
On Distributed Computation Rate Optimization for
Deploying Cloud Computing Programming Frameworks

Jia Liu† Cathy H. Xia‡ Ness B. Shroff†∗ Xiaodong Zhang∗
†Dept. of Electrical and Computer Engineering

‡Dept. of Integrated Systems Engineering
∗Dept. of Computer Science and Engineering

The Ohio State University, Columbus, OH 43210, U.S.A.
†{liu, shroff}@ece.osu.edu, ‡xia.52@osu.edu, ∗zhang@cse.ohio-state.edu

ABSTRACT

With the rapidly growing challenges of big data analytics,
the need for efficient and distributed algorithms to optimize
cloud computing performances is unprecedentedly high. In
this paper, we consider how to optimally deploy a cloud
computing programming framework (e.g., MapReduce and
Dryad) over a given underlying network hardware infras-
tructure to maximize the end-to-end computation rate and
minimize the overall computation and communication costs.
The main contributions in this paper are three-fold: i) we
develop a new network flow model with a generalized flow-
conservation law to enable a systematic design of distributed
algorithms for computation rate utility maximization prob-
lems (CRUM) in cloud computing; ii) based on the network
flow model, we reveal key separable properties of the dual
functions of Problem CRUM, which further lead to a dis-
tributed algorithm design; and iii) we offer important net-
working insights and meaningful economic interpretations
for the proposed algorithm and point out their connections
to and distinctions from distributed algorithms design in tra-
ditional data communications networks. This paper serves
as an important first step towards the development of a the-
oretical foundation for distributed computation analytics in
cloud computing.

1. INTRODUCTION
With the rapid advances in information technologies, re-

cent years have witnessed the growing challenges in stor-
ing, processing, and analyzing large data sets in many ar-
eas, such as social networks web-services, genomic research,
network traffic management, complex physics simulations,
environmental research, just to name a few [1, 2]. Tradi-
tional centralized relational database management systems,
first developed more than four decades earlier, cannot han-
dle the unstructured and dynamic nature of the large data
sets nowadays and the performance of relational database
management systems scales poorly as the data sets’ sizes in-
crease. As a result, distributed cloud computing platforms
that have a large number of networked computing nodes
with massively parallel structures have emerged as an at-
tractive solution for handling big data analytics.
Among cloud computing programming frameworks for big

data analytics, perhaps the most famous example is the so-

Copyright is held by author/owner(s).

called MapReduce [3], designed initially by Google for scan-
ning large amounts of textual data to create web search in-
dexes for the entire Internet. Another notable example is
Dryad [4], which is Microsoft’s counterpart to MapReduce.
Dryad has been seen by some researchers as an approach
to improve the pitfalls of the MapReduce framework [5] in
that: i) it allows for general styles of computation (by us-
ing directed-acyclic graph (DAG)) that are much more than
just “map” and “reduce” phases; and ii) it allows commu-
nications between stages to happen over more than just
files stored in distributed file systems. Furthermore, re-
cent research showed that MapReduce and Dryad can be
mathematically unified under a well-defined matrix-based
model [6].

However, as promising as they are, the actual deploy-
ments of cloud computing frameworks such as MapReduce
and Dryad remain in their infancy and there are many tech-
nical issues to be resolved. For example, in the most pop-
ular MapReduce implementation known as “the Hadoop
project” [7], there is only one active job tracker to schedule
and monitor all “map” and “reduce” tasks. This not only
poses the single-point-of-failure vulnerability, but also has a
poor scalability that defeats the whole purpose of distribut-
edness in cloud computing. To date, although there exist
some heuristic design rule-of-thumbs (e.g., moving compu-
tation nodes closer to their data sources to avoid unnec-
essary communications), little effort has been made to es-
tablish a mathematical foundation to systematically develop
distributed algorithms and control schemes that optimize the
deployments and performances of cloud computing program-
ming frameworks. Hence, the goal of our paper is to take
the first step to fill this gap.

