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Abstract
In this paper, we study the generalization perfor-
mance of min `2-norm overfitting solutions for
the neural tangent kernel (NTK) model of a two-
layer neural network with ReLU activation that
has no bias term. We show that, depending on
the ground-truth function, the test error of overfit-
ted NTK models exhibits characteristics that are
different from the “double-descent” of other over-
parameterized linear models with simple Fourier
or Gaussian features. Specifically, for a class
of learnable functions, we provide a new upper
bound of the generalization error that approaches
a small limiting value, even when the number
of neurons p approaches infinity. This limiting
value further decreases with the number of train-
ing samples n. For functions outside of this class,
we provide a lower bound on the generalization
error that does not diminish to zero even when n
and p are both large.

1. Introduction
Recently, there is significant interest in understanding why
overparameterized deep neural networks (DNNs) can still
generalize well (Zhang et al., 2017; Advani et al., 2020),
which seems to defy the classical understanding of bias-
variance tradeoff in statistical learning (Bishop, 2006;
Hastie et al., 2009; Stein, 1956; James & Stein, 1992; Le-
Cun et al., 1991; Tikhonov, 1943). Towards this direction, a
recent line of study has focused on overparameterized linear
models (Belkin et al., 2018b; 2019; Bartlett et al., 2020;
Hastie et al., 2019; Muthukumar et al., 2019; Ju et al., 2020;
Mei & Montanari, 2019). For linear models with simple fea-
tures (e.g., Gaussian features and Fourier features) (Belkin
et al., 2018b; 2019; Bartlett et al., 2020; Hastie et al., 2019;
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Muthukumar et al., 2019; Ju et al., 2020), an interesting
“double-descent” phenomenon has been observed. Thus,
there is a region where the number of model parameters (or
linear features) is larger than the number of samples (and
thus overfitting occurs), but the generalization error actu-
ally decreases with the number of features. However, linear
models with these simple features are still quite different
from nonlinear neural networks. Thus, although such results
provide some hint why overparameterization and overfitting
may be harmless, it is still unclear whether similar conclu-
sions apply to neural networks.

In this paper, we are interested in linear models based on the
neural tangent kernel (NTK) (Jacot et al., 2018), which can
be viewed as a useful intermediate step towards modeling
nonlinear neural networks. Essentially, NTK can be seen as
a linear approximation of neural networks when the weights
of the neurons do not change much. Indeed, (Li & Liang,
2018; Du et al., 2018) have shown that, for a wide and
fully-connected two-layer neural network, both the neuron
weights and their activation patterns do not change much
after gradient descent (GD) training with a sufficiently small
step size. As a result, such a shallow and wide neural net-
work is approximately linear in the weights when there are
a sufficient number of neurons, which suggests the utility of
the NTK model.

Despite its linearity, however, characterizing the double de-
scent of such a NTK model remains elusive. The work in
(Mei & Montanari, 2019) also studies the double-descent
of a linear version of two-layer neural network. It uses
the so-called “random-feature” model, where the bottom-
layer weights are random and fixed, and only the top-layer
weights are trained. (In comparison, the NTK model for
such a two-layer neural network corresponds to training
only the bottom-layer weights.) However, the setting there
requires the number of neurons, the number of samples,
and the data dimension to all grow proportionally to infin-
ity. In contrast, we are interested in the setting where the
number of samples is given, and the number of neurons is
allowed to be much larger than the number of samples. As
a consequence of the different setting, in (Mei & Montanari,
2019) eventually only linear ground-truth functions can be
learned. (Similar settings are also studied in (d’Ascoli et al.,



On the Generalization Power of Overfitted 2-layer NTK models

2020).) In contrast, we will show that far more complex
functions can be learned in our setting. In a related work,
(Ghorbani et al., 2019) shows that both the random-feature
model and the NTK model can approximate highly non-
linear ground-truth functions with a sufficient number of
neurons. However, (Ghorbani et al., 2019) mainly studies
the expressiveness of the models, and therefore does not
explain why overfitting solutions can still generalize well.
To the best of our knowledge, our work is the first to charac-
terize the double-descent of overfitting solutions based on
the NTK model.

Specifically, in this paper we study the generalization error
of the min `2-norm overfitting solution for a linear model
based on the NTK of a two-layer neural network with ReLU
activation that has no bias. Only the bottom-layer weights
are trained. We are interested in min `2-norm overfitting
solutions because gradient descent (GD) can be shown to
converge to such solutions while driving the training error
to zero (Zhang et al., 2017) (see also Section 2). Given a
class of ground truth functions (see details in Section 3),
which we refer to as “learnable functions,” our main result
(Theorem 1) provides an upper bound on the generaliza-
tion error of the min `2-norm overfitting solution for the
two-layer NTK model with n samples and p neurons (for
any finite p larger than a polynomial function of n). This
upper bound confirms that the generalization error of the
overfitting solution indeed exhibits descent in the overpa-
rameterized regime when p increases. Further, our upper
bound can also account for the noise in the training samples.

Our results reveal several important insights. First, we find
that the (double) descent of the overfitted two-layer NTK
model is drastically different from that of linear models with
simple Gaussian or Fourier features (Belkin et al., 2018b;
2019; Bartlett et al., 2020; Hastie et al., 2019; Muthukumar
et al., 2019). Specifically, for linear models with simple
features, when the number of features p increases, the gener-
alization error will eventually grow again and approach the
so-called “null risk” (Hastie et al., 2019), which is the error
of a trivial model that predicts zero. In contrast, for the class
of learnable functions described earlier, the generalization
error of the overfitted NTK model will continue to descend
as p grows to infinity, and will approach a limiting value
that depends on the number of samples n. Further, when
there is no noise, this limiting value will decrease to zero
as the number of samples n increases. This difference is
shown in Fig. 1(a). As p increases, the test mean-square-
error (MSE) of min-`1 and min-`2 overfitting solutions for
Fourier features (blue and red curves) eventually grow back
to the null risk (the black dashed line), even though they
exhibit a descent at smaller p. In contrast, the error of the
overfitted NTK model continues to descend to a much lower
level.

The second important insight is that the aforementioned
behavior critically depends on the ground-truth function
belonging to the class of “learnable functions.” Further, this
class of learnable functions depend on the specific network
architecture. For our NTK model (with RELU activation
that has no bias), we precisely characterize this class of
learnable functions. Specifically, for ground-truth functions
that are outside the class of learnable functions, we show
a lower bound on the generalization error that does not
diminish to zero for any n and p (see Proposition 2 and
Section 4). This difference is shown in Fig. 1(b), where we
use an almost identical setting as Fig. 1(a), except a different
ground-truth function. We can see in Fig. 1(b) that the test-
error of the overfitted NTK model is always above the null
risk and looks very different from that in Fig. 1(a). We note
that whether certain functions are learnable or not critically
depends on the specific structure of the NTK model, such
as the choice of the activation unit. Recently, (Satpathi &
Srikant, 2021) shows that all polynomials can be learned by
2-layer NTK model with ReLU activation that has a bias
term, provided that the number of neurons p is sufficiently
large. (See further discussions in Remark 2. However, (Sat-
pathi & Srikant, 2021) does not characterize the descent of
generalization errors as p increases.) This difference in the
class of learnable functions between the two settings (ReLU
with or without bias) also turns out to be consistent with
the difference in the expressiveness of the neural networks.
That is, shallow networks with biased-ReLU are known to
be universal function approximators (Ji et al., 2019), while
those without bias can only approximate the sum of linear
functions and even functions (Ghorbani et al., 2019).

A closely related result to ours is the work in (Arora et al.,
2019), which characterizes the generalization performance
of wide two-layer neural networks whose bottom-layer
weights are trained by gradient descent (GD) to overfit the
training samples. In particular, our class of learnable func-
tions almost coincides with that of (Arora et al., 2019). This
is not surprising because, when the number of neurons is
large, NTK becomes a close approximation of such two-
layer neural networks. In that sense, the results in (Arora
et al., 2019) are even more faithful in following the GD
dynamics of the original two-layer network. However, the
advantage of the NTK model is that it is easier to analyze.
In particular, the results in this paper can quantify how the
generalization error descends with p. In contrast, the results
in (Arora et al., 2019) provide only a generalization bound
that is independent of p (provided that p is sufficiently large),
but do not quantify the descent behavior as p increases. Our
numerical results in Fig. 1(a) suggest that, over a wide range
of p, the descent behavior of the NTK model (the green
curve) matches well with that of two-layer neural networks
trained by gradient descent (the cyan curve). Thus, we be-
lieve that our results also provide guidance for the latter
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Figure 1. The test mean-square-error(MSE) vs. the number of
features/neurons p for (a) learnable function and (b) not-learnable
function when n = 50, d = 2, ‖ε‖22 = 0.01. The corresponding
ground-truth are (a) f(θ) =

∑
k∈{0,1,2,4}(sin(kθ) + cos(kθ)),

and (b) f(θ) =
∑
k∈{3,5,7,9}(sin(kθ) + cos(kθ)). (Note that in

2-dimension every input x on a unit circle can be represented by
an angle θ ∈ [−π, π]. See the end of Section 4.) Every curve
is the average of 9 random simulation runs. For GD on the real
neural network (NN), we use the step size 1/

√
p and the number

of training epochs is fixed at 2000.

model. The work in (Fiat et al., 2019) studies a different
neural network architecture with gated ReLU, whose NTK
model turns out to be the same as ours. However, similar
to (Arora et al., 2019), the result in (Fiat et al., 2019) does
not capture the speed of descent with respect to p either.
Second, (Arora et al., 2019) only provides upper bounds on
the generalization error. There is no corresponding lower
bound to explain whether ground-truth functions outside a
certain class are not learnable. Our result in Proposition 2
provides such a lower bound, and therefore more completely
characterizes the class of learnable functions. (See further
comparison in Remark 1 of Section 3 and Remark 3 of Sec-
tion 5.) Another related work (Allen-Zhu et al., 2019) also
characterizes the class of learnable functions for two-layer
and three-layer networks. However, (Allen-Zhu et al., 2019)
studies a training method that takes a new sample in every
iteration, and thus does not overfit all training data. Finally,
our paper studies generalization of NTK models for the re-
gression setting, which is different from the classification

output
top layer weights w

input x = [x1 x2]T
bottom-layer weights V0

hidden-layer: ReLU

w1 w3

V0[1] V0[2] V0[3]

w2

x1 x2

Figure 2. A two-layer neural network where d = 2, p = 3.

setting that assumes a separability condition, e.g., in (Ji &
Telgarsky, 2019).

2. Problem Setup
We assume the following data model y = f(x) + ε, with
the input x ∈ Rd, the output y ∈ R, the noise ε ∈ R,
and f : Rd 7→ R denotes the ground-truth function.
Let (Xi, yi), i = 1, 2, · · · , n denote n training samples.
We collect them as X = [X1 X2 · · · Xn] ∈ Rd×n,
y = [y1 y2 · · · yn]T ∈ Rn, ε = [ε1 ε2 · · · εn]T ∈ Rn,
and F(X) = [f(X1) f(X2) · · · f(Xn)]T ∈ Rn. Then,
the training samples can be written as y = F(X) + ε. Af-
ter training (to be described below), we denote the trained
model by the function f̂ . Then, for any new test data x, we
will calculate the test error by |f̂(x)− f(x)|, and the mean
squared error (MSE) by Ex[f̂(x)− f(x)]2.

For training, consider a fully-connected two-layer neural
network with p neurons. Let wj ∈ R and V0[j] ∈ Rd
denote the top-layer and bottom-layer weights, respectively,
of the j-th neuron, j = 1, 2, · · · , p (see Fig. 2). We
collect them into w = [w1 w2 · · · wp]T ∈ Rp, and
V0 = [V0[1]T V0[2]T · · · V0[p]T ]T ∈ Rdp (a column
vector with dp elements). Note that with this notation, for
any row or column vector v with dp elements, v[j] denotes
a (row/column) vector that consists of the (jd + 1)-th to
(jd+ d)-th elements of v. We choose ReLU as the activa-
tion function for all neurons and there is no bias term in the
ReLU activation function.

Now we are ready to introduce the NTK model (Jacot et al.,
2018). We fix the top-layer weights w, and let the initial
bottom-layer weights V0 be randomly chosen. We then
train only the bottom-layer weights. Let V0 + ∆V denote
the bottom-layer weights after training. Thus, the change of
the output after training is

n∑
j=1

wj1{xT (V0[j]+∆V[j])>0} · (V0[j] + ∆V[j])Tx

−
n∑
j=1

wj1{xTV0[j]>0} ·V0[j]Tx.

In the NTK model, one assumes that ∆V is very small. As
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a result, 1{xT (V0[j]+∆V[j])>0} = 1{xTV0[j]>0} for most x.
Thus, the change of the output can be approximated by

n∑
j=1

wj1{xTV0[j]>0} ·∆V[j]Tx = hV0,x∆V,

where ∆V ∈ Rdp is given by ∆V[j] := wj∆V[j], j =
1, 2, · · · , p, and hV0,x ∈ R1×(dp) is given by

hV0,x[j] := 1{xTV0[j]>0} · xT , j = 1, 2, · · · , p. (1)

In the NTK model, we assume that the output of the trained
model is exactly given by Eq. (1), i.e.,

f̂∆V,V0
(x) := hV0,x∆V. (2)

In other words, the NTK model can be viewed as a linear
approximation of the two-layer network when the change
of the bottom-layer weights is small.

Define H ∈ Rn×(dp) such that its i-th row is Hi := hV0,Xi
.

Throughout the paper, we will focus on the following min-
`2-norm overfitting solution

∆V`2 := arg min
v

‖v‖2, subject to Hv = y.

Whenever ∆V`2 exists, it can be written in closed form as

∆V`2 = HT (HHT )−1y. (3)

The reason that we are interested in ∆V`2 is that gradi-
ent descent (GD) or stochastic gradient descent (SGD) for
the NTK model in Eq. (2) is known to converge to ∆V`2

(proven in Supplementary Material, Appendix B).

Using Eq. (2) and Eq. (3), the trained model is then

f̂ `2(x) := hV0,x∆V`2 . (4)

In the rest of the paper, we will study the generalization
error of Eq. (4).

We collect some assumptions. Define the unit sphere in
Rd as: Sd−1 :=

{
v ∈ Rd | ‖v‖2 = 1

}
. Let µ(·) denote

the distribution of the input x. Without loss of generality,
we make the following assumptions: (i) the inputs x are
i.i.d. uniformly distributed in Sd−1, and the initial weights
V0[j]’s are i.i.d. uniformly distributed in all directions
in Rd; (ii) p ≥ n/d and d ≥ 2; (iii) Xi ∦ Xj for any
i 6= j, and V0[k] ∦ V0[l] for any k 6= l. We provide
detailed justification of those assumptions in Supplementary
Material, Appendix C.

3. Learnable Functions and Generalization
Performance

We now show that the generalization performance of the
overfitted NTK model in Eq. (4) crucially depends on the

ground-truth function f(·), where good generalization per-
formance only occurs when the ground-truth function is
“learnable.” Below, we first describe a candidate class of
ground-truth functions, and explain why they may corre-
spond to the class of “learnable functions.” Then, we will
give an upper-bound on the generalization performance for
this class of ground-truth functions. Finally, we will give a
lower-bound on the generalization performance when the
ground-truth functions are outside of this class.

We first define a set F`2 of ground-truth functions.

Definition 1. F`2 :=
{
f

a.e.
= fg

∣∣ fg(x) =∫
Sd−1 x

Tz π−arccos(xT z)
2π g(z)dµ(z), ‖g‖1 <∞

}
.

Note that in Definition 1, a.e.
= means two functions equals

almost everywhere, and ‖g‖1 :=
∫
Sd−1 |g(z)|dµ(z).

The function g(z) may be any finite-value function in
L1(Sd−1 7→ R). Further, we also allow g(z) to contain
(as components) Dirac δ-functions on Sd−1. Note that a
δ-function δz0

(z) has zero value for all z ∈ Sd−1 \ {z0},
but ‖δz0

‖1 :=
∫
Sd−1 δz0

(z)dµ(z) = 1. Thus, the function
g(z) may contain any sum of δ-functions and finite-value
L1-functions. 1

To see why F`2 may correspond to the class of learnable
functions, we can first examine what the learned func-
tion f̂ `2 in Eq. (4) should look like. Recall that HT =
[HT

1 · · · HT
n ]. Thus, hV0,xHT =

∑n
i=1(hV0,xHT

i )eTi ,
where ei ∈ Rn denotes the i-th standard basis. Combining
Eq. (3) and Eq. (4), we can see that the learned function in
Eq. (4) is of the form

f̂ `2(x) =hV0,xHT (HHT )−1y

=

n∑
i=1

(
1

p
hV0,xHT

i

)
peTi (HHT )−1y. (5)

For all x, z ∈ Sd−1, define CV0
z,x := {j ∈

{1, 2, · · · , p} | zTV0[j] > 0,xTV0[j] > 0}, and its cardi-
nality is given by

∣∣CV0
z,x

∣∣ =

p∑
j=1

1{zTV0[j]>0, xTV0[j]>0}. (6)

Then, using Eq. (1), we can show 1
phV0,xHT

i =

xTXi
|CV0

Xi,x
|

p . It is not hard to show that

|CV0
z,x|
p

P→ π − arccos(xTz)

2π
, as p→∞. (7)

1Alternatively, we can also interpret g(z) as a signed measure
(Rao & Rao, 1983) on Sd−1. Then, δ-functions correspond to
point masses, and the condition ‖g‖1 <∞ implies that the corre-
sponding unsigned version of the measure on Sd−1 is bounded.
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where P→ denotes converge in probability. (see Supplemen-
tary Material, Appendix D.5). Thus, if we let

g(z) =

n∑
i=1

peTi (HHT )−1yδXi
(z), (8)

then as p→∞, Eq. (5) should approach a function in F`2 .
This explains why F`2 is a candidate class of “learnable
functions.” However, note that the above discussion only
addresses the expressiveness of the model. It is still unclear
whether any function in F`2 can be learned with low gener-
alization error. The following result provides the answer.

For some m ∈
[
1, lnn

ln π
2

]
, define (recall that d is the dimen-

sion of x)

Jm(n, d) := 21.5d+5.5d0.5dn(2+ 1
m )(d−1). (9)

Theorem 1. Assume a ground-truth function f a.e.
= fg ∈

F`2 where ‖g‖∞ < ∞2, n ≥ 2, m ∈
[
1, lnn

ln π
2

]
, d ≤ n4,

and p ≥ 6Jm(n, d) ln
(

4n1+ 1
m

)
. Then, for any q ∈ [1, ∞)

and for almost every x ∈ Sd−1, we must have3

Pr
V0,X

{
|f̂ `2(x)− f(x)| ≥ n−

1
2 (1− 1

q )︸ ︷︷ ︸
Term 1

+
(

1 +
√
Jm(n, d)n

)
p−

1
2 (1− 1

q )︸ ︷︷ ︸
Term 2

+
√
Jm(n, d)n‖ε‖2︸ ︷︷ ︸

Term 3

,

for all ε ∈ Rn
}
≤ 2e2

(
exp

(
−

q
√
n

8‖g‖2∞

)
︸ ︷︷ ︸

Term 4

+ exp

(
−

q
√
p

8‖g‖21

)
︸ ︷︷ ︸

Term 5

+ exp

(
−

q
√
p

8n‖g‖21

)
︸ ︷︷ ︸

Term 6

)
+

4
m
√
n︸︷︷︸

Term 7

. (10)

To interpret Theorem 1, we can first focus on the noiseless
case, where ε and Term 3 are zero. If we fix n and let
p → ∞, then Terms 2, 5, and 6 all approach zero. We
can then conclude that, in the noiseless and heavily over-
parameterized setting (p → ∞), the generalization error
will converge to a small limiting value (Term 1) that de-
pends only on n. Further, this limiting value (Term 1) will
converge to zero (so do Terms 4 and 7) as n → ∞, i.e.,

2The requirement of ‖g‖∞ < ∞ can be relaxed. We show
in Supplementary Material, Appendix L that, even when g is
a δ-function (so ‖g‖∞ = ∞), we can still have a similar re-
sult of Eq. (10) but Term 1 will have a slower speed of decay
O(n

− 1
2(d−1)

(1− 1
q
)
) with respect to n instead of O(n−

1
2 (1− 1

q
))

shown in Eq. (10). Term 4 of Eq. (10) will also be different when
g is a δ-function, but it still goes to zero when p and n are large.

3The notion Pr
M

in Eq. (10) emphasizes that randomness is in

M .

when there are sufficiently many training samples. Finally,
Theorem 1 holds even when there is noise.

The parameters of q and m can be tuned to make Eq. (10)
sharper when n and p are large. For example, as we increase
q, Term 1 will approach n−0.5. Although a larger q makes
Terms 4, 5, and 6 bigger, as long as n and p are sufficiently
large, those terms will still be close to 0. Similarly, if we in-
crease m, then Jm(n, d) will approach the order of n2(d−1).
As a result, Term 3 approaches the order of n2d−0.5 times
‖ε‖2 and the requirement p ≥ 6Jm(n, d) ln

(
4n1+ 1

m

)
ap-

proaches the order of n2(d−1) lnn.
Remark 1. We note that (Arora et al., 2019) shows that,
for two-layer neural networks whose bottom-layer weights
are trained by gradient descent, the generalization error for
sufficiently large p has the following upper bound: for any
ζ > 0,

Pr

{
E
x
|f̂(x)− f(x)| ≤

√
2yT (H∞)−1y

n

+O

(√
log n

ζ·min eig(H∞)

n

)}
≥ 1− ζ, (11)

where H∞ = lim
p→∞

(HHT /p) ∈ Rn×n. For certain class

of learnable functions (we will compare them with our F`2
in Section 4), the quantity yT (H∞)−1y is bounded. Thus,√

2yT (H∞)−1y
n also decreases at the speed 1/

√
n. The sec-

ond O(·)-term in Eq. (11) contains the minimum eigenvalue
of H∞, which decreases with n. (Indeed, we show that this
minimum eigenvalue is upper bounded by O(n−

1
d−1 ) in

Supplementary Material, Appendix G.) Thus, Eq. (11) may
decrease a little bit slower than 1/

√
n, which is consistent

with Term 1 in Eq. (10) (when q is large). Note that the term
2yT (H∞)−1y in Eq. (11) captures how the complexity of
the ground-truth function affects the generalization error.
Similarly, the norm of g(·) also captures the impact4 of the
complexity of the ground-truth function in Eq. (10). How-
ever, we caution that the GD solution in (Arora et al., 2019)
is based on the original neural network, which is usually
different from our min `2-norm solution based on the NTK
model (even though they are close for very large p). Thus,
the two results may not be directly comparable.

Theorem 1 reveals several important insights on the general-
ization performance when the ground-truth function belongs
to F`2 .

