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I. INTRODUCTION

Neural tangent kernel (NTK) models [1] have been recently
used as an important intermediate step to understand the
exceptional generalization power of overparameterized deep
neural networks (DNNs). Compared to linear models with
simple Gaussian or Fourier features, NTK models can capture
the non-linear features inherent in neural networks. Indeed,
the work in [2] has shown that, for a 2-layer NTK model, the
generalization error of an overfitted solution decreases as the
number of neurons increases. Further, this descent behavior is
qualitatively different from that of linear models with simple
Gaussian and Fourier features, and closer to that of an actual
neural network.

However, the study in [2] is restricted to 2-layer networks.
In this work, we study NTK models with 3 layers. Specifically,
the input x of dimension d passes through the first layer of
p1 ReLU neurons that are fully connected with the second
layer of p2 ReLU neurons, followed by a linear summation
at the third layer, to produce the output. We then study the
generalization error of the min `2-norm solution that fits the
training data. We aim to answer the following questions. First,
does the interaction of the two hidden layers change the
descent behavior in any way? Second, do 3-layer NTK models
have any performance advantage over 2-layer NTK models?

II. MAIN RESULT AND INSIGHTS

To answer these questions, we study the generalization
performance of the overfitted min-`2-norm solutions f̂ `2(·)
for 3-layer NTK models where the middle (i.e., second)
layer is trained. Define a set of “learnable” ground-truth
functions F`2

(3) =
{
fg(x) =

∫
Sd−1 K

Three(xTz)g(z)dµ(z)
}

where KThree(·) denotes the limiting kernel of 3-layer NTK as
the number of neurons approaches infinity. The function g(·)
can be an arbitrary function, whose magnitude corresponds to
the complexity of the ground-truth function, and the integral
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is over the uniform distribution µ on the unit-sphere Sd−1 in
d-dimension space. We then have the following result (detailed
version in [3]).

Theorem 1 (an informal version): For any ground-truth
function f(x) = fg(x) ∈ F`2

(3), when d is fixed and p1, p2
are much larger than n, (with high probability) we have

|f̂ `2(x)− f(x)| = O

(
‖g‖∞√
n

)
︸ ︷︷ ︸

Term A

+

(
O

(
‖g‖1√
p2

)
︸ ︷︷ ︸

Term B

+

O

(
‖g‖1 4

√
log p1
p1

)
︸ ︷︷ ︸

Term C

+
‖ε‖2√
n︸ ︷︷ ︸

Term D

)
·O
(
n

2
d−1+

1
2 ·
√

log n
)

︸ ︷︷ ︸
Term E

.

Similar to 2-layer NTK [2, 4, 5], our upper bound suggests
that the generalization error also decreases to an error floor as
the number of neurons p1 and p2 increase (as can be seen from
Terms B and C). When there is no noise (i.e., no Term D),
the error floor (Term A) further decreases as the number of
samples n increases. Further, the product of Term D and
Term E (i.e., noise term) will not explode when the number of
neurons goes to infinity, which is also similar to that for 2-layer
NTK. However, our upper bound also reveals new insights that
are different from the results for 2-layer NTK, as follows.

Different descent speed: Our upper bound decreases with
the number of neuron p1 in the first hidden-layer at the slower
speed of 4

√
(log p1)/p1 (see Term C), and decreases with the

number of neurons p2 in the second hidden-layer at the faster
speed of 1/

√
p2 (see Term B). This difference in descent speed

is due to the composition of the two layers.
Size of the Learnable Set: We then show that, even if

we only train the middle-layer weights, the learnable set F`2
(3)

(i.e., the set of ground-truth functions for which the above
upper bound holds) of the 3-layer NTK model without bias
contains all finite-degree polynomials, which is strictly larger
than that of the 2-layer NTK without bias and is at least as
large as the 2-layer NTK with bias. In particular, the learnable
set of 2-layer NTK without bias contains only linear functions
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and even-power polynomials, and does not contain other odd-
power polynomials [2, 4]. In contrast, the learnable sets of
both 3-layer NTK (with or without bias) and 2-layer with bias
contain polynomials of all powers [5].

Sensitivity to the Choices of Bias: Even though a similar
learnable set can be attained by 2-layer NTK with bias, its
actual generalization performance can still be quite sensitive
to the choice of bias, especially when the input dimension d is
large. One type of bias setting commonly used in literature [5,
6] is that the bias has a similar magnitude as each element of
the input vector, which we refer to as “normal bias.” However,
as the dimension d increases, this normal bias diminishes to
zero. As a result, the generalization performance will degrade
to that of a 2-layer NTK without bias. To avoid this negative
impact, it is important to use another type of bias that has
a similar magnitude as the norm of the whole input vector,
which we refer to as “balanced bias.” In contrast, for 3-layer
NTK, different bias settings do not have an obvious effect on
the generalization performance. In summary, compared with
2-layer NTK, the use of an extra non-linear layer in 3-layer
NTK appears to significantly reduce the impact due to the
choice of bias, and therefore makes the learning more robust.
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