. Notice that

∂(sin(2α− θ) + 2α cos θ)

∂α
=2 cos(2α− θ) + 2 cos θ

=2 cos(α+ (α− θ)) + 2 cos(α− (α− θ))

=4 cos(α) cos(α− θ).
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Thus, we have
∫

cos(α) cos(α− θ)dα =
sin(2α− θ) + 2α cos(θ)

4
+ constant.

Notice that

sin(2α− θ)

∣
∣
∣
∣

π
2

α=−π
2 +θ

= sin(π − θ)− sin(θ − π) = 2 sin θ,

2α cos(θ)

∣
∣
∣
∣

π
2

α=−π
2 +θ

= 2(π − θ) cos θ.

The result of this lemma thus follows.

Lemma 20. Recall that γ(·) denotes the probability density function of W0[k] and is unif(Sp1−1)
by Assumption 1. For any a, b ∈ R

p1 , we have

∫

Sp1−1

aT b · 1{aTw>0, bTw>0}dγ(w) = aT b
π − arccos

(
a

T
b

‖a‖2‖b‖2

)

2π
.

(Although the right hand side is not defined when a = 0 or b = 0, we can artificially re-define the
value of the right hand side as 0 when a = 0 or b = 0, so the equation still holds.)

Proof. The result holds trivially when a = 0 or b = 0. When a and b are both non-zero, it suffices
to prove that

∫

Sp1−1

1{aTw>0, bTw>0}dγ(w) =
π − arccos

(
a

T
b

‖a‖2‖b‖2

)

2π
,

which has been proven by Lemma 17 of Ju et al. (2021) (where its geometric explanation is given as
well).

Lemma 21. For any x, z ∈ Sd−1, we have

∫

Sd−1

(xTv)(zTv)1{zT v>0, xT v>0}dλ(v) =
sin θ + (π − θ) cos θ

2dπ
, (28)

where θ denotes the angle between x and z, i.e.,

θ = arccos(xTz) ∈ [0, π]. (29)

To help readers understand the correctness of Lemma 21, we first give a simple proof for the special
case that d = 2, i.e., when vectors x, z, and v are all in the 2-D plane. Then we prove Lemma 21
for the general cases that d = 2, 3, 4, · · · .
Proof (of the case when d = 2): Without loss of generality, we let

v =

[
cosα
sinα

]

, z =

[
1
0

]

, and x =

[
cos θ
sin θ

]

.

Thus, we have

The left-hand-side of Eq. (28) =
1

2π

∫

(θ−π
2 , θ+π

2 )∩(−π
2 , π

2 )
(cosα cos θ + sinα sin θ) cosα dα

=
1

2π

∫ π
2

θ−π
2

cos(α− θ) cosα dα (since θ ∈ [0, π])

=
sin θ + (π − θ) cos θ

4π
(by Lemma 19).
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Proof (of the general case). Due to symmetry, we know that the integral in the left-hand-side of
Eq. (28) only depends on the angle between x and z. Thus, without loss of generality, we let

x = [x1 x2 · · · xd] = [0 0 · · · 0 1 0]T , z = [0 0 · · · 0 cos θ sin θ]T .

Thus, for any v = [v1 v2 · · · vd]
T , in order for zTv > 0 and xTv > 0 to hold, it only needs to

satisfy

[cos θ sin θ]

[
vd−1

vd

]

> 0, [1 0]

[
vd−1

vd

]

> 0. (30)

We use the spherical coordinate ϕx = [ϕx
1 ϕx

2 · · · ϕx

d−1]
T where ϕx

1 , · · · , ϕx

d−2 ∈ [0, π] and

ϕx

d−1 ∈ [0, 2π) with the convention that

x1 = cos(ϕx

1 ),

x2 = sin(ϕx

1 ) cos(ϕ
x

2 ),

x3 = sin(ϕx

1 ) sin(ϕ
x

2 ) cos(ϕ
x

3 ),

...

xd−1 = sin(ϕx

1 ) sin(ϕ
x

2 ) · · · sin(ϕx

d−2) cos(ϕ
x

d−1),

xd = sin(ϕx

1 ) sin(ϕ
x

2 ) · · · sin(ϕx

d−2) sin(ϕ
x

d−1).

Thus, we have ϕx = [π/2 π/2 · · · π/2 0]T . Similarly, the spherical coordinate for z is ϕz =
[π/2 π/2 · · ·π/2 θ]T . Let the spherical coordinates for v be ϕv = [ϕv

1 ϕv
2 · · · ϕv

d−1]
T . Thus,

Eq. (30) is equivalent to

zTv = sin(ϕv

1 ) sin(ϕ
v

2 ) · · · sin(ϕv

d−2)
(
cos θ cos(ϕv

d−1) + sin θ sin(ϕv

d−1)
)
> 0, (31)

xTv = sin(ϕv

1 ) sin(ϕ
v

2 ) · · · sin(ϕv

d−2) cos(ϕ
v

d−1) > 0. (32)

Because ϕv
1 , · · · , ϕv

d−2 ∈ [0, π] (by the convention of spherical coordinates), we have

sin(ϕv

1 ) sin(ϕ
v

2 ) · · · sin(ϕv

d−2) ≥ 0.

Thus, for Eq. (31) and Eq. (32) to hold, we must have

cos(θ − ϕv

d−1) > 0, cos(ϕv

d−1) > 0,

i.e., ϕv

d−1 ∈ (−π/2, π/2) ∩ (θ − π/2, θ + π/2) (mod 2π). By Eq. (29), we thus have

ϕd−1 ∈
(

−π

2
+ θ,

π

2

)

(mod 2π).

Let

A(θ, ϕv

d−1) :=
(
cos θ cos(ϕv

d−1) + sin θ sin(ϕv

d−1)
)
cos(ϕv

d−1) = cos(ϕv

d−1 − θ) cosϕv

d−1.

By Eq. (31) and Eq. (32), we have

(xTv)(zTv)1{zT v>0, xT v>0} = sin2(ϕv

1 ) sin
2(ϕv

2 ) · · · sin2(ϕv

d−2)A(θ, ϕ
v

d−1).

Integrating using such spherical coordinates, we have
∫

Sd−1

(xTv)(zTv)1{zT v>0, xT v>0}dλ(v)

=

∫ π
2

−π
2 +θ

A(θ, ϕv

d−1)
∫ π

0
· · ·
∫ π

0
sind(ϕ1) sin

d−1(ϕ2) · · · sin3(ϕd−2) dϕ1 dϕ2 · · · dϕd−1

∫ 2π

0

∫ π

0
· · ·
∫ π

0
sind−2(ϕ1) sin

d−3(ϕ2) · · · sin(ϕd−2) dϕ1 dϕ2 · · · dϕd−1

=

∫ π
2

−π
2 +θ

A(θ, ϕv

d−1) · dϕd−1

∫ 2π

0
dϕd−1

· d− 1

d

d− 2

d− 1
· · · 2

3
(by Lemma 18)

=
sin θ + (π − θ) cos θ

2d · π (by Lemma 19).

The result of this lemma thus follows.
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F.7 Convergence of 1
p1
(hRF

V,x)
ThRF

V,z with respect to p1

Lemma 22 (Theorem 4.2 of Wainwright (2015)). Let F be a class of real-valued functions f such
that ‖f‖∞ ≤ b for all f ∈ F . Then for all k ≥ 1 and δ ≥ 0, we have

Pr

{

sup
f∈F

∣
∣
∣
∣
∣

1

k

k∑

i=1

f(Xi)− E
x∼X (·)

f(x)

∣
∣
∣
∣
∣
≤ 2Rk(F ) + δ

}

≥ 1− exp

(

−kδ2

8b2

)

,

where Rk(F ) denotes the Rademacher complexity, X1, X2, · · · , Xk are i.i.d. random vari-
ables/vectors that follow the distribution X (·).

Polynomial discrimination. A class F of functions with domain X has polynomial discrimination
of order ν ≥ 1 if for each positive integer k and collection Xk

1 = {X1, · · · , Xk} of k points in X ,

the set F (Xk
1 ) has cardinality upper bounded by

card(F (Xk
1 )) ≤ (k + 1)ν .

Lemma 23 (Lemma 4.1 and Eq. (4.23) of Wainwright (2015)). Suppose that F has polynomial
discrimination of order ν and ‖f‖∞ ≤ b for all f ∈ F . Then

Rk(F ) ≤ 3

√

b2ν log(k + 1)

k
for all k ≥ 10.

Given a function h : Sd−1 7→ R such that ‖h‖∞ < ∞ and given any δ > 0, consider the function

class F∗ that consists of functions h(v)1{xT v>0,zT v>0}, which maps v ∈ Sd−1 to either 0 or h(v).
By Lemma 20 of Ju et al. (2021), we have

card(F∗(X
k
1 )) ≤ (k + 1)2(d+1).

(Here Xk
1 corresponds to {V[1], · · · ,V[k]}.) Thus, combined with Lemma 22 and Lemma 23, we

have

Pr
V

{

max
x,z

∣
∣
∣
∣
∣
∣

1

p1

p1∑

j=1

h(V[j])1{xTV[j]>0,zTV[j]>0} − E
v
[h(v)1{xT v>0,zT v>0}]

∣
∣
∣
∣
∣
∣

≤ 6

√

‖h‖2∞2(d+ 1) log(p1 + 1)

p1
+ δ

}

≥ 1− exp

(

− p1δ
2

8‖h‖2∞

)

.

Further, if we let δ = 2
√

‖h‖2
∞2(d+1) log(p1+1)

p1
, we have proven the following lemma.

Lemma 24. For any given function h : Sd−1 7→ R that ‖h‖∞ <∞, when p1 ≥ 10, we have

Pr
V

{

max
x,z

∣
∣
∣
∣
∣
∣

1

p1

p1∑

j=1

h(V[j])1{xTV[j]>0,zTV[j]>0} − E
v
[h(v)1{xT v>0,zT v>0}]

∣
∣
∣
∣
∣
∣

≤ 8

√

‖h‖2∞2(d+ 1) log(p1 + 1)

p1

}

≥ 1− 1

(p1 + 1)ed+1
.

By Eq. (1), we have

1

p1
(hRF

V,x)
ThRF

V,z =
1

p1

p1∑

j=1

(xT
V[j])(V[j]Tz)1{xTV[j]>0,zTV[j]>0}

=xT




1

p1

p1∑

j=1

(V[j]V[j]T )1{xTV[j]>0,zTV[j]>0}



 z.

Notice that V[j]V[j]T is a d× d matrix. Define

Kj := (V[j]V[j]T )1{xTV[j]>0,zTV[j]>0} ∈ R
d×d.
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Thus, we have

max
x,z

∣
∣
∣
∣

1

p1
(hRF

V,x)
ThRF

V,z −KRF(x, z)

∣
∣
∣
∣

=max
x,z

∣
∣
∣
∣
∣
∣

xT




1

p1

p1∑

j=1

Kj − E
v∼λ(·)

(vvT )1{xT v>0,zTv>0}



 z

∣
∣
∣
∣
∣
∣

≤max
x,z

∥
∥xT

∥
∥
2
·

∥
∥
∥
∥
∥
∥




1

p1

p1∑

j=1

Kj − E
v∼λ(·)

(vvT )1{xT v>0,zT v>0}





∥
∥
∥
∥
∥
∥
2

· ‖z‖2 (by Lemma 12)

=max
x,z

∥
∥
∥
∥
∥
∥

1

p1

p1∑

j=1

Kj − E
v∼λ(·)

(vvT )1{xT v>0,zT v>0}

∥
∥
∥
∥
∥
∥
2

(because ‖x‖2 = ‖z‖2 = 1). (33)

For any k, l ∈ {1, 2, · · · , d}, define the (k, l)-th element of Kj as Kj,k,l. Thus, by Lemma 24
(notice that |Kj,k,l| ≤ 1), we have

Pr
V

{

max
x,z

∣
∣
∣
∣
∣
∣

1

p1

p1∑

j=1

Kj,k.l −
(

E
v∼λ(·)

(vvT )1{xT v>0,zT v>0}

)

k,l

∣
∣
∣
∣
∣
∣

≤ 8

√

2(d+ 1) log(p1 + 1)

p1

}

≥ 1− 1

(p1 + 1)ed+1
.

Applying the union bound on all d× d elements of Kj and by Lemma 13, we have

Pr
V

{

max
x,z

∥
∥
∥
∥
∥
∥

1

p1

p1∑

j=1

Kj − E
v∼λ(·)

(vvT )1{xT v>0,zT v>0}

∥
∥
∥
∥
∥
∥
2

≤ 8d

√

2(d+ 1) log(p1 + 1)

p1

}

≥ 1− d2

(p1 + 1)ed+1
.

Plugging it into Eq. (33), we thus have proven the following lemma.

Lemma 25. Recall the definition of Q(·, ·) in Eq. (18). When p1 ≥ 10, we have

Pr
V

{

max
x,z

∣
∣
∣
∣

1

p1
(hRF

V,x)
ThRF

V,z −KRF(x, z)

∣
∣
∣
∣
≤ Q(p1, d)

}

≥ 1− d2

(p1 + 1)ed+1
.

F.8 Some useful lemmas about multinomial expansion

Lemma 26 (Multinomial theorem (multinomial expansion)). For any positive integer i and non-
negative integer j,

(x1 + x2 + · · ·+ xi)
j =

∑

k1+k2+···ki=j

(k1, k2, · · · , ki)! · xk1
1 xk2

2 · · ·xki
i ,

where

(k1, k2, · · · , ki)! =
(k1 + k2 + · · ·+ ki)!

k1!k2! · · · ki!
denotes the multinomial coefficient.

Lemma 27. We have

( ∞∑

i=0

aix
i

)j

=

∞∑

s=0









∑

k0+k1+···+ks=j
k1+2k2+···+sks=s
k0,k1,··· ,ks∈Z≥0

(k1, k2, · · · , ks)! · ak0
0 ab11 · · · aks

s









xs.

Proof. The result directly follows from Lemma 26. Notice that aix
i will not contribute to xs when

i > s.
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G Proof of Proposition 4

Define

∆W
∗[k] :=

∫

Sd−1

1{(hRF
V,z)

TW0[k]>0}h
RF
V,z

g(z)

p1p2
dµ(z), k = 1, 2, · · · , p2. (34)

Notice that ∆W
∗[k] is a vector of size p1× 1 (same as the size of hRF

V,z and hRF
V,x). The connection

between ∆W
∗ and the pseudo ground-truth fg

V,W0
is shown by the following lemma.

Lemma 28. For all x ∈ Sd−1, we have

hThree
V,W0,x ·∆W

∗ = fg
V,W0

(x).

Proof. We have

hThree
V,W0,x ·∆W

∗

=

p2∑

k=1

(hThree
V,W0,x[k])

T∆W
∗[k]

=

p2∑

k=1

∫

Sd−1

1{(hRF
V,x)

TW0[k]>0,(hRF
V,z)

TW0[k]>0}(h
RF
V,x)

ThRF
V,z

g(z)

p1p2
dµ(z)

(by Eq. (2) and Eq. (34))

=

∫

Sd−1

p2∑

k=1

1{(hRF
V,x)

TW0[k]>0,(hRF
V,z)

TW0[k]>0}

p1p2
(hRF

V,x)
ThRF

V,zg(z)dµ(z)

=

∫

Sd−1

(hRF
V,z)

ThRF
V,x

∣
∣
∣CW0

hRF
V,x,h

RF
V,z

∣
∣
∣

p1p2
g(z)dµ(z) (by Eq. (11))

=fg
V,W0

(x) (by Eq. (19)).

The following lemma bounds the test error for the pseudo ground-truth function with respect to the
distance between ∆W

∗ and the row-space of H.

Lemma 29. For all a ∈ R
n, we have

|fg
V,W0

(x)− f̂ ℓ2(x)| ≤ √p1p2‖∆W
∗ −H

Ta‖2.

Proof. Define P := H
T (HH

T )−1
H. It is easy to verify that P2 = P = P

T , so P is an orthogonal
projection onto the space spanned by the rows of H. By Lemma 28 and Eq. (3), when ǫ = 0 and
the ground-truth function is fg

V,W0
, we have F(X) = H∆W

∗ and

f̂ ℓ2(x) = hThree
V,W0,xH

T (HH
T )−1

H∆W
∗ = hThree

V,W0,xP∆W
∗.

Thus, by Lemma 28, we have

|fg
V,W0

(x)− f̂ ℓ2(x)| = |hThree
V,W0,x(P− I)∆W

∗|. (35)

Because P = H
T (HH

T )−1
H, we have

PH
T = H

T (HH
T )−1

HH
T = H

T . (36)

We then have

‖(P− I)∆W
∗‖2 = ‖P∆W

∗ −∆W
∗‖2

= ‖P(HTa+∆W
∗ −H

Ta)−∆W
∗‖2

= ‖PH
Ta+P(∆W

∗ −H
Ta)−∆W

∗‖2
= ‖HTa+P(∆W

∗ −H
Ta)−∆W

∗‖2 (by Eq. (36))

= ‖(P− I)(∆W
∗ −H

Ta)‖2
≤ ‖∆W

∗ −H
Ta‖2 (because P is an orthogonal projection). (37)
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Therefore, we have
∣
∣hThree

V,W0,x(P− I)∆W
∗∣∣ =

∥
∥hThree

V,W0,x(P− I)∆W
∗∥∥

2

≤‖hThree
V,W0,x‖2 · ‖(P− I)∆W

∗‖2 (by Lemma 12)

≤√p1p2‖∆W
∗ −H

Ta‖2 (by Lemma 11 and Eq. (37)).

By Eq. (35), the result of this lemma thus follows.

Now we are ready to prove Proposition 4.