(i) Descent in the overparameterized region: When p in-
creases, both sides of Eq. (10) decreases, suggesting that
the test error of the overfitted NTK model decreases with

4Although Term 1 in Eq. (10) in its current form does not
depend on g(·), it is possible to modify our proof so that the norm
of g(·) also enters Term 1.



On the Generalization Power of Overfitted 2-layer NTK models

p. In Fig. 1(a), we choose a ground-truth function in F`2
(we will explain why this function is in F`2 later in Sec-
tion 4). The test MSE of the aforementioned NTK model
(green curve) confirms the overall trend5 of descent in the
overparameterized region. We note that while (Arora et al.,
2019) provides a generalization error upper-bound for large
p (i.e., Eq. (11)), the upper bound there does not capture the
dependency in p and thus does not predict this descent.

More importantly, we note a significant difference between
the descent in Theorem 1 and that of min `2-norm overfit-
ting solutions for linear models with simple features (Belkin
et al., 2018b; 2019; Bartlett et al., 2020; Hastie et al., 2019;
Muthukumar et al., 2019; Liao et al., 2020; Jacot et al.,
2020). For example, for linear models with Gaussian fea-
tures, we can obtain (see, e.g., Theorem 2 of (Belkin et al.,
2019)):

MSE = ‖f‖22
(

1− n

p

)
+

σ2n

p− n− 1
, for p ≥ n+ 2

(12)

where σ2 denotes the variance of the noise. If we let p→∞
in Eq. (12), we can see that the MSE quickly approaches
‖f‖22, which is referred to as the “null risk” (Hastie et al.,
2019), i.e., the MSE of a model that predicts zero. Note
that the null-risk is at the level of the signal, and thus is
quite large. In contrast, as p → ∞, the test error of the
NTK model converges to a value determined by n and ε
(and is independent of the null risk). This difference is
confirmed in Fig. 1(a), where the test MSE for the NTK
model (green curve) is much lower than the null risk (the
dashed line) when p→∞, while both the min `2-norm (the
red curve) and the min `1-norm solutions (the blue curve)
(Ju et al., 2020) with Fourier features rise to the null risk
when p→∞. Finally, note that the descent in Theorem 1
requires p to increase much faster than n. Specifically, to
keep Term 2 in Eq. (10) small, it suffices to let p increase a
little bit faster than Ω(n4d−1). This is again quite different
from the descent shown in Eq. (12) and in other related work
using Fourier and Gaussian features (Liao et al., 2020; Jacot
et al., 2020), where p only needs to grow proportionally
with n.

(ii) Speed of the descent: Since Theorem 1 holds for finite
p, it also characterizes the speed of descent. In particu-
lar, Term 2 is proportional to p−

1
2 (1− 1

q ), which approaches
1/
√
p when q is large. Again, such a speed of descent is not

captured in (Arora et al., 2019). As we show in Fig. 1(a), the
test error of the gradient descent solution under the original
neural network (cyan curve) is usually quite close to that of

5This curve oscillates at the early stage when p is small. We
suspect it is because, at small p, the convergence in Eq. (7) has
not occurred yet, and thus the randomness in V0[j] makes the
simulation results more volatile.
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Figure 3. The test MSE of the overfitted NTK model for the same
ground-truth function as Fig. 1(a). (a) We fix n = 50 and increase
p for different noise level σ2. (b) We fix p = 20000 and increase
n. All data points in this figure are the average of five random
simulation runs.

the NTK model (green curve). Thus, our result provides use-
ful guidance on how fast the generalization error descends
with p for such neural networks.

(iii) The effect of noise: Term 3 in Eq. (10) characterizes
the impact of the noise ε, which does not decrease or in-
crease with p. Notice that this is again very different from
Eq. (12), i.e., results of min `2-norm overfitting solutions
for simple features, where the noise term σ2n

p−n−1 → 0 when
p → ∞. We use Fig. 3(a) to validate this insight. In
Fig. 3(a), we fix n = 50 and plot curves of test MSE of
NTK overfitting solution as p increases. We let the noise
εi in the i-th training sample be i.i.d. Gaussian with zero
mean and variance σ2. The green, red, and blue curves in
Fig. 3(a) corresponds to the situation σ2 = 0, σ2 = 0.04,
and σ2 = 0.16, respectively. We can see that all three curves
become flat when p is very large, and this phenomenon
implies that the gap across different noise levels does not
decrease when p→∞, which is in contrast to Eq. (12).

In Fig. 3(b), we instead fix p = 20000, and increase n). We
plot the test MSE both for the noiseless setting (green curve)
and for σ2 = 0.01 (red curve). The difference between the
two curves (dashed blue curve) then captures the impact of
noise, which is related to Term 3 in Eq. (10). Somewhat
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surprisingly, we find that the dashed blue curve is insensitive
to n, which suggests that Term 3 in Eq. (10) may have room
for improvement.

In summary, we have shown that any ground-truth function
in F`2 leads to low generalization error for overfitted NTK
models. It is then natural to ask what happens if the ground-
truth function is not in F`2 . Let F`2 denote the closure6 of
F`2 , and D(f,F`2) denotes the L2-distance between f and
F`2 (i.e., the infimum of the L2-distance from f to every
function in F`2 ).

Proposition 2. (i) For any given (X,y), there exists a
function f̂ `2∞ ∈ F`2 such that, uniformly over all x ∈
Sd−1, f̂ `2(x)

P→ f̂ `2∞(x) as p → ∞. (ii) Consequently,
if the ground-truth function f /∈ F`2 (or equivalently,
D(f,F`2) > 0), then the MSE of f̂ `2∞ (with respect to the
ground-truth function f ) is at least D(f,F`2).

Intuitively, Proposition 2 (proven in Supplementary Mate-
rial Appendix J) suggests that, if a ground-truth function is
outside the closure of F`2 , then no matter how large n is,
the test error of a NTK model with infinitely many neurons
cannot be small (regardless whether or not the training sam-
ples contain noise). We validate this in Fig. 1(b), where a
ground-truth function is chosen outside F`2 . The test MSE
of NTK overfitting solutions (green curve) is above null risk
(dashed black line) and thus is much higher compared with
Fig. 1(a). We also plot the test MSE of the GD solution of
the real neural network (cyan curve), which seems to show
the same trend.

Comparing Theorem 1 and Proposition 2, we can clearly
see that, all functions in F`2 are learnable by the overfitted
NTK model, and all functions not in F`2 are not.

4. What Exactly are the Functions in F `2?
Our expression for learnable functions in Definition 1 is still
in an indirect form, i.e., through the unknown function g(·).
In (Arora et al., 2019), the authors show that all functions
of the form (xTa)l, l ∈ {0, 1, 2, 4, 6, · · · } are learnable by
GD (assuming large p and small step size), for a similar
2-layer network with ReLU activation that has no bias. In
the following, we will show that our learnable functions in
Definition 1 also have a similar form. Further, we can show
that any functions of the form (xTa)l, l ∈ {3, 5, 7, · · · }
are not learnable. Our characterization uses an interesting
connection to harmonics and filtering on Sd−1, which may
be of independent interest.

Towards this end, we first note that the integral form in Def-

6We consider the normed space of all functions in L2(Sd−1 7→
R). Notice that although g(z) in Definition 1 may not be in
L2, fg is always in L2. Specifically, fg(x) is bounded for every
x ∈ Sd−1 when ‖g‖1 <∞.

inition 1 can be viewed as a convolution on Sd−1 (denoted
by ~). Specifically, for any fg ∈ F`2 , we can rewrite it as

fg(x) = g ~ h(x) :=

∫
SO(d)

g(Se)h(S−1x)dS, (13)

h(x) := xTe
π − arccos(xTe)

2π
, (14)

where e := [0 0 · · · 0 1]T ∈ Rd, and S is a d×d orthogonal
matrix that denotes a rotation in Sd−1, chosen from the
set SO(d) of all rotations. An important property of the
convolution Eq. (13) is that it corresponds to multiplication
in the frequency domain, similar to Fourier coefficients. To
define such a transformation to the frequency domain, we
use a set of hyper-spherical harmonics ΞlK (Vilenkin, 1968;
Dokmanic & Petrinovic, 2009) when d ≥ 3, which forms an
orthonormal basis for functions on Sd−1. These harmonics
are indexed by l and K, where K = (k1, k2, · · · , kd−2)
and l = k0 ≥ k1 ≥ k2 ≥ · · · ≥ kd−2 ≥ 0 (those ki’s
and l are all non-negative integers). Any function f ∈
L2(Sd−1 7→ R) (including even δ-functions (Li & Wong,
2013)) can be decomposed uniquely into these harmonics,
i.e., f(x) =

∑
l

∑
K cf (l,K)ΞlK(x), where cf (·, ·) are

projections of f onto the basis function. In Eq. (13), let
cg(·, ·) and ch(·, ·) denote the coefficients corresponding to
the decompositions of g and h, respectively. Then, we must
have (Dokmanic & Petrinovic, 2009)

cfg (l,K) = Λ · cg(l,K)ch(l,0), (15)

where Λ is some normalization constant. Notice that in
Eq. (15), the coefficient for h is ch(l,0) instead of ch(l,K),
which is due to the intrinsic rotational symmetry of such
convolution (Dokmanic & Petrinovic, 2009).

The above decomposition has an interesting “filtering” in-
terpretation as follows. We can regard the function h as a
“filter” or “channel,” while the function g as a transmitted
“signal.” Then, the function fg in Eq. (13) and Eq. (15) can
be regarded as the received signal after g goes through the
channel/filter h. Therefore, when coefficient ch(l,0) of h is
non-zero, then the corresponding coefficient cfg (l,K) for
fg can be any value (because we can arbitrarily choose g).
In contrast, if a coefficient ch(l,0) of h is zero, then the
corresponding coefficient cfg (l,K) for fg must also be zero
for all K.

Ideally, if h contains all “frequencies,” i.e., all coefficients
ch(l,0) are non-zero, then fg can also contain all “frequen-
cies,” which means thatF`2 can contain almost all functions.
Unfortunately, this is not true for the function h given in
Eq. (14). Specifically, using the harmonics defined in (Dok-
manic & Petrinovic, 2009), the basis Ξl0 for (l,0) turns out
to have the form

Ξl0(x) =

b l2 c∑
k=0

(−1)k · al,k · (xTe)l−2k, (16)
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where al,k are positive constants. Note that the expres-
sion Eq. (16) contains either only even powers of xTe (if
l is even) or odd powers of xTe (if l is odd). Then, for
the function h in Eq. (14), we have the following propo-
sition (proven in Supplementary Material, Appendix K.4).
We note that (Basri et al., 2019) has a similar harmonics
analysis, where the expression of ch(l,0) is given. How-
ever, it is not obvious that the expression of ch(l,0) for all
l = 0, 1, 2, 4, 6, · · · given in (Basri et al., 2019) must be
non-zero, which is made clear by Proposition 3 as follows.

Proposition 3. ch(l,0) is zero for l = 3, 5, 7, · · · and is
non-zero for l = 0, 1, 2, 4, 6, · · · .

We are now ready to characterize what functions are in
F`2 . By the form of Eq. (16), for any non-negative inte-
ger k, any even power (xTe)2k is a linear combination of
Ξ0
0,Ξ

2
0, · · · ,Ξ2k

0 , and any odd power (xTe)2k+1 is a linear
combination of Ξ1

0,Ξ
3
0, · · · ,Ξ2k+1

0 . By Proposition 3, we
thus conclude that any function fg(x) = (xTe)l where
l ∈ {0, 1, 2, 4, 6, · · · } can be written in the form of Eq. (15)
in the frequency domain, and thus are in F`2 . In con-
trast, any function f(x) = (xTe)l where l ∈ {3, 5, 7, · · · }
cannot be written in the form of Eq. (15), and are thus
not in F`2 . Further, the `2-norm of any latter function
will also be equal to its distance to F∞. Therefore, the
generalization-error lower-bound in Proposition 2 will ap-
ply (with D(f,F`2) = ‖f‖2). Finally, by Eq. (13), F`2 is
invariant under rotation and finite linear summation. There-
fore, any finite sum of (xTa)l, l = 0, 1, 2, 4, 6, · · · must
also belong to F`2 .

For the special case of d = 2, the input x corresponds
to an angle θ ∈ [−π, π], and the above-mentioned har-
monics become Fourier series sin(kθ) and cos(kθ), k =
0, 1, · · · . We can then get similar results that frequencies of
k ∈ {0, 1, 2, 4, 6, · · · } are learnable (while others are not),
which explains the learnable and not-learnable functions
in Fig. 1. Details can be found in Supplementary Material,
Appendix K.5.

Remark 2. We caution that the above claim on non-learnable
functions critically depends on the network architecture.
That is, we assume throughout this paper that the ReLU acti-
vation has no bias. It is known from an expressiveness point
of view that, using ReLU without bias, a shallow network
can only approximate the sum of linear functions and even
functions (Ghorbani et al., 2019). Thus, it is not surprising
that other odd-power (but non-linear) polynomials cannot
be learned. In contrast, by adding a bias, a shallow network
using ReLU becomes a universal approximator (Ji et al.,
2019). The recent work of (Satpathi & Srikant, 2021) shows
that polynomials with all powers can be learned by the cor-
responding 2-layer NTK model. These results are consistent
with ours because a ReLU activation function operating on
x̃ ∈ Rd−1 with a bias can be equivalently viewed as one

operating on a d-dimension input (with the last-dimension
being fixed at 1/

√
d) but with no bias. Even though only a

subset of functions are learnable in the d-dimension space,
when projected into a (d − 1)-dimension subspace, they
may already span all functions. For example, one could

write (xTa)3 as a linear combination of (
[

x̃
1/
√
d

]T
bi)

li ,
where i ∈ {1, 2, · · · , 5}, [l1, · · · , l5] = [4, 4, 2, 1, 0], and
bi ∈ Rd depends only on a. (See Supplementary Mate-
rial, Appendix K.6 for details.) It remains an interesting
question whether similar difference arises for other network
architectures (e.g., with more than 2 layers).

5. Proof Sketch of Theorem 1
In this section, we sketch the key steps to prove Theorem 1.
Starting from Eq. (3), we have

∆V`2 = HT (HHT )−1 (F(X) + ε) . (17)

For the learned model f̂ `2(x) = hV0,x∆V`2 given in
Eq. (4), the error for any test input x is then

f̂ `2(x)− f(x) =
(
hV0,xHT (HHT )−1F(X)− f(x)

)
+ hV0,xHT (HHT )−1ε. (18)

In the classical “bias-variance” analysis with respect to MSE
(Belkin et al., 2018a), the first term on the right-hand-side
of Eq. (18) contributes to the bias and the second term
contributes to the variance. We first quantify the second
term (i.e., the variance) in the following proposition.

Proposition 4. For any n ≥ 2, m ∈
[
1, lnn

ln π
2

]
,

d ≤ n4, if p ≥ 6Jm(n, d) ln
(

4n1+ 1
m

)
, we

must have Pr
X,V0

{
|hV0,xHT (HHT )−1ε| ≤√

Jm(n, d)n‖ε‖2, for all ε ∈ Rn
}
≥ 1− 2

m
√
n

.

The proof is in Supplementary Material Appendix F. Propo-
sition 4 implies that, for fixed n and d, when p→∞, with
high probability the variance will not exceed a certain factor
of the noise ‖ε‖2. In other words, the variance will not
go to infinity when p → ∞. The main step in the proof
is to lower bound min eig

(
HHT

)
/p, which is given by

1/(Jm(n, d)n). Note that this is the main place where we
used the assumption that x is uniformly distributed. We
expect that our main proof techniques can be generalized to
other distributions (with a different expression of Jm(n, d)),
which we leave for future work.
Remark 3. In the upper bound in (Arora et al., 2019) (i.e.,
Eq. (11)), any noise added to y will at least contribute to
the generalization upper bound Eq. (11) by a positive term
εT (H∞)−1ε/n. Thus, their upper bound may also grow as
min eig(H∞) decreases. One of the contribution of Propo-
sition 4 is to characterize this minimum eigenvalue.
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We now bound the bias part. We first study the class of
ground-truth functions that can be learned with fixed V0.
We refer to them as pseudo ground-truth, to differentiate
them with the set F`2 of learnable functions for random V0.
They are defined with respect to the same g(·) function, so
that we can later extend to the “real” ground-truth functions
in F`2 when considering the randomness of V0.

Definition 2. Given V0, for any learnable ground-truth
function fg ∈ F`2 with the corresponding function g(·),
define the corresponding pseudo ground-truth as

fgV0
(x) :=

∫
Sd−1

xTz
|CV0

z,x|
p

g(z)dµ(z).

The reason that this class of functions may be the learnable
functions for fixed V0 is similar to the discussions in Eq. (5)
and Eq. (6). Indeed, using the same choice of g(z) in Eq. (8),
the learned function f̂ `2 in Eq. (5) at fixed V0 is always of
the form in Definition 2.

The following proposition gives an upper bound of the gen-
eralization performance when the data model is based on
the pseudo ground-truth and the NTK model uses exactly
the same V0.

Proposition 5. Assume fixed V0 (thus p and d are also
fixed), there is no noise. If the ground-truth function is
f = fgV0

in Definition 2 and ‖g‖∞ <∞, then for any x ∈
Sd−1 and q ∈ [1, ∞), we have PrX

{
|f̂ `2(x) − f(x)| ≤

n−
1
2 (1− 1

q )} ≥ 1− 2e2 exp
(
−

q
√
n

8‖g‖2∞

)
.

The proof is in Supplementary Material, Appendix H. Note
that both the threshold of the probability event and the
upper bound coincide with Term 1 and Term 4, respec-
tively, in Eq. (10). Here we sketch the proof of Propo-
sition 5. Based on the definition of the pseudo ground-
truth, we can rewrite fgV0

as fgV0
(x) = hV0,x∆V∗, where

∆V∗ ∈ Rdp is given by, for all j ∈ {1, 2, · · · , p},
∆V∗[j] =

∫
Sd−1 1{zTV0[j]>0}z

g(z)
p dµ(z). From Eq. (3)

and Eq. (4), we can see that the learned model is f̂ `2(x) =
hV0,xP∆V∗ where P := HT (HHT )−1H. Note that P
is an orthogonal projection to the row-space of H. Fur-
ther, it is easy to show that ‖hV0,x‖2 ≤

√
p. Thus,

we have |f̂ `2(x) − fgV0
(x)| = |hV0,x(P − I)∆V∗| ≤√

p‖(P − I)∆V∗‖2. The term (P − I)∆V∗ can be inter-
preted as the distance from ∆V∗ to the row-space of H.
Note that this distance is no greater than the distance be-
tween ∆V∗ and any point in the row-space of H. Thus, in
order to get an upper bound on ‖(P− I)∆V∗‖2, we only
need to find a vector a ∈ Rn that makes ‖∆V∗ −HTa‖2
as small as possible, especially when n is large. Our proof
uses the vector a such that its i-th element is ai := g(Xi)

np .
See Supplementary Material, Appendix H for the rest of the
details.

The final step is to allow V0 to be random. Given any
random V0, any function fg ∈ F`2 can be viewed as the
summation of a pseudo ground-truth function (with the same
g(·)) and a difference term. This difference can be viewed as
a special form of “noise”, and thus we can use Proposition 4
to quantify its impact. Further, the magnitude of this “noise”
should decrease with p (because of Eq. (7)). Combining this
argument with Proposition 5, we can then prove Theorem 1.
See Supplementary Material, Appendix I for details.

6. Conclusions
In this paper, we studied the generalization performance of
the min `2-norm overfitting solution for a two-layer NTK
model. We provide a precise characterization of the learn-
able ground-truth functions for such models, by providing a
generalization upper bound for all functions in F`2 , and a
generalization lower bound for all functions not in F`2 . We
show that, while the test error of the overfitted NTK model
also exhibits descent in the overparameterized regime, the
descent behavior can be quite different from the double
descent of linear models with simple features.

There are several interesting directions for future work. First,
based on Fig. 3(b), our estimation of the effect of noise
could be further improved. Second, it would be interesting
to explore whether the methodology can be extended to
NTK model for other neural networks, e.g., with different
activation functions and with more than two layers.
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A. Extra Notations
In addition to the notations that we have introduced in the main body of this paper, we need some extra notations that are
used in the following appendices. The distribution of the initial weights V0[j] is denoted by the probability density λ(·) on
Rd, and the directions of the initial weights (i.e., the normalized initial weights V0[j]

‖V0[j]‖2 ) follows the probability density

λ̃(·) on Sd−1. Let λa(·) be the Lebesgue measure on Ra where the dimension a can be, e.g., (d− 1) and (d− 2).

Let Bino(a, b) denote the binomial distribution, where a is the number of trials and b is the success probability. Let I·(·, ·)
denote the regularized incomplete beta function (Dutka, 1981). Let B(·, ·) denote the beta function (Chaudhry et al., 1997).
Specifically,

B(x, y) :=

∫ 1

0

tx−1(1− t)y−1dt, (19)

Ix(a, b) :=

∫ x
0
ta−1(1− t)b−1dt

B(a, b)
. (20)

Define a cap on a unit hyper-sphere Sd−1 as the intersection of Sd−1 with an open ball in Rd centered at v∗ with radius r,
i.e.,

Brv∗ :=
{
v ∈ Sd−1 | ‖v − v∗‖2 < r

}
. (21)

Remark 4. For ease of exposition, we will sometimes neglect the subscript v∗ of Brv∗ and use Br instead, when the quantity
that we are estimating only depends on r but not v∗. For example, where we are interested in the area of Brv∗ , it only depends
on r but not v∗. Thus, we write λd−1(Br) instead.

For any x ∈ Rd such that xTv∗ = 0, define two halves of the cap Brv∗ as

Br,xv∗,+
:=
{
v ∈ Brv∗ | x

Tv > 0
}
, Br,xv∗,− :=

{
v ∈ Brv∗ | x

Tv < 0
}
. (22)

Define the set of directions of the initial weights V0[j]’s as

AV0
:=

{
V0[j]

‖V0[j]‖2

∣∣∣∣∣ j ∈ {1, 2, · · · , p}
}
. (23)

B. GD (gradient descent) Converges to Min `2-Norm Solutions
We assume that the GD algorithm for minimizing the training MSE is given by

∆VGD
k+1 = ∆VGD

k − γk
n∑
i=1

(Hi∆VGD
k − yi)HT

i , (24)

where ∆VGD
k denotes the solution in the k-th GD iteration (∆VGD

0 = 0), and γk denotes the step size of the k-th iteration.

Lemma 6. If ∆V`2 exists and GD in Eq. (24) converges to zero-training loss (i.e., H∆VGD
∞ = y), then ∆VGD

∞ = ∆V`2 .

Proof. Because ∆VGD
0 = 0 and Eq. (24), we know that ∆VGD

k is in the row space of H for any k. Thus, we can let
∆VGD

∞ = HTa where a ∈ Rn. When GD converges to zero training loss, we have H∆VGD
∞ = y. Thus, we have

HHTa = y, which implies a = (HHT )−1y. Therefore, we must have ∆VGD
∞ = HTa = HT (HHT )−1y = ∆V`2 .