In this paper, we study how to optimally decompose and
allocate the subcomputation tasks in a cloud computing
programming framework over an underlying hardware in-
frastructure, such that the end-to-end computation rate can
be maximized and the overall computation and communica-
tion costs can be minimized. Further, algorithms for solv-
ing this problem need to be implemented in a distributed
fashion. Toward this end, motivated by Dryad (which also
subsumes MapReduce as pointed out earlier), we model a
cloud computing programming framework as computing a
set of generic functions {Θk} that share a common set of dis-
tributed incoming data sources, where the data dependency
can be represented by a multiple-input multiple-output di-
rected acyclic graph (MIMO-DAG), as shown in the illus-

Performance Evaluation Review, Vol. 40, No. 4, March 2013 63

χ1 + χ2

χ1 χ2 χ3 χ4

g11

g3 g4

e9
e10

e11

e2 e6

e7

λe1

λ λ
e8 λ

λ

λ

λ

e4

e3
λ

λ e5λ
λ

e12 e13λλ

Θ1 = (χ1 + χ2)(χ2 + χ3) Θ2 = χ1 + 3χ2 + χ3 + χ4

g1

g10

g2

(a) An illustrative example of a cloud computing
programming framework

n1 n2 n3 n4

n5 n6 n7 n8

n9 n10 n11 n12

n13 n14 n15 n16

(b) A 16-node 2-D torus interconnection
topology.

Figure 1: An illustrative example of deploying a
cloud computing programming framework over an
underlying network infrastructure: (a) Computing
functions Θ1 and Θ2 at computation rate λ; the
data dependencies are represented by a MIMO-
DAG structure; (b) An illustration of a 2-D torus in-
terconnection topology commonly seen in large data
centers or supercomputers.

trated example in Fig. 1(a).1 On the other hand, the under-
lying networked system (upon which any cloud computing
framework needs to be deployed) can also be represented by
a graph. For example, Fig. 1(b) illustrates a 2-D torus inter-
connection topology commonly found in large data centers
or supercomputers that support cloud computing jobs. As
will be shown later, to capture the key features of cloud com-
puting programming frameworks and incorporate computa-
tion and communication constraints of the underlying net-
works, we develop a generic mathematical modeling frame-
work, based on which we formulate the computation rate
utility maximization problem (CRUM). Our main results
and contributions in this paper are three-fold:

• By accounting for in-network data aggregation flows, we
show that one can construct a new network flow model
with a generalized flow-conservation law to address both

1The addition and multiplication operations in Fig. 1(a) are
only for illustrative purposes. Each vertex could be any
general data processing operations.

communication limits and computation costs in Problem
CRUM. We point out that this utility framework and the
associated generalized flow-conservation law are impor-
tant in that they shares the same separable structure as
in the classical network utility maximization problems in
data communication networks [8, 9]. Thus, they enable
the design of polynomial-time distributed algorithms for
cloud computing by drawing experiences gained from the
classical network utility maximization theory.

• By appropriately reformulating Problem CRUM in the
Lagrangian dual domain, we reveal key separable proper-
ties of the dual function of Problem CRUM. These key
structural properties enable us to obtain closed-form ex-
pressions for the primal and dual update schemes, which
further leads to a fully distributed algorithmic implemen-
tation for big data analytics in cloud computing.

• We offer important networking insights and economics in-
terpretations for the proposed distributed algorithm. We
also point out the connections to and distinctions from
the dual decomposition based distributed algorithms in
the classical network utility maximization theory for data
communications networks, thus further advancing our un-
derstanding of distributed approaches in cloud computing
network optimization theory. We also provide numerical
examples to show the efficacy of our proposed distributed
algorithm.

To our knowledge, this paper is among the first that treat
the design of distributed algorithms in MIMO-DAG based
cloud computing frameworks (e.g., Dryad) via a rigorous
theoretical network-flow optimization approach. The re-
mainder of this paper is organized as follows. In Section 2,
we review some related work in the literature, putting our
work in a comparative perspective. Section 3 introduces the
new network flowmodel with a generalized flow-conservation
law for deploying cloud computing frameworks. Section 4
develops the principal components of our proposed distributed
algorithm for solving Problem CRUM. Section 5 provides
numerical results and Section 6 concludes this paper.