Define Ki ∈ R
(p1p2)×1 (the same shape as W0) as

Ki[k] := hRF
V,Xi

1{(hRF
V,Xi

)TW0[k]>0}
g(Xi)

p1p2
, i ∈ {1, 2, · · · , n}, k ∈ {1, 2, · · · , p2}. (38)

It is obvious that K1,K2, · · · ,Kn are i.i.d. with respect to the randomness of X. By Eq. (34), for
all k = 1, 2, · · · , p2, we have

E
Xi

[Ki[k]] = ∆W
∗[k]. (39)

Further, note that

‖Ki[k]‖2 ≤
‖g‖∞
p1p2

‖hRF
V,Xi
‖2 (by Lemma 12 and Eq. (38))

≤ ‖g‖∞√
p1p2

(by Lemma 11).

Thus, we have

‖Ki‖2 =

√
√
√
√

p2∑

k=1

‖Ki[k]‖22 ≤
‖g‖∞√
p1p2

,

i.e., √
p1p2‖Ki‖2 ≤ ‖g‖∞. (40)

We now construct the vector a ∈ R
n that we will use in Lemma 29. Its i-th element is ai =

g(Xi)
np1p2

,

i = 1, 2, · · · , n. Then, for all k ∈ {1, 2, · · · , p2}, we have

(HTa)[k] =

n∑

i=1

H
T
i [k]ai

=
n∑

i=1

hRF
V,Xi

1{(hRF
V,Xi

)TW0[k]>0}
g(Xi)

np1p2
(by Eq. (2))

=
1

n

n∑

i=1

Ki[k] (by Eq. (38)),

i.e.,

H
Ta =

1

n

n∑

i=1

Ki. (41)

Thus, by Lemma 14 (with Xi =
√
p1p2Ki, U = ‖g‖∞,m = q), we have

Pr
X

{

√
p1p2

∥
∥
∥
∥
∥

(

1

n

n∑

i=1

Ki

)

− E
X

K1

∥
∥
∥
∥
∥
2

≥ q‖g‖∞√
n

}

≤ 1

q2
.

Further, by Eq. (41) and Eq. (39), we have

Pr
X

{√
p1p2

∥
∥H

Ta−∆W
∗∥∥

2
≥ q‖g‖∞√

n

}

≤ 1

q2
.

By Lemma 29, we thus have

Pr
X

{

|fg
V,W0

(x)− f̂ ℓ2(x)| ≥ q‖g‖∞√
n

}

≤ 1

q2
.

The result of Proposition 4 thus follows.
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H Proof of Proposition 6 (Minimum Eigenvalue of HH
T )

Define

βi,j :=
∥
∥hRF

V,Xi

∥
∥
2
·
∥
∥
∥h

RF
V,Xj

∥
∥
∥
2
,

θRF
i,j := arccos

(

(hRF
V,Xi

)ThRF
V,Xj

βi,j

)

∈
[

0,
π

2

]

,

θRF
min := min

i6=j
θRF
i,j .

(By Eq. (1), we know that every element of hRF
V,Xi

and hRF
V,Xj

are non-negative, and hence θRF
i,j ∈

[0, π
2 ].)

Define H̃
∞ ∈ R

n×n as

H̃
∞
i,j :=

p1
2d

cos(θRF
i,j) ·

π − θRF
i,j

2π
. (42)

The following lemma (restated) is from the proof of Lemma 1 of Satpathi & Srikant (2021), which

relates min eig(H̃∞) to θRF
min. For reader’s convenience, we also provide its proof in Appendix H.1.

Lemma 30.

min eig(H̃∞) ≥ 1

8π
· p1
2d
·
√

log(1/ cos θRF
min)

log(2n/ cos θRF
min)

.

We then focus on estimating θRF
min.

Lemma 31. Recall the definition of C(n, d, q) in Eq. (16). For any q > 0, when p1 is sufficient
large such that

10dnq
√
2d√

p1
≤ C(n, d, q). (43)

we have

Pr
V,X

{
cos θRF

min ≥ 1− C(n, d, q)
}
≤ 4

q2
.

The proof of Lemma 31 is in Appendix H.2. Intuitively, when n becomes larger, some Xi’s (together
with hRF

V,Xi
’s) will get closer to each other, and thus θRF

min will get closer to zero. Such intuition is

captured by Lemma 31 since C(n, d, q) is monotone decreasing with respect to n.

The above lemmas study the minimum eigenvalue of H̃∞. We need to relate it to the minimum
eigenvalue of HH

T , which is achieved by the following lemma.

Lemma 32. For any q > 0,

Pr
X,V,W0

{∣
∣
∣
∣

1

p2
min eig(HH

T )−min eig(H̃∞)

∣
∣
∣
∣
≥ qn2

√

2p1d+ q2n3d+
qn2p1√

p2

}

≤ 3

q2
.

The proof of Lemma 32 is in Appendix H.3. From the derivation in Appendix B, we know that

each element of HH
T

p1p2
will approach the corresponding element of 1

p1
H̃

∞ as p1 and p2 get larger.

Therefore, it is natural to expect that the minimum eigenvalue of those two matrices will also be
closer to each other when p1 and p2 becomes larger, which is captured by Lemma 32.

Lemma 33. For any a ∈ (0, 1], we have log 1
a ≥ 1− a.

Proof. Consider the function h(a) := log(1/a)− 1 + a. We have
∂h(a)
∂a = − 1

a + 1 ≤ 0. Thus, we
know h(a) is monotone decreasing in a ∈ (0, 1]. Thus, we have h(a) ≥ h(1) = 0. The result of
this lemma thus follows.
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Now we are ready to prove Proposition 6.

Proof of Proposition 6. We define three events

J1 :=
{
cos θRF

min ≥ 1− C(n, d, q)
}
,

J2 :=

{∣
∣
∣
∣

1

p2
min eig(HH

T )−min eig(H̃∞)

∣
∣
∣
∣
≥ qn2

√

2p1d+ q2n3d+
qn2p1√

p2

}

,

J3 :=

{

1

p2
min eig(HH

T ) ≤ p1J(n, p1, p2, d, q) ,
p1

16πd

√

C(n, d, q)

log(4n)

−
(

qn2
√

2p1d+ q2n3d+
qn2p1√

p2

)}

.

Step 1: prove J1 ∪ J2 ⊇ J3.

In order to prove J1 ∪ J2 ⊇ J3, it is equivalent to prove J c
1 ∩ J c

2 ⊆ J c
3 . To that end, suppose J c

1
and J c

2 happen. Thus, we have

log(1/ cos θRF
min) ≥1− cos θRF

min (by Lemma 33)

≥C(n, d, q) (by the event J c
1 ). (44)

Thus, we have

min eig(H̃∞)

≥ 1

8π
· p1
2d

√

log(1/ cos θRF
min)

log(2n/ cos θRF
min)

(by Lemma 30)

=
p1

16πd

√

log(1/ cos θRF
min)

log(2n) + log(1/ cos θRF
min)

≥ p1
16πd

√

C(n, d, q)

log(2n) + C(n, d, q)

(by Eq. (44) and
a

log(2n) + a
is monotone increasing with respect to a)

≥ p1
16πd

√

C(n, d, q)

log(4n)
(since log(2) ≈ 0.7, C(n, d, q) ≤ π − 1

4π
· 1
2
≤ 1

8
≤ log 2).

Thus, we have

1

p2
min eig(HH

T ) ≥min eig(H̃∞)−
∣
∣
∣
∣

1

p2
min eig(HH

T )−min eig(H̃∞)

∣
∣
∣
∣

(by the triangle inequality)

>
p1

16πd

√

C(n, d, q)

log(4n)
−
(

qn2
√

2p1d+ q2n3d+
qn2p1√

p2

)

(by the event J c
2 )

=p1J(n, p1, p2, d, q) (by Eq. (17)),

i.e., J c
3 must then occur. Thus, we have shown that J c

1 ∩J c
2 ⊆ J c

3 , which implies that J1∪J2 ⊇ J3.

Step 2: estimate J3
We have

Pr
X,V,W0

[J3] ≤ Pr
X,V,W0

[J1 ∪ J2] (because J1 ∪ J2 ⊇ J3)

≤ Pr
X,V,W0

[J1] + Pr
X,V,W0

[J2] (by the union bound)

= Pr
X,V

[J1] + Pr
X,V,W0

[J2] (as J1 is independent of W0)

≤ 7

q2
(by Lemma 31 and Lemma 32).

The result of Proposition 6 thus follows.

33



In the rest of this section, we prove Lemma 30, Lemma 31, and Lemma 32.

H.1 Proof of Lemma 30

Proof. For simplicity of notation, we define ai ∈ R
p1 as

ai :=
hRF
V,Xi

‖hRF
V,Xi
‖2

for all i = 1, 2, · · · , n.

Let a⊗k
i ∈ R

p1k (a column vector with p1k elements) denote the k-time Kronecker product of the
vector ai with itself. We define

A := [a1 a2 · · · an] ∈ R
p1×n,

A
(k) :=

[
a⊗k
1 a⊗k

2 · · · a⊗k
n

]
∈ R

(p1k)×n,

B
(k) :=

(

A
(k)
)T

A
(k).

Thus, we have

cos θRF
i,j = aT

i aj . (45)

By the definition of Kronecker product, we thus have11

(
aT
i aj

)k
=
(
a⊗k
i

)T (
a⊗k
j

)
. (46)

Thus, by Lemma 17, we have

cos(θRF
i,j) ·

π − θRF
i,j

2π
=
cos θRF

i,j

4
+

1

2π

∞∑

k=0

(2k)!

(k!)2
4

2k + 1

(

cos θRF
i,j

2

)2k+2

=
aT
i aj

4
+

1

2π

∞∑

k=0

(2k)!

(k!)2
4

2k + 1

(
aT
i aj

2

)2k+2

=
aT
i aj

4
+

1

2π

∞∑

k=0

(2k)!

(k!)2
4

2k + 1

(
1

2

)2k+2
(
a⊗2k+2
i

)T
a⊗2k+2
j .

Using Eq. (42), we then have

H̃
∞ =

p1
2d

(

A
T
A

4
+

1

2π

∞∑

k=0

(2k)!

(k!)2
4

2k + 1

(
1

2

)2k+2

B
(2k+2)

)

.

Thus, we have

min eig(H̃∞) = min
u: ‖u‖2=1

uT
H̃

∞u

≥ p1
2d
· 1

2π

∞∑

k=0

(2k)!

(k!)2
4

2k + 1

(
1

2

)2k+2

min
u: ‖u‖2=1

uT
B

(2k+2)u

=
p1
2d
· 1

2π

∞∑

k=0

(2k)!

(k!)2
4

2k + 1

(
1

2

)2k+2

min eig(B(2k+2)). (47)

11To help readers understand the correctness of Eq. (46), we give a toy example as follows. We have
(

[

a b
]

[

c
d

])2

= (ac+ bd)2 = a
2
c
2 + 2abcd+ b

2
d
2
.

We also have

[

a
b

]⊗2

=







aa
ab
ba
bb






,

[

c
d

]⊗2

=







cc
cd
dc
dd






=⇒

(

[

a
b

]⊗2
)T (

[

c
d

]⊗2
)

= a
2
c
2 + 2abcd+ b

2
d
2
.

Thus, we have shown that

(

[

a b
]

[

c
d

])2

=

(

[

a
b

]⊗2
)T (

[

c
d

]⊗2
)

.
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Notice that all diagonal elements of B(2k+2) equal to 1. Thus, by Gershgorin circle theorem (Bell,
1965), we have

min eig(B(2k+2)) ≥ 1−max
i

∑

j 6=i

B
(2k+2)
ij , (48)

where B
(2k+2)
ij denotes the (i, j)-th element of B(2k+2). Notice that

max
i

∑

j 6=i

B
(2k+2)
ij =max

i

∑

j 6=i

(
a⊗2k+2
i

)T (
a⊗2k+2
j

)

=max
i

∑

j 6=i

(
cos θRF

i,j

)2k+2
(by Eq. (46) and Eq. (45))

≤(n− 1)
(
cos θRF

min

)2k+2
.

Note that, when k ≥ k∗ := log(2n−2)
2 log(1/ cos θRF

min)
− 1, we have

2k + 2 ≥ log(2n− 2)

log(1/ cos θRF
min)

=⇒ (2k + 2) log(1/ cos θRF
min) ≥ log(2n− 2)

=⇒ (n− 1)
(
cos θRF

min

)2k+2 ≤ 1

2
.

Therefore, we have

max
i

∑

j 6=i

B
(2k+2)
ij ≤ 1

2
, for all k ≥ k∗.

By Eq. (47) and Eq. (48), we thus have

min eig(H̃∞) ≥ p1
8dπ

∑

k≥k∗

(2k)!

(k!)2
4

2k + 1

(
1

2

)2k+2

=
p1
8dπ

∑

k≥⌈k∗⌉

(2k − 1)!!

(2k)!!

1

2k + 1

≥ p1
8dπ

∑

k≥⌈k∗⌉

1
√

π
(
k + 4

π − 1
)

1

2k + 1
(by Lemma 16)

≥ p1
8dπ

∫ ∞

k∗+1

1
√

π
(
x+ 4

π − 1
)

1

2x+ 1
dx

≥ p1
8dπ

∫ ∞

k∗+1

1

2
√
π
(x+ 1)−

3
2 dx (notice that

4

π
− 1 ≈ 0.27 ≤ 1)

=
p1
8dπ

1√
π

1√
k∗ + 2

.

Notice that 1√
π
≥ 1

2 and

k∗ + 2 =
log(2n− 2)

2 log(1/ cos θRF
min)

+ 1 ≤ log(2n)

log(1/ cos θRF
min)

+ 1 =
log(2n/ cos θRF

min)

log(1/ cos θRF
min)

.

We thus have

min eig(H̃∞) ≥ p1
16dπ

√

log(1/ cos θRF
min)

log(2n/ cos θRF
min)

.
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H.2 Proof of Lemma 31

We first show some useful lemmas.

Lemma 34. For any θ ∈ [0, π], we have

1− sin θ + (π − θ) cos θ

π
≥ π − 1

2π
sin2 θ,

lim
θ→0+

1− sin θ+(π−θ) cos θ
π

sin2 θ
=

1

2
.

Proof. To prove the first part, we have

sin θ + (π − θ) cos θ

π
≤ sin θ + (π − θ)

√

1− sin2 θ

π

(although cos θ could be negative, we always have cos θ ≤
√

1− sin2 θ)

≤
sin θ + (π − θ)

√

1− sin2 θ + 1
4 sin

4 θ

π

=
sin θ + (π − θ)

(
1− 1

2 sin
2 θ
)

π

≤ sin θ + (π − sin θ)
(
1− 1

2 sin
2 θ
)

π
(because sin θ ≤ θ)

=1− π − sin θ

2π
sin2 θ

≤1− π − 1

2π
sin2 θ (because sin θ ≤ 1),

i.e.,

1− sin θ + (π − θ) cos θ

π
≥ π − 1

2π
sin2 θ.

To prove the second part, we have

lim
θ→0+

1− sin θ+(π−θ) cos θ
π

sin2 θ
= lim

θ→0+

∂
∂θ

(

1− sin θ+(π−θ) cos θ
π

)

∂ sin2 θ
∂θ

(by L’Hospital’s rule)

= lim
θ→0+

− cos θ + (π − θ) sin θ + cos θ

2π sin θ cos θ

= lim
θ→0+

π − θ

2π cos θ

=
1

2
.

Lemma 35. Consider a ≥ 0 and b > 0. Let δ := |b− 1|. If δ ∈ [0, 0.5], we then have

a− aδ ≤ a

b
≤ a+ 2aδ.

Therefore, for any c ∈ R, we have

∣
∣
∣
a

b
− c
∣
∣
∣ ≤ |a− c|+ 2aδ.

Further, if we know the upper bound of a, we have the following conclusion: (i) if a ≤ 1, we must
have a

b ≤ a+ 2δ; (ii) if a ≤ 1.5, we must have
∣
∣a
b − c

∣
∣ ≤ |a− c|+ 3a.
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Proof. We have

a

b
≤a 1

1− δ
(because b ≥ 1− |1− b| = 1− δ)

≤a1 + (1− 2δ)δ

1− δ
(by (1− 2δ) ≥ 0 because δ ∈ [0, 0.5])

=a
1 + δ − 2δ2

1− δ

=a
(1− δ)(1 + 2δ)

1− δ
=a+ 2aδ.

We also have

a

b
≥a 1

1 + δ
(because b ≤ 1 + |1− b| = 1 + δ)

≥a1− δ2

1 + δ
=a− aδ.

The result of this lemma thus follows.

Lemma 36. If the condition in Eq. (43) is satisfied, then

1− 2C(n, d, q) + 2dnq√
p1

1− 4dnq
√
2d√

p1
− 4d2n2q2

p1

≤ 1− C(n, d, q).

Proof. By Eq. (43) and the definition of C(n, d, q) in Eq. (16), we have

10dnq
√
2d√

p1
≤ π − 1

4π
· 1
2
≤ 1

8
≤ 1

2
(49)

=⇒ dnq
√
2d√

p1
≤ 1

20
, and

d2n2q2 · 2d
p1

≤
(

1

20

)2

=
1

400

=⇒ 4dnq
√
2d√

p1
+

4d2n2q2

p1
≤ 1

5
+

1

200d
≤ 0.5. (50)

We also have

2dnq√
p1

+
8dnq

√
2d√

p1
+

8d2n2q2

p1

≤dnq
√
2d√

p1
+

8dnq
√
2d√

p1
+

1

2

√

8d2n2q2

p1
(because 2 ≤

√
2d and

8d2n2q2

p1
≤ 1

100d
≤ 1

4
)

=
9dnq

√
2d√

p1
+

dnq
√
2√

p1

≤10dnq
√
2d√

p1

≤C(n, d, q) (by Eq. (43)). (51)

Thus, we have

2dnq√
p1
≤ C(n, d, q) (by Eq. (43))

=⇒ 1− 2C(n, d, q) +
2dnq√
p1
∈ [0, 1] (since C(n, d, q) ≤ 1

8
by Eq. (49)). (52)
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By Eq. (50), Eq. (52) and applying Lemma 35(i) (where a = 1 − 2C(n, d, q) + 2dnq√
p1

, b = 1 −
4dnq

√
2d√

p1
− 4d2n2q2

p1
, and δ = 4dnq

√
2d√

p1
+ 4d2n2q2

p1
), we thus have

1− 2C(n, d, q) + 2dnq√
p1

1− 4dnq
√
2d√

p1
− 4d2n2q2

p1

≤1− 2C(n, d, q) +
2dnq√
p1

+
8dnq

√
2d√

p1
+

8d2n2q2

p1

≤1− C(n, d, q) (by Eq. (51)).