C. Assumptions and Justifications

Because f̂∆V,V0
(ax) = a · f̂∆V,V0

(x) for any a ∈ R, we can always do preprocessing to normalize the input x. For
simplicity, we focus on the simplest situation that the randomness for the inputs and the initial weights are uniform.
Nonetheless, methods and results of this paper can be readily generalized to other continuous random variable distributions,
which we leave for future work. We thus make the following Assumption 1.
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Assumption 1. The input x are uniformly distributed in Sd−1. The initial weights V0[j]’s are uniform in all directions. In
other words, µ(·) and λ̃(·) are both unif(Sd−1).

We study the overparameterized and overfitted setting, so in this paper we always assume p ≥ n/d, i.e., the number of
parameters pd is larger than or equal to the number of training samples n. The situation of d = 1 is relatively trivial, so we
only consider the case d ≥ 2. We then make Assumption 2.

Assumption 2. p ≥ n/d and d ≥ 2.

If the input is a continuous random vector, then for any i 6= j, we have Pr{Xi = Xj} = 0 and Pr{Xi = −Xj} = 0
(because the probability that a continuous random variable equals to a given value is zero). Thus, Pr{Xi ‖ Xj} = 0, and
Pr{Xi ∦ Xj} = 1. Similarly, we can show that Pr{V0[k] ∦ V0[l]} = 1. We thus make Assumption 3.

Assumption 3. Xi ∦ Xj for any i 6= j, and V0[k] ∦ V0[l] for any k 6= l.

With these assumptions, the following lemma says that when p is large enough, with high probability H has full row-rank
(and thus ∆V`2 exists).

Lemma 7. limp→∞ Pr
V0

{rank(H) = n |X} = 1.

Proof. See Appendix E.

D. Some Useful Supporting Results
Here we collect some useful lemmas that are needed for proofs in other appendices, many of which are estimations of certain
quantities that we will use later.

D.1. Quantities related to the area of a cap on a hyper-sphere

The following lemma is introduced by (Li, 2011), which gives the area of a cap on a hyper-sphere with respect to the
colatitude angle.

Lemma 8. Let φ ∈ [0, π2 ] denote the colatitude angle of the smaller cap on Sd−1, then the area (in the measure of λd−1)
of this hyper-spherical cap is

1

2
λd−1(Sd−1)Isin2 φ

(
d− 1

2
,

1

2

)
.

The following lemma is another representation of the area of the cap with respect to the radius r (recall the definition of Br
in Eq. (21) and Remark 4).

Lemma 9. If r ≤
√

2, then we have

λd−1(Br) =
1

2
λd−1(Sd−1)I

r2(1− r24 )

(
d− 1

2
,

1

2

)
.

Proof. Let φ denote the colatitude angle. By the law of cosines, we have

cosφ = 1− r2

2
.

Thus, we have

sin2 φ = 1− cos2 φ = 1−
(

1− r2

2

)2

= r2

(
1− r2

4

)
.

By Lemma 8, the result of this lemma thus follows. Notice that we require r ≤
√

2 to make sure that φ ∈ [0, π2 ], which is
required by Lemma 8.
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The area of a cap can be interpreted as the probability of the event that a uniformly-distributed random vector falls into that
cap. We have the following lemma.

Lemma 10. Suppose that a random vector b ∈ Sd−1 follows uniform distribution in all directions. Given any a ∈ Sd−1

and for any c ∈ (0, 1), we have

Pr
b

{
|aT b| > c

}
= I1−c2

(
d− 1

2
,

1

2

)
.

Proof. Notice that
{
b
∣∣ aT b > c

}
is a hyper-spherical cap. Define its colatitude angle as φ. We have cosφ = aT b = c.

Thus, we have sin2 φ = 1− c2. By Lemma 8, we then have

λd−1

({
b
∣∣ aT b > c

})
=

1

2
λd−1(Sd−1)I1−c2

(
d− 1

2
,

1

2

)
.

Further, by symmetry, we have

λd−1

({
b
∣∣ |aT b| > c

})
= 2λd−1

({
b
∣∣ aT b > c

})
= λd−1(Sd−1)I1−c2

(
d− 1

2
,

1

2

)
.

Because b follows uniform distribution in all directions, we have

Pr
b

{
|aT b| > c

}
=
λd−1

({
b
∣∣ |aT b| > c

})
λd−1(Sd−1)

= I1−c2

(
d− 1

2
,

1

2

)
.

D.2. Estimation of certain norms

In this subsection, we will show ‖hV0,x‖2 ≤
√
p in Lemma 11. We also upper bound the norm of the product of two

matrices by the product of their norms in Lemma 12. At last, Lemma 13 states that if two vector differ a lot, then the sum of
their norm cannot be too small.

Lemma 11. ‖hV0,x‖2 ≤
√
p for any x ∈ Sd−1.

Proof. This follows because the input x is normalized. Specifically, by Eq. (1), we have

‖hV0,x‖2 =

√√√√ p∑
j=1

∥∥1{xTV0[j]>0} · xT
∥∥2

2
≤ √p. (25)

Lemma 12. If C = AB, then ‖C‖2 ≤ ‖A‖2 · ‖B‖2. Here A, B, and C could be scalars, vectors, or matrices.

Proof. This lemma directly follows the definition of matrix norm.

Remark 5. Note that the (`2) matrix-norm (i.e., spectral norm) of a vector is exactly its `2 vector-norm (i.e., Euclidean
norm)7. Therefore, when applying Lemma 12, we do not need to worry about whether A, B, and C are matrices or vectors.

Lemma 13. For any v1,v2 ∈ Rd, we have

‖v1‖22 + ‖v2‖22 ≥
1

2
‖v1 − v2‖22.

7To see this, consider a (row or column) vector a. The matrix norm of a is

max
|x|=1

‖ax‖2 (when a is a column vector),

or max
‖x‖2=1

‖ax‖2 (when a is a row vector).

In both cases, the value of the matrix-norm equals to
√∑

a2i , which is exactly the `2-norm (Euclidean norm) of a.
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Proof. It is easy to prove that ‖ · ‖22 is convex. Thus, we have

‖v1‖22 + ‖v2‖22 = ‖v1‖22 + ‖ − v2‖22

≥ 2

∥∥∥∥v1 − v2

2

∥∥∥∥2

2

(apply Jensen’s inequality on the convex function ‖ · ‖22)

=
1

2
‖v1 − v2‖22.

D.3. Estimates of certain tail probabilities

The following is the (restated) Corollary 5 of (Goemans, 2015).
Lemma 14. If the random variable X follows Bino(a, b), then for all 0 < δ < 1, we have

Pr{|X − ab| > δab} ≤ 2e−abδ
2/3.

The following lemma is the (restated) Theorem 1.8 of (Hayes, 2005).
Lemma 15 (Azuma–Hoeffding inequality for random vectors). Let X1, X2, · · · , Xk be i.i.d. random vectors with zero
mean (of the same dimension) in a real Euclidean space such that ‖Xi‖2 ≤ 1 for all i = 1, 2, · · · , k. Then, for every a > 0,

Pr

{∥∥∥∥∥
k∑
i=1

Xi

∥∥∥∥∥
2

≥ a

}
< 2e2 exp

(
−a

2

2k

)
.

In the following lemma, we use Azuma–Hoeffding inequality to upper bound the deviation of the empirical mean value of a
bounded random vector from its expectation.
Lemma 16. Let X1, X2, · · · , Xk be i.i.d. random vectors (of the same dimension) in a real Euclidean space such that
‖Xi‖2 ≤ U for all i = 1, 2, · · · , k. Then, for any q ∈ [1, ∞),

Pr

{∥∥∥∥∥
(

1

k

k∑
i=1

Xi

)
− EX1

∥∥∥∥∥
2

≥ k
1
2q− 1

2

}
< 2e2 exp

(
−

q
√
k

8U2

)
.

Proof. Because ‖Xi‖2 ≤ U , we have E ‖Xi‖2 ≤ U . By triangle inequality, we have ‖Xi− EXi‖2 ≤ ‖Xi‖2 + E ‖Xi‖2 ≤
2U , i.e., ∥∥∥∥Xi − EXi

2U

∥∥∥∥
2

≤ 1. (26)

We also have

E

[
Xi − EXi

2U

]
=

EXi − EXi

2U
= 0. (27)

We then have

Pr

{∥∥∥∥∥
(

1

k

k∑
i=1

Xi

)
− EX1

∥∥∥∥∥
2

≥ k
1
2q− 1

2

}

=Pr

{∥∥∥∥∥
k∑
i=1

(Xi − EXi)

∥∥∥∥∥
2

≥ k
1
2q+ 1

2

}

=Pr

{∥∥∥∥∥
k∑
i=1

(
Xi − EXi

2U

)∥∥∥∥∥
2

≥ k
1
2q+ 1

2

2U

}

<2e2 exp

(
−

q
√
k

8U2

)
(by Eqs. (26)(27) and letting a =

k
1
2q+ 1

2

2U
in Lemma 15).
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Figure 4. The arc
_

CBF is π−θ
2π

of the perimeter of the circle O.

D.4. Calculation of certain integrals

The following lemma calculates the ratio between the intersection area of two hyper-hemispheres and the area of the whole
hyper-sphere.
Lemma 17. ∫

Sd−1

1{zT v>0, xT v>0}dλ̃(v) =
π − arccos(xTz)

2π
. (28)

(Recall that λ̃(·) denotes the distribution of the normalized version of V0[j] on Sd−1 and is assumed to be uniform in all
directions.)

Before we give the proof of Lemma 17, we give its geometric explanation.

Geometric explanation of Eq. (28): Indeed, since λ̃ is uniform on Sd−1, the integral on the left-hand-side of Eq. (28)
represents the probability that a random point falls into the intersection of two hyper-hemispheres that are represented by
{v ∈ Sd−1 | zTv > 0} and {v ∈ Sd−1 | xTv > 0}, respectively. We can calculate that probability by

measure of a hyper-spherical lune with angle π − θ(z,x)

measure of a unit hyper-sphere
=
π − arccos(xTz)

2π
, (29)

where θ(·, ·) denote the angle (in radians) between two vectors, which would lead to Eq. (28). To help readers understand
Eq. (29), we give examples for 2D and 3D in Fig. 4 and Fig. 5, respectively. In the 2D case depicted in Fig. 4,

−→
OA denotes

z,
−→
OB denotes x. Thus, the arc

_

EAF denotes {v | zTv > 0}, and the arc
_

CBD denotes {v | xTv > 0}. The intersection

of
_

EAF and
_

CBD, i.e., the arc
_

CBF, represents {v | zTv > 0,xTv > 0}. Notice that the angle of
_

CBF equals π − θ,

where θ denotes the angle between z and x. Therefore, ratio of the length of
_

CBF to the perimeter of the circle equals
to ∠COF

2π = π−θ
2π . Similarly, in the 3D case depicted in Fig. 5, the spherical lune ICHF denotes the intersection of the

semi-sphere in the direction of
−→
OA and the semi-sphere in the direction of

−→
OB. We can see that the area of the spherical

lune ICHF is still proportional to the angle ∠COF. Thus, we still have the result that the area of the spherical lune ICHF is
π−θ
2π of the area of the whole sphere. The proof below, on the other hand, applies to arbitrary dimensions.

Proof. Due to symmetry, we know that the integral of Eq. (28) only depends on the angle between x and z. Thus, without
loss of generality, we let

x = [x1 x2 · · · xd] = [0 0 · · · 0 1 0]T , z = [0 0 · · · 0 cos θ sin θ]T ,

where

θ = arccos(xTz) ∈ [0, π]. (30)

Thus, for any v = [v1 v2 · · · vd]T that makes zTv > 0 and xTv > 0, it only needs to satisfy

[cos θ sin θ]

[
vd−1

vd

]
> 0, [1 0]

[
vd−1

vd

]
> 0. (31)
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Figure 5. The area of the spherical lune ICHF is π−θ
2π

of the area of the whole sphere.

We compute the spherical coordinates ϕx = [ϕx
1 ϕ

x
2 · · · ϕx

d−1]T where ϕx
1 , · · · , ϕx

d−2 ∈ [0, π] and ϕx
d−1 ∈ [0, 2π) with

the convention that

x1 = cos(ϕx
1 ),

x2 = sin(ϕx
1 ) cos(ϕx

2 ),

x3 = sin(ϕx
1 ) sin(ϕx

2 ) cos(ϕx
3 ),

...
xd−1 = sin(ϕx

1 ) sin(ϕx
2 ) · · · sin(ϕx

d−2) cos(ϕx
d−1),

xd = sin(ϕx
1 ) sin(ϕx

2 ) · · · sin(ϕx
d−2) sin(ϕx

d−1).

Thus, we have ϕx = [π/2 π/2 · · · π/2 0]T . Similarly, the spherical coordinates for z is ϕz = [π/2 π/2 · · ·π/2 θ]T . Let
the spherical coordinates for v be ϕv = [ϕv

1 ϕ
v
2 · · · ϕv

d−1]T . Thus, Eq. (31) is equivalent to

sin(ϕv
1 ) sin(ϕv

2 ) · · · sin(ϕv
d−2)

(
cos θ cos(ϕv

d−1) + sin θ sin(ϕv
d−1)

)
> 0, (32)

sin(ϕv
1 ) sin(ϕv

2 ) · · · sin(ϕv
d−2) cos(ϕv

d−1) > 0. (33)

Because ϕv
1 , · · · , ϕv

d−2 ∈ [0, π] (by the convention of spherical coordinates), we have

sin(ϕv
1 ) sin(ϕv

2 ) · · · sin(ϕv
d−2) ≥ 0.

Thus, for Eq. (32) and Eq. (33), we have

cos(θ − ϕv
d−1) > 0, cos(ϕv

d−1) > 0,
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i.e., ϕv
d−1 ∈ (−π/2, π/2) ∩ (θ − π/2, θ + π/2) (mod 2π). We have∫

Sd−1

1{zT v>0, xT v>0}dλ̃(v)

=

∫
(−π2 , π2 )∩(θ−π2 , θ+π

2 )

∫ π
0
· · ·
∫ π

0
sind−2(ϕ1) sind−3(ϕ2) · · · sin(ϕd−2) dϕ1 dϕ2 · · · dϕd−1∫ 2π

0

∫ π
0
· · ·
∫ π

0
sind−2(ϕ1) sind−3(ϕ2) · · · sin(ϕd−2) dϕ1 dϕ2 · · · dϕd−1

=

∫
(−π2 , π2 )∩(θ−π2 , θ+π

2 )
A · dϕd−1∫ 2π

0
A · dϕd−1

(by defining A :=

∫ π

0

· · ·
∫ π

0

sind−2(ϕ1) sind−3(ϕ2) · · · sin(ϕd−2) dϕ1 dϕ2)

=
length of the interval (−π2 ,

π
2 ) ∩ (θ − π

2 , θ + π
2 )

2π

=
π − θ

2π
(because θ ∈ [0, π] by Eq. (30))

=
π − arccos(xTz)

2π
(by Eq. (30)).

The result of this lemma thus follows.

D.5. Limits of |CV0
z,x|/p when p→∞

We introduce some notions given by (Wainwright, 2015).

Glivenko-Cantelli class. Let F be a class of integrable real-valued functions with domain X , and let Xk
1 = {X1, · · · , Xk}

be a collection of i.i.d. samples from some distribution P over X . Consider the random variable

‖Pk − P‖F := sup
f̃∈F

∣∣∣∣∣1k
k∑
i=1

f̃(Xk)− E[f̃ ]

∣∣∣∣∣ ,
which measures the maximum deviation (over the class F ) between the sample average 1

k

∑k
i=1 f̃(Xi) and the population

average E[f̃ ] = E[f̃(X)]. We say that F is a Glivenko-Cantelli class for P if ‖Pk − P‖F converges to zero in probability as
k →∞.

Polynomial discrimination. A class F of functions with domain X has polynomial discrimination of order ν ≥ 1 if for
each positive integer k and collection Xk

1 = {X1, · · · , Xk} of k points in X , the set F (Xk
1 ) has cardinality upper bounded

by

card(F (Xk
1 )) ≤ (k + 1)ν .

The following lemma is shown in Page 108 of (Wainwright, 2015).

Lemma 18. Any bounded function class with polynomial discrimination is Glivenko-Cantelli.

For our case, we care about the following value.∣∣∣∣∣ |CV0
z,x|
p
− π − arccos(xTz)

2π

∣∣∣∣∣ =

∣∣∣∣∣∣1p
p∑
j=1

1{xTV0[j]>0,zTV0[j]>0} − E
v∼λ̃(·)

[1{xT v>0,zT v>0}]

∣∣∣∣∣∣ (by Lemma 17).

In the language of Glivenko-Cantelli class, the function class F∗ consists of functions 1{xT v>0,zT v>0} that map v ∈ Sd−1

to 0 or 1, where every x ∈ Sd−1 and z ∈ Sd−1 corresponds to a distinct function in F∗. According to Lemma 18, we need
to calculate the order of the polynomial discrimination for this F∗. Towards this end, we need the following lemma, which
can be derived from the quantity Qn,N in (Wendel, 1962) (which is the quantity Qd,k in the following lemma).
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Lemma 19. Given v1,v2, · · · ,vk ∈ Sd−1, the number of different values (i.e., the cardinality) of the set{(
1{xT v1>0},1{xT v2>0}, · · · ,1{xT vk>0}

) ∣∣ x ∈ Sd−1
}

is at most Qd,k, where

Qd,k :=

{
2
∑d−1
i=0

(
k−1
i

)
, if k > d,

2k, if k ≤ d.

Intuitively, Lemma 19 states the number of different regions that k hyper-planes through the origin (i.e., the kernel of the
inner product with each vi) can cut Sd−1 into, because all x in one region corresponds to the same value of the tuple(
1{xT v1>0},1{xT v2>0}, · · · ,1{xT vk>0}

)
. For example, in the 2D case (i.e., d = 2), k diameters of a circle can at most

cut the whole circle into 2k (which equals to Q2,k) parts. Notice that if some vi’s are parallel (thus some diameters are
overlapped), then the total number of different parts can only be smaller. That is why Lemma 19 states that the cardinality is
“at most” Qd,k.

The following lemma shows that the cardinality in Lemma 19 is polynomial in k.

Lemma 20. Recall the definition Qd,k in Lemma 19. For any integer k ≥ 1 and d ≥ 2, we must have Qd,k ≤ (k + 1)d+1.

Proof. When k > d, because
(
k−1
i

)
≤ (k − 1)d−1 when i ≤ d − 1, we have Qd,k = 2

d−1∑
i=0

(
k−1
i

)
≤ 2d(k + 1)d−1 ≤

(k + 1)d+1 (the last step uses k ≥ 1 and k > d). When k ≤ d, because k ≥ 1, we have Qd,k = 2k ≤ (k + 1)k ≤ (k + 1)d.
In summary, for any integer k ≥ 1 and d ≥ 2, the result Qd,k ≤ (k + 1)d+1 always holds.

We can now calculate the order of the polynomial discrimination for the function class F∗. Because

card
({(

1{xT v1>0,zT v1>0},1{xT v2>0,zT v2>0}, · · · ,1{xT vk>0,zT vk0}
) ∣∣ x ∈ Sd−1, z ∈ Sd−1

})
≤card

({(
1{xT v1>0},1{xT v2>0}, · · · ,1{xT vk>0}

) ∣∣ x ∈ Sd−1
})

· card
({(

1{zT v1>0},1{zT v2>0}, · · · ,1{zT vk>0}
) ∣∣ z ∈ Sd−1

})
,

by Lemma 19 and Lemma 20, we know that

card(F∗(X
k
1 )) ≤ (Qd,k)

2 ≤ (k + 1)2(d+1).

(Here Xk
1 means {V0[1], · · · ,V0[k]}.)

Thus, F∗ has polynomial discrimination with order at most 2(d+ 1). Notice that all functions in F∗ is bounded because
their outputs can only be 0 or 1. Therefore, by Lemma 18 (i.e., any bounded function class with polynomial discrimination
is Glivenko-Cantelli), we know that F∗ is Glivenko-Cantelli. In other words, we have shown the following lemma.

Lemma 21.

sup
x,z∈Sd−1

∣∣∣∣∣ |CV0
z,x|
p
− π − arccos(xTz)

2π

∣∣∣∣∣ P→ 0, as p→∞. (34)

E. Proof of Lemma 7 (H has full row-rank with high probability as p→∞)
In this section, we prove Lemma 7, i.e., the matrix H has full row-rank with high probability when p → ∞. We first
introduce two useful lemmas as follows.

The following lemma states that, given X (that satisfies Assumption 3) and k ∈ {1, 2, · · · , n}, there always exists a vector
v ∈ Sd−1 that is only orthogonal to one training input Xk but not orthogonal to other training inputs Xi for all i 6= k. An
intuitive explanation is that, because no training inputs are parallel (as stated in Assumption 3), the total set of vectors that
are orthogonal to at least two training inputs is too small. That gives us many options to pick such a vector v that is only
orthogonal to one input but not others.

Lemma 22. For all k ∈ {1, 2, · · · , n} we have

Tk :=
{
v ∈ Sd−1 | vTXk = 0,vTXi 6= 0, for all i ∈ {1, 2, · · · , n} \ {k}

}
6= ∅.
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Figure 6. Geometric interpretation of Bri,Xiv∗,i,+
and Bri,Xiv∗,i,− on a sphere (i.e., S2).

Proof. We have

Tk = Sd−1 ∩ ker(Xk) \

 ⋃
i∈{1,2,··· ,n}\{k}

ker(Xi)


= Sd−1 ∩ ker(Xk) \

 ⋃
i∈{1,2,··· ,n}\{k}

(
Sd−1 ∩ ker(Xk) ∩ ker(Xi)

) .

Because

dim(Sd−1 ∩ ker(Xk)) = d− 2,

dim(Sd−1 ∩ ker(Xk) ∩ ker(Xi)) = d− 3 for all i ∈ {1, 2, · · · , n} \ {k} (because Xi ∦ Xk), (35)

we have

λd−2(Sd−1 ∩ ker(Xk)) = λd−2(Sd−2) > 0,

λd−2

(
Sd−1 ∩ ker(Xk) ∩ ker(Xi)

)
= 0 for all i ∈ {1, 2, · · · , n} \ {k}. (36)

(When d = 2, the set in Eq. (35) is not defined. Nonetheless, Eq. (36) still holds when d = 2.) Thus, we have

λd−2(Tk) = λd−2

(
Sd−1 ∩ ker(Xk)

)
− λd−2

 ⋃
i∈{1,2,··· ,n}\{k}

(
Sd−1 ∩ ker(Xk) ∩ ker(Xi)

)
≥ λd−2

(
Sd−1 ∩ ker(Xk)

)
−

∑
i∈{1,2,··· ,n}\{k}

λd−2

(
Sd−1 ∩ ker(Xk) ∩ ker(Xi)

)
= λd−2(Sd−2)

> 0.