2. RELATED WORK
Our work is closely related to i) distributed cross-layer

utility maximization theory for data communication net-
works (see, e.g., [10] for an overview) and ii) in-network
computation techniques. In the in-network computation lit-
erature, our work is most related to [11], where Shah et al.
developed a network flow model for the in-network compu-
tation in sensor network applications. The model in [11]
extends the conventional flow-conservation law in the net-
work flow literature [12] to in-network computation appli-
cations. However, the model in [11] is restricted to simple
tree topologies that are used for data aggregation in sen-
sor networks. In contrast, our network flow model works
with generic MIMO-DAG, which are the most appropriate
models for complex cloud computing programming frame-
works, such as Dryad and MapReduce. Also, in our network
model, we incorporate general network utility and commu-
nication/computation cost functions, which were not con-
sidered in [11].

Our network model also shares some similarities with the
load shedding and distributed resource control problem of
stream processing networks (e.g., [13–15]). But our work

64 Performance Evaluation Review, Vol. 40, No. 4, March 2013

differs from these works in the following two important as-
pects: First, although the issue of flow imbalance in stream
processing networks was also pointed out in [14,15], the flow
imbalance in [14,15] was caused by different flow production
and consumption rates between upstream and downstream
nodes. In contrast, the flow imbalance in this work is due
to subcomputation in clouds, which is a fundamentally dif-
ferent cause. Second, in [13], the task-to-server assignment
relationship is assumed to be given and the authors only
studied the end-to-end utility rate maximization. In con-
trast, the task-to-sever assignment relationship is also part
of the overall optimization in our work. Our network flow
model also has connections with the graph embedding prob-
lems in graph theory (e.g., [16–18]). But these problems
differ from ours in that their embedding objectives were to
minimize some graph-theoretic performance metrics, such as
dilation (i.e., the maximum distance in the network between
adjacent tree nodes).

3. NETWORK MODEL AND PROBLEM FOR-

MULATION
In this section, we first present the modeling details of

cloud computing programming frameworks and the under-
lying network infrastructure in Section 3.1. Then, the con-
cept of mapping between a programming framework and
network infrastructure is introduced in Section 3.2. Next,
we develop a new network flow model with a generalized
flow-conservation law in Section 3.3. Finally, based on the
network flow model, we formulate the computation rate op-
timization problem in Section 3.4.

3.1 Modeling Cloud Computing Frameworks
and Network Infrastructure

As mentioned earlier, we model a cloud computing pro-
gramming framework by a MIMO-DAG. Here, we denote a
MIMO-DAG by D = {V, E}, where V and E represent the
sets of vertices and edges, respectively, with |V| = V and
|E| = E. We note that this MIMO-DAG structure captures
the parallel processing and multi-stage aggregation nature
of typical cloud computing programming frameworks, such
as Dryad or multiple concatenations of Map/Reduce.
We suppose that there are S vertices of in-degree-zero in

D, corresponding to the S distributed input data sources.
Without loss of generality (w.l.o.g), we label these source
vertices as g1, . . . , gS . For modeling convenience, there are
K vertices in D having in-degree-one and out-degree-zero,
corresponding to the virtual sinks that absorb the final out-
put of Θk, k = 1, . . . ,K. Again, w.l.o.g, we label such sinks
as gV −K+1, . . . , gV . The remaining nodes gS+1, . . . , gV −1

perform the computations prescribed by Θ. The input data
stream at each source gi is denoted as {χi(k)}∞k=0, where
χi(k) represents the i-th input element at time instant k.
The infinite input data streams could represent, for exam-
ple, the “big data” phenomenon exemplified in the large data
sets processing in by the MapReduce or Dryad frameworks
in cloud computing. In this paper, all sources are assumed
to be synchronized. We note that the synchronization in
cloud computing systems is also an actively research topic
(see, e.g., [19] and references therein) and its details are be-
yond the scope of this paper. For simplicity, we assume that
all input data streams and all directed edges in the MIMO-
DAG structure have a homogeneous input rate λ, which can

also be thought of as the end-to-end computation rate of
{Θk}. We remark that the cases with heterogeneous rates
(due to compression or expansion processing) can be exer-
cised similarly by introducing coefficients in front of the data
rates [14] in our utility maximization formulation described
later. One can further transform such cases into a homoge-
neous case using modeling techniques in [13] by changing the
measure and absorbing the coefficient into the resource us-
age parameters. Hence, this homogeneous rate assumption
does not lose any generality.