Lemma 37. Given X, for any m > 0,

Pr
V

{∣
∣
∣βi,j −

p1
2d

∣
∣
∣ ≥ 2m

√

2p1d+ 2m2d
}

≤ 2

m2
.

In other words, given any x, z ∈ Sd−1 and for any q > 0,

Pr
V

{∣
∣
∣‖hRF

V,x‖2 · ‖hRF
V,z‖2 −

p1
2d

∣
∣
∣ ≥ 2m

√

2p1d+ 2m2d
}

≤ 2

m2
.

Proof. Define

Qi
k := (XT

i V[k])(XT
i V[k])1{XT

i V[k]>0}.

By Eq. (1), we have

1

p1
‖hRF

V,Xi
‖22 =

1

p1
(hRF

V,Xi
)T · hRF

V,Xi
=

1

p1

p1∑

k=1

Qi
k.

Note that

|Qi
k| ≤ ‖Xi‖2 · ‖V[k]‖2 · ‖Xi‖2 · ‖V[k]‖ = 1 (by Assumption 1).

Further, note that

E
V

[Qi
1] =

∫

Sd−1

(XT
i v)(X

T
i v)1{XT

i v>0}dλ(v) (by Eq. (1))

=
sin 0 + π cos 0

2dπ
(by Lemma 21)

=
1

2d
.

By Lemma 14, we thus have

Pr
V

{∣
∣
∣
∣

1

p1
‖hRF

V,Xi
‖22 −

1

2d

∣
∣
∣
∣
≥ m√

p1

}

≤ 1

m2
. (53)

Notice that

∣
∣
∣‖hRF

V,Xi
‖22 −

p1
2d

∣
∣
∣ =

(

‖hRF
V,Xi
‖2 +

√
p1
2d

)

·
∣
∣
∣
∣
‖hRF

V,Xi
‖2 −

√
p1
2d

∣
∣
∣
∣
≥
√

p1
2d
·
∣
∣
∣
∣
‖hRF

V,Xi
‖2 −

√
p1
2d

∣
∣
∣
∣
.

(54)

Combining Eq. (53) and Eq. (54), we then have

Pr
V

{∣
∣
∣
∣
‖hRF

V,Xi
‖2 −

√
p1
2d

∣
∣
∣
∣
≥ m
√
2d

}

≤ Pr
V

{∣
∣
∣‖hRF

V,Xi
‖22 −

p1
2d

∣
∣
∣ ≥ m

√
p1

}

≤ 1

m2
.
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Finally, notice that
∣
∣
∣βi,j −

p1
2d

∣
∣
∣

=
∣
∣
∣‖hRF

V,Xi
‖2
(

‖hRF
V,Xj

‖2 −
√

p1
2d

)

+ ‖hRF
V,Xj

‖2
(

‖hRF
V,Xi
‖2 −

√
p1
2d

)

−
(

‖hRF
V,Xj

‖2 −
√

p1
2d

)(

‖hRF
V,Xi
‖2 −

√
p1
2d

) ∣
∣
∣

≤√p1
∣
∣
∣
∣
‖hRF

V,Xj
‖2 −

√
p1
2d

∣
∣
∣
∣
+
√
p1

∣
∣
∣
∣
‖hRF

V,Xi
‖2 −

√
p1
2d

∣
∣
∣
∣

+

∣
∣
∣
∣
‖hRF

V,Xj
‖2 −

√
p1
2d

∣
∣
∣
∣
·
∣
∣
∣
∣
‖hRF

V,Xi
‖2 −

√
p1
2d

∣
∣
∣
∣

(by the triangle inequality and Lemma 11).

Thus, we have

{∣
∣
∣
∣
‖hRF

V,Xi
‖2 −

√
p1
2d

∣
∣
∣
∣
≥ m
√
2d

}

∪
{∣
∣
∣
∣
‖hRF

V,Xj
‖2 −

√
p1
2d

∣
∣
∣
∣
≥ m
√
2d

}

⊇
{∣
∣
∣βi,j −

p1
2d

∣
∣
∣ ≥ 2m

√

2p1d+ 2m2d
}

.

Applying the union bound, we thus have

Pr
V

{∣
∣
∣βi,j −

p1
2d

∣
∣
∣ ≥ 2m

√

2p1d+ 2m2d
}

≤ 2

m2
.

Now we are ready to prove Lemma 31.

Proof of Lemma 31. Define three events as

J1,i,j :=
{
2d

p1
(hRF

V,Xi
)T · hRF

V,Xj
≥ 1− 2C(n, d, q) +

2dnq√
p1

}

,

J2,i,j :=
{

βi,j ≤
p1
2d
− 2nq

√

2p1d− 2n2q2d
}

,

J3,i,j :=
{
cos θRF

i,j ≥ 1− 2C(n, d, q)
}
.

We take a few steps as follows to finish the proof.

Step 1: estimate J1,i,j .

Define

Qi,j
k := (XT

i V[k])(XT
j V[k])1{XT

i V[k]>0, XT
j V[k]>0}, k = 1, 2, · · · , p1.

By Eq. (1) and the definition of Qi,j
k , we have

(hRF
V,Xi

)T · hRF
V,Xj

=

p1∑

k=1

Qi,j
k . (55)

Note that

|Qi,j
k | ≤ ‖Xi‖2 · ‖V[k]‖2 · ‖Xj‖2 · ‖V[k]‖2 = 1 (by Assumption 1 and Lemma 12).

By Lemma 14, we then have

Pr
V

{∣
∣
∣
∣
∣

1

p1

p1∑

k=1

Qi,j
k − E

V

[Qi,j
1 ]

∣
∣
∣
∣
∣
≥ m√

p1

}

≤ 1

m2
.
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Let θi,j = arccos(XT
i Xj) ∈ [0, π] denote the angle between Xi and Xj , where i 6= j and i, j ∈

{1, 2, · · · , n}. Notice that

E
V

[Qi,j
1 ] =

∫

Sd−1

(XT
i v)(X

T
j v)1{XT

i v>0,XT
j v>0}dλ(v) (by Eq. (1))

=
sin θi,j + (π − θi,j) cos θi,j

2dπ
(by Lemma 21)

≤ 1

2d

(

1− π − 1

2π
sin2 θi,j

)

(by Lemma 34).

Thus, we have

Pr
V

{

1

p1

p1∑

k=1

Qi,j
k ≥

1

2d

(

1− π − 1

2π
sin2 θi,j

)

+
m√
p1

}

≤ 1

m2
.

For any α ∈ [0, 1], we have

Pr
X

{
sin2 θi,j ≤ α

}

=Pr
X

{
θi,j ≤ arcsin

(√
α
)

OR π − θi,j ≤ arcsin
(√

α
)}

≤Pr
X

{
θi,j ≤ arcsin

(√
α
)}

+ Pr
X

{
π − θi,j ≤ arcsin

(√
α
)}

(by the union bound)

=Iα

(
d− 1

2
,
1

2

)

(area of two caps, by Lemma 8 and Assumption 1)

≤ 2
√
dα

d−1
2

(d− 1)
√
1− α

(by Lemma 9 and Lemma 10).

Further, because

{
sin2 θi,j > α

}
∩
{

1

p1

p1∑

k=1

Qi,j
k <

1

2d

(

1− π − 1

2π
sin2 θi,j

)

+
m√
p1

}

⊆
{

2d

p1

p1∑

k=1

Qi,j
k < 1− π − 1

2π
α+

2dm√
p1

}

,

we have

{
sin2 θi,j ≤ α

}
∪
{

1

p1

p1∑

k=1

Qi,j
k ≥

1

2d

(

1− π − 1

2π
sin2 θi,j

)

+
m√
p1

}

⊇
{

2d

p1

p1∑

k=1

Qi,j
k ≥ 1− π − 1

2π
α+

2dm√
p1

}

.

Thus, by the union bound and Eq. (55), we have

Pr
V,X

{
2d

p1
(hRF

V,Xi
)T · hRF

V,Xj
≥ 1− π − 1

2π
α+

2dm√
p1

}

≤ 1

m2
+

2
√
dα

d−1
2

(d− 1)
√
1− α

. (56)

By letting

α = min

{

1

2
,

(
(d− 1)2

8d

) 1
d−1

(qn)
− 4

d−1

}

, and m = qn,

we have

2
√
dα

d−1
2

(d− 1)
√
1− α

≤2
√
2
√
dα

d−1
2

(d− 1)
(because α ≤ 1

2
)

≤
2
√
2
√
d
√

(d−1)2

8d
1

q2n2

d− 1
(because α ≤

(
(d− 1)2

8d

) 1
d−1

(qn)
− 4

d−1 )

=
1

q2n2
.
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Thus, by Eq. (56), we have

Pr
V,X

[J1,i,j ] ≤
2

q2n2
. (57)

Step 2: estimate J2,i,j . By Lemma 37, we have

Pr
V

{

βi,j ≤
p1
2d
− 2m

√

2p1d− 2m2d
}

≤ 2

m2
.

Letting m = qn, we then have

Pr
V

[J2,i,j ] ≤
2

q2n2
. (58)

Step 3: prove J3,i,j ⊆ J1,i,j ∪ J2,i,j .

In order to show J3,i,j ⊆ J1,i,j ∪ J2,i,j , it suffices to show J c
3,i,j ⊇ J c

1,i,j ∩ J c
2,i,j . When J c

1,i,j ∩
J c
2,i,j happens, we have

2d

p1
βi,j > 1− 2d

p1
· 2nq

√

2p1d−
2d

p1
· 2n2q2d = 1− 4dnq

√
2d√

p1
− 4d2n2q2

p1
,

2d

p1
(hRF

V,Xi
)T · hRF

V,Xj
< 1− 2C(n, d, q) +

2dnq√
p1

.

Thus, we have

cos θRF
i,j =

(hRF
V,Xi

)T · hRF
V,Xj

βi,j

<
1− 2C(n, d, q) + 2dnq√

p1

1− 4dnq
√
2d√

p1
− 4d2n2q2

p1

≤1− C(n, d, q) (by Lemma 36)

i.e., the event J c
3,i,j happens. To sum up, we have proven that J c

3,i,j ⊇ J c
1,i,j ∩J c

2,i,j , which implies
J3,i,j ⊆ J1,i,j ∪ J2,i,j .

Step 4: estimate J3,i,j . We have

Pr
V,X

[J3,i,j ] ≤ Pr
V,X

[J1,i,j ] + Pr
V,X

[J2,i,j ] (by J3,i,j ⊆ J1,i,j ∪ J2,i,j and the union bound)

≤ 4

q2n2
(by Eq. (57) and Eq. (58)). (59)

Step 5: estimate cos θRF
min. We have

Pr
V,X

{
cos θRF

min ≥ 1− C(n, d, q)
}

= Pr
V,X




⋃

i6=j

J3,i,j





≤n(n− 1) Pr
V,X

[J3,i,j ] (by the union bound)

≤ 4

q2
(by Eq. (59)).

The result of Lemma 31 thus follows.

H.3 Proof of Lemma 32

We first introduce two useful lemmas. Define H
∞ ∈ R

n×n as

H
∞
i,j := βi,j cos(θ

RF
i,j) ·

π − θRF
i,j

2π
.
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Lemma 38. Given X and V, for any q > 0, we have

Pr
W0

{

max
i,j

∣
∣
∣
∣

1

p2
(HH

T )i,j −H
∞
i,j

∣
∣
∣
∣
≥ qnp1√

p2

}

≤ 1

q2
.

Thus, we also have

Pr
W0,X,V

{

max
i,j

∣
∣
∣
∣

1

p2
(HH

T )i,j −H
∞
i,j

∣
∣
∣
∣
≥ qnp1√

p2

}

≤ 1

q2
.

Proof. For notation simplicity, given any i, j ∈ {1, 2, · · · , n}, we define

Qi,j
k := (hRF

V,Xi
)ThRF

V,Xj
1{(hRF

V,Xi
)TW0[k]>0, (hRF

V,Xj
)TW0[k]} for all k ∈ {1, 2, · · · , p2}.

By Eq. (2), we thus have

(HH
T )i,j = (hThree

V,W0,Xi
)ThThree

V,W0,Xj
=

p2∑

k=1

(hRF
V,Xi

)ThRF
V,Xj

1{(hRF
V,Xi

)TW0[k]>0, (hRF
V,Xj

)TW0[k]}

=

p2∑

k=1

Qi,j
k .

By Lemma 20 and recalling Eq. (42), we have

E
W0

[Qi,j
k ] = H

∞
i,j .

By Lemma 11 and Lemma 12, we have

|Qi,j
k | ≤ ‖hRF

V,Xi
‖2 · ‖hRF

V,Xj
‖2 ≤ p1.

Note that Qi,j
k are independent across k. By Lemma 14, for any m > 0, we have

Pr
W0

{∣
∣
∣
∣

1

p2
(HH

T )i,j −H
∞
i,j

∣
∣
∣
∣
≥ m

p1√
p2

}

≤ 1

m2
. (60)

The result of this lemma thus follows by letting m = qn and the union bound, i.e.,

Pr
W0

{

max
i,j

∣
∣
∣
∣

1

p2
(HH

T )i,j −H
∞
i,j

∣
∣
∣
∣
≥ qnp1√

p2

}

= Pr
W0







⋃

i,j

{∣
∣
∣
∣

1

p2
(HH

T )i,j −H
∞
i,j

∣
∣
∣
∣
≥ qnp1√

p2

}






≤
∑

i,j

Pr
W0

{∣
∣
∣
∣

1

p2
(HH

T )i,j −H
∞
i,j

∣
∣
∣
∣
≥ qnp1√

p2

}

(by the union bound)

≤
∑

i,j

1

q2n2
(by letting m = qn in Eq. (60))

=
1

q2
.

Lemma 39. Given X, for any q > 0, we must have

Pr
V

{

max
i,j

∣
∣
∣H

∞
i,j − H̃

∞
i,j

∣
∣
∣ ≥ qn

√

2p1d+ q2n2d

}

≤ 2

q2
.

Thus, we also have

Pr
V,X,W0

{

max
i,j

∣
∣
∣H

∞
i,j − H̃

∞
i,j

∣
∣
∣ ≥ qn

√

2p1d+ q2n2d

}

≤ 2

q2
.
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Proof. We have

∣
∣
∣H

∞
i,j − H̃

∞
i,j

∣
∣
∣ =

∣
∣
∣
∣
∣

(

βi,j −
p1
2d

)

cos(θRF
i,j) ·

π − θRF
i,j

2π

∣
∣
∣
∣
∣

(by Eq. (42))

≤
∣
∣
∣βi,j −

p1
2d

∣
∣
∣ ·
∣
∣cos(θRF

i,j)
∣
∣ ·
∣
∣
∣
∣
∣

π − θRF
i,j

2π

∣
∣
∣
∣
∣

(by Lemma 12)

≤1

2

∣
∣
∣βi,j −

p1
2d

∣
∣
∣ (since 0 ≤ θRF

i,j ≤
π

2
).

The result of this lemma thus follows by letting m = qn in Lemma 37 and the union bound, i.e.,

Pr
V

{

max
i,j

∣
∣
∣H

∞
i,j − H̃

∞
i,j

∣
∣
∣ ≥ qn

√

2p1d+ q2n2d

}

≤Pr
V

{

max
i,j

∣
∣
∣βi,j −

p1
2d

∣
∣
∣ ≥ 2qn

√

2p1d+ 2q2n2d

}

=Pr
V







⋃

i,j

{∣
∣
∣βi,j −

p1
2d

∣
∣
∣ ≥ 2qn

√

2p1d+ 2q2n2d
}







≤
∑

i,j

Pr
V

{∣
∣
∣βi,j −

p1
2d

∣
∣
∣ ≥ 2qn

√

2p1d+ 2q2n2d
}

(by the union bound)

≤
∑

i,j

2

q2n2
( by letting m = qn in Lemma 37)

=
2

q2
.

Now we are ready to prove Lemma 32.

Proof of Lemma 32. By the triangle inequality, we have

∣
∣
∣
∣

1

p2
(HH

T )i,j − H̃
∞
i,j

∣
∣
∣
∣
≤
∣
∣
∣H

∞
i,j − H̃

∞
i,j

∣
∣
∣+

∣
∣
∣
∣

1

p2
(HH

T )i,j −H
∞
i,j

∣
∣
∣
∣
.

Thus, we have

Pr
X,V,W0

{

max
i,j

∣
∣
∣
∣

1

p2
(HH

T )i,j − H̃
∞
i,j

∣
∣
∣
∣
≥ qn

√

2p1d+ q2n2d+
qnp1√
p2

}

≤ Pr
X,V,W0

{{

max
i,j

∣
∣
∣H

∞
i,j − H̃

∞
i,j

∣
∣
∣ ≥ qn

√

2p1d+ q2n2d

}

∪
{

max
i,j

∣
∣
∣
∣

1

p2
(HH

T )i,j −H
∞
i,j

∣
∣
∣
∣
≥ qnp1√

p2

}}

≤ Pr
X,V,W0

{

max
i,j

∣
∣
∣H

∞
i,j − H̃

∞
i,j

∣
∣
∣ ≥ qn

√

2p1d+ q2n2d

}

+ Pr
X,V,W0

{

max
i,j

∣
∣
∣
∣

1

p2
(HH

T )i,j −H
∞
i,j

∣
∣
∣
∣
≥ qnp1√

p2

}

(by the union bound)

≤ 3

q2
(by Lemma 38 and Lemma 39).