Therefore, Tk 6= ∅.

The following lemma plays an important role in answering whether H has full row-rank. Further, it is also closely related to
our estimation on the min eig(HHT ) later in Appendix F.
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Lemma 23. Consider any i ∈ {1, 2, · · · , n}. For any v∗,i ∈ Sd−1 satisfying vT∗,iXi = 0, we define

ri := min
j∈{1,2,··· ,n}\{i}

∣∣vT∗,iXj

∣∣ . (37)

If there exist k, l ∈ {1, · · · , p} such that

V0[k]

‖V0[k]‖2
∈ Bri,Xi

v∗,i,+,
V0[l]

‖V0[l]‖2
∈ Bri,Xi

v∗,i,−, (38)

then we must have

Hj [k] = Hj [l], for all j ∈ {1, 2, · · · , n} \ {i}, (39)

Hi[k] = XT
i , (40)

Hi[l] = 0. (41)

(Notice that Eq. (38) implies ri > 0.)
Remark 6. We first give an intuitive geometric interpretation of Lemma 23. In Fig. 6, the sphere centered at O denotes Sd−1,
the vector

−→
OC denotes Xi, the vector

−→
OD denotes one of other Xj’s, the vector

−→
OE denotes v∗,i, which is perpendicular to

Xi (i.e., XT
i v∗,i = 0). The upper half of the cap E denotes Bri,Xi

v∗,i,+, the lower half of the cap E denotes Bri,Xi

v∗,i,−. The great

circle Lc cuts the sphere into two semi-spheres. The semi-sphere in the direction of
−→
OC corresponds to all vectors v on

the sphere that have positive inner product with Xi (i.e., vT∗,iXi > 0), and the semi-sphere in the opposite direction of
−→
OC

corresponds to all vectors v on the sphere that have negative inner product with Xi (i.e., vTXi < 0). The great circle Ld

is similar to the great circle Lc, but is perpendicular to the direction
−→
OD (i.e., Xj). By choosing the radius of the cap E

in Eq. (37), we can ensure that all great circles that are perpendicular to other Xj’s do not pass the cap E. In other words,
for the two semi-spheres cut by the great circle perpendicular to Xj , j 6= i, the cap E must be contained in one of them.
Therefore, vectors on the upper half of the cap E and the vectors on the lower half of the cap E must have the same sign
when calculating the inner product with all Xj’s, for all j 6= i.

Now, let us consider the meaning of Eq. (38) in this geometric setup depicted in Fig. 6. The expression V0[k]
‖V0[k]‖2 ∈ B

ri,Xi

v∗,i,+

means that the direction of V0[k] is in the upper half of the cap E. By the definition of Hi = hV0,Xi
in Eq. (1), we must

then have Hi[k] = XT
i . Similarly, the expression V0[l]

‖V0[l]‖2 ∈ B
ri,Xi

v∗,i,− means that the direction of V0[l] is in the lower half of
the cap E, and thus Hi[l] = 0. Then, based on the discussions in the previous paragraph, we know that V0[k] and V0[l] has
the same activation pattern under ReLU for all Xj’s that j 6= i, which implies that Hj [k] = Hj [l]. These are precisely the
conclusions in Eqs. (39)(40)(41).

Later in Appendix F, Lemma 23 plays an important role in estimating mina∈Sn−1 ‖HTa‖22. To see this, let aj denotes
the j-th element of a. By Eq. (39), we have

∑
j∈{1,2,··· ,n}\{i}((H

Taj)[k] − (HTaj)[l]) = 0. By Eq. (40) and Eq. (41),
we have (HTai)[k]− (HTai)[l] = Xi. Combining them together, we have (HTa)[k]− (HTa)[l] = aiXi. As long as ai
is not zero, then regardless values of other elements in a, we always obtain that HTa is a non-zero vector. This implies
‖HTa‖2 > 0, which will be useful for estimating min eig(HHT )/p in Appendix F.

Proof. By the definition of ri, we have

|vT∗,iXj | − ri ≥ 0, for all j ∈ {1, 2, · · · , n} \ {i}. (42)

For any j ∈ {1, 2, · · · , n} \ {i} and any v ∈ Briv∗,i , since ‖v − v∗,i‖2 < ri, we have

(vTXj)(v
T
∗,iXj) =

(
(v − v∗,i)TXj + vT∗,iXj

)
(vT∗,iXj)

= (vT∗,iXj)
2 + (vT∗,iXj)

(
(v − v∗,i)TXj

)
≥ (vT∗,iXj)

2 −
∣∣vT∗,iXj

∣∣ · ∣∣(v − v∗,i)TXj

∣∣
≥ (vT∗,iXj)

2 −
∣∣vT∗,iXj

∣∣ · ‖v − v∗,i‖2 ‖Xj‖2
> (vT∗,iXj)

2 −
∣∣vT∗,iXj

∣∣ · ri (by Eq. (21))

= |vT∗,iXj |(|vT∗,iXj | − ri)
≥ 0 (by Eq. (42)).
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Thus, for any v1 ∈ Briv∗,i , v2 ∈ Briv∗,i , j ∈ {1, 2, · · · , n} \ {i}, we have (vT1 Xj)(v
T
∗,iXj) > 0 and (vT2 Xj)(v

T
∗,iXj) > 0.

It implies that

sign(vT1 Xj) = sign(vT∗,iXj) = sign(vT2 Xj). (43)

By Eq. (38), we know that both V0[k] and V0[l] are in Briv∗,i . Applying Eq. (43), we have

sign(XT
j V0[k]) = sign(XT

j V0[l]), for all j ∈ {1, 2, · · · , n} \ {i}.

Thus, by Eq. (1), we have

Hj [k] = 1{XT
j V0[k]>0}X

T
j = 1{XT

j V0[l]>0}X
T
j = Hj [l], for all j ∈ {1, 2, · · · , n} \ {i}.

By Eq. (22), we have

XT
i V0[k] > 0, XT

i V0[l] < 0.

Thus, by Eq. (1), we have

Hi[k] = 1{XT
i V0[k]>0}X

T
i = XT

i , Hi[l] = 1{XT
i V0[l]>0}X

T
i = 0.

Now, we are ready to prove Lemma 7.

Proof. We prove by contradiction. Suppose on the contrary that with some nonzero probability, the design matrix is not full
row-rank as p→∞. Note that when the design matrix is not full row-rank, there exists a set of indices I ⊆ {1, · · · , n}
such that ∑

i∈I
biHi = 0, bi 6= 0 for all i ∈ I. (44)

The proof will be finished by two steps: 1) find an event J that happens almost surely when p→∞; 2) prove this event J
contradicts Eq. (44).

Step 1:

Consider each i ∈ {1, 2, · · · , n}. By Lemma 22, we know that there exists a v∗,i ∈ Sd−1 such that

vT∗,iXi = 0, vT∗,iXj 6= 0, for all j ∈ {1, 2, · · · , n} \ {i}. (45)

Define

ri = min
j∈{1,2,··· ,n}\{i}

∣∣vT∗,iXj

∣∣ > 0. (46)

For all i = 1, 2, · · · , n, we define several events as follows.

Ji :=
{
AV0

∩ Bri,Xi

v∗,i,+ 6= ∅, AV0
∩ Bri,Xi

v∗,i,− 6= ∅
}
,

Ji,+ =
{
AV0

∩ Bri,Xi

v∗,i,+ 6= ∅
}
,

Ji,− =
{
AV0

∩ Bri,Xi

v∗,i,− 6= ∅
}
,

J :=

n⋂
i=1

Ji.

(Recall the geometric interpretation in Remark 6. The events Ji,+ and Ji,− mean that there exists V0[j]/‖V0[j]‖2 in the
upper half and the lower half of the cap E, respectively. The event Ji = Ji,+ ∩Ji,− means that there exist V0[j]/‖V0[j]‖2
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in both halves of the cap E. Finally, the event J occurs when Ji occurs for all i, although the vector V0[j]/‖V0[j]‖2 that
falls into the two halves may differ across i. As we will show later, whenever the event J occurs, the matrix H will have the
full row-rank, which is why we are interesting in the probability of the event J .)

Those definitions implies that

J ci = J ci,+ ∪ J ci,− for all i = 1, 2, · · · , n, (47)

J c =

n⋃
i=1

J ci . (48)

Thus, we have

Pr
V0

[J ] =1− Pr
V0

[J c]

≥1−
n∑
i=1

Pr
V0

[J ci ] (by Eq. (48) and the union bound). (49)

For a fixed i, recall that by Eq. (46), we have ri > 0. Because Bri,Xi

v∗,i,+ and Bri,Xi

v∗,i,− are two halves of Briv∗,i , we have

λd−1(Bri,Xi

v∗,i,+) = λd−1(Bri,Xi

v∗,i,−) =
1

2
λd−1(Briv∗,i). (50)

Therefore, we have

Pr
V0

[J ci ] ≤ Pr
V0

[J ci,+] + Pr
V0

[J ci,−] (by Eq. (47) and the union bound)

=

(
1−

λd−1(Bri,Xi

v∗,i,+)

λd−1(Sd−1)

)p
+

(
1−

λd−1(Bri,Xi

v∗,i,−)

λd−1(Sd−1)

)p
(all V0[i]’s are independent and Assumption 1)

=2

(
1−

λd−1(Briv∗,i)
2λd−1(Sd−1)

)p
(by Eq. (50)).

Notice that ri is determined only by X, and is independent of V0 and p. Therefore, we have

lim
p→∞

Pr
V0

[J ci ] = 0. (51)

Plugging Eq. (51) into Eq. (49), we have

lim
p→∞

Pr
V0

[J ] = 1 (because n is finite).

Step 2:

To complete the proof, it remains to show that the event J contradicts Eq. (44). Towards this end, we assume the event J
happens. By Eq. (44), we can pick one i ∈ I. Further, by the definition of J , there exists ri such that AV0 ∩ B

ri,Xi

v∗,i,+ 6= ∅
and AV0 ∩ B

ri,Xi

v∗,i,− 6= ∅. In other words, there must exist k, l ∈ {1, · · · , p} such that

V0[k]

‖V0[k]‖2
∈ Bri,Xi

v∗,i,+,
V0[l]

‖V0[l]‖2
∈ Bri,Xi

v∗,i,−.

By Lemma 23, we have

Hj [k] = Hj [l], for all j ∈ {1, 2, · · · , n} \ {i}, (52)

Hi[k] = XT
i , Hi[l] = 0. (53)
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We now show that H restricted to the columns corresponding to k and l cannot be linearly dependent. Specifically, we have∑
j∈I

bjHj [k] = biHi[k] +
∑

j∈I\{i}
bjHj [k] (as we have picked i ∈ I)

= biHi[k]− bjHi[l] +
∑
j∈I

bjHj [l] (by Eq. (52))

= biX
T
i +

∑
j∈I

bjHj [l] (by Eq. (53))

6=
∑
j∈I

bjHj [l] (because bi 6= 0).

This contradicts the assumption Eq. (44) that∑
j∈I

bjHj [k] =
∑
j∈I

bjHj [l] = 0.

The result thus follows.

F. Proof of Proposition 4 (the upper bound of the variance)
The following lemma shows the relationship between the variance term and min eig

(
HHT

)
/p.

Lemma 24.

|hV0,xHT (HHT )−1ε| ≤
√
p‖ε‖2√

min eig(HHT )
.

Proof. We have

‖HT (HHT )−1ε‖2 =
√

(HT (HHT )−1ε)THT (HHT )−1ε =
√
εT (HHT )−1ε ≤ ‖ε‖2√

min eig(HHT )
. (54)

Thus, we have

|hV0,xHT (HHT )−1ε|
=‖hV0,xHT (HHT )−1ε‖2 (`2-norm of a number equals to its absolute value)

≤‖hV0,x‖2 · ‖HT (HHT )−1ε‖2 (by Lemma 12)

≤
√
p‖ε‖2√

min eig(HHT )
(by Lemma 11 and Eq. (54)).

The following lemma shows our estimation on min eig
(
HHT

)
/p.

Lemma 25. For any n ≥ 2, m ∈
[
1, lnn

ln π
2

]
, d ≤ n4, if p ≥ 6Jm(n, d) ln

(
4n1+ 1

m

)
, we must have

Pr
X,V0

{min eig
(
HHT

)
p

≥ 1

Jm(n, d)n

}
≥ 1− 2

m
√
n
.

Proposition 4 directly follows from Lemma 25 and Lemma 24. 8

In rest of this section, we will show how to prove Lemma 25. The following lemma shows that, to estimate
min eig

(
HHT

)
/p, it is equivalent to estimate mina∈Sn−1 ‖HTa‖22/p.

8We can see that the key part during the proof of Proposition 4 is to estimate min eig
(
HHT

)
/p. Lemma 25 shows a lower bound

of min eig
(
HHT

)
/p which is almost Ω(n1−2d) when p is large. However, our estimation of this value may be loose. We will show a

upper bound which is O(n−
1
d−1 ) (see Appendix G).



On the Generalization Power of Overfitted 2-layer NTK models

Lemma 26.

min eig
(
HHT

)
= min

a∈Sn−1
‖HTa‖22.

Proof. Do the singular value decomposition (SVD) of HT as HT = UΣWT , where

Σ ∈ R(dp)×n = diag(Σ1,Σ2, · · · ,Σn).

By properties of singular values, we have

min
a∈Sn−1

‖HTa‖22 = min
i∈{1,2,··· ,n}

Σ2
i .

We also have

HHT = WΣTUTUΣWT

= WΣTΣWT (because UTU = I)

= Wdiag(Σ2
1,Σ

2
2, · · · ,Σ2

n)WT .

This equation is indeed the eigenvalue decomposition of HHT , which implies that its eigenvalues are Σ2
1,Σ

2
2, · · · ,Σ2

n.
Thus, we have

min eig
(
HHT

)
= min
i∈{1,2,··· ,n}

Σ2
i = min

a∈Sn−1
‖HTa‖22.

Therefore, to finish the proof of Proposition 4, it only remains to estimate mina∈Sn−1 ‖HTa‖22.

By Lemma 7 and its proof in Appendix E, we have already shown that HTa is not likely to be zero (i.e.
mina∈Sn−1 ‖HTa‖22 > 0) when p → ∞. Here, we basically use the similar method as in Appendix E, but with more
precise quantification.

Recall the definitions in Eqs. (21)(22)(23). For any i ∈ {1, 2, · · · , n}, we choose one

v∗,i ∈ Sd−1 independently of Xj , j 6= i, such that vT∗,iXi = 0. (55)

(Note that here, unlike in Eq. (45), we do not require vT∗,iXj 6= 0 for all j 6= i. This is important as we would like Xj to be
independent of v∗,i for all j 6= i.) Further, for any 0 ≤ r0 ≤ 1, we define

cir0 := min
{
|AV0

∩ Br0,Xi

v∗,i,+|, |AV0
∩ Br0,Xi

v∗,i,−|
}
. (56)

Then, we define

ri := min
j∈{1,2,··· ,n}\{i}

∣∣vT∗,iXj

∣∣ , (57)

r̂ := min
i∈{1,2,··· ,n}

ri. (58)

(Note that here ri or r̂ may be zero. Later we will show that they can be lower bounded with high probability.) Define

DX :=
λd−1(Br̂)

8nλd−1(Sd−1)
. (59)

Similar to Remark 6, these definitions have their geometric interpretation in Fig. 6. The value cir0 denotes the number of

distinct pairs
(

V0[k]
‖V0[k]‖2 ,

V0[l]
‖V0[l]‖2

)
9 such that V0[k]

‖V0[k]‖2 is in the upper half of the cap E, and V0[l]
‖V0[l]‖2 is in the lower half of

the cap E. The quantities r0, ri, and r̂ can all be used as the radius of the cap E. The ratio DX is proportional to the area of
the cap E with radius r̂ (or equivalently, the probability that the normalized V0[j] falls in the cap E).

The following lemma gives an estimation on ‖HTa‖22/p when X is given. We put its proof in Appendix F.1.

9Here, “distinct” means that any normalized version of V0[j] can appear at most in one pair.
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Lemma 27. Given X, we have

Pr
V0

{
‖HTa‖22 ≥ pDX, for all a ∈ Sn−1

}
≥ 1− 4ne−npDX/6.

Notice that DX only depends on X and it may even be zero if r̂ is zero. However, after we introduce the randomness of X,
we can show that r̂ is lower bounded with high probability. We can then obtain the following lemma. We put its proof in
Appendix F.2.

Define

Cd :=
2
√

2

B(d−1
2 , 1

2 )
, (60)

D(n, d, δ) :=
1

16n
I

δ2

n4C2
d

(
1− δ2

4n4C2
d

)(d− 1

2
,

1

2

)
. (61)

Lemma 28. For any δ ∈
(
0, 2

π

]
, we have

Pr
X,V0

{
‖HTa‖22 ≥ pD(n, d, δ), for all a ∈ Sn−1

}
≥ 1− 4ne−npD(n,d,δ)/6 − δ.

Notice that Lemma 28 is already very close to Lemma 25, and we put the final steps of the proof of Lemma 25 in
Appendix F.3.

F.1. Proof of Lemma 27

Proof. Define events as follows.

J :=
{
‖HTa‖22 ≥ pDX, for all a ∈ Sn−1

}
,

Ji :=

{
there exists a ∈ Sn−1 that i ∈ arg max

j∈{1,2,··· ,n}
|aj |, and ‖HTa‖22 ≤ pDX

}
,

Ki :=
{
ciri ≤ 2npDX

}
, for i = 1, 2, · · · , n.

Those definitions directly imply that

J c =

n⋃
i=1

Ji. (62)

Step 1: prove Ji ⊆ Ki

To show Ji ⊆ Ki, we only need to prove that Ji implies Ki. To that end, it suffices to show ‖HTa‖22 ≥
ciri
2n for the vector

a defined in Ji. Because i ∈ arg maxnj=1 |aj | and ‖a‖2 = 1, we have

|ai| ≥
1√
n
. (63)

By Eq. (56), we can construct ciri pairs (kj , lj) for j = 1, 2, · · · , ciri (all kj’s are different and all lj’s are different), such
that

V0[kj ]

‖V0[kj ]‖2
∈ Bri,Xi

v∗,i,+,
V0[lj ]

‖V0[lj ]‖2
∈ Bri,Xi

v∗,i,−.

Thus, we have

(HTa)[kj ]− (HTa)[lj ] =

n∑
k=1

ak (Hk[kj ]−Hk[lj ])

=ai (Hi[kj ]−Hi[lj ]) +
∑

k∈{1,2,··· ,n}\{i}
ak (Hk[kj ]−Hk[lj ])

=aiXi (by Lemma 23).



On the Generalization Power of Overfitted 2-layer NTK models

We then have

‖(HTa)[kj ]‖22 + ‖(HTa)[lj ]‖22 ≥
1

2
‖aiXi‖22 (by Lemma 13)

≥ 1

2n
(by Eq. (63)).

Further, we have

‖HTa‖22 =

p∑
j=1

‖(HTa)[j]‖22 ≥
ciri∑
j=1

‖(HTa)[kj ]‖22 + ‖(HTa)[lj ]‖22 =
ciri
2n
. (64)

Clearly, if the event Ji occurs, then ‖Ha‖22 ≤ pDX. Combining with Eq. (64), we then have ciri ≤ 2npDX. In other words,
the event Ki must occur. Hence, we have shown that Ji ⊆ Ki.

Step 2: estimate the probability of Ki
For all j ∈ {1, 2, · · · , p}, because V0[j] is uniformly distributed in all directions, for any fixed 0 ≤ r0 ≤ 1, we have

Pr
V0

{
V0[j]

‖V0[j]‖2
∈ Br0,Xi

v∗,i,+

∣∣∣∣∣ i
}

=
λd−1(Br0v∗)

2λd−1(Sd−1)
.

Thus, |AV0
∩Br0,Xi

v∗,i,+| follows the distribution Bino
(
p,

λd−1(Br0v∗ )

2λd−1(Sd−1)

)
given i and X. By Lemma 14 (with δ = 1

2 ), we have

Pr
V0

{
|AV0

∩ Br0,Xi

v∗,i,+| <
pλd−1(Br0v∗)

4λd−1(Sd−1)

∣∣∣ i} ≤ 2 exp

(
−

pλd−1(Br0v∗)
48λd−1(Sd−1)

)
. (65)

Similarly, we have

Pr
V0

{
|AV0 ∩ B

r0,Xi

v∗,i,−| <
pλd−1(Br0v∗)

4λd−1(Sd−1)

∣∣∣ i} ≤ 2 exp

(
−

pλd−1(Br0v∗)
48λd−1(Sd−1)

)
. (66)

By plugging Eq. (65) and Eq. (66) into Eq. (56) and applying the union bound, we have

Pr
V0

{
cir0 <

pλd−1(Br0v∗)
4λd−1(Sd−1)

∣∣∣ i} ≤ 4 exp

(
−

pλd−1(Br0v∗)
48λd−1(Sd−1)

)
.

By letting r0 = r̂ and by Eq. (59), we thus have

Pr
V0

{
ciri ≤ 2npDX

∣∣∣ i} ≤ 4 exp

(
−1

6
npDX

)
,

i.e.,

Pr
V0

[Ki] ≤ 4 exp

(
−1

6
npDX

)
, for all i = 1, 2, · · · , n. (67)

Step3: estimate the probability of J

We have

Pr
V0

[J c] ≤
n∑
i=1

Pr
V0

[Ji] (by Eq. (62) and the union bound)

≤
n∑
i=1

Pr
V0

[Ki] (by Ji ⊆ Ki proven in Step 1)

≤4n exp

(
−1

6
npDX

)
(by Eq. (67)).

Thus, we have

Pr
V0

[J ] = 1− Pr
V0

[J c] ≥ 1− 4n exp

(
−1

6
npDX

)
.

The result of this lemma thus follows.
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F.2. Proof of Lemma 28

Based on Lemma 27, it remains to estimate r̂, which will then allow us to bound DX. Towards this end, we need a few
lemmas to estimate B

(
d−1

2 , 1
2

)
and Ix

(
d−1

2 , 1
2

)
.

Lemma 29. For any x ∈ R, we must have x+ 1 ≤ ex.

Proof. Consider a function g(x) = ex − x − 1. It remains to show that g(x) ≥ 0 for all x. We have g′(x) = ex − 1. In
other words, g′(x) ≤ 0 when x ≤ 0, and g′(x) ≥ 0 when x ≥ 0. Thus, g(x) is monotone decreasing when x ≤ 0, and is
monotone increasing when x ≥ 0. Hence, we know that g(x) achieves its minimum value at x = 0, i.e., g(x) ≥ g(0) = 0
for any x. The conclusion of this lemma thus follows.

Lemma 30. For any d ≥ 5, we have (
1− 1

d− 3

)d−3

≥ 1

e2
.