We let h(e) and t(e) denote the head and tail vertices of

each directed edge e in E , respectively. We let S � {e ∈
E|h(e) ∈ {g1, . . . , gS}} be the set of all edges originating
from the sources. We note that |S| ≥ S in general. Like-

wise, we let K � {e ∈ E|t(e) ∈ {gV −K+1, . . . , gV }} denote
the set of edges terminated at the sinks. Note that, since
each sink edge represents a unique output (see Fig. 1(a)),
we have |K| = K. W.l.o.g, we label the edges in E in
such a way that the first |S| edges e1, . . . , e|S| and the last
K edges eE−K+1, . . . , eE are the source and sink edges, re-
spectively. In Fig. 1(a), for example, S = {e1, . . . , e6} and
K = {e12, e13}.
We point out that each directed edge in D can be viewed

as a subcomputation task. For example, in Fig. 1(a), edge e7

corresponds to the computation result χ1 + χ2. Therefore,
the terms “edge” and “subcomputation” are sometimes used
interchangeably in this paper. It should be noted, however,
that a subcomputation does not necessarily correspond to a
unique edge. For example, in Fig. 1(a), edges e7 and e8 all
carry the same subcomputation χ1+χ2. The set of successor
edges of e in D is defined as Ψ(e) � {e′ ∈ E|t(e′) = h(e)}.
For example, in Fig. 1(a), the successor edges of e2 are e7 and
e8. Note that from the structure of D, we have Ψ(ei) = ∅

for all ei ∈ K. Finally, we remark that the MIMO-DAG
structure degenerates into a tree topology if it has a single
sink and each edge only has one successor edge. Therefore,
the tree-structure model considered in [11] can be viewed as
a special case of our model.

On the other hand, in cloud computing environments (e.g.,
data centers or supercomputers), we have a networked sys-
tem as the physical computing and communication infras-
tructure (i.e., a cloud computing hardware platform). Usu-
ally, the hardware platform also exhibits certain carefully
constructed parallel structures. For example, Fig. 1(b) il-
lustrates a 2-D torus interconnection topology that is com-
monly seen in cloud hardware platforms. Advanced super-
computers nowadays could employ torus interconnections
with even higher dimensions (e.g., 5-D torus in IBM Bue
Gene/Q architecture). But we point out that these special
topology properties are not essential to our network models
and our distributed algorithm design, both of which apply
to general interconnection topologies. In this paper, we also
model the underlying cloud computing hardware platform
by a graph G = {N ,L}, where N and L are the sets of
nodes and links with |N | = N and |L| = L, respectively.
Depending on the size and scale of the hardware system,
each node in N could represent, e.g., a CPU core, a node
card, or even a computer rack. Each link in L represents
the communication connection between the nodes. It could
represent a local high-speed bus if the nodes are co-located
on the same card or a fiber link if the nodes are located at
different racks.

As mentioned earlier, to avoid unnecessary data commu-

Performance Evaluation Review, Vol. 40, No. 4, March 2013 65

nications in cloud computing models (such as Map/Reduce
and Dryad), it is highly desirable to allocate subcomputa-
tion tasks involving input data sources and outputs at their
physical locations. Therefore, w.l.o.g, we label the nodes
of N as n1, . . . , nN in such a way that the first S nodes
n1, . . . , nS correspond to the physical locations of the S data
sources of D.
3.2 Mapping a Cloud Computing Framework

onto a Network Infrastructure
Clearly, deploying a given cloud computing framework on

a cloud computing hardware platform amounts to mapping
all edges in D onto G in an appropriate fashion. As in stan-
dard graph theory terms, we define a path P as a sequence
of nodes in N such that every two adjacent nodes nk and nl