The result of Lemma 32 thus follows by Lemma 13 (where k = n).
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I Proof of Proposition 5 and Proposition 7

We first provide some useful lemmas.

Lemma 40. For any ϕ ∈ [0, 2π], we must have sinϕ ≤ ϕ. For any ϕ ∈ [0, π/2], we must have
ϕ ≤ π

2 sinϕ.

Proof. See Lemma 41 of Ju et al. (2021).

Lemma 41. For any a1, a2 ∈ [−1, 1] that |a1 − a2| ≤ 1, we must have

| arccos(a1)− arccos(a2)| ≤
√
2π

2

√

|a1 − a2|.

Proof. Without loss of generality, we assume a2 ≥ a1 and let δ := a2 − a1 ∈ [0, 1]. Because
∂ arccos x

∂x = − 1√
1−x2

, we have

∂(arccos(a1)− arccos(a1 + δ))

∂a1
= − 1

√

1− a21
+

1
√

1− (a1 + δ)2
{≤ 0, when a1 ∈ [−1, − δ

2 ]

≥ 0, when a1 ∈ [− δ
2 , 1− δ]

.

Thus, we know the largest value of arccos(a1) − arccos(a1 + δ) can only be achieved at either
a1 = −1 or a1 = 1− δ, i.e.,

arccos(a1)− arccos(a1 + δ) ≤ max {π − arccos(−1 + δ), arccos(1− δ)} = arccos(1− δ).
(61)

(The last equality is because arccos(−x) = π− arccosx.) It remains to show that arccos(1− δ) ≤√
2π
2

√
δ. To that end, it suffices to prove cos(

√
2π
2

√
δ) ≤ 1 − δ. Let θ :=

√
2π
2

√
δ, i.e., δ = 2

π2 θ
2.

When θ > π
2 , we have cos(

√
2π
2

√
δ) = cos θ < 0 < 1− δ (since δ ∈ [0, 1]). When θ ∈ [0, π

2 ], we
have

cos(

√
2π

2

√
δ) = cos θ =

√

1− sin2 θ ≤
√

1− sin2 θ +
1

4
sin4 θ =1− 1

2
sin2 θ

≤1− 1

2
(
2

π
θ)2 (by Lemma 40)

=1− δ.

Therefore, we have proven that arccos(1 − δ) ≤
√
2π
2

√
δ for all δ ∈ [0, 1]. By Eq. (61), the result

of this lemma thus follows.

Lemma 42. For any real number a1, a2, δ1, and δ2 such that a2 ∈ [−1, 1], a2 + δ2 ∈ [−1, 1], and
|δ2| ≤ 1, we must have

∣
∣
∣
∣
(a1 + δ1)

π − arccos(a2 + δ2)

2π
− a1

π − arccos(a2)

2π

∣
∣
∣
∣
≤ 1

2
|δ1|+

√
2|a1|

√

|δ2|
4

.

Proof. Define

b := a1
π − arccos(a2 + δ2)

2π
.
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we have
∣
∣
∣
∣
(a1 + δ1)

π − arccos(a2 + δ2)

2π
− a1

π − arccos(a2)

2π

∣
∣
∣
∣

=

∣
∣
∣
∣
(a1 + δ1)

π − arccos(a2 + δ2)

2π
− b+ b− a1

π − arccos(a2)

2π

∣
∣
∣
∣

≤
∣
∣
∣
∣
(a1 + δ1)

π − arccos(a2 + δ2)

2π
− b

∣
∣
∣
∣
+

∣
∣
∣
∣
b− a1

π − arccos(a2)

2π

∣
∣
∣
∣

=|δ1| ·
∣
∣
∣
∣

π − arccos(a2 + δ2)

2π

∣
∣
∣
∣
+ |a1| ·

∣
∣
∣
∣

arccos(a2 + δ2)− arccos(a2)

2π

∣
∣
∣
∣

≤1

2
|δ1|+

√
2|a1|

√

|δ2|
4

(since arccos(·) ∈ [0, π] and by Lemma 41).

Lemma 43. For any θ ∈ [0, π], we have

sin θ + (π − θ) cos θ

π
∈ [0, 1].

Proof. We have

∂(sin θ + (π − θ) cos θ)

∂θ
= −(π − θ) sin θ ≤ 0.

Thus, sin θ+(π−θ) cos θ is monotone decreasing. The result of this lemma thus follows by plugging
θ = 0 and θ = π into the expression.

Lemma 44. Recall the definition of KThree(·) in Eq. (6) and the definition of Q(p1, d) in Eq. (18).
When p1 is large enough such that 9d ·Q(p1, d) ≤ 1, we must have

Pr
V







max
x,z

∣
∣
∣
∣
∣
∣
∣
∣

1

p1
(hRF

V,z)
ThRF

V,x

π − arccos

(
(hRF

V,z)
T
h

RF
V,x

‖hRF
V,z‖2·‖hRF

V,x‖2

)

2π
−KThree(xTz)

∣
∣
∣
∣
∣
∣
∣
∣

≥
√

Q(p1, d)

d







≤ d2

(p1 + 1)ed+1
.

Proof. Because 9d ·Q(p1, d) ≤ 1, we have

Q(p1, d) =
√

Q(p1, d)
√

Q(p1, d) ≤
√

Q(p1, d)

√

1

9d
=

√

Q(p1, d)

9d
. (62)

We also have

2d ·Q(p1, d) ≤
2

9
≤ 0.5. (63)

Define two events

J1 :=

{

max
x,z

∣
∣
∣
∣

1

p1
(hRF

V,x)
ThRF

V,z −KRF(xTz)

∣
∣
∣
∣
≥ Q(p1, d)

}

,

J2 :=

{

max
x,z

∣
∣a−KThree(xTz)

∣
∣ ≥

√

Q(p1, d)

d

}

.

Notice that the randomness of those events is on V. We first show J1 ⊇ J2, i.e., J c
1 ⊆ J c

2 . To that
end, suppose J c

1 happens. Because of J c
1 , we have

max
x,z

∣
∣
∣
∣

2d

p1
(hRF

V,z)
ThRF

V,x − 2d ·KRF(xTz)

∣
∣
∣
∣
≤ 2d ·Q(p1, d). (64)
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By Eq. (4), we have

KRF(xTx) = KRF(1) =
1

2d
. (65)

Thus, we have

max
x,z

∣
∣
∣
∣

2d

p1

∥
∥hRF

V,x

∥
∥
2
·
∥
∥hRF

V,z

∥
∥
2
− 1

∣
∣
∣
∣

=max
x

∣
∣
∣
∣

2d

p1

∥
∥hRF

V,x

∥
∥
2

2
− 1

∣
∣
∣
∣

(the max value is achieved when ‖hRF
V,x‖2 = ‖hRF

V,z‖2)

=max
x

∣
∣
∣
∣

2d

p1

∥
∥hRF

V,x

∥
∥
2

2
− 2dKRF(xTx)

∣
∣
∣
∣

(by Eq. (65))

≤max
x,z

∣
∣
∣
∣

2d

p1

∥
∥hRF

V,x

∥
∥
2

∥
∥hRF

V,z

∥
∥
2
− 2dKRF(xTz)

∣
∣
∣
∣

(since we could set z = x on the right hand side)

≤2d ·Q(p1, d) (because of J c
1 ). (66)

By Eq. (66), Eq. (64), and Eq. (63), we thus have
∣
∣
∣
∣

2d

p1

∥
∥hRF

V,x

∥
∥
2
·
∥
∥hRF

V,z

∥
∥
2
− 1

∣
∣
∣
∣
≤ 0.5 for all x and z. (67)

Thus, we then have 2d
p1
(hRF

V,z)
ThRF

V,x ≤ 2d
p1

∥
∥hRF

V,x

∥
∥
2
·
∥
∥hRF

V,z

∥
∥
2
≤ 1.5. Besides, we have

2d
p1
(hRF

V,z)
ThRF

V,x ≥ 0 because all elements of hRF
V,x and hRF

V,z are non-negative by Eq. (1). In

other words, we have

2d

p1
(hRF

V,z)
ThRF

V,x ∈ [0, 1.5] for all x and z. (68)

Therefore, we then have

max
x,z

∣
∣
∣
∣
∣

(hRF
V,z)

ThRF
V,x

‖hRF
V,z‖2 · ‖hRF

V,x‖2
− 2d ·KRF(x, z)

∣
∣
∣
∣
∣

=max
x,z

∣
∣
∣
∣
∣

2d
p1
(hRF

V,z)
ThRF

V,x

2d
p1
‖hRF

V,z‖2 · ‖hRF
V,x‖2

− 2d ·KRF(x, z)

∣
∣
∣
∣
∣

≤max
x,z

∣
∣
∣
∣

2d

p1
(hRF

V,z)
ThRF

V,x − 2d ·KRF(x, z)

∣
∣
∣
∣
+ 3max

x,z

∣
∣
∣
∣

2d

p1

∥
∥hRF

V,x

∥
∥
2
·
∥
∥hRF

V,z

∥
∥
2
− 1

∣
∣
∣
∣

(by Lemma 35(ii) where a =
2d

p1
(hRF

V,z)
ThRF

V,x ∈ [0, 1.5] by Eq. (68),

b =
2d

p1

∥
∥hRF

V,x

∥
∥
2
·
∥
∥hRF

V,z

∥
∥
2
, and δ =

∣
∣
∣
∣

2d

p1

∥
∥hRF

V,x

∥
∥
2
·
∥
∥hRF

V,z

∥
∥
2
− 1

∣
∣
∣
∣
∈ [0, 0.5] by Eq. (67)).

≤9d ·Q(p1, d) (by Eq. (64) and Eq. (66)). (69)

Now we apply Lemma 42 by letting δ1 = 1
p1
(hRF

V,x)
ThRF

V,z −KRF(xTz), δ2 =
(hRF

V,z)
T
h

RF
V,x

‖hRF
V,z‖2·‖hRF

V,x‖2
−

2d ·KRF(xTz), a1 = KRF(xTz), and a2 = 2d ·KRF(xTz). We first check the conditions required
by Lemma 42. By Eq. (4) and Lemma 43, we have

a2 = 2d ·KRF(xTz) ∈ [0, 1] ⊆ [−1, 1].
Because

∣
∣(hRF

V,z)
ThRF

V,x

∣
∣ ≤ ‖hRF

V,z‖2 · ‖hRF
V,x‖2, we have

a2 + δ2 =
(hRF

V,z)
ThRF

V,x

‖hRF
V,z‖2 · ‖hRF

V,x‖2
∈ [−1, 1].

By Eq. (69) and 9d ·Q(p1, d) ≤ 1 (the condition of this lemma), we have

|δ2| ≤ 9d ·Q(p1, d) ≤ 1.
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Therefore, all conditions of Lemma 42 are satisfied. According to Lemma 42, we then have

∣
∣
∣
∣
(a1 + δ1)

π − arccos(a2 + δ2)

2π
− a1

π − arccos(a2)

2π

∣
∣
∣
∣
≤ 1

2
|δ1|+

√
2|a1|

√

|δ2|
4

=⇒

∣
∣
∣
∣
∣
∣
∣
∣

1

p1
(hRF

V,z)
ThRF

V,x

π − arccos

(
(hRF

V,z)
T
h

RF
V,x

‖hRF
V,z‖2·‖hRF

V,x‖2

)

2π

−KRF(xTz)
π − arccos(2d ·KRF(xTz))

2π

∣
∣
∣
∣
≤ 1

2

∣
∣
∣
∣

1

p1
(hRF

V,x)
ThRF

V,z −KRF(xTz)

∣
∣
∣
∣

+

√
2|KRF(xTz)|

√∣
∣
∣

(hRF
V,z)

ThRF
V,x

‖hRF
V,z‖2·‖hRF

V,x‖2
− 2d ·KRF(xTz)

∣
∣
∣

4
.

By J c
1 and Eq. (69), we thus have

max
x,z

∣
∣
∣
∣
∣
∣
∣
∣

1

p1
(hRF

V,z)
ThRF

V,x

π − arccos

(
(hRF

V,z)
T
h

RF
V,x

‖hRF
V,z‖2·‖hRF

V,x‖2

)

2π
−KThree(xTz)

∣
∣
∣
∣
∣
∣
∣
∣

≤Q(p1, d)

2
+

√
2|KRF(x, z)|

√

9d ·Q(p1, d)

4

≤Q(p1, d)

2
+

√

9

32d
·Q(p1, d) (because KRF(x, z) ∈

[

0,
1

2d

]

by Lemma 43)

≤
(√

1

36d
+

√

9

32d

)
√

Q(p1, d) (by Eq. (62))

≤
√

Q(p1, d)

d
(since

√

1

36
+

√

9

32
≈ 1

6
+ 0.53 ≤ 1),

i.e., J c
2 happens. We next estimate the probability of J2. We have

Pr
V

[J2] ≤Pr
V

[J1] (because J2 ⊆ J1)

≤ d2

(p1 + 1)ed+1
(by Lemma 25, noticing that 9d ·Q(p1, d) ≤ 1 =⇒ p1 ≥ 10).

The result of this lemma thus follows.

Lemma 45. We have

‖HT (HH
T )−1‖2 ≤

1
√

min eig(HHT )
.

Proof. For any a ∈ R
n, we have

‖HT (HH
T )−1a‖2 =

√

(HT (HHT )−1a)
T
HT (HHT )−1a =

√

aT (HHT )−1a

≤ ‖a‖2
√

min eig(HHT )
.

The result of this lemma thus follows.

We are now ready to prove Proposition 5 and Proposition 7.
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I.1 Proof of Proposition 5

Proof. For k = 1, 2, · · · , p2, define

Kk =

∫

Sd−1

(hRF
V,x)

ThRF
V,z

p1
1{(hRF

V,x)
TW0[k]>0, (hRF

V,z)
TW0[k]}g(z)dµ(z). (70)

It is obvious that K1,K2, · · · ,Kp2
are i.i.d. (when randomness is on W0). By Eq. (19) and Eq. (2),

we have

fg
V,W0

(x) =
1

p2

p2∑

k=1

Kk. (71)

Notice that

|Kk| ≤
∫

Sd−1

∣
∣
∣
∣
∣

(hRF
V,x)

ThRF
V,z

p1

∣
∣
∣
∣
∣
· |g(z)| dµ(z)

≤
∫

Sd−1

|g(z)| dµ(z) (by Lemma 11)

=‖g‖1. (72)

Thus, by Lemma 14, we have

Pr
W0

{∣
∣
∣
∣
∣

1

p2

p2∑

k=1

Kk − E
W0

[K1]

∣
∣
∣
∣
∣
≥ q‖g‖1√

p2

}

≤ 1

q2
. (73)

For any k ∈ {1, 2, · · · , p2}, we have

E
W0

[Kk]

=

∫

Sd−1

E
W0

[

(hRF
V,x)

ThRF
V,z

p1
1{(hRF

V,x)
TW0[k]>0, (hRF

V,z)
TW0[k]}

]

g(z)dµ(z)

=

∫

Sd−1

(hRF
V,x)

ThRF
V,z

p1
·
π − arccos

(
(hRF

V,x)
T
h

RF
V,z

‖hRF
V,x‖2·‖hRF

V,z‖2

)

2π
g(z)dµ(z) (by Lemma 20)

=f(x) +

∫

Sd−1







(hRF
V,x)

ThRF
V,z

p1
·
π − arccos

(
(hRF

V,x)
T
h

RF
V,z

‖hRF
V,x‖2·‖hRF

V,z‖2

)

2π
−KThree(xTz)







g(z)dµ(z)

(by f = fg and Eq. (7)).

Thus, we have
∣
∣
∣
∣
E

W0

[Kk]− f(x)

∣
∣
∣
∣

≤max
x,z

∣
∣
∣
∣
∣
∣
∣
∣

(hRF
V,x)

ThRF
V,z

p1
·
π − arccos

(
(hRF

V,x)
T
h

RF
V,z

‖hRF
V,x‖2·‖hRF

V,z‖2

)

2π
−KThree(xTz)

∣
∣
∣
∣
∣
∣
∣
∣

· ‖g‖1. (74)

Applying Lemma 44, we then have

Pr
V

{∣
∣
∣
∣
E

W0

[Kk]− f(x)

∣
∣
∣
∣
≥
√

Q(p1, d)

d
‖g‖1

}

≤ d2

(p1 + 1)ed+1
. (75)
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Notice that

∣
∣
∣f

g
V,W0

(x)− f(x)
∣
∣
∣ =

∣
∣
∣
∣
∣

1

p2

p2∑

k=1

Kk − f(x)

∣
∣
∣
∣
∣

(by Eq. (71))

≤
∣
∣
∣
∣
∣

1

p2

p2∑

k=1

Kk − E
W0

[K1]

∣
∣
∣
∣
∣
+

∣
∣
∣
∣
E

W0

[K1]− f(x)

∣
∣
∣
∣

(by the triangle inequality).

Combining Eq. (73) and Eq. (75) by the union bound, we thus have

Pr
V,W0

{
∣
∣
∣f

g
V,W0

(x)− f(x)
∣
∣
∣ ≥ q‖g‖1√

p2
+

√

Q(p1, d)

d
‖g‖1

}

≤ Pr
V,W0

{∣
∣
∣
∣
∣

1

p2

p2∑

k=1

Kk − E
W0

[K1]

∣
∣
∣
∣
∣
≥ q‖g‖1√

p2

}

+ Pr
V,W0

{∣
∣
∣
∣
E

W0

[Kk]− f(x)

∣
∣
∣
∣
≥
√

Q(p1, d)

d
‖g‖1

}

≤ d2

(p1 + 1)ed+1
+

1

q2
. (76)

I.2 Proof of Proposition 7

Proof. For k = 1, 2, ·, p2, define Kk ∈ R
n whose i-th element is

Kk,i :=

∫

Sd−1

(hRF
V,Xi

)ThRF
V,z

p1
1{(hRF

V,Xi
)TW0[k]>0, (hRF

V,z)
TW0[k]}g(z)dµ(z).