Proof. By letting x = 1
d−4 in Lemma 29, we have

d− 3

d− 4
=

1

d− 4
+ 1 ≤ exp

(
1

d− 4

)
,

i.e.,

d− 4

d− 3
≥ exp

(
− 1

d− 4

)
. (68)

Thus, we have (
1− 1

d− 3

)d−3

=

(
d− 4

d− 3

)d−3

≥ exp

(
−d− 3

d− 4

)
= exp

(
−1− 1

d− 4

)
≥ exp(−2) (because exp(·) is monotone increasing and d ≥ 5).

Lemma 31. For any d ≥ 5, we must have

2

e

√
1

d− 3
≥ 1√

d

Proof. Because 1− 4
e2 ≈ 0.46 ≤ 0.6, we have

3

5
≥ 1− 4

e2

=⇒ 3

d
≥ 1− 4

e2
(because d ≥ 5)

=⇒ 1− 3

d
≤ 4

e2

=⇒ d− 3

d
≤ 4

e2

=⇒ 4

e2

d

d− 3
≥ 1

=⇒ 2

e

√
1

d− 3
≥ 1√

d
.
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Lemma 32.

B

(
d− 1

2
,

1

2

)
∈
[

1√
d
, π

]
.

Further, if d ≥ 5, we have

B

(
d− 1

2
,

1

2

)
∈
[

1√
d
,

4√
d− 3

]
.

Proof. When d = 2, we have B
(
d−1

2 , 1
2

)
= π. When d = 3, we have B

(
d−1

2 , 1
2

)
= 2. When d = 4, we have

B
(
d−1

2 , 1
2

)
≈ 1.57. It is easy to verify that the statement of the lemma holds for d = 2, 3, and 4. It remains to validate the

case of d ≥ 5. We first prove the lower bound. For any m ∈ (0, 1), we have

B

(
d− 1

2
,

1

2

)
=

∫ 1

0

t
d−3
2 (1− t)− 1

2 dt

≥
∫ 1

m

t
d−3
2 (1− t)− 1

2 dt (because t
d−3
2 (1− t)− 1

2 ≥ 0)

≥m
d−3
2

∫ 1

m

(1− t)− 1
2 dt

(because t
d−3
2 is monotone increasing with respect to t when d ≥ 5)

=m
d−3
2

(
−2
√

1− t
∣∣∣∣1
m

)
=m

d−3
2 · 2

√
1−m.

By letting m = 1− 1
d−3 , we thus have

B

(
d− 1

2
,

1

2

)
≥
(

1− 1

d− 3

) d−3
2

· 2
√

1

d− 3
.

Then, applying Lemma 30, we have

B

(
d− 1

2
,

1

2

)
≥ 2

e
·
√

1

d− 3
.

Thus, by Lemma 31, we have

B

(
d− 1

2
,

1

2

)
≥ 1√

d
.

Now we prove the upper bound. For any m ∈ (0, 1), we have

B

(
d− 1

2
,

1

2

)
=

∫ 1

0

t
d−3
2 (1− t)− 1

2 dt

=

∫ m

0

t
d−3
2 (1− t)− 1

2 dt+

∫ 1

m

t
d−3
2 (1− t)− 1

2 dt

≤
∫ m

0

t
d−3
2 (1−m)−

1
2 dt+

∫ 1

m

(1− t)− 1
2 dt

=
2

d− 1
m

d−1
2 (1−m)−

1
2 + 2

√
1−m

≤ 2

d− 1
(1−m)−

1
2 + 2

√
1−m (because m < 1 and d ≥ 5).
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By letting m = 1− 1
d−3 , we thus have

B

(
d− 1

2
,

1

2

)
≤2
√
d− 3

d− 1
+

2√
d− 3

≤ 4√
d− 3

.

Notice that 4√
5−3

= 2
√

2 < π. The result of this lemma thus follows.

Lemma 33. Recall Cd is defined in Eq. (60). If d ≤ n4 and δ ≤ 1, then

(
1− δ2

4n4C2
d

) d−1
2

≥ 1

2
.

Proof. We have

(
1− δ2

4n4C2
d

) d−1
2

≥
(

1− δ2

4n4C2
d

)d−1

≥1− (d− 1)δ2

4n4C2
d

(by Bernoulli’s inequality (1 + x)a ≥ 1 + ax)

=1−
(d− 1)

(
B
(
d−1

2 , 1
2

))2
4n4 · 8

(by δ ≤ 1 and Eq. (60))

≥1− (d− 1)π2

32n4
(by Lemma 32)

≥1− d

n4
· π

2

32

≥1

2
(because n4 ≥ d and π ≤ 4).

Lemma 34. For any δ ∈
(
0, 2

π

]
, we must have δ

n2Cd
≤ 1√

2
.

Proof. Because Eq. (60), δ ≤ 2
π , and n ≥ 1, this lemma directly follows by Lemma 32.

Lemma 35. For any x ∈ [0, 1], we must have

Ix

(
d− 1

2
,

1

2

)
≥ Cd√

2(d− 1)
x
d−1
2 ,

and

lim
x→0

Ix
(
d−1

2 , 1
2

)
x
d−1
2

=
Cd√

2(d− 1)
.
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Proof. we have

Ix

(
d− 1

2
,

1

2

)
=

∫ x
0
t
d−3
2 (1− t)− 1

2 dt

B
(
d−1

2 , 1
2

)
=
Cd

2
√

2

∫ x

0

t
d−3
2 (1− t)− 1

2 dt (by Eq. (60))

∈
[
Cd

2
√

2

∫ x

0

t
d−3
2 dt,

Cd

2
√

2
√

1− x

∫ x

0

t
d−3
2 dt

]
(because (1− t)−1/2 ∈

[
1,

1√
1− x

]
)

∈
[

Cd√
2(d− 1)

x
d−1
2 ,

Cd√
2(d− 1)

√
1− x

x
d−1
2

]
.

Thus, we have

Ix
(
d−1

2 , 1
2

)
x
d−1
2

∈
[

Cd√
2(d− 1)

,
Cd√

2(d− 1)
√

1− x

]
,

which implies

lim
x→0

Ix
(
d−1

2 , 1
2

)
x
d−1
2

=
Cd√

2(d− 1)
.

Lemma 36. For any x ∈
[

1
2 , 1

)
and for any d ∈ {2, 3, · · · }, we have

Ix

(
d− 1

2
,

1

2

)
≥ 1−

2
√

2(1− x)

B
(
d−1

2 , 1
2

) .
We also have

lim
(1−x)→0+

1− Ix
(
d−1

2 , 1
2

)
√

1− x
=

2

B
(
d−1

2 , 1
2

) .

Proof. By the definition of regularized incomplete beta function in Eq. (20), we have

Ix

(
d− 1

2
,

1

2

)
=

∫ x
0
t
d−1
2 −1(1− t)− 1

2 dt

B
(
d−1

2 , 1
2

) = 1−
∫ 1

x
t
d−3
2 (1− t)− 1

2 dt

B
(
d−1

2 , 1
2

) .

Thus, it remains to show that

∫ 1

x

t
d−3
2 (1− t)− 1

2 dt ≤ 2
√

2(1− x), and (69)

lim
(1−x)→0+

∫ 1

x
t
d−3
2 (1− t)− 1

2 dt
√

1− x
= 2. (70)
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First, we prove Eq. (69). Case 1: d = 2. We have∫ 1

x

t
d−3
2 (1− t)− 1

2 dt

=

∫ 1

x

t−
1
2 (1− t)− 1

2 dt

≤ 1√
x

∫ 1

x

(1− t)− 1
2 dt (because t−

1
2 is monotone decreasing in [x, 1])

=2

√
1− x
x

≤2
√

2(1− x) (because x ≥ 1

2
).

Case 2: d ≥ 3. Then t
d−3
2 is monotone increasing in [x, 1]. Thus, we have∫ 1

x

t
d−3
2 (1− t)− 1

2 dt ≤
∫ 1

x

(1− t)− 1
2 dt = 2

√
1− x ≤ 2

√
2(1− x).

To conclude, for all d ∈ {2, 3, · · · }, Eq. (69) holds.

Second, we prove Eq. (70). We have∫ 1

x
t
d−3
2 (1− t)− 1

2 dt
√

1− x
∈

[
min{1, x d−3

2 }
∫ 1

x
(1− t)− 1

2 dt
√

1− x
,

max{1, x d−3
2 }

∫ 1

x
(1− t)− 1

2 dt
√

1− x

]
=
[
2 min{1, x

d−3
2 }, 2 max{1, x

d−3
2 }
]
.

Since limx→1 x
d−3
2 = 1, Eq. (70) thus follows.

Now we are ready to prove Lemma 28.

Recall v∗,i defined in Eq. (55). For any b ∈
(

0, 1√
2

]
, we have, for x independent of v∗,i and with distribution µ,

Pr
x∼µ

{
|vT∗,ix| ≥ b

}
= I1−b2

(
d− 1

2
,

1

2

)
(because Lemma 10)

≥ 1−
2
√

2 (1− (1− b2))

B
(
d−1

2 , 1
2

) (by Lemma 36)

= 1− Cdb (by the definition of Cd in Eq. (60)). (71)

Since each of the Xj , j 6= i, is independent of v∗,i, we have

Pr
X

{
min

j∈{1,2,··· ,n}\{i}
|vT∗,iXj | ≥ b

}
=

(
Pr
x∼µ

{
|vT∗,ix| ≥ b

})n−1

(because each Xj , j 6= i, is i.i.d. and independent of v∗,i)

≥ (1− Cdb)n−1 (by Eq. (71))
≥1− (n− 1)Cdb (by Bernoulli’s inequality)
≥1− nCdb.

Or, equivalently,

Pr
X

{
min

i∈{1,2,··· ,n}\{i}
|vT∗,iXi| < b

}
≤ nCdb. (72)
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Recall the definition of ri and r̂ in Eqs. (57)(58). Thus, we then have

Pr
X,V0

{
r̂ <

δ

n2Cd

}
≤n Pr

X,V0

{
ri <

δ

n2Cd

}
(by Eq. (58) and the union bound)

=nPr
X

{
ri <

δ

n2Cd

}
(because r is independent of V0)

=nPr
X

{
min

j∈{1,2,··· ,n}\{i}

∣∣vT∗,iXj

∣∣ < δ

n2Cd

}
(by Eq. (57))

≤n · nCd ·
δ

n2Cd
(by letting b =

δ

n2Cd
in Eq. (72) and b ≤ 1√

2
because of Lemma 34)

=δ. (73)

By Lemma 9 and Eq. (61), we have

λd−1(B
δ

n2Cd ) =
1

2
λd−1(Sd−1)I δ2

n4C2
d

(1− δ2

4n4C2
d

)

(
d− 1

2
,

1

2

)
= 8nλd−1(Sd−1)D(n, d, δ).

Thus, we have

D(n, d, δ) =
λd−1(B

δ
n2Cd )

8nλd−1(Sd−1)
. (74)

By Eq. (59) and Eq. (74), we have

DX ≥ D(n, d, δ), when r̂ ≥ δ

n2Cd
.

Notice that r̂ only depends on X and is independent of V0. By Lemma 27, for any X that makes r̂ ≥ δ
n2Cd

, we must have

Pr
V0

{
‖HTa‖22 ≥ pD(n, d, δ), for all a ∈ Sn−1

}
≥ 1− 4ne−npD(n,d,δ)/6.

In other words,

Pr
V0

{
‖HTa‖22 ≥ pD(n, d, δ), for all a ∈ Sn−1

∣∣∣∣ any given X such that r̂ ≥ δ

n2Cd

}
≥ 1− 4ne−npD(n,d,δ)/6.

We thus have

Pr
X,V0

{
‖HTa‖22 ≥ pD(n, d, δ), for all a ∈ Sn−1

∣∣∣∣ r̂ ≥ δ

n2Cd

}
≥ 1− 4ne−npD(n,d,δ)/6. (75)

Thus, we have

Pr
X,V0

{
‖HTa‖22 ≥ pD(n, d, δ), for all a ∈ Sn−1

}
≥ Pr

X,V0

{
r̂ ≥ δ

n2Cd
, and ‖HTa‖22 ≥ pD(n, d, δ), for all a ∈ Sn−1

}
= Pr

X,V0

{
‖HTa‖22 ≥ pD(n, d, δ), for all a ∈ Sn−1

∣∣∣∣ r̂ ≥ δ

n2Cd

}
· Pr
X,V0

{
r̂ ≥ δ

n2Cd

}
≥(1− 4ne−npD(n,d,δ)/6)(1− δ) (by Eq. (73) and Eq. (75))

≥1− 4ne−npD(n,d,δ)/6 − δ.

The result of this lemma thus follows.
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F.3. Proof of Lemma 25

Based on Lemma 28, it only remains to estimate D(n, d, δ). We start with a lemma.
Lemma 37. If δ ≤ 1 and d ≤ n4, we must have

D(n, d, δ) ≥ 2−1.5d−5.5d−0.5dn−2d+1δd−1. (76)

For any given δ ≥ 0 and d, we must have

lim
n→∞

D(n, d, δ)

n2d−1
= 2−1.5d−1.5

(
B

(
d− 1

2
,

1

2

))d−2
1

d− 1
δd−1.

Proof. We start from

1

(d− 1)Cd−2
d

=

(
B
(
d−1

2 , 1
2

))d−2

(d− 1)(2
√

2)d−2
(by Eq. (60))

≥ 1

(d− 1)d
d
2−1(2

√
2)d−2

(by Lemma 32)

≥ 1

d
d
2 (2
√

2)d

=(8d)−
d
2 . (77)

Thus, we have

D(n, d, δ) ≥ 1

16n

Cd√
2(d− 1)

(
δ2

n4C2
d

(
1− δ2

4n4C2
d

)) d−1
2

(by Eq. (61) and Lemma 35)

=
1

16
√

2

1

(d− 1)Cd−2
d

(
1− δ2

4n4C2
d

) d−1
2 δd−1

n2d−1

≥ 1

32
√

2
(8d)−

d
2
δd−1

n2d−1
(by Lemma 33 and Eq. (77))

=2−1.5d−5.5d−0.5dn−2d+1δd−1.

For any given d and δ ≥ 0, we have

lim
n→∞

D(n, d, δ)

n2d−1
= lim
n→∞

1

16n2d−2
I

δ2

n4C2
d

(
1− δ2

4n4C2
d

)(d− 1

2
,

1

2

)
(by Eq. (61))

= lim
n→∞

(
δ2

n4C2
d

(
1− δ2

4n4C2
d

)) d−1
2

16n2d−2
·

I
δ2

n4C2
d

(
1− δ2

4n4C2
d

) (d−1
2 , 1

2

)
(

δ2

n4C2
d

(
1− δ2

4n4C2
d

)) d−1
2

=
1

16
lim
n→∞

(
δ2

C2
d

(
1− δ2

4n4C2
d

)) d−1
2

·

I
δ2

n4C2
d

(
1− δ2

4n4C2
d

) (d−1
2 , 1

2

)
(

δ2

n4C2
d

(
1− δ2

4n4C2
d

)) d−1
2

=
1

16
lim
n→∞

(
δ2

C2
d

(
1− δ2

4n4C2
d

)) d−1
2

· lim
n→∞

I
δ2

n4C2
d

(
1− δ2

4n4C2
d

) (d−1
2 , 1

2

)
(

δ2

n4C2
d

(
1− δ2

4n4C2
d

)) d−1
2

=
1

16

δd−1

Cd−1
d

Cd√
2(d− 1)

(by Lemma 35)

=2−1.5d−1.5

(
B

(
d− 1

2
,

1

2

))d−2
1

d− 1
δd−1 (by Eq. (60)).
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Now we are ready to finish our proof of Lemma 25.

We have

D(n, d, δ)

∣∣∣∣
δ= 1

m√n

≥ 1

21.5d+5.5d0.5dn2d−1n
d−1
m

(by Eq. (76))

=
1

21.5d+5.5d0.5dn(2+ 1
m )(d−1)n

=
1

Jm(n, d)n
(by Eq. (9)).

Thus, when p ≥ 6Jm(n, d) ln
(

4n1+ 1
m

)
, we have

1− 4ne−npD(n,d,δ)/6 − δ
∣∣∣∣
δ= 1

m√n

≥1− 2
m
√
n
.

Then, we have

m ∈
[
1,

lnn

ln π
2

]
=⇒

(π
2

)m
≤ n =⇒ n

1
m ≥ π

2
=⇒ 1

m
√
n
≤ 2

π
=⇒ δ ≤ 2

π
.

By Lemma 26 and Lemma 28, the conclusion of Lemma 25 thus follows.

G. Upper bound of min eig
(
HHT

)
/p

By Lemma 26, to get an upper bound of min eig
(
HHT

)
/p, it is equivalent to get an upper bound of mina∈Sn−1 ‖HTa‖22/p.

To that end, we only need to construct a vector a and calculate the value of ‖HTa‖22/p, which automatically becomes an
upper bound mina∈Sn−1 ‖HTa‖22/p.

The following lemma shows that, for given X, if two input training data Xi and Xk are close to each other, then
mina∈Sn−1 ‖HTa‖22/p is unlikely to be large.

Lemma 38. If there exist Xi and Xk such that i 6= k and θ := arccos(XT
i Xk), then

Pr
V0

{
min

a∈Sn−1
‖HTa‖22 ≥

3pθ2

8
+

3pθ

4π

}
≤ 2 exp

(
− p

24

)
+ 2 exp

(
−pθ

12

)
.

Intuitively, Lemma 38 is true because, when Xi and Xk are similar, Hi and Hk (the i-th and k-th row of H, respectively)
will also likely be similar, i.e., ‖Hi−Hk‖2 is not likely to be large. Thus, we can construct a such that HTa is proportional
to Hi −Hk, which will lead to the result of Lemma 38. We put the proof of Lemma 38 in Appendix G.1.

The next step is to estimate such difference between Xi and Xk (or equivalently, the angle θ between them). We have the
following lemma.

Lemma 39. When n ≥ π(d− 1), there must exist two different Xi’s such that the angle between them is at most

θ = π

(
(d− 1)B(

d− 1

2
,

1

2
)

) 1
d−1

n−
1
d−1 .

Lemma 39 is intuitive because Sd−1 has limited area. When there are many Xi’s on Sd−1, there must exist at least two
Xi’s that are relatively close. We put the proof of Lemma 39 in Appendix G.2.

Finally, we have the following lemma.
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Lemma 40. When n ≥ π(d− 1), we have

Pr
V0,X

{min eig(HHT )

p
≤ 3π2

8

(
(d− 1)B(

d− 1

2
,

1

2
)

) 2
d−1

n−
2
d−1

+
3

4

(
(d− 1)B(

d− 1

2
,

1

2
)

) 1
d−1

n−
1
d−1

}
≥1− 2 exp

(
− p

24

)
− 2 exp

(
− p

12
π

(
(d− 1)B(

d− 1

2
,

1

2
)

) 1
d−1

n−
1
d−1

)
.

Proof. This lemma directly follows by combining Lemma 26, Lemma 38, and Lemma 39.

By Lemma 40, we can conclude that when p is much larger than n
1
d−1 , min eig(HHT )

p = O(n−
1
d−1 ) with high probability.

G.1. Proof of Lemma 38

We first prove a useful lemma.

Lemma 41. For any ϕ ∈ [0, 2π], we must have sinϕ ≤ ϕ. For any ϕ ∈ [0, π/2], we must have ϕ ≤ π
2 sinϕ.

Proof. To prove the first part of the lemma, note that

d(ϕ− sinϕ)

dϕ
= 1− cosϕ ≥ 0.

Thus, the function (ϕ− sinϕ) is monotone increasing with respect to ϕ ∈ [0, 2π]. Thus, we have

min
ϕ∈[0,2π]

(ϕ− sinϕ) = (ϕ− sinϕ)
∣∣
ϕ=0

= 0.

In other words, we have sinϕ ≤ ϕ for any ϕ ∈ [0, 2π].

To prove the second part of the lemma, note that when ϕ ∈ [0, π/2], we have

d2(ϕ− π
2 sinϕ)

dϕ2
=
π

2
sinϕ ≥ 0.

Thus, the function ϕ− π
2 sinϕ is convex with respect to ϕ ∈ [0, π/2]. Because the maximum of a convex function must be

attained at the endpoint of the domain interval, we have

max
ϕ∈[0,π/2]

(ϕ− π

2
sinϕ) = max

ϕ∈{0,π/2}
(ϕ− π

2
sinϕ) = 0.

Thus, we have ϕ ≤ π
2 sinϕ for any ϕ ∈ [0, π/2].

Now we are ready to prove Lemma 38.

Proof. Through the proof, we fix Xi and Xk, and only consider the randomness of V0. Because θ is the angle between Xi

and Xk and because of Assumption 1, we have

‖Xi −Xk‖2 =2 sin
θ

2

≤2 · θ
2

(by Lemma 41)

=θ. (78)
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Let a = 1√
2
(ei − ek), where eq denotes the q-th standard basis vector, q = 1, 2, · · · , n. Then, we have

‖HTa‖22 =
1

2
‖HT

i −HT
k ‖22

=
1

2

p∑
j=1

∥∥∥1{XT
i V0[j]>0}Xi − 1{XT

kV0[j]>0}Xk

∥∥∥2

2
(by Eq. (1))

=
1

2

p∑
j=1

(
1{XT

i V0[j]>0, XT
kV0[j]>0}‖Xi −Xk‖22 + 1{(XT

i V0[j])(XT
kV0[j])<0}

)
(by ‖Xi‖22 = ‖Xk‖22 = 1)

≤1

2

p∑
j=1

(
1{XT

i V0[j]>0, XT
kV0[j]>0}θ

2 + 1{(XT
i V0[j])(XT

kV0[j])<0}
)

(by Eq. (78))

≤θ
2

2

p∑
j=1

1{XT
i V0[j]>0} +

1

2

p∑
j=1

1{(XT
i V0[j])(XT

kV0[j])<0}. (79)

Since Xi is fixed and the direction of V0[j] is uniformly distributed, we have PrV0
{XT

i V0[j] > 0} = 1
2 and

Pr
V0

{(XT
i V0[j])(XT

kV0[j]) < 0} =2 Pr
V0

{XT
i V0[j] > 0, XT

kV0[j] < 0}

=2 Pr
V0

{XT
i V0[j] > 0, −XT

kV0[j] > 0}

=2

∫
Sd−1

1{XT
i v>0, −XT

k v>0}dλ̃(v)

=2 · π − (π − θ)
2π

(by Lemma 17)

=
θ

π
.

Thus, based on the randomness of V0, when X are given, we have

p∑
j=1

1{XT
i V0[j]>0} ∼ Bino

(
p,

1

2

)
,

p∑
j=1

1{(XT
i V0[j])(XT

kV0[j])<0} ∼ Bino

(
p,

θ

π

)
.

By letting δ = 1
2 , a = p, b = 1

2 in Lemma 14, we then have

Pr
V0


p∑
j=1

1{XT
i V0[j]>0} ≥

3p

4

 ≤ 2 exp
(
− p

24

)
, (80)

Pr
V0


p∑
j=1

1{(XT
i V0[j])(XT

kV0[j])<0} ≥
3pθ

2π

 ≤ 2 exp

(
− pθ

12π

)
. (81)
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Thus, we have

Pr
V0

{
‖HTa‖22 ≥

3pθ2

8
+

3pθ

4π

}

≤ Pr
V0

θ2

2

p∑
j=1

1{XT
i V0[j]>0} +

1

2

p∑
j=1

1{(XT
i V0[j])(XT

kV0[j])<0} ≥
3pθ2

8
+

3pθ

4π


(by Eq. (79))

≤ Pr
V0




p∑
j=1

1{XT
i V0[j]>0} >

3p

4

 ∪


p∑
j=1

1{(XT
i V0[j])(XT

kV0[j])<0} ≥
3pθ

2π




≤ Pr
V0


p∑
j=1

1{XT
i V0[j]>0} >

3p

4

+ Pr
V0


p∑
j=1

1{(XT
i V0[j])(XT

kV0[j])<0} ≥
3pθ

2π


(by the union bound)

≤2 exp
(
− p

24

)
+ 2 exp

(
−pθ

12

)
(by Eq. (80) and Eq. (81)).

The result of Lemma 38 thus follows.

G.2. Proof of Lemma 39

We first prove a useful lemma. Recall the definition of Cd in Eq. (60).

Lemma 42. We have

2
√

2(d− 1)

nCd
∈
[
d− 1

n
√
d
,
π(d− 1)

n

]
.

Proof. By Lemma 32 and Eq. (60), we have

Cd ∈

[
2
√

2

π
, 2
√

2d

]
.

Thus, we have

2
√

2(d− 1)

nCd
∈
[
d− 1

n
√
d
,
π(d− 1)

n

]
.

Now we are ready to proof Lemma 39.

Proof. Recall the definition of θ in Lemma 39. Draw n caps on Sd−1 centered at X1, X2, · · · ,Xn with the colatitude
angle ϕ where

ϕ =
θ

2
=
π

2

(
2
√

2(d− 1)

nCd

) 1
d−1

(by Eq. (60)). (82)

By Lemma 42 and n ≥ π(d− 1), we have ϕ ∈ [0, π/2]. Thus, by Lemma 41, we have

sinϕ ≥ 2ϕ

π
=

(
2
√

2(d− 1)

nCd

) 1
d−1

. (83)
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By Lemma 8, the area of each cap is

A =
1

2
λd−1(Sd−1)Isin2 ϕ

(
d− 1

2
,

1

2

)
.

Applying Lemma 35 and Eq. (83), we thus have

A ≥ 1

2
λd−1(Sd−1)

Cd√
2(d− 1)

(sin2 ϕ)
d−1
2 =

1

n
λd−1(Sd−1).

In other words, we have

λd−1(Sd−1)

A
≤ n.

By the pigeonhole principle, we know there exist at least two different caps that overlap, i.e., the angle between them is at
most 2ϕ. The result of this lemma thus follows by Eq. (82).

H. Proof of Proposition 5
We follow the sketch of proof in Section 5. Recall the definition of the pseudo ground-truth function fgV0

in Definition 2,
and the corresponding ∆V∗ ∈ Rdp that

∆V∗[j] =

∫
Sd−1

1{zTV0[j]>0}z
g(z)

p
dµ(z), for all j ∈ {1, 2, · · · , p}. (84)

We first show that the pseudo ground-truth can be written in a linear form.
Lemma 43. hV0,x∆V∗ = fgV0

(x) for all x ∈ Sd−1.

Proof. For all x ∈ Sd−1, we have

hV0,x∆V∗ =

p∑
j=1

hV0,x[j]∆V∗[j]

=

p∑
j=1

1{xTV0[j]>0} · xT
∫
Sd−1

1{zTV0[j]>0}z
g(z)

p
dµ(z) (by Eq. (1) and Eq. (84))

=

∫
Sd−1

p∑
j=1

1{xTV0[j]>0} · xT1{zTV0[j]>0}z
g(z)

p
dµ(z)

=

∫
Sd−1

xTz
|CV0

z,x|
p

g(z)dµ(z) (by Eq. (6))

= fgV0
(x) (by Definition 2).

Let P := HT (HHT )−1H. Since P2 = P and P = PT , we know that P is an orthogonal projection to the row-space of
H. Next, we give an expression for the test error. Note that even though Proposition 4 assumes no noise, below we state a
more general version below with noise (which will be useful later).
Lemma 44. If the ground-truth is f(x) = hV0,x∆V∗ for all x, then we have

f̂ `2(x)− f(x) = hV0,x(P− I)∆V∗ + hV0,xHT (HHT )−1ε, for all x.

Proof. Because f(x) = hV0,x∆V∗, we have y = H∆V∗ + ε. Thus, we have

∆V`2 = HT (HHT )−1y (by Eq. (3))

= HT (HHT )−1(H∆V∗ + ε).
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Further, we have

∆V`2 −∆V∗ =
(
HT (HHT )−1H− I

)
∆V∗ + HT (HHT )−1ε

=(P− I)∆V∗ + HT (HHT )−1ε.

Finally, using Eq. (4), we have

f̂ `2(x)− f(x) = hV0,x∆V`2 − hV0,x∆V∗ = hV0,x(P− I)∆V∗ + hV0,xHT (HHT )−1ε.

When there is no noise, Lemma 44 reduces to f̂ `2(x) − f(x) = hV0,x(P − I)∆V∗. As we described in Section 5,
(P− I)∆V∗ has the interpretation of the distance from ∆V∗ to the row-space of H. We then have the following.

Lemma 45. For all a ∈ Rn, we have

|hV0,x(P− I)∆V∗| ≤ √p‖∆V∗ −Ha‖2.

Proof. Recall that P = HT (HHT )−1H. Thus, we have

PHT = HT (HHT )−1HHT = HT . (85)

We then have

‖(P− I)∆V∗‖2 = ‖P∆V∗ −∆V∗‖2
= ‖P(HTa+ ∆V∗ −HTa)−∆V∗‖2
= ‖PHTa+ P(∆V∗ −HTa)−∆V∗‖2
= ‖HTa+ P(∆V∗ −HTa)−∆V∗‖2 (by Eq. (85))

= ‖(P− I)(∆V∗ −HTa)‖2
≤ ‖∆V∗ −HTa‖2 (because P is an orthogonal projection).

Therefore, we have

|hV0,x(P− I)∆V∗| = ‖hV0,x(P− I)∆V∗‖2
≤‖hV0,x‖2 · ‖(P− I)∆V∗‖2 (by Lemma 12)
≤√p‖∆V∗ −Ha‖2 (by Lemma 11).

Now we are ready to prove Proposition 5.

Proof. Because there is no noise, we have ε = 0. Thus, by Lemma 44, we have

f̂ `2(x)− f(x) = hV0,x(P− I)∆V∗. (86)

We then have, for all a ∈ Rn,

Pr
X

{∣∣∣f̂ `2(x)− f(x)
∣∣∣ ≥ n− 1

2 (1− 1
q )
}

=Pr
X

{
|hV0,x(P− I)∆V∗| ≥ n−

1
2 (1− 1

q )
}

≤Pr
X

{√
p‖HTa−∆V∗‖2 ≥ n−

1
2 (1− 1

q )
}

(by Lemma 45). (87)
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It only remains to find the vector a. Define Ki ∈ Rdp for i = 1, 2, · · · , n as

Ki[j] := 1{XT
i V0[j]>0}Xi

g(Xi)

p
, j = 1, 2, · · · , p.

By Eq. (84), for all j = 1, 2, · · · , p, we have

E
Xi

[Ki[j]] = ∆V∗[j]. (88)

Because ‖Xi‖2 = 1, we have

‖Ki[j]‖2 ≤
‖g‖∞
p

.

Thus, we have

‖Ki‖2 =

√√√√ p∑
j=1

‖Ki[j]‖22 ≤
‖g‖∞√

p
,

i.e.,
√
p‖Ki‖2 ≤ ‖g‖∞. (89)

We now construct the vector a. Define a ∈ Rn whose i-th element is ai = g(Xi)
np , i = 1, 2, · · · , n. Notice that a is

well-defined because ‖g‖∞ <∞. Then, for all j ∈ {1, 2, · · · , p}, we have

(HTa)[j] =

n∑
i=1

HT
i [j]ai

=

n∑
i=1

1{XT
i V0[j]>0}Xi

g(Xi)

np

=
1

n

n∑
i=1

Ki[j],

i.e.,

HTa =
1

n

n∑
i=1

Ki. (90)

Thus, by Eq. (89) and Lemma 16 (with Xi =
√
pKi, U = ‖g‖∞, and k = n), we have

Pr
X

{
√
p

∥∥∥∥∥
(

1

n

n∑
i=1

Ki

)
− E

X
K1

∥∥∥∥∥
2

≥ n−
1
2 (1− 1

q )

}
≤ 2e2 exp

(
−

q
√
n

8‖g‖2∞

)
.

Further, by Eq. (90) and Eq. (88), we have

Pr
X

{√
p‖HTa−∆V∗‖2 ≥ n−

1
2 (1− 1

q )
}
≤ 2e2 exp

(
−

q
√
n

8‖g‖2∞

)
. (91)

Plugging Eq. (91) into Eq. (87), we thus have

Pr
X

{∣∣∣f̂ `2(x)− f(x)
∣∣∣ ≥ n− 1

2 (1− 1
q )
}
≤ 2e2 exp

(
−

q
√
n

8‖g‖2∞

)
.
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I. Proof of Theorem 1
We first prove a useful lemma.

Lemma 46. If ‖g‖1 <∞, then for any x, we must have∫
Sd−1

∫
Sd−1

xTz1{zT v>0, xT v>0}g(z)dµ(z)dλ̃(v) =

∫
Sd−1

xTz
π − arccos(xTz)

2π
g(z)dµ(z).

Proof. This follows from Fubini’s Theorem and by a change of order of the integral. Specifically, because ‖g‖1 <∞, we
have ∫

Sd−1

|g(z)|dµ(z) <∞.

Thus, we have ∫
Sd−1×Sd−1

|g(z)|dµ(z)λ̃(v) <∞.

Because
∣∣xTz1{zT v>0, xT v>0}

∣∣ ≤ 1 when x ∈ Sd−1 and z ∈ Sd−1, we have∫
Sd−1×Sd−1

∣∣xTz1{zT v>0, xT v>0}g(z)
∣∣ dµ(z)λ̃(v) ≤

∫
Sd−1×Sd−1

|g(z)|dµ(z)λ̃(v) <∞.

Thus, by Fubini’s theorem, we can exchange the sequence of integral, i.e., we have∫
Sd−1

∫
Sd−1

xTz1{zT v>0, xT v>0}g(z)dµ(z)dλ̃(v)

=

∫
Sd−1

∫
Sd−1

xTz1{zT v>0, xT v>0}g(z)dλ̃(v)dµ(z)

=

∫
Sd−1

(∫
Sd−1

1{zT v>0, xT v>0}dλ̃(v)

)
xTzg(z)dµ(z)

=

∫
Sd−1

xTz
π − arccos(xTz)

2π
g(z)dµ(z) (by Lemma 17).

The following proposition characterizes generalization performance when ε = 0, i.e., the bias term in Eq. (18).

Proposition 47. Assume no noise (ε = 0), a ground truth f = fg ∈ F`2 where ‖g‖∞ < ∞, n ≥ 2, m ∈
[
1, lnn

ln π
2

]
,

d ≤ n4, and p ≥ 6Jm(n, d) ln
(

4n1+ 1
m

)
. Then, for any q ∈ [1, ∞) and for almost every x ∈ Sd−1, we must have

Pr
V0,X

{
|f̂ `2(x)− f(x)| ≥ n−

1
2 (1− 1

q )

+
(

1 +
√
Jm(n, d)n

)
p−

1
2 (1− 1

q )}
≤ 2e2

(
exp

(
−

q
√
n

8‖g‖2∞

)
+ exp

(
−

q
√
p

8‖g‖21

)
+ exp

(
−

q
√
p

8n‖g‖21

))
+

2
m
√
n
.

Proof. We split the whole proof into 5 steps as follows.

Step 1: use pseudo ground-truth as a “intermediary”
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Recall Definition 2 where we define the pseudo ground-truth fgV0
. We then define the output of the pseudo ground-truth for

training input as

FgV0
(X) := [fgV0

(X1) fgV0
(X2) · · · fgV0

(Xn)]T .

The rest of the proof will use the pseudo ground-truth as a “intermediary” to connect the ground-truth f and the model
output f̂ `2 . Specifically, we have

f̂ `2(x) = hV0,x∆V`2

= hV0,xHT (HHT )−1F(X) (by Eq. (17) and ε = 0)

= hV0,xHT (HHT )−1FgV0
(X) + hV0,xHT (HHT )−1

(
FgV0

(X)− F(X)
)
. (92)

Thus, we have

|f̂ `2(x)− f(x)|

=
∣∣∣f̂ `2(x)− fgV0

(x) + fgV0
(x)− f(x)

∣∣∣
=
∣∣hV0,xHT (HHT )−1FgV0

(X)− fgV0
(x) + hV0,xHT (HHT )−1

(
FgV0

(X)− F(X)
)

+fgV0
(x)− f(x)

∣∣ (by Eq. (92))

≤
∣∣hV0,xHT (HHT )−1FgV0

(X)− fgV0
(x)
∣∣︸ ︷︷ ︸

termA

+
∣∣hV0,xHT (HHT )−1

(
FgV0

(X)− F(X)
)∣∣︸ ︷︷ ︸

termB

+
∣∣fgV0

(x)− f(x)
∣∣︸ ︷︷ ︸

term C

. (93)

In Eq. (93), we can see that the term A corresponds to the test error of the pseudo ground-truth, the term B corresponds to
the impact of the difference between the pseudo ground-truth and the real ground-truth in the training data, and the term C
corresponds to the impact of the difference between pseudo ground-truth and real ground-truth in the test data. Using the
terminology of bias-variance decomposition, we refer to term A as the “pseudo bias” and term B as the “pseudo variance”.

Step 2: estimate term A

We have

Pr
X,V0

{
term A ≥ n−

1
2 (1− 1

q )
}

=

∫
V0∈Rdp

Pr
X

{
term A ≥ n−

1
2 (1− 1

q )
∣∣∣∣V0

}
dλ(V0)

≤
∫
V0∈Rdp

2e2 exp

(
−

q
√
n

8‖g‖2∞

)
dλ(V0) (by Proposition 5)

= 2e2 exp

(
−

q
√
n

8‖g‖2∞

)
. (94)

Step 3: estimate term C

For all j = 1, 2, · · · , p, define

Kx
j :=

∫
Sd−1

xTz1{zTV0[j]>0, xTV0[j]>0}g(z)dµ(z).

We now show that Kx
j is bounded and with mean equal to fg , where fg =

∫
Sd−1 x

Tz π−arccos(xT z)
2π g(z)dµ(z) defined by

Definition 1. Specifically, we have

E
V0

Kx
j = E

v∼λ̃

(∫
Sd−1

xTz1{zT v>0, xT v>0}g(z)dµ(z)

)
=

∫
Sd−1

∫
Sd−1

xTz1{zT v>0, xT v>0}g(z)dµ(z)dλ̃(v)

=

∫
Sd−1

xTz
π − arccos(xTz)

2π
g(z)dµ(z) (by Lemma 46)

=fg(x) (by Definition 1). (95)
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From Definition 2, we have

fgV0
(x) =

∫
Sd−1

xTz
|CV0

z,x|
p

g(z)dµ(z) (by Definition 2)

=
1

p

p∑
j=1

∫
Sd−1

xTz1{zTV0[j]>0, xTV0[j]>0}g(z)dµ(z) (by Eq. (6))

=
1

p

p∑
j=1

Kx
j . (96)

Because V0[j]’s are i.i.d., Kx
j ’s are also i.i.d.. Thus, we have

E
V0

fgV0
(x) = fg(x). (97)

Further, for any j ∈ {1, 2, · · · , p}, we have

‖Kx
j ‖2 =|Kx

j | (because Kx
j is a scalar)

=

∣∣∣∣∫
Sd−1

xTz1{zTV0[j]>0, xTV0[j]>0}g(z)dµ(z)

∣∣∣∣
≤
∫
Sd−1

∣∣xTz1{zTV0[j]>0, xTV0[j]>0}g(z)
∣∣ dµ(z)

≤
∫
Sd−1

∣∣xTz1{zTV0[j]>0, xTV0[j]>0}
∣∣ · |g(z)| dµ(z)

≤
∫
Sd−1

|g(z)| dµ(z)

=‖g‖1. (98)

Thus, by Lemma 16, we have

Pr
V0


∥∥∥∥∥∥
1

p

p∑
j=1

Kx
j

− E
V0

K1

∥∥∥∥∥∥
2

≥ p−
1
2 (1− 1

q )

 ≤ 2e2 exp

(
−

q
√
p

8‖g‖21

)
.

Further, by Eq. (96) and Eq. (95), we have

Pr
V0

{∣∣fgV0
(x)− fg(x)

∣∣ ≥ p− 1
2 (1− 1

q )
}
≤ 2e2 exp

(
−

q
√
p

8‖g‖21

)
.

Because f a.e.
= fg , we have

Pr
V0

{∣∣fgV0
(x)− f(x)

∣∣ ≥ p− 1
2 (1− 1

q )
}
≤ 2e2 exp

(
−

q
√
p

8‖g‖21

)
.

Because fgV0
does not change with X, we thus have

Pr
V0,X

{
term C ≥ p−

1
2 (1− 1

q )
}
≤ 2e2 exp

(
−

q
√
p

8‖g‖21

)
. (99)

Step 4: estimate term B

Our idea is to treat FgV0
(X)−F(X) as a special form of noise, and then apply Proposition 4. We first bound the magnitude

of this special noise. For j = 1, 2, · · · , p, we define

Kj := [KX1
j KX2

j · · · KXn
j ]T .
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Then, we have

‖Kj‖2 =

√√√√ n∑
i=1

‖KXi
j ‖22 ≤

√
n‖g‖1 (by Eq. (98)).

Similar to how we get Eq. (99) in Step 3, we have

Pr
V0,X

{∥∥FgV0
(X)− F(X)

∥∥
2
≥ p−

1
2 (1− 1

q )
}
≤ 2e2 exp

(
−

q
√
p

8n‖g‖21

)
. (100)

Thus, we have

Pr
V0,X

{
term B ≥

√
Jm(n, d)np−

1
2 (1− 1

q )
}

= Pr
V0,X

{
term B ≥

√
Jm(n, d)np−

1
2 (1− 1

q ),
∥∥FgV0

(X)− F(X)
∥∥

2
≥ p−

1
2 (1− 1

q )
}

+ Pr
V0,X

{
term B ≥

√
Jm(n, d)np−

1
2 (1− 1

q ),
∥∥FgV0

(X)− F(X)
∥∥

2
< p−

1
2 (1− 1

q )
}

≤ Pr
V0,X

{∥∥FgV0
(X)− F(X)

∥∥
2
≥ p−

1
2 (1− 1

q )
}

+ Pr
V0,X

{
term B ≥

√
Jm(n, d)n

∥∥FgV0
(X)− F(X)

∥∥
2

}
≤2e2 exp

(
−

q
√
p

8n‖g‖21

)
+

2
m
√
n

(by Eq. (100) and Proposition 4). (101)

Step 5: estimate |f̂ `2(x)− f(x)|

We have

Pr
V0,X

{
|f̂ `2(x)− f(x)| ≥ n−

1
2 (1− 1

q ) +
1 +

√
Jm(n, d)n
4
√
p

}

≤ Pr
V0,X

{
term A+ term B + term C ≥ n−

1
2 (1− 1

q ) +
1 +

√
Jm(n, d)n
4
√
p

}
(by Eq. (93))

≤ Pr
X,V0

{{
term A ≥ n−

1
2 (1− 1

q )
}
∪
{

term B ≥
√
Jm(n, d)np−

1
2 (1− 1

q )
}

∪
{

term C ≥ p−
1
2 (1− 1

q )
}}

≤ Pr
X,V0

{
term A ≥ n−

1
2 (1− 1

q )
}

+ Pr
V0,X

{
term B ≥

√
Jm(n, d)np−

1
2 (1− 1

q )
}

+ Pr
V0,X

{
term C ≥ p−

1
2 (1− 1

q )
}

(by the union bound)

≤2e2

(
exp

(
−

q
√
n

8‖g‖2∞

)
+ exp

(
−

q
√
p

8‖g‖21

)
+ exp

(
−

q
√
p

8n‖g‖21

))
+

2
m
√
n

(by Eqs. (94)(99)(101)).

The last step exactly gives the conclusion of this proposition.

Theorem 1 thus follows by Proposition 4, Proposition 47, Eq. (18), and the union bound.

J. Proof of Proposition 2 (lower bound for ground-truth functions outside F `2)

We first show what f̂ `2∞ looks like. Define H∞ ∈ Rn×n where its (i, j)-th element is

H∞i,j = XT
i Xj

π − arccos(XT
i Xj)

2π
.
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Notice that (
HHT

p

)
i,j

=
1

p

p∑
k=1

XT
i Xj1{XT

i V0[k]>0,XT
j V0[k]>0} = XT

i Xj

|CV0

Xi,Xj
|

p
.

By Lemma 21, we have that
(

HHT

p

)
i,j

converges in probability to (H∞)i,j as p→∞ uniformly in i, j. In other words,

max
i,j

∣∣∣∣∣
(

HHT

p

)
i,j

− (H∞)i,j

∣∣∣∣∣ P→ 0, as p→∞. (102)

Let {ei | 1 ≤ i ≤ n} denote the standard basis in Rn. For i = 1, 2, · · · , n, define

gi,p := npeTi (HHT )−1y, (103)

which is a number. Further, define

[g1,p g2,p · · · gn,p]T = np(HHT )−1y.

Further, define the number

gi,∞ := neTi (H∞)−1y,

and

[g1,∞ g2,∞ · · · gn,∞]T = n(H∞)−1y.

Notice that (H∞)−1 exists because of Eq. (102) and Lemma 7.

By Eq. (102), we have

max
i∈{1,2,··· ,n}

|gi,p − gi,∞|
P→ 0, as p→∞. (104)

For any given X, we define f̂ `2∞(·) : Sd−1 7→ R as

f̂ `2∞(x) :=
1

n

n∑
i=1

xTXi
π − arccos(xTXi)

2π
gi,∞. (105)

By the definition of the Dirac delta function δa(·) with peak position at a, we can write f̂ `2∞(x) as an integral

f̂ `2∞(x) =

∫
Sd−1

xTz
π − arccos(xTz)

2π

1

n

n∑
i=1

gi,∞δXi
(z)dµ(z).