Note that Kk,i is similar to Kk in Eq. (70), with the only difference that the former is defined with
respect to Xi and the latter is defined with respect to x. Thus, we use a similar strategy to work with
Kk,i. By Eq. (20) and Eq. (19), we have

F
g
V,W0

(X) =
1

p2

p2∑

k=1

Kk.

Similar to Eq. (72), we have

|Kk,i| ≤ ‖g‖1, for all i = 1, 2, · · · , n.
Thus, we have

‖Kk‖2 =

√
√
√
√

n∑

i=1

K2
k,i ≤

√
n‖g‖1.

By Lemma 14, we thus have

Pr
W0

{∥
∥
∥
∥
∥

1

p2

p2∑

k=1

Kk − E
W0

[K1]

∥
∥
∥
∥
∥
2

≥ q
√
n‖g‖1√
p2

}

≤ 1

q2
.

Similar to Eq. (74), we have
∥
∥
∥
∥
E

W0

[K1]− F(X)

∥
∥
∥
∥
2

≤√nmax
x,z

∣
∣
∣
∣
∣
∣
∣
∣

(hRF
V,x)

ThRF
V,z

p1
·
π − arccos

(
(hRF

V,x)
T
h

RF
V,z

‖hRF
V,x‖2·‖hRF

V,z‖2

)

2π
−KThree(x, z)

∣
∣
∣
∣
∣
∣
∣
∣

· ‖g‖1.

Thus, similar to Eq. (76), we have

Pr
V,W0

{
∥
∥
∥F(X)− F

g
V,W0

(X)
∥
∥
∥
2
≥ q
√
n‖g‖1√
p2

+

√

Q(p1, d)

d

√
n‖g‖1

}

≤ d2

(p1 + 1)ed+1
+

1

q2
.

(77)
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We note that

term D + term B of Eq. (22)

≤
∥
∥hThree

V,W0,x

∥
∥
2

∥
∥H

T (HH
T )−1

∥
∥
2
·
(

‖F(X)− F
g
V,W0

(X)‖2 + ‖ǫ‖2
)

(by Lemma 12)

≤
√
p1p2 ·

(

‖F(X)− F
g
V,W0

(X)‖2 + ‖ǫ‖2
)

√

min eig(HHT )
(by Lemma 45 and Lemma 11).

Combining Eq. (77) and Proposition 6 by the union bound, we thus have

Pr
X,V,W0







term D + term B of Eq. (22) ≥

√
n‖g‖1

(

q√
p2

+
√

Q(p1,d)
d

)

+ ‖ǫ‖2
√

J(n, p1, p2, d, q)







≤ d2

(p1 + 1)ed+1
+

8

q2
.

J Details Related to Learnable Set

In this part, we first restate Proposition 2 in a more precise way, i.e., Proposition 46 in Appendix J.1
and Proposition 47 in Appendix J.2. Then, in Appendix J.3 we discuss the generalization perfor-
mance of ground-truth functions outside the learnable set.

J.1 Fℓ2
(3) contains all polynomials with finite degree

By the following proposition, we show that Fℓ2
(3) contains all polynomials with finite degree. We

formally state it in the following proposition.

Proposition 46. Let k be a finite non-negative integer. For any f(x) =
∑k

i=0 ci(x
Tai)

i where

ci ∈ R and ai ∈ R
d, we must have f ∈ Fℓ2

(3).

We prove Proposition 46 in Appendix K. Although Proposition 46 is only for no-bias situation of
3-layer NTK, we can easily prove the similar results for the biased 3-layer NTK with the same proof
technique.

J.2 Fℓ2
(3) is a superset of Fℓ2

(2),b (recall the definition of Fℓ2
(2),b in Section 4.2)

The learnable sets of both 3-layer and 2-layer NTK models also contain polynomials with infinite
degree. Notice that not all infinite-degree polynomials belong to the learnable sets, because the norm
of the corresponding function g may not be finite. As we mentioned in footnote 4, the constrain
‖g‖∞ < ∞ can be relaxed to ‖g‖1 < ∞. However, with ‖g‖1 < ∞, the comparison among those
learnable sets becomes more difficult. For convenience, we just relax the constraint to ‖g‖2 < ∞
(instead of ‖g‖1 <∞) in the following result.

Proposition 47. Under the constraint of ‖g‖2 <∞, the learnable set of the 3-layer NTK (no bias)

is at least as large as the 2-layer NTK (both with and without bias) ,i.e., Fℓ2
(2) ∪ F

ℓ2
(2),b ⊆ F

ℓ2
(3).

The learnable set of 2-layer NTK with bias is larger than that of 2-layer NTK without bias i.e.,

Fℓ2
(2) ⊂ F

ℓ2
(2),b. The learnable sets of 2-layer NTK with different bias settings are the same i.e.,

Fℓ2
(2),b1

= Fℓ2
(2),b2

for any b1, b2 ∈ (0, 1).

We prove Proposition 47 in Appendix L. An important message conveyed by Proposition 47 is
that, 3-layer NTK can at least learn all learnable functions for 2-layer NTK under the constraint
‖g‖2 < ∞. We conjecture that the same result may also hold for ‖g‖1 < ∞, which we leave for
future work.
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Figure 9: Curves of test MSE of 2-layer NTK with normal bias with respect to n for the ground-
truth functions fk,α(x) where p1, p2 → ∞, d = 2, and ǫ = 0. Every curve is the average of 10
simulation runs.

J.3 Generalization performance of ground-truth functions outside the learnable set

One may wonder what happens to the generalization performance for functions outside the learn-
able set. Notice that although we have proven that ground-truth functions inside the learnable set
can be learned, it is possible that some functions outside the learnable set could still be learnable.
For 2-layer NTK models without bias, Ju et al. (2021) shows that if a ground-truth function has a
positive distance away from the learnable set, then such distance becomes the lower bound of the
generalization error. Such ground-truth functions with positive distance exist for 2-layer NTK, e.g.,

(xTe1)
3, because Fℓ2

(2) does not contain odd power polynomials except linear functions. However,

for 2-layer NTK with bias or 3-layer NTK, there do not exist such ground-truth functions with a pos-
itive distance away from the learnable set. In other words, functions outside the learnable set is still
in the closure of the corresponding learnable set. Thus, it is unclear whether or not those functions
have a very different generalization performance compared with functions inside the learnable set.

We now use simulation results in Fig. 9 to show that functions outside the learnable set may indeed
exhibit qualitatively different generalization performance (and thus Proposition 47 will be mean-
ingful in capturing ground-truth functions with good generalization performance). We construct
an example of functions inside and outside the learnable set (in the sense of finite ‖g‖2, consis-

tent with Proposition 47). For simplicity, we focus on Fℓ2
(2),NLB

, which is the learnable set for the

2-layer NTK with normal bias. We then consider a specific type of normalized ground-truth func-

tions fk,α := f̄k,α/‖f̄k,α‖2 where f̄k,α(x) :=
∑k

i=1 i
α
(
xTed

)i
. By previous discussion, we have

already known that if k is finite, then fk,α ∈ Fℓ2
(2),NLB

. However, when k = ∞, then whether

f∞,α ∈ Fℓ2
(2),NLB

or not is determined by the value of α. We let d = 2 and choose the value of α

to be −3.5, −3, and −1.1, respectively. It can be verified that fk,α ∈ Fℓ2
(2),NLB

when α = −3.5 or

α = −3, while fk,α /∈ Fℓ2
(2),NLB

when α = −1.1. In numerical experiments, it is difficult to directly

calculate f∞,α, as we do not know the close form of f∞,α. Therefore, we use fk,α to approach
f∞,α by increasing k. In Fig. 9(a), we let α = −3.5 and plot the test MSE with respect to n when

k = 3 (blue curve), k = 102 (orange curve), and k = 105 (green curve), respectively. We can see
that these three curves almost overlap with each other, which implies that increasing k does not alter
the test error significantly. (Similar phenomenon also appears in Fig. 9(b) where α = −3.) In con-
trast, when we let α = −1.1 in Fig. 9(c), larger k leads to a much flatter curve. This phenomenon
suggests that when k →∞, providing more training data becomes less effective in lowering the test
error. Besides, by comparing the curve of k = 105 in Fig. 9(a) and (c), we can see that the curve
in Fig. 9(c) is higher than the one in Fig. 9(a) by several orders of magnitude. Therefore, we can
tell that the functions inside and outside the learnable set could have very different generalization
performance.

The setup of Fig. 10 is the same as that of Fig. 9 except that here we let x-axis be k. In Fig. 10,
we can see that the curves of α = −3.5 and α = −3 (finite ‖g‖2) in all sub-figures (a)(b)(c)(d) are
almost flat with respect to k. In contrast, the curves of α = −1.1 (infinite ‖g‖2) keep increasing
with respect to k, and have much higher generalization error when k is large than those with finite
‖g‖2. This also validates our conjecture that the functions inside and outside the learnable set could
have very different generalization performance.
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Figure 10: Curves of test MSE of 2-layer NTK with normal bias with respect to k for the ground-
truth functions fk,α(x) where p1, p2 → ∞, d = 2, and ǫ = 0. Every curve is the average of 10
simulation runs.

K Proof of Proposition 46

Proof. We prove Proposition 46 by using similar methods as in Ju et al. (2021). For any fg ∈ Fℓ2
(3),

we have

fg(x) = g ⊛ h(3)(x) :=

∫

SO(d)

g(Sed)h
(3)(S−1x)dS, (78)

h(3)(x) := KThree(xTed), (79)

where ed := [0 0 · · · 0 1]T ∈ R
d, and S is a d × d orthogonal matrix that denotes a rotation in

Sd−1, chosen from the set SO(d) of all rotations. An important property of the convolution Eq. (78)
is that it corresponds to multiplication in the frequency domain, similar to Fourier coefficients. To
define such a transformation to the frequency domain, we use a set of hyper-spherical harmonics Ξl

K

(Vilenkin, 1968; Dokmanic & Petrinovic, 2009) when d ≥ 3, which forms an orthonormal basis for
functions on Sd−1. These harmonics are indexed by l and K, where K = (k1, k2, · · · , kd−2) and
l = k0 ≥ k1 ≥ k2 ≥ · · · ≥ kd−2 ≥ 0 (those ki’s and l are all non-negative integers). Any function
f ∈ L2(Sd−1 7→ R) (including even δ-functions (Li & Wong, 2013)) can be decomposed uniquely

into these harmonics, i.e., f(x) =
∑

l

∑

K
cf (l,K)Ξl

K
(x), where cf (·, ·) are projections of f onto

the basis function.

In Eq. (78), let cg(·, ·) and ch(·, ·) denote the coefficients corresponding to the decompositions of g
and h, respectively. Then, we must have (Dokmanic & Petrinovic, 2009)

cfg (l,K) = Λ · cg(l,K)ch(3)(l,0), (80)

where Λ is some normalization constant.

Eq. (80) describes an interesting “filtering” interpretation on Fℓ2
(3). Specifically, h(3) and ch(3) work

like a channel or a filter in a wireless communication system, where cg denotes the transmitted signal

and cfg denotes the received signal. Therefore, for any basis function f(x) = Ξl
K
(x), as long as

ch(3)(l,0) 6= 0, we must have f = fg ∈ Fℓ2
(3) where the corresponding g(·) can simply be chosen as

g(z) =
Ξl

K
(z)

Λc
h(3) (l,0)

. Indeed, we have the following proposition about values of ch(3)(l,0).
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Proposition 48. ch(3)(l,0) > 0 for all l = 0, 1, 2, · · · .

We provide its proof in Appendix K.1.

By Proposition 48, we know that all harmonics Ξl
K
∈ Fℓ2

(3). Notice that the set Fℓ2
(3) is invariant

under addition and scale operation12. Therefore, any finite sum of Ξl
K

belongs to Fℓ2
(3). Notice that

for any non-negative integer i and a real-valued vector a ∈ R
d, a polynomial (xTa)i consists of a

finite sum of harmonic basis. Thus, Fℓ2
(3) contains any polynomials (xTa)l for all l = 0, 1, 2, · · · .

Proposition 46 thus follows.

K.1 Proof of Proposition 48

It is relatively easy to prove the result when d = 2, which is omitted here. We focus on the general
case when d ≥ 3. By Eq. (115) of Ju et al. (2021), the harmonics Ξl

0 can be expressed by

Ξl
0(x) = Al

0

⌊ l
2 ⌋∑

k=0

(−1)k Γ(l − k + d−2
2 )

Γ(d−2
2 )k!(l − 2k)!

(2xTed)
l−2k, (81)

where Al
0 is a positive number as the normalization factor of Ξl

0. We give a few examples of Ξl
0 as

follows.

Ξ0
0(x) = A0

0,

Ξ1
0(x) = A1

0(d− 2)xTed,

Ξ2
0(x) = A2

0

d− 2

2

(
d(xTed)

2 − 1
)
,

Ξ3
0(x) = A3

0

d− 2

2
· d ·

(
(xTed)

3 − xTed
)
.

Recalling Eq. (6), we perform a Taylor expansion of KThree(·). Let u0, u1, · · · denote the Taylor
expansion coefficients of 2d ·KThree, i.e.,

2d ·KThree(a) =

∞∑

k=0

uka
k. (82)

The following lemma shows that all coefficients in Eq. (82) are positive.

Lemma 49. For all k = 0, 1, 2, · · · , we have uk > 0 in Eq. (82).

Proof. By Lemma 17, for any a, b ∈ [0, 1], we have

2d ·KRF(a) =
1

π

(

1 +
π

2
a+

∞∑

k=0

2(2k)!

(k + 1)(2k + 1)(k!)2

(a

2

)2k+2
)

, (83)

KTwo(b) =
b

4
+

1

2π

∞∑

k=0

(2k)!

(k!)2
4

2k + 1

(
b

2

)2k+2

. (84)

By Lemma 43, we know that 2d ·KRF(a) ∈ [0, 1]. Thus, we can let b = 2d ·KRF(a) in Eq. (84) and
then apply Eq. (83), i.e.,

KTwo(2d ·KRF(a))

=
1

4π

(

1 +
π

2
a+

∞∑

k=0

2(2k)!

(k + 1)(2k + 1)(k!)2

(a

2

)2k+2
)

+
1

2π

∞∑

l=0

(2l)!

(l!)2
4

2l + 1

(

1

2π

(

1 +
π

2
a+

∞∑

k=0

2(2k)!

(k + 1)(2k + 1)(k!)2

(a

2

)2k+2
))2l+2

. (85)

12Specifically, if fg1 , fg2 ∈ Fℓ2
(3), then fg1+g2 := fg1 + fg2 ∈ Fℓ2

(3) and fαg1 := αfg1 ∈ Fℓ2
(3).
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By Eq. (6) and Eq. (82), we know that uk is the coefficient of ak in Eq. (85). In order to know the
sign of uk, it remains to combine similar terms in Eq. (85). To that end, we apply Lemma 27 and
have

u0 =
1

4π
+

1

2π

∞∑

l=0

(2l)!

(l!)2
4

2l + 1

(
1

2π

)2l+2

,

u1 =
1

8
+

1

2π

∞∑

l=0

(2l)!

(l!)2
4

2l + 1

(
1

2π

)2l+2

(2l + 2)
(π

2

)2l+1

,

u2i+1 =
1

2π

∞∑

l=0

(2l)!

(l!)2
4

2l + 1

(
1

2π

)2l+2

·
∑

k0+k1+k2+k4+···+k2i=2l+2
k1+2k2+4k4+···+2ik2i=2i+1

(k0, k1, k2, k4, · · · , k2i)!
(π

2

)k1
i−1∏

j=0

(

2(2j)!

(j + 1)(2j + 1)(j!)2

(
1

2

)2j+2
)k2j+2

,

u2i+2 =
1

4π

2(2i)!

(i+ 1)(2i+ 1)(i!)2

(
1

2

)2i+2

+
1

2π

∞∑

l=0

(2l)!

(l!)2
4

2l + 1

(
1

2π

)2l+2

·
∑

k0+k1+k2+k4+···+k2i=2l+2
k1+2k2+4k4+···+2ik2i=2i+2

(k0, k1, k2, k4, · · · , k2i)!
(π

2

)k1
i−1∏

j=0

(

2(2j)!

(j + 1)(2j + 1)(j!)2

(
1

2

)2j+2
)k2j+2

.

As we can see, every term in those expressions of u0, u1, · · · is positive, which implies that uk > 0
for all k = 0, 1, · · · .

From Eq. (82), we have 2d ·KThree(xTed) =
∑∞

k=0 uk(x
Ted)

k. We now consider the decomposi-

tion of each (xTed)
k into harmonics.

Lemma 50. Let a and b be two non-negative integers. Define the function

Q(a, b) :=

∫

Sd−1

(xTed)
a · Ξb

0(x)dµ(x). (86)

We must have

Q(2k, 2m+ 1) = Q(2k + 1, 2m) = 0, (87)

Q(2k, 2m)

{
> 0, if m ≤ k,

= 0, if m > k,
(88)

and

Q(2k + 1, 2m+ 1)

{
> 0, if m ≤ k,

= 0, if m > k.
(89)

Proof. By Eq. (81), we have Ξb
0(−x) = (−1)bΞb

0(x). Thus, when a + b is odd, the function

(xTed)
a ·Ξb

0(x) is an odd function with respect to x. By symmetry of Sd−1, we then have Q(a, b) =
0 when a + b is odd, i.e., Eq. (87) holds. Eq. (88) has been proved in Lemma 53 of Ju et al. (2021)
by mathematical induction. Here we prove Eq. (89).

By Eq. (118) of Ju et al. (2021), for any a, we have

Q(a+ 1, l + 1) = ql,1 ·Q(a, l + 2) + ql,2 ·Q(a, l), (90)

where ql,1 > 0 and ql,2 > 0. Applying Eq. (90) for a = 2k and l = 2m, we have

Q(2k + 1, 2m+ 1) = q2m,1 ·Q(2k, 2m+ 2) + q2m,2 ·Q(2k, 2m).