Notice that gi,∞ only depends on the training data and does not change with p (and thus is finite). Therefore, we have
f̂ `2∞ ∈ F`2 . It remains to show why f̂ `2 converges to f̂ `2∞ in probability. The following lemma shows what f̂ `2 looks like.

Lemma 48. f̂ `2(x) = 1
n

∑n
i=1 x

TXi
|CV0

Xi,x
|

p gi,p =
∫
Sd−1 x

Tz
|CV0

z,x|
p

1
n

∑n
i=1 gi,pδXi

(z)dµ(z).

Proof. For any x ∈ Sd−1, we have

f̂ `2(x) = hV0,x∆V`2

= hV0,xHT (HHT )−1y (by Eq. (3))

= hV0,x

n∑
i=1

HT
i e

T
i (HHT )−1y

=
1

np

n∑
i=1

hV0,xHT
i gi,p (by Eq. (103))

=
1

np

n∑
i=1

p∑
j=1

xTXi1{XT
i V0[j]>0, xTV0[j]>0}gi,p.
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By Eq. (6), we thus have

f̂ `2(x) =
1

n

n∑
i=1

xTXi

|CV0

Xi,x
|

p
gi,p. (106)

By the definition of the Dirac delta function, we have

f̂ `2(x) =
1

n

n∑
i=1

xTXi

|CV0

Xi,x
|

p
gi,p =

∫
Sd−1

xTz
|CV0

z,x|
p

1

n

n∑
i=1

gi,pδXi(z)dµ(z).

Now we are ready to prove the statement of Proposition 2, i.e., uniformly over all x ∈ Sd−1, f̂ `2(x)
P→ f̂ `2∞(x) as p→∞

(notice that we have already shown that f̂ `2∞ ∈ F`2). To be more specific, we restate that uniform convergence as the
following lemma.

Lemma 49. For any given X, sup
x∈Sd−1

|f̂ `2(x)− f̂ `2∞(x)| P→ 0 as p→∞.

Proof. For any ζ > 0, define two events:

J1 :=

{
sup

x,z∈Sd−1

∣∣∣∣∣ |CV0
z,x|
p
− π − arccos(xTz)

2π

∣∣∣∣∣ < ζ

}
,

J2 :=

{
max

i∈{1,2,··· ,n}
|gi,p − gi,∞| < ζ

}
.

By Lemma 21, there exists a threshold p0 such that for any p > p0,

Pr[J1] > 1− ζ.

By Eq. (104), there exists a threshold p1 such that for any p > p1,

Pr[J2] > 1− ζ.

Thus, by the union bound, when p > max{p0, p1}, we have

Pr[J1 ∩ J2] > 1− 2ζ. (107)

When J1 ∩ J2 happens, we have

sup
x∈Sd−1

|f̂ `2(x)− f̂ `2∞(x)|

= sup
x∈Sd−1

∣∣∣∣∣ 1n
n∑
i=1

xTXi

(
|CV0

Xi,x
|

p
gi,p −

π − arccos(xTXi)

2π
gi,∞

)∣∣∣∣∣
(by Lemma 48 and Eq. (105))

≤ sup
x∈Sd−1,i∈{1,2,··· ,n}

∣∣∣∣∣
(
|CV0

Xi,x
|

p
gi,p −

π − arccos(xTXi)

2π
gi,∞

)∣∣∣∣∣ (because |xTXi| ≤ 1)

= sup
x∈Sd−1,i∈{1,2,··· ,n}

∣∣∣∣∣
(
|CV0

Xi,x
|

p
− π − arccos(xTXi)

2π

)
gi,∞ + (gi,p − gi,∞)

|CV0

Xi,x
|

p

∣∣∣∣∣
≤ sup

x∈Sd−1,i∈{1,2,··· ,n}

∣∣∣∣∣
(
|CV0

Xi,x
|

p
− π − arccos(xTXi)

2π

)
gi,∞

∣∣∣∣∣+

∣∣∣∣∣(gi,p − gi,∞)
|CV0

Xi,x
|

p

∣∣∣∣∣
≤ζ ·

(
max
i
|gi,∞|+ 1

)
(because J1 ∩ J2 happens,

|CV0

Xi,x
|

p
∈ [0, 1], and

π − arccos(xTXi)

2π
∈ [0, 0.5]).

Because maxi |gi,∞| is fixed when X is given, ζ · (maxi |gi,∞|+ 1) can be arbitrarily small as long as ζ is small enough.
The conclusion of this lemma thus follows by Eq. (107).



On the Generalization Power of Overfitted 2-layer NTK models

If the ground-truth function f /∈ F`2 (or equivalently, D(f,F`2) > 0), then the MSE of f̂ `2∞ (with respect to the ground-truth
function f ) is at least D(f,F`2) (because f̂ `2∞ ∈ F`2). Therefore, we have proved Proposition 2. Below we state an even
stronger result than part (ii) of Proposition 2, i.e., it captures not only the MSE of f̂ `2∞ , but also that of f̂ `2 for sufficiently
large p.

Lemma 50. For any given X and ζ > 0, there exists a threshold p0 such that for all p > p0, Pr{
√

MSE ≥ D(f,F`2)−ζ} >
1− ζ.

Proof. By Lemma 49, for any ζ > 0, there must exist a threshold p0 such that for all p > p0,

Pr

{
sup

x∈Sd−1

|f̂ `2(x)− f̂ `2∞(x)| < ζ

}
> 1− ζ.

When sup
x∈Sd−1

|f̂ `2(x)− f̂ `2∞(x)| < ζ, we have

D(f̂ `2 , f̂ `2∞) =

√∫
Sd−1

(
f̂ `2(x)− f̂ `2∞(x)

)2

dµ(x) ≤ ζ.

Because f̂ `2∞ ∈ F`2 , we have D(f̂ `2∞ , f) ≥ D(f,F`2). Thus, by the triangle inequality, we have D(f, f̂ `2) ≥ D(f, f̂ `2∞)−
D(f̂ `2 , f̂ `2∞) ≥ D(f,F`2)− ζ. Putting these together, we have

Pr
{
D(f, f̂ `2) ≥ D(f,F`2)− ζ

}
> 1− ζ.

Notice that MSE = (D(f, f̂ `2))2. The result of this lemma thus follows.

K. Details for Section 4 (hyper-spherical harmonics decomposition on Sd−1)
K.1. Convolution on Sd−1

First, we introduce the definition of the convolution on Sd−1. In (Dokmanic & Petrinovic, 2009), the convolution on Sd−1

is defined as follows.

f1 ~ f2(x) :=

∫
SO(d)

f1(Se)f2(S−1x)dS,

where S is a d × d orthogonal matrix that denotes a rotation in Sd−1, chosen from the set SO(d) of all rotations. In the
following, we will show Eq. (13). To that end, we have

g ~ h(x) =

∫
SO(d)

g(Se)h(S−1x)dS. (108)

Now, we replace Se by z. Thus, we have

Se = z =⇒ e = S−1z =⇒ (S−1x)Te = (S−1x)TS−1z =⇒ (S−1x)Te = xT (S−1)TS−1z.

Because S is an orthonormal matrix, we have ST = S−1. Therefore, we have (S−1x)Te = xTz. Thus, by Eq. (14), we
have

h(S−1x) = (S−1x)Te
π − arccos((S−1x)Te)

2π
= xTz

π − arccos(xTz)

2π
. (109)

By plugging Eq. (109) into Eq. (108), we have

g ~ h(x) =

∫
Sd−1

g(z)xTz
π − arccos(xTz)

2π
dµ(z).

Eq. (13) thus follows.

The following lemma shows the intrinsic symmetry of such a convolution.
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Lemma 51. Let S ∈ Rd×d denotes any rotation in Rd. If f(x) ∈ F`2 , then f(Sx) ∈ F`2 .

Proof. Because f(x) ∈ F`2 , we can find g such that

f(x) =

∫
Sd−1

xTz
π − arccos(xTz)

2π
g(z)dµ(z).

Thus, we have

f(Sx) =

∫
Sd−1

(Sx)Tz
π − arccos((Sx)Tz)

2π
g(z)dµ(z)

=

∫
Sd−1

xT (STz)
π − arccos(xT (STz))

2π
g(z)dµ(z)

=

∫
Sd−1

xT (STz)
π − arccos(xT (STz))

2π
g(SSTz)dµ(z)

(because S is a rotation, we have SST = I)

=

∫
Sd−1

xTz
π − arccos(xTz)

2π
g(Sz)dµ(Sz) (replace STz by z)

=

∫
Sd−1

xTz
π − arccos(xTz)

2π
g(Sz)dµ(z) (by Assumption 1)

The result of this lemma thus follows.

K.2. Hyper-spherical harmonics

We follow the the conventions of hyper-spherical harmonics in (Dokmanic & Petrinovic, 2009). We express x =
[x1 x2 · · · xd] ∈ Sd−1 in a set of hyper-spherical polar coordinates as follows.

x1 = sin θd−1 sin θd−2 · · · sin θ2 sin θ1,

x2 = sin θd−1 sin θd−2 · · · sin θ2 cos θ1,

x3 = sin θd−1 sin θd−2 · · · cos θ2,

...
xd−1 = sin θd−1 cos θd−2,

xd = cos θd−1.

Notice that θ1 ∈ [0, 2π) and θ2, θ3, · · · , θd−1 ∈ [0, π). Let ξ = [θ1 θ2 · · · θd−1]. In such coordinates, hyper-spherical
harmonics are given by (Dokmanic & Petrinovic, 2009)

ΞlK(ξ) = AlK ×
d−3∏
i=0

C
d−i−2

2 +ki+1

ki−ki+1
(cos θd−i−1) sinki+1 θd−i−1e

±jkd−2θ1 , (110)

where the normalization factor is

AlK =

√√√√ 1

Γ
(
d
2

) d−3∏
i=0

22ki+1+d−i−4 ×
(ki − ki+1)!(d− i+ 2ki − 2)Γ2

(
d−i−2

2 + ki+1

)
√
πΓ(ki + ki+1 + d− i− 2)

,

and Cλd (t) are the Gegenbauer polynomials of degree d. These Gegenbauer polynomials can be defined as the coefficients
of αn in the power-series expansion of the following function,

(1− 2tα+ α2)−λ =

∞∑
i=0

Cλi (t)αi.

Further, the Gegenbauer polynomials can be computed by a three-term recursive relation,

(i+ 2)Cλi+2(t) = 2(λ+ i+ 1)tCλi+1(t)− (2λ+ i)Cλi (t), (111)

with Cλ0 (t) = 1 and Cλ1 (t) = 2λt.
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K.3. Calculate ΞlK(ξ) where K = 0

Recall that K = (k1, k2, · · · , kd−2) and l = k0. By plugging K = 0 into Eq. (110), we have

Ξl0(ξ) = Al0 × C
d−2
2

l (cos θd−1). (112)

The following lemma gives an explicit form of Gegenbauer polynomials.

Lemma 52.

Cλi (t) =

b i2 c∑
k=0

(−1)k
Γ(i− k + λ)

Γ(λ)k!(i− 2k)!
(2t)i−2k. (113)

Proof. We use mathematical induction. We already know that Cλ0 (t) = 1 and Cλ1 (t) = 2λt, which both satisfy Eq. (113).
Suppose that Cλi (t) and Cλi+1(t) satisfy Eq. (113), i.e.,

Cλi (t) =

b i2 c∑
k=0

(−1)k
Γ(i− k + λ)

Γ(λ)k!(i− 2k)!
(2t)i−2k,

Cλi+1(t) =

b i+1
2 c∑

k=0

(−1)k
Γ(i− k + λ+ 1)

Γ(λ)k!(i− 2k + 1)!
(2t)i−2k+1.

It remains to show that Cλi+2(t) also satisfy Eq. (113). By Eq. (111), it suffices to show that

(i+ 2)

b i+2
2 c∑

k=0

(−1)k
Γ(i− k + λ+ 2)

Γ(λ)k!(i− 2k + 2)!
(2t)i−2k+2

=2(λ+ i+ 1)t

b i+1
2 c∑

k=0

(−1)k
Γ(i− k + λ+ 1)

Γ(λ)k!(i− 2k + 1)!
(2t)i−2k+1

− (2λ+ i)

b i2 c∑
k=0

(−1)k
Γ(i− k + λ)

Γ(λ)k!(i− 2k)!
(2t)i−2k. (114)

To that end, it suffices to show that the coefficients of (2t)i−2k+2 are the same for both sides of Eq. (114), for k =
0, 1, · · · , b i+2

2 c. For the first step, we verify the coefficients of (2t)i−2k+2 for k = 1, · · · , b i+1
2 c. We have

coefficients of (2t)i−2k+2 on the right-hand-side of Eq. (114)

=(λ+ i+ 1)(−1)k
Γ(i− k + λ+ 1)

Γ(λ)k!(i− 2k + 1)!
− (2λ+ i)(−1)k−1 Γ(i− k + λ+ 1)

Γ(λ)(k − 1)!(i− 2k + 2)!

=(−1)k
Γ(i− k + λ+ 1)

Γ(λ)k!(i− 2k + 2)!
((λ+ i+ 1)(i− 2k + 2) + (2λ+ i)k)

=(−1)k
Γ(i− k + λ+ 1)

Γ(λ)k!(i− 2k + 2)!
((λ+ i+ 1)(i+ 2) + (2λ+ i)k − 2k(λ+ i+ 1))

=(−1)k
Γ(i− k + λ+ 1)

Γ(λ)k!(i− 2k + 2)!
((λ+ i+ 1)(i+ 2)− k(i+ 2))

=(−1)k
Γ(i− k + λ+ 1)

Γ(λ)k!(i− 2k + 2)!
(λ− k + i+ 1)(i+ 2)

=(i+ 2)(−1)k
Γ(i− k + λ+ 2)

Γ(λ)k!(i− 2k + 2)!

=coefficients of (2t)i−2k+2 on the left-hand-side of Eq. (114).
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For the second step, we verify the coefficient of (2t)i−2k+2 for k = 0, i.e., the coefficient of (2t)i+2. We have

coefficients of (2t)i+2 on the right-hand-side of Eq. (114)

=(λ+ i+ 1)
Γ(i+ λ+ 1)

Γ(λ)(i+ 1)!

=(i+ 2)
Γ(i+ 2 + λ)

Γ(λ)(i+ 2)!

=coefficients of (2t)i+2 on the left-hand-side of Eq. (114).

For the third step, we verify the coefficient of (2t)i−2k+2 for k = b i+2
2 c = b i2c+ 1. We consider two cases: 1) i is even,

and 2) i is odd. When i is even, we have b i2c+ 1 = i
2 + 1, i.e., i− 2k + 2 = 0. Thus, we have

coefficients of (2t)0 on the right-hand-side of Eq. (114)

=− (2λ+ i)(−1)
i
2

Γ
(
i
2 + λ

)
Γ(λ)

(
i
2

)
!

=(i+ 2)(−1)
i
2 +1 Γ

(
i
2 + 1 + λ

)
Γ(λ)

(
i
2 + 1

)
!

=coefficients of (2t)0 on the left-hand-side of Eq. (114).

When i is odd, we have k = b i2c+ 1 = i+1
2 = b i+1

2 c and this case has already been verified in the first step.

In conclusion, the coefficients of (2t)i−2k+2 are the same for both sides of Eq. (114), for k = 0, 1, · · · , b i+2
2 c. Thus, by

mathematical induction, the result of this lemma thus follows.

Applying Lemma 52 in Eq. (112), we have

Ξl0(ξ) = Al0

b l2 c∑
k=0

(−1)k
Γ(l − k + d−2

2 )

Γ(d−2
2 )k!(l − 2k)!

(2 cos θd−1)l−2k. (115)

We give a few examples of Ξl0(ξ) as follows.

Ξ0
0(ξ) = A0

0,

Ξ1
0(ξ) = A1

0(d− 2) cos θd−1,

Ξ2
0(ξ) = A2

0

d− 2

2

(
d cos2 θd−1 − 1

)
,

Ξ3
0(ξ) = A3

0

d− 2

2
· d ·

(
d+ 2

3
cos3 θd−1 − cos θd−1

)
.

K.4. Proof of Proposition 3

Recall that

h(x) := xTe
π − arccos(xTe)

2π
, e := [0 0 · · · 0 1]T ∈ Rd.

Notice that xTe = cos θd−1. Thus, we have

h(x) = cos θd−1
π − arccos(cos θd−1)

2π
.

The arccos function has a Taylor Series Expansion:

arccos(a) =
π

2
−
∞∑
i=0

(2i)!

22i(i!)2

a2i+1

2i+ 1
,
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which converges when −1 ≤ a ≤ 1. Thus, we have

h(x) =
1

4
cos θd−1 +

1

2π

∞∑
i=0

(2i)!

22i(i!)2

cos2i+2 θd−1

2i+ 1
. (116)

By comparing terms of even and odd power of cos θd−1 in Eq. (115) and Eq. (116), we immediately see that h(x) 6⊥ Ξl0(x)
when l = 1, and h(x) ⊥ Ξl0(x) when l = 3, 5, 7, · · · . It remains to examine whether h(x) ⊥ Ξl0(x) or h(x) 6⊥ Ξl0(x) for
l ∈ {0, 1, 2, 4, 6, · · · }. We first introduce the following lemma.

Lemma 53. Let a and b be two non-negative integers. Define the function

Q(a, b) :=

∫
Sd−1

cosa(θd−1)Ξb0(ξ)dµ(x).

We must have

Q(2k, 2m)

{
> 0, if m ≤ k,
= 0, if m > k.

(117)

Proof. We have

Q(2k, 0) =

∫
Sd−1

cos2k(θd−1)Ξ0
0(ξ)dµ(x) = A0

0

∫
Sd−1

cos2k(θd−1)dµ(x) > 0.

Thus, to finish the proof, we only need to consider the case of m ≥ 1 in Eq. (117). We then prove by mathematical induction
on the first parameter of Q(·, ·), i.e., k in Eq. (117). When m > 0, we have

Q(0, 2m) =

∫
Sd−1

Ξ2m
0 (ξ)dµ(x) =

1

A0
0

∫
Sd−1

Ξ0
0(ξ)Ξ2m

0 (ξ)dµ(x) = 0

(by the orthogonality of the basis).

Thus, Eq. (117) holds for all m when k = 0. Suppose that Eq. (117) holds when k = i. To complete the mathematical
induction, it only remains to show that Eq. (117) also holds for all m when k = i+ 1. By Eq. (111) and Eq. (112), for any l,
we have

cos(θd−1)Ξl+1
0 (ξ) =

(l + 2)Al+1
0

(d+ 2l)Al+2
0

Ξl+2
0 (ξ) +

(d− 2 + l)Al+1
0

(d+ 2l)Al0
Ξl0(ξ).

Thus, we have

Q(a+ 1, l + 1) = ql,1 ·Q(a, l + 2) + ql,2 ·Q(a, l), (118)

where

ql,1 :=
(l + 2)Al+1

0

(d+ 2l)Al+2
0

, ql,2 :=
(d− 2 + l)Al+1

0

(d+ 2l)Al0
.

It is obvious that ql,1 > 0 and ql,2 > 0. Applying Eq. (118) multiple times, we have

Q(2i+ 2, 2m) = q2m−1,1 ·Q(2i+ 1, 2m+ 1) + q2m−1,2 ·Q(2i+ 1, 2m− 1), (119)
Q(2i+ 1, 2m+ 1) = q2m,1 ·Q(2i, 2m+ 2) + q2m,2 ·Q(2i, 2m), (120)
Q(2i+ 1, 2m− 1) = q2m−2,1 ·Q(2i, 2m) + q2m−2,2 ·Q(2i, 2m− 2). (121)

(Notice that we have already let m ≥ 1, so all q·,1, q·,2, Q(·, ·) in those equations are well-defined.) By plugging Eq. (120)
and Eq. (121) into Eq. (119), we have

Q(2i+ 2, 2m) =q2m,1q2m−1,1Q(2i, 2m+ 2) + (q2m−1,1q2m,2 + q2m−1,2q2m−2,1)Q(2i, 2m)

+ q2m−1,2q2m−2,2Q(2i, 2m− 2). (122)
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To prove that Eq. (117) holds when k = i+ 1 for all m, we consider two cases, Case 1: m ≤ i+ 1, and Case 2: m > i+ 1.
Notice that by the induction hypothesis, we already know that Eq. (117) holds when k = i for all m.

Case 1. When m ≤ i+ 1, we have m− 1 ≤ i. Thus, by the induction hypothesis for k = i, we have Q(2i, 2m− 2) > 0
(by m− 1 ≤ i), which implies that the third term of the right-hand-side of Eq. (122) is positive. Further, by the induction
hypothesis for k = i, we also know that Q(2i, 2m + 2) ≥ 0 and Q(2i, 2m) ≥ 0 (regardless of the value of m), which
means that the first and the second term of Eq. (122) is non-negative. Thus, by considering all three terms in Eq. (122)
together, we have Q(2i+ 2, 2m) > 0 when m ≤ i+ 1.

Case 2. When m > i+ 1, we have m+ 1 > i, m > i, and m− 1 > i. Thus, by the induction hypothesis for k = i, we
have Q(2i, 2m+ 2) = Q(2i, 2m) = Q(2i, 2m− 2) = 0. Therefore, by Eq. (122), we have Q(2i+ 2, 2m) = 0.

In summary, Eq. (117) holds when k = i + 1 for all m. The mathematical induction is completed and the result of this
lemma follows.

By Lemma 53, for all k ≥ 0, we have∫
Sd−1

1

2π

∞∑
i=0

(2i)!

22i(i!)2

cos2i+2 θd−1

2i+ 1
Ξ2k
0 (ξ)dµ(x)

=
1

2π

∞∑
i=0

(2i)!

22i(i!)2

1

2i+ 1

∫
Sd−1

cos2i+2 θd−1Ξ2k
0 (ξ)dµ(x)

>0.

Thus, by Eq. (116), we know that h(x) 6⊥ Ξl0(x) for all l ∈ {0, 2, 4, · · · }.

K.5. A special case: when d = 2

When d = 2, Sd−1 denotes a unit circle. Therefore, every x corresponds to an angle ϕ ∈ [−π, π] such
that x = [cosϕ sinϕ]T . In this situation, the hyper-spherical harmonics are the well-known Fourier series, i.e.,
1, cos(θ), sin(θ), cos(2θ), sin(2θ), · · · . Thus, we can explicitly calculate all Fourier coefficients of h more easily.

Similarly to Appendix K.1, we first write down the convolution for d = 2, which is also in a simpler form. For any function
fg ∈ F`2 , we have

fg(ϕ) =
1

2π

∫ ϕ+π

ϕ−π

π − |θ − ϕ|
2π

cos(θ − ϕ)g(θ)dθ

=
1

2π

∫ π

−π

π − |θ|
2π

cos θ g(θ + ϕ) dθ (replace θ by θ − ϕ)

=
1

2π

∫ π

−π

π − |θ|
2π

cos θ g(ϕ− θ) dθ (replace θ by −θ).

Define h(θ) := π−|θ|
2π cos θ. We then have

fg(ϕ) =
1

2π
h(ϕ) ~ g(ϕ),

where ~ denotes (continuous) circular convolution. Let cfg (k), ch(k) and cg(k) (where k = · · · ,−1, 0, 1, · · · ) denote the
(complex) Fourier series coefficients for fg(ϕ), h(ϕ), and g(ϕ), correspondingly. Specifically, we have

fg(ϕ) =

∞∑
k=−∞

cfg (k)eikϕ, h(ϕ) =

∞∑
k=−∞

ch(k)eikϕ, g(ϕ) =

∞∑
k=−∞

cg(k)eikϕ.

Thus, we have

cfg (k) = ch(k)cg(k). (123)
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Now we calculate ch(k), i.e., the Fourier decomposition of h(·). We have

ch(k) =
1

2π

∫ π

−π

π − |θ|
2π

cos θ e−ikθdθ

=
1

4π

∫ π

−π

(
1− |θ|

π

)
e−i(k+1)θ + e−i(k−1)θ

2
dθ

= − 1

8π2

∫ π

−π
|θ|
(
e−i(k+1)θ + e−i(k−1)θ

)
dθ +

1

8π

∫ π

−π

(
e−i(k+1)θ + e−i(k−1)θ

)
dθ.

It is easy to verify that ∫
xecxdx = ecx

(
cx− 1

c2

)
, ∀c 6= 0.

Thus, we have

ch(1) = − 1

8π2

∫ π

−π
|θ|
(
e−i2θ + 1

)
dθ +

1

4

= − 1

8π2

(
π2 −

∫ 0

−π
θe−i2θdθ +

∫ π

0

θe−i2θdθ

)
+

1

4

= − 1

8π2

(
π2 +

i2π

−4
+
−i2π
−4

)
+

1

4

= −1

8
+

1

4

=
1

8
.

Similarly, we have

ch(−1) =
1

8
.

Now we consider the situation of n 6= ±1. We have∫ 0

−π
|θ|e−i(k+1)θdθ = −e−i(k+1)θ · −i(k + 1)θ − 1

−(k + 1)2

∣∣∣∣∣
0

−π
= − 1

(k + 1)2
+

1− i(k + 1)π

(k + 1)2
ei(k+1)π,

∫ π

0

|θ|e−i(k+1)θdθ = e−i(k+1)θ · −i(k + 1)θ − 1

−(k + 1)2

∣∣∣∣∣
π

0

= − 1

(k + 1)2
+

1 + i(k + 1)π

(k + 1)2
e−i(k+1)π.

Notice that e−i(k+1)π = e−i(k+1)2πei(k+1)π = ei(k+1)π . Therefore, we have∫ π

−π
|θ|e−i(k+1)θdθ =

2

(k + 1)2

(
ei(k+1)π − 1

)
.

Similarly, we have ∫ π

−π
|θ|e−i(k−1)θdθ =

2

(k − 1)2

(
ei(k−1)π − 1

)
.

In summary, we have

ch(k) =

{
1
8 , k = ±1

− 1
4π2

(
1

(k+1)2 + 1
(k−1)2

) (
ei(k+1)π − 1

)
, otherwise

=


1
8 , k = ±1
1

2π2

(
1

(k+1)2 + 1
(k−1)2

)
, k = 0,±2,±4, · · ·

0, k = ±3,±5, · · ·
.
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By Eq. (123), we thus have

cfg (k) =


1
8cg(k), k = ±1
1

2π2

(
1

(k+1)2 + 1
(k−1)2

)
cg(k), k = 0,±2,±4, · · ·

0, k = ±3,±5, · · ·
.

In other words, when d = 2, functions in F`2 can only contain frequencies 0, θ, 2θ, 4θ, 6θ, · · · , and cannot contain other
frequencies 3θ, 5θ, 7θ, · · · .

K.6. Details of Remark 2

As we discussed in Remark 2, a ReLU activation function with bias that operates on x̃ ∈ Rd−1, ‖x̃‖22 = d−1
d can be

equivalently viewed as one without bias that operates on x ∈ Sd−1, but with the last element of x fixed at 1/
√
d. Note

that by fixing the last element of x ∈ Sd−1 at a constant 1√
d

, we essentially consider ground-truth functions with a much

smaller domain D :=
{
x =

[
x̃

1/
√
d

] ∣∣ x̃ ∈ Rd−1, ‖x̃‖22 = d−1
d

}
⊂ Sd−1. Correspondingly, define a vector ã ∈ Rd−1 and

a0 ∈ R such that a =
[

ã
a0

]
∈ Rd. We claim that for any a ∈ Rd and for all non-negative integer l, a ground-truth function

f(x) = (xTa)l,x ∈ D must be learnable. In other words, all polynomials can be learned in the constrained domain D.
Towards this end, recall that we have already shown that polynomials (of x ∈ Sd−1) to the power of l = 0, 1, 2, 4, 6, · · · are
learnable. Thus, it suffices to prove that polynomials of x ∈ D to the power of l = 3, 5, 7, · · · can be represented by a finite
sum of those to the power of l = 0, 1, 2, 4, 6, · · · . The idea is to utilize the fact that the binomial expansion of (x̃T ã+ a0√

d
)l

contains (x̃T ã)k for all k = 0, 1, 2, 3, · · · , l. Here we give an example for writing (xTa)3 as a linear combination of
learnable components. Other values of l = 5, 7, 9, · · · can be proved in a similar way. Notice that

(x̃T ã)3 =
1

4

(
(x̃T ã+ 1)4 − (x̃T ã)4 − 6(x̃T ã)2 − 4(x̃T ã)2 − 1

)
(by the binomial expansion of (x̃T ã+ 1)4)

=
1

4

((
xT
[
ã√
d

])4

−
(
xT
[
ã
0

])4

− 6

(
xT
[
ã
0

])2

− 4

(
xT
[
ã
0

])
− 1

)
. (124)

Thus, for all x =
[

x̃
1/
√
d

]
and a =

[
ã
a0

]
, we have

(xTa)3 =

(
x̃T ã+

a0√
d

)3

=(x̃T ã)3 + 3

(
a0√
d

)
(x̃T ã)2 + 3

(
a0√
d

)2

(x̃T ã) +

(
a0√
d

)3

=(x̃T ã)3 + 3

(
a0√
d

)(
xT
[
ã
0

])2

+ 3

(
a0√
d

)2(
xT
[
ã
0

])
+

(
a0√
d

)3

=
1

4

(
xT
[
ã√
d

])4

− 1

4

(
xT
[
ã
0

])4

+

(
3

(
a0√
d

)
− 3

2

)(
xT
[
ã
0

])2

+

(
3

(
a0√
d

)2

− 1

)(
xT
[
ã
0

])
+

((
a0√
d

)3

− 1

4

)
(by Eq. (124)),

which is a sum of 5 learnable components (corresponding to the polynomials with power of 4, 4, 2, 1, and 0, respectively).

L. Discussion when g is a δ-function (‖g‖∞ =∞)
We now discuss what happens to the conclusion of Theorem 1 if g contains a δ-function, in which case ‖g‖∞ = ∞. In
Eq. (10) of Theorem 1, only Term 1 and Term 4 (come from Proposition 5) will be affected when ‖g‖∞ = ∞. That is
because only Proposition 5 requires ‖g‖∞ < ∞ during the proof of Theorem 1. To accommodate the situation when
g contains a δ-function (‖g‖∞ = ∞), we need a new version of Proposition 5. In other words, we need to know the
performance of the overfitted NTK solution in learning the pseudo ground-truth when ‖g‖∞ =∞.

Without loss of generality, we consider the situation that g = δz0 . We have the following proposition.
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Figure 7. The curves of the model error ‖(P− I)∆V∗‖2 for learning the pseudo ground-truth fgV0
with respect to n for different g and

different d, where p = 20000, and ε = 0. Every curve is the average of 10 random simulation runs.

Proposition 54. If the ground-truth function is f = fgV0
in Definition 2 with g = δz0 and ε = 0, for any x ∈ Sd−1 and

q ∈ (1, ∞), we have

Pr
X,V0

{
|f̂ `2(x)− f(x)| ≤

(√
3

4
+
π2

2

)(
(d− 1)B(

d− 1

2
,

1

2
)

) 1
2(d−1)

n−
1

2(d−1)
(1− 1

q )

}

≥1− exp
(
−n

1
q

)
− 2 exp

(
− p

24

(
(d− 1)B(

d− 1

2
,

1

2
)

) 1
d−1

n−
1
d−1 (1− 1

q )

)
,

when

n ≥
(

(d− 1)B(
d− 1

2
,

1

2
)

) q
q−1

, i.e.,
(

(d− 1)B(
d− 1

2
,

1

2
)

)
n−(1− 1

q ) ≤ 1. (125)

(Estimates of B(d−1
2 , 1

2 ) can be found in Lemma 32.)

Proposition 54 implies that when n is large and p is much larger than n−
1

2(d−1)
(1− 1

q ), the test error between the pseudo
ground-truth and learned result decreases with n at the speed O(n−

1
2(d−1)

(1− 1
q )). Further, if we let q be large, then the

decreasing speed with n is almost O(n−
1

2(d−1) ). When d ≥ 3, this speed is slower than O(n−
1
2 ) described in Proposition 5

(i.e., Term 1 in Eq. (10) of Theorem 1). When d = 2, the decreasing speed with respect to n isO(n−
1
2 ) for both Proposition 5

and Proposition 54. Nonetheless, Proposition 54 implies that the ground-truth functions fg ∈ F`2 is still learnable even
when g is a δ-function (i.e., ‖g‖∞ =∞), but the test error potentially suffers a slower convergence speed with respect to n
when d is large.

In Fig. 7, we plot the curves of the model error ‖(P− I)∆V∗‖2 for learning the pseudo ground-truth fgV0
with respect to n

when g = δz0 (two blue curves) and when g is constant (two red curves). We plot both the case when d = 2 (two solid
curves) and the case when d = 10 (two dashed curves). By Lemma 44, the model error ‖(P− I)∆V∗‖2 can represent the
generalization performance for learning the pseudo ground-truth fgV0

when there is no noise. In Fig. 7, we can see that those
two curves corresponding to d = 10 have different slopes and the other two curves corresponding to d = 2 have a similar
slope, which confirms our prediction in the earlier paragraph (i.e., when d = 2 the test error will decay at the same speed
regardless of whether g contains a δ-function or not, but when d > 2 the test error will decay more slowly when g contains a
δ-function).

L.1. Proof of Proposition 54

We first show two useful lemmas.
Lemma 55. For any q ∈ (1,∞), if b ∈ [n−(1−1/q), 1], then

(1− b)n ≤ exp
(
−n

1
q

)
.
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Proof. By Lemma 29, we have

e−b ≥ 1− b

=⇒ e−1 ≥ (1− b) 1
b

=⇒ exp
(
−n

1
q

)
≥ (1− b)n

1
q /b

=⇒ exp
(
−n

1
q

)
≥ (1− b)n because b ∈ [n−(1−1/q), 1].

Lemma 56. Consider x1 ∈ Sd−1 where ϕ = arccos(xT1 z0). For any θ ∈ [ϕ, π], there must exist x2 ∈ Sd−1 such that
arccos(xT2 z0) = θ and

CV0
−x1,z0

⊆ CV0
−x2,z0

, CV0
x1,−z0

⊆ CV0
x2,−z0

. (126)

We will explain the intuition of Lemma 56 in Remark 8 right after we use the lemma. We put the proof of Lemma 56 in
Section L.2.

Now we are ready to prove Proposition 54. Recall ∆V∗ defined in Eq. (84). By Eq. (1) and g = δz0
, we have

∆V∗ =
(hV0,z0)T

p
.

Define

i∗ = arg min
i∈{1,2,··· ,n}

‖Xi − z0‖2,

θ∗ = arccos(XT
i∗z0).

Thus, we have

‖Xi∗ − z0‖2 =
√

2− 2 cos θ∗ (by the law of cosines)

=2 sin
θ∗

2
(by the half angle identity)

≤θ∗ (by Lemma 41). (127)

(Graphically, Eq. (127) means that a chord is not longer than the corresponding arc.)

As we discussed in the proof sketch of Proposition 5, we now construct the vector a such that HTa is close to ∆V∗. Define
a ∈ Rn whose i-th element is

ai =

{
1/p, if i = i∗

0, if i ∈ {1, 2, · · · , n} \ {i∗}
.

Thus, we have HTa = (hV0,Xi∗ )T /p. Therefore, we have

‖HTa−∆V∗‖22 =

p∑
j=1

‖(HTa)[j]−∆V∗[j]‖22

=
1

p2

p∑
j=1

(
1{XT

i∗V0[j]>0,zT0 V0[j]>0}‖Xi∗ − z0‖22 + 1{(XT
i∗V0[j])(zT0 V0[j])<0}

)
≤ 1

p2

(
p‖Xi∗ − z0‖22 + |CV0

−Xi∗ ,z0
|+ |CV0

Xi∗ ,−z0
|
)

(by Eq. (6))

≤ 1

p2

(
p · (θ∗)2 + |CV0

−Xi∗ ,z0
|+ |CV0

Xi∗ ,−z0
|
)

(by Eq. (127)).
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Thus, we have

√
p‖Ha−∆V∗‖2 ≤

√
(θ∗)2 +

|CV0

−Xi∗ ,z0
|+ |CV0

Xi∗ ,−z0
|

p

≤

√
πθ∗ +

|CV0

−Xi∗ ,z0
|+ |CV0

Xi∗ ,−z0
|

p
(because θ∗ ≤ π). (128)

Remark 7. We give a geometric interpretation of Eq. (128) when d = 2 by Fig. 4, where
−→
OA denotes z0,

−→
OB denotes Xi∗ .

Then, |CV0

−Xi∗ ,z0
|+ |CV0

Xi∗ ,−z0
| corresponds to the number of V0[j]’s whose direction is in the arc

_

CE or the arc
_

FD, and θ∗

corresponds to the angle ∠AOB. Intuitively, when n increases, Xi∗ and z0 get closer, so θ∗ becomes smaller. At the same

time, both the arc
_

CE and the arc
_

FD become shorter. Consequently, the value of Eq. (128) decreases as n increases. In the
rest of the proof, we will quantitatively estimate the above relationship.

Recall Cd in Eq. (60). Define

θ :=
π

2

(
2
√

2(d− 1)

Cd

) 1
d−1

n−
1
d−1 (1− 1

q ) ∈
[
0,
π

2

]
(by Eq. (125)). (129)

For any q ∈ (1,∞), we define two events:

J1 :=

{
|CV0

−Xi∗ ,z0
|+ |CV0

Xi∗ ,−z0
|

p
≤ 3θ

2π

}
,

J2 := {θ∗ ≤ θ} .

If both J1 and J2 happen, by Eq. (128), we must then have

√
p‖Ha−∆V∗‖2 ≤

(√
3

2π
+ π

)
·
√
θ

=

(√
3

4
+
π2

2

)(
2
√

2(d− 1)

Cd

) 1
2(d−1)

n−
1

2(d−1)
(1− 1

q ).

Thus, by Lemma 44 and Lemma 45, if f = fgV0
and both J1 and J2 happen, then for any x ∈ Sd−1, we must have

|f̂ `2(x)− f(x)| ≤

(√
3

4
+
π2

2

)(
2
√

2(d− 1)

Cd

) 1
2(d−1)

n−
1

2(d−1)
(1− 1

q ). (130)

It then only remains to estimate the probability of J1 ∩ J2.

Step 1: Estimate the probability of J1 conditional on J2.

When J2 happens, we have θ∗ < θ. By Lemma 56, we can find x ∈ Sd−1 such that the angle between x and z0 is exactly
θ and

|CV0

−Xi∗ ,z0
|+ |CV0

Xi∗ ,−z0
|

p
≤
|CV0
−x,z0

|+ |CV0
x,−z0

|
p

. (131)

Remark 8. We give a geometric interpretation of Eq. (131) (i.e., Lemma 56) when d = 2 by Fig. 4. Recall in Remark 7 that,
if we take

−→
OA as z0 and

−→
OB as Xi∗ , then |CV0

−Xi∗ ,z0
|+ |CV0

Xi∗ ,−z0
| corresponds to the number of V0[j]’s whose direction is

in the arc
_

CE or the arc
_

FD. If we fix
−→
OA (i.e., z0) and increase the angle ∠AOB (corresponding to θ∗), then both the arc

_

CE and the arc
_

FD will become longer. In other words, if we replace Xi by x such that the angle θ∗ (between z0 and Xi)
increases to the angle θ (between z0 and x), then CV0

−Xi∗ ,z0
⊆ CV0
−x,z0

and CV0

Xi∗ ,−z0
⊆ CV0

x,−z0
, and thus Eq. (131) follows.
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We next estimate the probability that the right-hand-side of Eq. (131) is greater than 3θ
2π . By Eq. (6), we have

|CV0
−x,z0

|+ |CV0
x,−z0

|
p

=
1

p

p∑
j=1

1{−xTV0[j]>0,zT0 V0[j]>0 OR xTV0[j]>0,−zT0 V0[j]<0}︸ ︷︷ ︸
Term A

. (132)

Notice that the angle between −x and z0 is π − θ, and the angle between x and −z0 is also π − θ. By Lemma 17 and
Assumption 1, we know that the Term A in Eq. (132) follows Bernoulli distribution with the probability 2 · π−(π−θ)

2π = θ
π .

By letting δ = 1/2, a = p, b = θ
π in Lemma 14, we have

Pr
V0

{∣∣∣∣|CV0
−x,z0

|+ |CV0
x,−z0

| − pθ

π

∣∣∣∣ > pθ

2π

}
≤ 2 exp

(
− pθ

12π

)
.

By Eq. (131), we then have

Pr
V0

[J c1 | J2] ≤ Pr
V0

{
|CV0
−x,z0

|+ |CV0
x,−z0

|
p

>
3θ

2π

}
≤ 2 exp

(
− pθ

12π

)
.

Step 2: Estimate the probability of J2.

By Lemma 8 and Assumption 1, for any i ∈ {1, 2, · · · , n} and because θ ∈ [0, π/2], we have

Pr
X

{
arccos(XT

i z0) > θ
}

=1− 1

2
Isin2 θ

(
d− 1

2
,

1

2

)
≤1− Cd

2
√

2(d− 1)
sind−1 θ (by Lemma 35).

Note that since PrX
{

arccos(XT
i z0) > θ

}
≥ 0, we must have

Cd

2
√

2(d− 1)
sind−1 θ ≤ 1. (133)

Further, because all Xi’s are i.i.d. for i ∈ {1, 2, · · · , n}, we have

Pr
X
{θ∗ > θ} = Pr

X

{
min

i∈{1,2,··· ,n}
arccos(XT

i z0) > θ

}
≤
(

1− Cd

2
√

2(d− 1)
sind−1 θ

)n
. (134)

By Eq. (129) and Lemma 41, we then have

sin θ ≥

(
2
√

2(d− 1)

Cd

) 1
d−1

n−
1
d−1 (1− 1

q ),

i.e.,

Cd

2
√

2(d− 1)
sind−1 θ ≥ n−(1−1/q).

Thus, by Eq. (133), Eq. (134), and Lemma 55, we have

Pr
X

[J c2 ] = Pr
X
{θ∗ > θ} ≤ exp

(
−n

1
q

)
.
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Combining the results of Step 1 and Step 2, we thus have

Pr
X,V0

[J1 ∩ J2] = Pr
X,V0

[J1 | J2] · Pr
X,V0

[J2]

= Pr
V0

[J1 | J2] · Pr
X

[J2] (because of V0 and X are independent)

≥
(

1− 2 exp

(
− pθ

12π

))(
1− exp

(
−n

1
q

))
≥1− exp

(
−n

1
q

)
− 2 exp

(
− pθ

12π

)

=1− exp
(
−n

1
q

)
− 2 exp

− p

24

(
2
√

2(d− 1)

Cd

) 1
d−1

n−
1
d−1 (1− 1

q )

 (by Eq. (130)).

By Eq. (60), the conclusion of Proposition 54 thus follows.

L.2. Proof of Lemma 56

Proof. When x1 = z0, the conclusion of this lemma trivially holds because CV0
−x1,z0

= CV0
x1,−z0

= ∅ (because −xTV0[j]

and zT0 V0[j] cannot be both positive or negative at the same time when x1 = z0.). It remains to consider x1 6= z0. Define

z0,⊥ :=
x1 − (xT1 z0)z0

‖x1 − (xT1 z0)z0‖2
.

Thus, we have zT0,⊥z0 = 0 and ‖z0,⊥‖2 = 1, i.e., z0 and z0,⊥ are orthonormal basis vectors on the 2D plane L spanned by
x1 and z0. Thus, we can represent x1 as

x1 = cosϕ · z0 + sinϕ · z0,⊥ ∈ L.

For any θ ∈ [ϕ, π], we construct x2 as

x2 := cos θ · z0 + sin θ · z0,⊥ ∈ L.

In order to show CV0
−x1,z0

⊆ CV0
−x2,z0

, we only need to prove any j ∈ CV0
−x1,z0

must in CV0
−x2,z0

. For any V0[j], j =

1, 2, · · · , p, define the angle θj ∈ [0, 2π] as the angle between z0 and V0[j]’s projected component vj on L10, i.e.,

vj = cos θj · z0 + sin θj · z0,⊥ ∈ L.

By the proof of Lemma 17, we know that j ∈ CV0
−x1,z0

if and only if θj ∈ (−π2 ,
π
2 ) ∩ (π + ϕ− π

2 , π + ϕ+ π
2 ) (mod 2π).

Similarly, j ∈ CV0
−x2,z0

if and only if θj ∈ (−π2 ,
π
2 )∩ (π + θ− π

2 , π + θ+ π
2 ) (mod 2π). Because ϕ ∈ [0, π] and θ ∈ [ϕ, π],

we have

(−π
2
,
π

2
) ∩ (π + ϕ− π

2
, π + ϕ+

π

2
) ⊆ (−π

2
,
π

2
) ∩ (π + θ − π

2
, π + θ +

π

2
) (mod 2π).

Thus, whenever j ∈ CV0
−x1,z0

, we must have j ∈ CV0
−x2,z0

. Therefore, we conclude that CV0
−x1,z0

∈ CV0
−x2,z0

. Using a similar
method, we can also show that CV0

x1,−z0
⊆ CV0

x2,−z0
. The result of this lemma thus follows.

10Note that such an angle θj is well defined as long as V0[j] is not perpendicular to L. The reason that we do not need to worry about
those j’s such that V0[j] ⊥ L is as follows. When V0[j] ⊥ L, we then have xT1 V0[j] = xT2 V0[j] = zT0 V0[j] = 0. Thus, those j’s do
not belong to any set CV0

−x1,z0
, CV0
−x2,z0

, CV0
x1,−z0

, or CV0
x2,−z0

in Eq. (126).