By Eq. (88), the result of Eq. (89) thus follows.
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Notice that

ch(3)(l,0) =

∫

Sd−1

h(3)(x)Ξl
0(x)dµ(x)

=
1

2d

∫

Sd−1

2d ·KThree(xTed)Ξ
l
0(x)dµ(x) (by Eq. (79))

=
1

2d

∞∑

k=0

uk ·Q(k, l) (by Eq. (82) and Eq. (86))

>0 (by Lemma 49 and Lemma 50).

The result of Proposition 48 thus follows.

L Proof of Proposition 47

Proof. Using similar decomposition in Eq. (78), we define filter functions h(2) (for 2-layer NTK, no-

bias) and h
(2)
b (for 2-layer NTK, with bias). The corresponding harmonic coefficients are denoted

by ch(2) and c
h
(2)
b

. We have the following result about the magnitude of those harmonic coefficients.

Lemma 51. For any b1, b2 ∈ (0, 1), we must have c
h
(2)
b1

(2k,0) = Θ (ch(2)(2k,0)), c
h
(2)
b1

(k,0) =

Θ

(

c
h
(2)
b2

(k,0)

)

, and ch(3)(k,0) = Ω

(

c
h
(2)
b1

(k,0)

)

. Here, Θ(·) and Ω(·) denote the orders as k

becomes large.

We prove Lemma 51 in Appendix M.

Lemma 51 has the following implications for the magnitude of the harmonics coefficients when the
leading index of harmonics is large (i.e., k in Lemma 51 is large). The first statement states that, for
2-layer NTK, the setting with bias and the setting without bias have the same order of harmonics
coefficients for even terms. (For odd terms, recall that for 2-layer NTK without bias, the coefficients
of odd terms except linear term are zero. In contrast, for 2-layer NTK with bias, the coefficients of
odd terms are not zero (Ju et al., 2021). Hence, the first statement does not hold for odd terms). The
second statement states that, the coefficients of harmonics for 2-layer NTK have the same order with
respect to k for all non-zero bias. The third statement states that, the coefficients for 3-layer NTK
even without bias is not smaller (in order) than 2-layer NTK with bias.

By comparing the magnitude of these filter coefficients, we can then compare whether polynomi-
als with infinite degree belong to each of the learnable sets. Specifically, consider an infinite-
degree polynomial with the form fg(x) =

∑

l,K αl,K · Ξl
K
(x). By Eq. (80), we have g(z) =

∑

l,K
αl,K·Ξl

K
(z)

Λ·ch(l,0) , where h can be h(3), h(2), or h
(2)
b . Thus, the magnitude of ch(l,0) determines

the norm of g. Specifically, we have ‖g‖2 =
∑

l,K
αl,K

Λ·ch(l,0) due to the orthogonality of harmonics

Ξl
K

. Note that c
h
(2)
b1

(k,0) = Θ

(

c
h
(2)
b2

(k,0)

)

by Lemma 51. Thus, if ‖g‖2 is finite for 2-layer

NTK with bias b1 > 0, then it must also be finite for 2-layer NTK with a different bias b2 > 0.
This implies that The learnable sets of 2-layer NTK with different bias settings are the same i.e.,

Fℓ2
(2),b1

= Fℓ2
(2),b2

for any b1, b2 ∈ (0, 1). Similarly, for 3-layer NTK, by Lemma 51, we can also

show that Fℓ2
(2) ∪ F

ℓ2
(2),b ⊆ F

ℓ2
(3) and Fℓ2

(2) ⊂ F
ℓ2
(2),b. Therefore, the result of Proposition 47 fol-

lows.

M Proof of Lemma 51

The following lemma shows the relationship between harmonic coefficients and Taylor coefficients.

Lemma 52. Consider two polynomial functions hα(x) :=
∑∞

k=0 uα,k(x
Ted)

k and hβ(x) :=
∑∞

k=0 uβ,k(x
Ted)

k where uα,k ≥ 0 and uβ,k ≥ 0 for all k. Let chα
and chβ

denote their harmonic

coefficients. If uα,k = O(uβ,k) (where O(·) denotes the order when k is large), then chα
(l,0) =
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O(chβ
(l,0)) for large l. The same is true if we restrict to only even harmonics, i.e., if uα,2k =

O(uβ,2k), then chα
(2l,0) = O(chβ

(2l,0)) for large l. This lemma also holds if O(·) is replaced by

Ω(·) or Θ(·).

Proof. Notice that

chα
(l,0) =

∫

Sd−1

h(x)Ξl
0(x)dµ(x)

=

∞∑

k=0

uα,k ·Q(k, l) (by Eq. (86))

=

∞∑

k=l

uα,k ·Q(k, l) (by Lemma 50).

and

chα
(2l,0) =

∫

Sd−1

h(x)Ξ2l
0 (x)dµ(x)

=

∞∑

k=0

uα,k ·Q(k, 2l) (by Eq. (86))

=

∞∑

k=l

uα,2k ·Q(2k, 2l)

(Q(k, 2l) is non-zero only when k is even and not smaller than 2l by Lemma 50).

Similarly, we have

chβ
(l,0) =

∞∑

k=l

uβ,k ·Q(k, l),

chβ
(2l,0) =

∞∑

k=l

uβ,2k ·Q(2k, 2l).

Notice that all Q(·, ·) and u·,· are all non-negative. Thus, we have

chα
(l,0)

chβ
(l,0)

∈
[

min
k≥l

uα,k

uβ,k
, max

k≥l

uα,k

uβ,k

]

,
chα

(2l,0)

chβ
(2l,0)

∈
[

min
k≥l

uα,2k

uβ,2k
, max

k≥l

uα,2k

uβ,2k

]

.

The result of this lemma thus follows.

With Lemma 52, in order to show Lemma 51, it is equivalent to compare Taylor coefficients of

the expression of different kernels h(3), h(2), and h
(2)
b . Specifically, we are looking at the Taylor

coefficients of the following expression:

T (x) := K(x)
π − arccos(K(x))

2π
. (91)

For 2-layer NTK, K(x) = (1 − a)x + a where a ∈ [0, 1) corresponds to different choices of bias
(a = 0 corresponds to no bias). For 3-layer NTK (no bias), we have K(x) = 2d · KRF(x) (we
neglect the constant 1/(2d) in KThree, which does not change its order.) In other words, we have

T (x) =







KTwo(x), if K(x) = x (i.e., 2-layer NTK no bias),

KTwo((1− a) + a), if K(x) = (1− a)x+ a (i.e., 2-layer NTK with bias a > 0),

2d ·KThree(x), if K(x) = 2d ·KRF(x) (i.e., 3-layer NTK no bias).

When K(x) = x, we already have the exact form of the Taylor expansion of T (x) by Lemma 17.
However, when K(x) is a polynomial, it is not easy to get the close form of Taylor coefficients. We
will first estimate the Taylor coefficients when K(x) = (1− a)x+ a in Appendix M.1. Second, we
will estimate the Taylor coefficients when K(x) is a polynomial with finite degree in Appendix M.2.
Last, we will estimate the case of K(x) = 2d ·KRF(x) in Appendix M.3. (By Lemma 17, we know
that KRF(x) is a polynomial with infinite degree.) The result of Lemma 51 then follows from these
estimates.

56



M.1 Harmonic coefficients for 2-layer NTK with bias

After adding bias, the kernel of 2-layer NTK changes from xπ−arccos x
2π to

((1− a)x+ a) π−arccos((1−a)x+a)
2π . Here a > 0 denotes the bias setting (a = 0 corresponds

to the no-bias setting). By Lemma 52, we only need to investigate the relationship between the
Taylor coefficients. We define ua,m as the Taylor coefficients under the bias setting, i.e.,

((1− a)x+ a)
π − arccos ((1− a)x+ a)

2π
=

∞∑

m=0

ua,m · xm.

When a = 0, ua,m becomes u0,m and corresponds to the no-bias setting.

Lemma 53. For any k ∈ {2, 3, · · · } and any a ∈ [0, 1), we must have
ua,2k

u0,2k
∈







1
(

2 + 2
(

2a
1−a + 1

))2

1

1 +
( 1+a

2 )
2

1−( 1+a
2 )

2

1

1− a2
·
1 +

(
1−a
1+a

)2k+1

1 + 1−a
1+a

,
1

1− a2
·
1 +

(
1−a
1+a

)2k+1

1 + 1−a
1+a






,

and
ua,2k−1

u0,2k
∈







1
(

2 + 2
(

2a
1−a + 1

))2

1

1 +
( 1+a

2 )
2

1−( 1+a
2 )

2

1

1− a2
·
1−

(
1−a
1+a

)2k

1 + 1−a
1+a

,
1

1− a2
·
1−

(
1−a
1+a

)2k

1 + 1−a
1+a






.

We prove Lemma 53 in Appendix M.1.1.

Note that when k → ∞, the terms that depend on k (i.e.,
(

1−a
1+a

)2k+1

and
(

1−a
1+a

)2k

) all approach

0. In other words, as k becomes larger, ua,2k (as well as ua,2k+1) approaches (approximately)
a constant (that only depends on a) multiple of u0,2k. Therefore, by Lemma 53, we can then
conclude that ub1,2k = Θ(u0,2k) and ub1,k = Θ(ub2,k) when k is large for any b1 ∈ (0, 1)
and b2 ∈ (0, 1). By Lemma 52, it immediately implies that c

h
(2)
b1

(2k,0) = Θ (ch(2)(2k,0)),

c
h
(2)
b1

(k,0) = Θ

(

c
h
(2)
b2

(k,0)

)

. This proves the first and second statements of Lemma 51.

M.1.1 Proof of Lemma 53

We first write the form of u0,l, i.e., the Taylor coefficients under no-bias setting. By Lemma 17, we
have

x
π − arccosx

2π
=

x

4
+

1

2π

∞∑

k=0

(2k)!

(k!)2
4

2k + 1

(x

2

)2k+2

.

Thus, for k ≥ 1, we have

u0,2k =
1

2π

(2k − 2)!

((k − 1)!)2
4

2k − 1

1

22k
, (92)

u0,2k+1 = 0. (93)

Next, we write the expression of ua,l. To that end, we define

da,2k,i :=

(
2k + 2i

2k

)

(1− a)2ka2i, (94)

da,2k+1,i :=

(
2k + 2i+ 2

2k + 1

)

(1− a)2k+1a2i+1. (95)

The following lemma provides the expression of ua,l.
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Lemma 54. For any k ≥ 1, we must have

ua,2k =
∞∑

i=0

u0,2(k+i)da,2k,i,

ua,2k+1 =

∞∑

i=0

u0,2(k+i+1)da,2k+1,i.

We prove Lemma 54 in Appendix M.1.2.

Although we have the expression of ua,k by Lemma 54, it is not easy to directly estimate its value be-
cause terms like u0,2(k+i)da,2k,i have a very complicated form. Fortunately, some properties of u0,2k

is very helpful. Specifically, by Eq. (92), we have
u0,2(k+1)

u0,2k
= (2k−1)22k

k2(2k+1)·4 = (2k−1)2

2k(2k+1) , whose value

approaches 1 when k → ∞. In other words, u0,2k has a very slow changing speed when k is large.
Therefore, we can approximate the tail of

∑∞
i=0 u0,2(k+i)da,2k,i by treating u0,2(k+i) as a constant.

This allows us to focus our attention on estimating
∑∞

i=0 da,2k,i (and its tail
∑∞

i=l da,2k,i), whose

value can be calculated by examining the coefficients of the Taylor expansion of 1
1−((1−a)x+a)2

(i.e.,

the sum of a geometric sequence 1, ((1− a)x+ a)
2
, , ((1− a)x+ a)

4
, · · · ). The latter is much

easier to study. We show these steps in detail as the following lemmas.

Define

l := max

{

k,

⌈
2a

1− a
k

⌉}

. (96)

The following lemma estimates the target ratio
ua,2k

u0,2k
and

ua,2k−1

u0,2k
in terms of

∑l
i=0 da,2k,i and

∑∞
i=0 da,2k,i.

Lemma 55. For any k ∈ {2, 3, · · · }, we must have

ua,2k

u0,2k
∈






1
(

2 + 2
(

2a
1−a + 1

))2

l∑

i=0

da,2k,i,
∞∑

i=0

da,2k,i




 ,

ua,2k−1

u0,2k
∈






1
(

2 + 2
(

2a
1−a + 1

))2

l∑

i=0

da,2k−1,i,

∞∑

i=0

da,2k−1,i




 .

We prove Lemma 55 in Appendix M.1.3.

In order to finish the proof of Lemma 53, it only remains to estimate
∑l

i=0 da,2k,i,
∑l

i=0 da,2k−1,i,∑∞
i=0 da,2k,i,

∑∞
i=0 da,2k−1,i, which are shown by the following two lemmas.

Lemma 56. For any k ∈ {2, 3, · · · }, we must have

∞∑

i=0

da,2k,i =
1

1− a2
·
1 +

(
1−a
1+a

)2k+1

1 + 1−a
1+a

,
∞∑

i=0

da,2k−1,i =
1

1− a2
·
1−

(
1−a
1+a

)2k

1 + 1−a
1+a

.

We prove Lemma 56 in Appendix M.1.4

Lemma 57. Recall that l is defined in Eq. (96). For any k ∈ {2, 3, · · · }, we must have

∑l
i=0 da,2k,i

∑∞
i=0 da,2k,i

,

∑l
i=0 da,2k−1,i

∑∞
i=0 da,2k−1,i

∈







1

1 +
( 1+a

2 )
2

1−( 1+a
2 )

2

, 1






.

We prove Lemma 57 in Appendix M.1.5

The result of Lemma 53 follows by combining Lemma 56, Lemma 57, and Lemma 55.
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M.1.2 Proof of Lemma 54

Proof. We have

((1− a)x+ a)
π − arccos ((1− a)x+ a)

2π

=

∞∑

m=0

u0,m ((1− a)x+ a)
m

=

∞∑

m=0

u0,m

m∑

i=0

(
m

i

)

(1− a)iam−ixi

=

∞∑

i=0

∞∑

j=0

u0,i+j

(
i+ j

i

)

(1− a)iajxi (replace m by i+ j and reorganize terms).

Thus, we have

ua,i =

∞∑

j=0

u0,i+j

(
i+ j

i

)

(1− a)iaj .

Letting i = 2k, we have

ua,2k =

∞∑

j=0

u0,2k+j

(
2k + j

2k

)

(1− a)2kaj

=
∞∑

i=0

u0,2(k+i)

(
2k + 2i

2k

)

(1− a)2ka2i (by Eq. (93) and letting j = 2i)

=

∞∑

i=0

u0,2(k+i)da,2k,i (by Eq. (94)).

Similarly, we have

ua,2k+1 =
∞∑

j=0

u0,2k+1+j

(
2k + 1 + j

2k + 1

)

(1− a)2k+1aj

=

∞∑

i=0

u0,2(k+i+1)

(
2k + 2i+ 2

2k + 1

)

(1− a)2k+1a2i+1 (by Eq. (93) and letting j = 2i+ 1)

=

∞∑

i=0

u0,2(k+i+1)da,2k+1,i (by Eq. (95)).

The result of this lemma thus follows.

M.1.3 Proof of Lemma 55

Proof. By Eq. (92), we have

u0,2(k+1)

u0,2k
=

(2k − 1)22k

k2(2k + 1) · 4 =
(2k − 1)2

2k(2k + 1)
(97)

≤ 1.

By iterating the above inequality, we have u0,2(k+i) ≤ u0,2k for all i ≥ 0. By Lemma 54, we thus
have

ua,2k

u0,2k
=

∑∞
i=0 u0,2(k+i)da,2k,i

u0,2k
≤

∞∑

i=0

da,2k,i.

Similarly, we have

ua,2k−1

u0,2k
=

∑∞
i=0 u0,2(k+i)da,2k−1,i

u0,2k
≤

∞∑

i=0

da,2k−1,i.

59



These prove the upper bounds in Lemma 55. To prove the lower bounds, note that for any m ∈
{0, 1, · · · , l} (recall that l is defined in Eq. (96)), we must have

u0,2(k+m)

u0,2k
=

m−1∏

i=0

(2k + 2i− 1)2

(2k + 2i)(2k + 2i+ 1)
(by Eq. (97))

≥
m−1∏

i=0

(2k + 2i− 1)2

(2k + 2i+ 1)2

=
(2k − 1)2

(2k + 2m− 1)2

≥ k2

(2k + 2m)2
(using 2k − 1 ≥ k, which is true because k ≥ 1)

=
1

(
2 + 2m

k

)2

≥ 1
(

2 + 2
(

2a
1−a + 1

))2 (because m ≤ l ≤ 2a

1− a
k + k for k ≥ 2).

Thus, we have

ua,2k

u0,2k
=

∑∞
i=0 u0,2(k+i)da,2k,i

u0,2k
(by Lemma 54)

≥
∑l

i=0 u0,2(k+i)da,2k,i

u0,2k

≥ 1
(

2 + 2
(

2a
1−a + 1

))2

l∑

i=0

da,2k,i.

Similarly, we have

ua,2k−1

u0,2k
≥ 1
(

2 + 2
(

2a
1−a + 1

))2

l∑

i=0

da,2k−1,i.

The result of this lemma thus follows.

M.1.4 Proof of Lemma 56

We first state a useful fact.

Lemma 58. For any |r| < 1, we have

1

1− r
=

∞∑

i=0

ri.

Proof. The result of this lemma directly follows the sum of a geometric series (noticing that
limi→∞ ri = 0 when |r| < 1).
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Proof of Lemma 56. The proof idea is to express the coefficients of the Taylor expansion of
1

1−((1−a)x+a)2
(where |x| < 1) in two different ways. On the one hand, we have

1

1− ((1− a)x+ a)
2

=
∞∑

m=0

((1− a)x+ a)
2m

(by letting r = (1− a)x+ a in Lemma 58)

=

∞∑

m=0

2m∑

j=0

(
2m

j

)

(1− a)ja2m−jxj

=

∞∑

k=0

(( ∞∑

i=0

(
2k + 2i

2k

)

(1− a)2ka2i

)

x2k +

( ∞∑

i=0

(
2k + 2i+ 2

2k + 1

)

(1− a)2k+1a2i+1

)

x2k+1

)

(by letting j = 2k, 2m = 2k + 2i for x2k and letting j = 2k + 1, 2m = 2k + 2i+ 2 for x2k+1)

=
∞∑

k=0

(( ∞∑

i=0

da,2k,i

)

x2k +

( ∞∑

i=0

da,2k+1,i

)

x2k+1

)

(by Eq. (94) and Eq. (95)). (98)

One the other hand, we have

1

1− ((1− a)x+ a)
2

=
1

1− ((1− a)x+ a)
· 1

1 + ((1− a)x+ a)

=
1

1− a
· 1

1− x
· 1

1 + a
· 1

1 + 1−a
1+ax

=
1

1− a2

( ∞∑

i=0

xi

)



∞∑

j=0

(

−1− a

1 + a
x

)j


 (by Lemma 58)

=
1

1− a2

∞∑

i=0

∞∑

j=0

(

−1− a

1 + a

)j

xi+j

=
1

1− a2

∞∑

m=0





m∑

j=0

(

−1− a

1 + a

)j


xm (combine terms of xi+j with i+ j = m)

=
1

1− a2

∞∑

m=0

1−
(

− 1−a
1+a

)m+1

1 + 1−a
1+a

xm. (99)

By comparing the coefficients in Eq. (98) and Eq. (99), the result of this lemma thus follows.

M.1.5 Proof of Lemma 57

We first prove a useful lemma.

Lemma 59. For any a > b > c > 0, we have

a

b
<

a− c

b− c
.

Proof. Because a > b > c > 0, we have

b < a =⇒ bc < ac =⇒ ab− ac < ab− bc =⇒ a(b− c) < b(a− c) =⇒ a

b
<

a− c

b− c
.

Now we are ready to prove Lemma 57.
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Proof of Lemma 57. Recall that l is defined in Eq. (96). For any i ≥ l, we have

k + i

i
=

k

i
+ 1 ≤ k

l
+ 1 ≤ 1 + a

2a
(because l ≥ 2a

1− a
k by Eq. (96)). (100)

Thus, by Eq. (94), we have

da,2k,i+1

da,2k,i
=

(
2k+2i+2

2k

)

(
2k+2i
2k

) a2 =
(2k + 2i+ 1)(2k + 2i+ 2)

(2i+ 1)(2i+ 2)
a2

≤ (2k + 2i)(2k + 2i)

(2i) · (2i) a2 (by Lemma 59)

≤
(
1 + a

2

)2

(by Eq. (100)).

Similarly, by Eq. (95), we have

da,2k−1,i+1

da,2k−1,i
=

(
2k+2i+2
2k−1

)

(
2k+2i
2k−1

) a2 =
(2k + 2i+ 2)(2k + 2i+ 1)

(2i+ 2)(2i+ 3)
a2

≤ (2k + 2i+ 2)(2k + 2i+ 3)

(2i+ 2)(2i+ 3)
a2

≤ (2k + 2i)(2k + 2i)

(2i) · (2i) a2 (by Lemma 59)

≤
(
1 + a

2

)2

(by Eq. (100)).

Iterating the above inequalities, we have

da,2k,l+j

da,2k,l
≤
(
1 + a

2

)2j

, and
da,2k−1,l+j

da,2k−1,l
≤
(
1 + a

2

)2j

.

Thus, we have

∑∞
i=l+1 da,2k,i
∑l

i=0 da,2k,i
≤
∑∞

i=l+1 da,2k,i

da,2k,l
=

∞∑

j=1

da,2k,l+j

da,2k,l
≤

∞∑

j=1

(
1 + a

2

)2j

=

(
1+a
2

)2

1−
(
1+a
2

)2 .

We then have

∑∞
i=0 da,2k,i

∑l
i=0 da,2k,i

=

∑l
i=0 da,2k,i +

∑∞
i=l+1 da,2k,i

∑l
i=0 da,2k,i

≤ 1 +

(
1+a
2

)2

1−
(
1+a
2

)2 .

Therefore, we conclude that

∑l
i=0 da,2k,i

∑∞
i=0 da,2k,i

∈







1

1 +
( 1+a

2 )
2

1−( 1+a
2 )

2

, 1






.

Similarly, we have

∑l
i=0 da,2k−1,i

∑∞
i=0 da,2k−1,i

∈







1

1 +
( 1+a

2 )
2

1−( 1+a
2 )

2

, 1






.
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M.2 Expansion for a finite-degree polynomial

We plan to show the third statement of Lemma 51, which was presented in Appendix L. This is
more difficult because KRF(x) is an infinite-degree polynomial (in contrast, Appendix M.1 deals
with K(x) = (1 − a)x + a, which is much simpler). To make progress, we first consider a finite-
degree polynomial, and study the expansion. Then, in Appendix M.3, we will extend to KRF(x)
which has infinite degree. Note that Appendix M.1 is a special case of Appendix M.2. However,
since Appendix M.1 is much simpler and easy to understand, we retain the proof there, and use the
result in Appendix M.2 only as a preparation for Appendix M.3.

Recall the definition of T (x) in Eq. (91). We denote K(x) as a polynomial, i.e.,

K(x) =

∞∑

i=0

aix
i, (101)

where ai denote the coefficient of xi in K(x).

Define um(·) as a function that projects a polynomial in x to a real value such that

K̃(x)
π − arccos

(

K̃(x)
)

2π
=

∞∑

m=0

um

(

K̃(x)
)

· xm, (102)

where K̃(x) is any polynomial of x. In other words, um(K̃(x)) is the Taylor coefficient of xm in

T (x) when K(x) = K̃(x).

In this subsection, we let the number of terms of K(x) be finite, i.e., there exists s such that ai = 0
for all i > s. Further, we impose the following conditions.

Condition 2. (i) All coefficients of K(x) are non-negative, i.e., ai ≥ 0 for all i ∈ Z≥0. (ii) The sum
of all coefficients equals to 1, i.e.,

∑∞
i=0 ai = K(1) = 1. (iii) a0 > 0 and a1 > 0.

The following lemma shows that when K(x) is a polynomial with finite terms, the Taylor coeffi-
cients are on the same order as that of the even-power Taylor coefficients when K(x) = x. Note
that, according to Eq. (102), when K(x) = x, um(x) recovers the Taylor coefficients of the polyno-

mial expansion of the function xπ−arccos(x)
2π .

Lemma 60. Under Condition 2 and when ai = 0 for all i > s, we must have

uj (K(x))

u2⌈j/2⌉(x)
∈
[
C, C

]
, for all j = 1, 2, · · · ,

where C > C > 0 are constants that only depends on K(x) and are independent of j.

We prove Lemma 60 in Appendix M.2.1. Note that Lemma 60 can be seen as a generalization of
Lemma 53, since K(x) = (1− a) + a satisfies Condition 2 when a ∈ (0, 1).

M.2.1 Proof of Lemma 60

We introduce some extra notations. Let bi be the coefficients of xi of (K(x))
2
, i.e.,

(K(x))
2
=

2s∑

i=0

bix
i, which implies that bi =

∑

j+k=i

ajak for all i ∈ Z≥0. (103)

As in Lemma 27, for all j ∈ Z≥0, we define

t(m0,m1, · · · ,mj) := (m0,m1, · · · ,mj)! · am0
0 am1

1 · · · a
mj

j (we let ai = 0 if i > s), (104)

Ti,j :=
{

(m0,m1, · · · ,mj)

∣
∣
∣
∣

m0+m1+···+mj=i
m1+2m2+···+j·mj=j
m0,m1,··· ,mj∈Z≥0

}

,

di,j :=
∑

(m0,m1,··· ,mj)∈Ti,j

t(m0,m1, · · · ,mj). (105)
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Notation Description Definition/Expression

ai coefficients of xi in K(x) Eq. (101)

bi coefficients of xi in (K(x))
2

Eq. (103)

ui(K̃(x)) coefficients of xi in K̃(x)(π − arccos(K̃(x)))/(2π) Eq. (102) and Eq. (115)

di,j the coefficient of xj in (K(x))
i

Eq. (105)

ei the coefficient of xi in 1/(1− (K(x))2) Eq. (106) and Eq. (107)

Table 2: Summary of the notations of various coefficients.

By Lemma 27, we have

1

1− (K(x))
2 =

∞∑

i=0

(K(x))
2i

=
∞∑

i=0





∞∑

j=0

d2i,jx
j





=

∞∑

j=0






∞∑

i=⌈ j
2s⌉

d2i,j




xj (since d2i,j = 0 when j > 2i · s).

Define

ej for all j ∈ Z≥0 such that
1

1− (K(x))
2 =

∞∑

j=0

ejx
j , (106)

i.e.,

ej =

∞∑

i=⌈ j
2s⌉

d2i,j . (107)

We summarize those definitions in Table 2.

Lemma 61. Under Condition 2, we must have

2s∑

i=0

bi = 1, (108)

bi ∈ [0, 1] for all i ∈ {0, 1, · · · , 2s}, b0 < 1, and b1 > 0.

Proof. By Eq. (103) and Condition 2, we have
∑2s

i=0 bi = (K(1))
2
= 1. Because a1 > 0 and

∑s
i=0 ai = 1, we have a0 < 1. Thus, we have b0 = a20 < 1 and b1 = 2a0a1 > 0 (as a0 is also

positive).

Lemma 62. There exist c ≥ c > 0 such that for all k ∈ Z≥0, we must have ek ∈ [c, c].

Proof. Because

1

1− (K(x))
2 = 1 + (K(x))

2 · 1

1− (K(x))
2 ,

we have

∞∑

j=0

ejx
j =1 +

(
s∑

i=0

aix
i

)2

·





∞∑

j=0

ejx
j



 = 1 +

(
2s∑

i=0

bix
i

)

·





∞∑

j=0

ejx
j



 . (109)

64



Comparing the coefficient of xj+2s on both sides, we have

ej+2s =
2s∑

i=0

ej+ib2s−i for all j = 0, 1, · · · .

This is equivalent to

ej+2s = b0ej+2s +

2s−1∑

i=0

ej+ib2s−i for all j = 0, 1, · · · .

Thus, we have

ej+2s =
2s−1∑

i=0

b2s−i

1− b0
ej+i for all j = 0, 1, · · · .

It implies that

ej+2s ∈
[(

min
i∈{0,1,··· ,2s−1}

ej+i

)

·
2s∑

k=1

bk
1− b0

,

(

max
i∈{0,1,··· ,2s−1}

ej+i

)

·
2s∑

k=1

bk
1− b0

]

for all j = 0, 1, · · · .

By Eq. (108), we have
∑2s

k=1 bk = 1− b0, which implies that
∑2s

k=1
bk

1−b0
= 1. Thus, we have

ej+2s ∈
[

min
i∈{0,1,··· ,2s−1}

ej+i, max
i∈{0,1,··· ,2s−1}

ej+i

]

, for all j = 0, 1, · · · .

Iteratively applying the above bounds, we then have

e2s, e2s+1, · · · , e4s−1 ∈
[

min
i∈{0,1,··· ,2s−1}

ei, max
i∈{0,1,··· ,2s−1}

ei

]

,

e4s, e4s+1, · · · , e6s−1 ∈
[

min
i∈{2s,2s+1,··· ,4s−1}

ei, max
i∈{2s,2s+1,··· ,4s−1}

ei

]

∈
[

min
i∈{0,1,··· ,2s−1}

ei,

max
i∈{0,1,··· ,2s−1}

ei

]

,

...

e2ks, e2ks+1, · · · , e2ks+2s−1 ∈ · · · ∈
[

min
i∈{0,1,··· ,2s−1}

ei, max
i∈{0,1,··· ,2s−1}

ei

]

.

In other words,

ek ∈
[

min
i∈{0,1,··· ,2s−1}

ei, max
i∈{0,1,··· ,2s−1}

ei

]

, for all k = 2s, 2s+ 1, · · · . (110)

By Eq. (109), we have

e0 = 1 + b0e0,

e1 = b1e0 + b0e1,

e2 = b2e0 + b1e1 + b0e2,

...

e2s = b2se0 + b2s−1e1 + · · ·+ b0e2s.
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Thus, we have

e0 =
1

1− b0
,

e1 =
b1e0
1− b0

,

e2 =
b2e0 + b1e1

1− b0
,

...

e2s =
b2se0 + b2s−1e1 + · · ·+ b1e2s−1

1− b0
.

By Lemma 61 and using induction, we thus have

ei > 0, for all i = 0, 1, · · · , 2s− 1.

Thus, by Eq. (110), we have

ek ∈
[

min
i∈{0,1,··· ,2s−1}

ei, max
i∈{0,1,··· ,2s−1}

ei

]

, for all k = 0, 1, · · · .

Lemma 63. When i ≥ j, there exists a bijection between Ti,j and Ti+1,j . Specifically, this bijection
is Ti,j ←→ Ti+1,j: (m0,m1, · · · ,mj)←→ (m0 + 1,m1, · · · ,mj).

Proof. It suffices to show that for any (m0,m1, · · · ,mj) ∈ Ti+1,j , we must have m0 ≥ 1. To that
end, note that when i ≥ j, for any (m0,m1, · · · ,ms) ∈ Ti+1,j , we have

j
∑

k=0

mk = i+ 1,

j
∑

k=1

kmk = j.

Thus, we have

m0 =

j
∑

k=0

mk −
j
∑

k=1

kmk +

j
∑

k=1

(k − 1)mk = (i+ 1− j) +

j
∑

k=1

(k − 1)mk ≥ 1 (because i ≥ j).

The result of this lemma thus follows.

Lemma 64. If 2i ≥ j, then

d2i+2,j

d2i,j
≤
(

2i

2i− j
a0

)2

.

(Notice that when 2i = j, the right hand side is infinite. Nonetheless, this lemma still holds.)

Proof. We have

d2i+2,j

d2i,j
=

∑

m∈T2i+2,j
t(m)

∑

m∈T2i,j
t(m)

.

Let (m
(k)
0 ,m

(k)
1 , · · · ,m(k)

j ) denote the k-th element in T2i,j . Because m0 +m1 + · · · +mj = 2i

and m1 + 2m2 + · · · + j ·mj = j, we have m0 ≥ 2i − j. Thus, using the definition of t(· · · ) in
Eq. (104), we have

t
(

m
(k)
0 + 2,m

(k)
1 , · · · ,m(k)

j

)

t
(

m
(k)
0 ,m

(k)
1 , · · · ,m(k)

j

)

=
(2i+ 1)(2i+ 2)

(m0 + 1)(m0 + 2)
a20

≤ (2i+ 1)(2i+ 2)

(2i− j + 1)(2i− j + 2)
a20 (because m0 ≥ 2i− j)

≤
(

2i

2i− j
a0

)2

(because
2i+ 1

2i− j + 1
≤ 2i

2i− j
and

2i+ 2

2i− j + 2
≤ 2i

2i− j
).
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By Lemma 63 and 2i ≥ j, we thus have

d2i+2,j

d2i,j
=
t
(

m
(1)
0 + 2,m

(1)
1 , · · · ,m(1)

j

)

+ · · ·+ t
(

m
(|T2i,j |)
0 + 2,m

(|T2i,j |)
1 , · · · ,m(|T2i,j |)

j

)

t
(

m
(1)
0 ,m

(1)
1 , · · · ,m(1)

j

)

+ · · ·+ t
(

m
(|T2i,j |)
0 ,m

(|T2i,j |)
1 , · · · ,m(|T2i,j |)

j

)

≤
(

2i

2i− j
a0

)2

.

Lemma 65. For any j = 1, 2, · · · , we must have

i∗∑

i=⌈ j
2s⌉

d2i,j ≥
1−

(
1+a0

2

)2

2−
(
1+a0

2

)2

∞∑

i=⌈ j
2s⌉

d2i,j ,

where

i∗ :=

⌈
1 + a0

2(1− a0)
j

⌉

.

Proof. For all i ≥ i∗, we have 2i ≥ j and

2i

2i− j
a0 ≤

2i∗

2i∗ − j
a0 ≤

1+a0

1−a0
j

1+a0

1−a0
j − j

a0 =
1 + a0

2
(by Lemma 59 and 2i ≥ 2i∗ ≥ 1 + a0

1− a0
j).

By Lemma 64, we thus have

d2i+2,j

d2i,j
≤
(
1 + a0

2

)2

for all i ≥ i∗.

Because d2i,j ≥ 0 for all i and j, we have

∞∑

i=i∗+1

d2i,j ≤
∞∑

i=i∗

d2i,j ≤ d2i∗,j

∞∑

k=0

(
1 + a0

2

)2k

=
d2i∗,j

1−
(
1+a0

2

)2 ≤
1

1−
(
1+a0

2

)2

i∗∑

i=⌈ j
2s⌉

d2i,j .

Therefore, we have
(

1 +
1

1−
(
1+a0

2

)2

)
i∗∑

i=⌈ j
2s⌉

d2i,j ≥
i∗∑

i=0

d2i,j +
∞∑

i=i∗+1

d2i,j =
∞∑

i=⌈ j
2s⌉

d2i,j ,

i.e.,

i∗∑

i=⌈ j
2s⌉

d2i,j ≥
1−

(
1+a0

2

)2

2−
(
1+a0

2

)2

∞∑

i=⌈ j
2s⌉

d2i,j .

Recall that um(x) denotes the Taylor coefficients of xπ−arccos(x)
2π . The following lemma states that

u2k(x) is monotone decreasing with respect to k. Further, it estimates the decreasing speed. We
draw the curve of uk(x) with respect to k in Fig. 11.

Lemma 66. When k ≥ 1, we have

u2i(x) ≥ u2k(x) for all i ∈ {1, 2, · · · , k},
and

u2(k+m)(x)

u2k(x)
≥ 1
(
2 + 2m

k

)2 for all m ∈ Z≥0.
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Proof. By Lemma 17, we have u0(x) = 0, u1(x) =
1
4 , and for all k ≥ 1, we have

u2k(x) =
1

2π

(2k − 2)!

((k − 1)!)2
4

2k − 1

1

22k
, (111)

u2k+1(x) = 0. (112)

(We also plot the curve of uk(x) with respect to k in Fig. 11, so that we can observe the general
trend that is consistent with the statement of this lemma. We continue with the precise proof of this
lemma below.)

By Eq. (111), we have

u2k+2(x)

u2k(x)
=

2k(2k − 1)(2k − 1)

k2(2k + 1)
· 1
4
=

(2k − 1)2

2k · (2k + 1)
. (113)

Because
(2k−1)2

2k·(2k+1) ≤ 1, we know that u2k(x) is monotone decreasing with respect to k. Therefore,

we have

u2i(x) ≥ u2k(x) for all i ∈ {1, 2, · · · , k}.
Iterating Eq. (113), we have

u2(k+m)(x)

u2k(x)
=

m−1∏

i=0

(2k + 2i− 1)2

(2k + 2i)(2k + 2i+ 1)

≥
m−1∏

i=0

(2k + 2i− 1)2

(2k + 2i+ 1)2

=
(2k − 1)2

(2k + 2m− 1)2

≥ k2

(2k + 2m)2
(because 2k − 1 ≥ k due to k ≥ 1)

=
1

(
2 + 2m

k

)2 .

Lemma 67. Under Condition 2, for any j = 1, 2, · · · , we must have

uj (K(x))

u2⌈j/2⌉(x)
≥
(
1

2
· 1− a0
3− a0

)2 1−
(
1+a0

2

)2

2−
(
1+a0

2

)2 ej .

Proof. Consider i∗ defined in Lemma 65, i.e., i∗ =
⌈

1+a0

2(1−a0)
j
⌉

. Let k =
⌈
j
2

⌉
and m = i∗ − k. We

have

2m

k
=

2i∗

k
− 2 =

2
⌈

1+a0

2(1−a0)
j
⌉

⌈
j
2

⌉ − 2

≤
2
(

1+a0

2(1−a0)
j + 1

)

j
2

− 2 (because ⌈α⌉ ∈ [α, α+ 1])

=
2(1 + a0)

1− a0
+

4

j
− 2

≤2(1 + a0)

1− a0
+ 4− 2 (because j ≥ 1)

=
4

1− a0
.
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By Lemma 66, we then have

u2i∗(x)

u2⌈j/2⌉(x)
=

u2(k+m)(x)

u2k(x)
≥ 1
(
2 + 2m

k

)2 ≥
1

(

2 + 4
1−a0

)2 =

(
1

2
· 1− a0
3− a0

)2

.

By the first part of Lemma 66, u2i ≥ u2i∗ for all i = 1, 2, · · · , i∗. We thus have

u2i(x)

u2⌈j/2⌉(x)
≥
(
1

2
· 1− a0
3− a0

)2

for all i = 1, 2, · · · , i∗. (114)

Notice that

K(x)
π − arccos (K(x))

2π

=u1(x)K(x) +

∞∑

i=1

u2i(x) (K(x))
2i

=u1(x)K(x) +
∞∑

i=1

u2i(x)
∞∑

j=0

d2i,jx
j (by Lemma 27)

=
1

4
K(x) +

∞∑

j=0






∞∑

i=⌈ j
2s⌉

u2i(x) · d2i,j




xj (since d2i,j = 0 when j > 2i · s).

Therefore,

uj (K(x)) =
aj
4

+
∞∑

i=⌈ j
2s⌉

u2i(x) · d2i,j for all j ∈ Z≥0. (115)

By Eq. (115), we thus have

uj (K(x))

u2⌈j/2⌉(x)
≥ 1

u2⌈j/2⌉(x)

∞∑

i=⌈ j
2s⌉

u2i(x)d2i,j (notice that ai ≥ 0 for all i ∈ Z≥0 by Condition 2)

≥ 1

u2⌈j/2⌉(x)

i∗∑

i=⌈ j
2s⌉

u2i(x)d2i,j

≥
(
1

2
· 1− a0
3− a0

)2 i∗∑

i=⌈ j
2s⌉

d2i,j (by Eq. (114))

≥
(
1

2
· 1− a0
3− a0

)2 1−
(
1+a0

2

)2

2−
(
1+a0

2

)2

∞∑

i=⌈ j
2s⌉

d2i,j (by Lemma 65)

=

(
1

2
· 1− a0
3− a0

)2 1−
(
1+a0

2

)2

2−
(
1+a0

2

)2 ej (by Eq. (107)).

By Lemma 67 and Lemma 62, we can conclude the lower bound in Lemma 60. Next we will prove
the upper bound in Lemma 60.

Lemma 68. Under Condition 2, for any j = 1, 2, · · · , we must have

uj (K(x))− aj

4

u2⌈j/2⌉(x)
≤ (2 + 2s)2ej .
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Figure 11: The curve of uk(x) with respect to k. Notice that uk(x) = 0 when k = 0, 3, 5, 7, · · · .

Proof. Let k =
⌈

j
2s

⌉
and m =

⌈
j
2

⌉
−
⌈

j
2s

⌉
. Thus, we have

m

k
=

⌈
j
2

⌉

⌈
j
2s

⌉ − 1 ≤
j
2 + 1
⌈

j
2s

⌉ − 1 =
j
2
⌈

j
2s

⌉ +

(

1
⌈

j
2s

⌉ − 1

)

≤ s

(noting that

⌈
j

2s

⌉

≥ 1 since j ≥ 1).

By Lemma 66, we then have

u2⌈j/2⌉(x)

u2⌈j/(2s)⌉(x)
=

u2(k+m)(x)

u2k(x)
≥ 1
(
2 + 2m

k

)2 (by Lemma 66)

≥ 1

(2 + 2s)2
.

By the first part of Lemma 66, we further have

u2i(x) ≤ (2 + 2s)2u2⌈j/2⌉(x) for all 2i ≥ 2

⌈
j

2s

⌉

.

Thus, we have

uj (K(x))− aj
4

=
∞∑

i=⌈ j
2s⌉

u2i(x) · d2i,j (by Eq. (115))

≤(2 + 2s)2u2⌈j/2⌉(x)
∞∑

i=⌈ j
2s⌉

d2i,j

=(2 + 2s)2u2⌈j/2⌉(x)ej (by Eq. (107)).

The result of the lemma thus follows.

Combining Lemma 67, Lemma 68, and Lemma 62, the result of Lemma 60 thus follows.

M.3 Expansion for an infinite-degree polynomial

We now return to the proof of the third statement of Lemma 51, where the polynomial K(x) has
infinite terms. We inherit notations ai, bi, ui, di, ei for the finite polynomial case in Appendix M.2.
Further, we introduce some additional notations as follows.
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Define

b̃i :=
bi

1− b0
, for all i ∈ Z≥0, (116)

and

Tk :=

∞∑

i=k+1

b̃i, k ∈ Z≥0. (117)

By Condition 2, Eq. (103), and Eq. (116), we have

Tk ≥ 0 for all k ∈ Z≥0. (118)

Define for any k ∈ {1, 2, · · · },

Lk := min {ej | j = 0, 1, · · · , k − 1} ∪ {1} −
∞∑

i=k

Ti. (119)

Lemma 69. For any i ∈ Z≥0 and any k ∈ {1, 2, · · · }, we must have ei ≥ Lk. Notice that the
indices i and k are not required to be equal.

We prove Lemma 69 in Appendix M.3.1.

In order to prove the third statement of Lemma 51, by Lemma 52, we only need to lower bound
uj(K(x))
u2⌈j/2⌉(x)

. Notice that Lemma 67 still holds when s → ∞ (the proof of it will be exactly the same

after replacing ⌈j/2s⌉ by zero). Therefore, we only need to prove that ei is lower bounded by a
positive constant. By Lemma 69, if we can find Lk > 0 for some k, then we are done. By Eq. (119),
In order to calculate the exact value of Lk, we need to find a way to calculate the exact value of
∑∞

k=0 Tk, which is provided by the following lemma.

Lemma 70.
∞∑

k=0

Tk = 2
1−a2

0

∂K(x)
∂x

∣
∣
x=1

.

Proof. We have
∞∑

k=0

Tk =
∞∑

k=0

∞∑

i=k+1

b̃i (by Eq. (117))

=
∞∑

i=1

i · b̃i

=
1

1− b0

∞∑

i=1

i · bi (by Eq. (116))

=
1

1− a20

∞∑

i=1

i · bi (notice that b0 = a20 by Eq. (103))

=
1

1− a20

∂
(∑∞

i=0 bix
i
)

∂x

∣
∣
∣
∣
x=1

=
1

1− a20

∂ (K(x))
2

∂x

∣
∣
∣
∣
x=1

(by Eq. (103))

=
2K(1)

1− a20

∂K(x)

∂x

∣
∣
∣
∣
x=1

=
2

1− a20

∂K(x)

∂x

∣
∣
∣
∣
x=1

(by Condition 2).

Now we consider the case of 3-layer without bias, i.e., the case when the polynomial K(x) is

2d · KRF(x) =
√
1−x2+(π−arccos(x))x

π . After calculation (details in Appendix M.3.2), we have
L3 ≈ 0.069 > 0, which completes the proof of Proposition 47.
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M.3.1 Proof of Lemma 69

We first prove some useful lemmas.

Lemma 71. (i)
∑∞

i=1 b̃i = 1. (ii) ek =
∑k−1

i=0 b̃k−iei for all k ∈ {1, 2, · · · }. (iii) ek ≤ e0 = 1
1−b0

for all k ∈ Z≥0.

Proof. Note that

∞∑

i=1

b̃i =

∑∞
i=1 bi

1− b0
(by Eq. (116))

=1 (since

∞∑

i=1

bi = 1− b0 because b0 +

∞∑

i=1

bi = (K(1))2 = 1).

Because

1

1− (K(x))
2 = 1 + (K(x))

2 · 1

1− (K(x))
2 ,

we have

∞∑

j=0

ejx
j =1 +

( ∞∑

i=0

aix
i

)2

·





∞∑

j=0

ejx
j



 = 1 +

( ∞∑

i=0

bix
i

)

·





∞∑

j=0

ejx
j



 .

Comparing the coefficient of xj on both sides, we have

e0 = 1 + b0e0,

e1 = b1e0 + b0e1,

e2 = b2e0 + b1e1 + b0e2,

...

We thus have






e0 = 1
1−b0

,

e1 = b̃1e0,

e2 = b̃2e0 + b̃1e1 =
(

b̃2 + b̃21

)

e0,

e3 = b̃3e0 + b̃2e1 + b̃1e2 =
(

b̃3 + 2b̃2b̃1 + b̃31

)

e0,

e4 = b̃4e0 + b̃3e1 + b̃2e2 + b̃1e3 =
(

b̃4 + 2b̃1b̃3 + b̃22 + 3b̃21b̃2 + b̃41

)

e0,

...

ek =
∑k−1

i=0 b̃k−iei,
...

(120)

We now prove that ek ≤ e0 for all k ∈ Z≥0 by mathematical induction. Suppose that for all i ≤ k,
we already have ei ≤ e0 (which is obviously true when k = 0). Thus, we have

ek+1 =

k∑

i=0

b̃k+1−iei ≤ e0

k∑

i=0

b̃k+1−i ≤ e0

∞∑

i=0

b̃i = e0.

By mathematical induction, we thus have ei ≤ e0 for all i ∈ Z≥0.

For any given real number sequence ∆ := (∆1,∆2, · · · ), we define a sequence (e∆0 , e∆1 , e∆2 , · · · )
by

e∆0 := e0, e∆k := ∆k +

k−1∑

i=0

b̃k−ie
∆

i , k ∈ {1, 2, · · · }. (121)

72



Lemma 72. For any k ∈ {1, 2, · · · } and any ∆, we must have

e∆k − ek =

k∑

i=1

∆i ·
ek−i

e0
. (122)

Proof. We prove Eq. (122) by mathematical induction. When k = 1, we have e∆1 = ∆1 + b̃1e0 (by

Eq. (121)) and e1 = b̃1e0 (by Lemma 71). Thus, Eq. (113) holds when k = 1. Suppose that for all
k ∈ {1, 2, · · · , l}, Eq. (122) holds. We thus have

e∆l+1 − el+1 =∆l+1 +
l∑

i=0

b̃l+1−i(e
∆

i − ei) (by Eq. (121) and Lemma 71)

=∆l+1 +
l∑

i=1

b̃l+1−i(e
∆

i − ei) (notice that e∆0 = e0)

=∆l+1 +
l∑

i=1

b̃l+1−i

i∑

j=1

∆j
ei−j

e0
(applying Eq. (122) by induction hypothesis).

(123)

Notice that

l∑

i=1

i∑

j=1

b̃l+1−i ·∆j · ei−j =

l∑

j=1

∆j

l∑

i=j

b̃l+1−iei−j (by re-organizing terms)

=

l∑

j=1

∆j

l−j
∑

i=0

b̃l+1−i−jei (replacing i− j by i).

Plugging the above equation into Eq. (123), we then have

e∆l+1 − el+1 =∆l+1 +
1

e0

l∑

j=1

∆j

l−j
∑

i=0

b̃l−j+1−iei

=∆l+1 +
1

e0

l∑

j=1

∆j · el+1−j (by Lemma 71)

=
1

e0

l+1∑

j=1

∆j · el+1−j ,

i.e., Eq. (122) also holds for k = l+1. Thus, the mathematical induction is completed and the result
of this lemma thus follows.

Now we are ready to prove Lemma 69.

Proof of Lemma 69. Let

∆i =

{
0, if i < k,

Ti, if i ≥ k.

We first prove by mathematical induction that

e∆i ≥ min{ej | j = 0, 1, · · · , k − 1} ∪ {1} for all i ∈ Z≥0. (124)

Towards this end, note that because ∆i = 0 for all i < k, we know from Lemma 72 that e∆i = ei.
Hence, Eq. (124) trivially holds for all i ∈ {0, 1, · · · , k − 1}. Suppose that Eq. (124) holds for all
i ≤ l ∈ Z≥0, where l ≥ k − 1 denotes the index of the induction hypothesis. In order to finish the

73



mathematical induction, we only need to prove that Eq. (124) holds for i = l + 1. To this end, we
have

e∆l+1 =Tl+1 +

l∑

i=0

b̃l+1−ie
∆

i (by Eq. (121))

=

∞∑

i=l+2

b̃i +

l+1∑

i=1

b̃ie
∆

l+1−i (by Eq. (117))

≥
(
min{e∆j | j = 0, 1, · · · , l} ∪ {1}

)
·

∞∑

i=1

b̃i

=min{e∆j | j = 0, 1, · · · , l} ∪ {1} (by Lemma 71)

≥min{ej | j = 0, 1, · · · , k − 1} ∪ {1} (by induction hypothesis).

Thus, Eq. (124) holds by mathematical induction. We thus have

ei =e∆i −
i∑

j=1

∆j ·
ei−j

e0
(by Lemma 72)

≥e∆i −
i∑

j=1

∆j (since ei−j ≤ e0 by Lemma 71)

=e∆i −
i∑

j=k

Ti

≥min{ej | j = 0, 1, · · · , k − 1} ∪ {1} −
∞∑

j=k

Tj (by Eq. (124) and Eq. (118))

=Lk.

The result of this lemma thus follows.

M.3.2 Calculate L3 for 3-layer without bias

Coefficients of Taylor expansion of K(x) = 2d ·KRF(x) =
√
1−x2+(π−arccos(x))x

π can be derived
from Lemma 17, i.e.,

K(x) =
1

π

(

1 +
π

2
x+

∞∑

k=0

2(2k)!

(k + 1)(2k + 1)(k!)2

(x

2

)2k+2
)

. (125)

By Eq. (125), We can calculate values of ai, bi, and b̃i for i = 0, 1, 2 by their definitions.

a0 =
1

π
, a1 =

1

2
, a2 =

1

2π
,

b0 = a20 =
1

π2
, b1 = 2a0a1 =

1

π
, b2 = 2a2a0 + a21 =

1

π2
+

1

4
,

b̃0 =
1

π2 − 1
, b̃1 =

π

π2 − 1
, b̃2 =

1

π2 − 1
+

π2

4(π2 − 1)
.

Then, we calculate the values of ei by Eq. (120).

e0 =
π2

π2 − 1
≈ 1.11, e1 =

π3

(π2 − 1)2
≈ 0.39, e2 =

(2π2 − 1)π2

(π2 − 1)3
+

π4

4(π2 − 1)2
≈ 0.57.
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Next, we calculate
∑∞

i=0 Ti by Lemma 70.

∞∑

i=0

Ti =
2

1− a20

∂
√
1−x2+(π−arccos(x))x

π

∂x

∣
∣
∣
∣
x=1

=
2

1− a20

1

π

(

− x√
1− x2

+ (π − arccos(x)) +
x√

1− x2

)

(notice that
∂
√
1− x2

∂x
= − x√

1− x2
and

∂

∂x
arccos(x) = − 1√

1− x2
)

=
2

1− a20

π − arccos(x)

π

∣
∣
x=1

=
2π2

π2 − 1
.

By Eq. (117) and Lemma 71(i), we thus have Tj =
∑∞

i=1 b̃i −
∑j

i=1 b̃i = 1−∑j
i=1 b̃i. Therefore,

we have

T0 = 1, T1 = 1− π

π2 − 1
, T2 = 1− π

π2 − 1
−
(

1

π2 − 1
+

π2

4(π2 − 1)

)

.

Now we are ready to calculate L3 by Eq. (119).

L3 =e1 + T0 + T1 + T2 −
∞∑

i=0

Ti

=
π3

(π2 − 1)2
+ 3− 2π

π2 − 1
−
(

1

π2 − 1
+

π2

4(π2 − 1)

)

− 2π2

π2 − 1

≈0.069.
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