in P satisfy (nk, nl) ∈ L. The first and the last nodes in P
are called the start and end nodes and are denoted as α(P)
and β(P), respectively. In the extreme case, P could contain
only one node, say nk. In this case, α(P) = β(P) = nk and
the link (nk, nk) degenerates into a self-loop. Here, if an edge
is mapped to a path P , it means that the data are trans-
mitted from α(P) via the specified links to β(P) and then
the corresponding subcomputation is performed at β(P). In
the special case, if an edge is mapped to a self-loop, then
the corresponding subcomputation task is performed locally
and no communication is needed.
We denote the set of all paths in G as P. A valid mapping

of D onto G is defined as follows:

Definition 1. A mapping M : E → P is valid if: (1)
α(M(ei)) = nk if ei ∈ S and h(ei) = gk, k = 1, . . . , S;
(2) β(M(ei)) = nk if ei ∈ K and nk is the physical output
location of ei; and (3) α(M(ej)) = β(M(ei)) if ej ∈ Ψ(ei).

In Definition 1, conditions (1) and (2) imply that the source
and the sink nodes in D have to match to their physical
locations in the underlying network, and condition (3) rep-
resents that the logical successor relationships of the edges
in D need to be respected after the mapping.
In general, there are many different ways to map D onto

G. For example, it is not difficult to see that Figs. 2(a)
and 2(b) illustrate two valid mappings of the MIMO-DAG
structure in Fig. 1(a) onto the network in Fig. 1(b). Note
that in a valid mapping, the node sequence corresponding
to an edge in D could consist of multiple connected links
in G. For example, in Figure 2(b), edge e8 consists of links
(n5, n9), (n9, n10), and (n10, n11).
We note that each mapping may use a different computa-

tion rate, as shown in Figs. 2(a) and 2(b). For example, in
Fig. 2(a), the label “ei : 2” represents that the computation
rate of each edge ei is 2 in this mapping. Further, a time-
sharing among valid mappings also yields a valid mapping.
For instance, Fig. 3 shows a time-sharing between the two
mappings in Figs. 2(a) and 2(b), each accounting for 50% of
time. It is not difficult to see that the computation rate of
this time-sharing mapping is 0.5× 2 + 0.5× 3 = 2.5.

3.3 A Network Flow Model with a Generalized
Flow-Conservation Law

It can be seen from the above discussions that the com-
putation rate region of a cloud computing framework over a
given network infrastructure can be exhausted by all time-
sharing strategies among all possible valid mappings. As
a result, any performance metrics related to the compu-

e1:2

e2:2

e5:2

e6:2

e3:2

e4:2

e7:2

e8:2

e9:2 e10:2

e11:2

e12:2

e13:2

n2

n5 n8

n9 n10 n12

n13 n14 n15 n16

n1

n6 n7

n11

n3 n4

(a) Mapping 1 with computation rate
λ = 2.

e1:3 e2:3 e3:3

e4:3

e5:3 e6:3

e7:3

e9:3

e8:3

e10:3

e11:3

e12:3

n1 n2 n3 n4

n5 n6 n7 n8

n9 n10 n12

n14 n16n15

e13:3

n11

n13

(b) Mapping 2 with computation rate
λ = 3.

Figure 2: Two valid mappings of the MIMO-DAG
structure in Fig. 1(a) onto the network in Fig. 1(b).
Each mapping has a different computation rate.

tation rate can be optimized by determining an optimal
time-sharing strategy. However, since the total number of
valid mappings is exponential in N , finding an optimal time-
sharing strategy directly is intractable. Therefore, we need
to exploit additional structure of the networked system to
address this challenge.

To this end, our basic idea is to develop a new network
flow model with a generalized flow-conservation law for com-
putation analytics. The fundamental rationale behind this
approach is that, similar to the classical model in the multi-
commodity network flow literature [12], the structural prop-
erties of the new network flow model would also lead to
polynomial time solutions if designed appropriately.

Unfortunately, developing a flow-conserved network flow
model for computation analytics is not-trivial. Due to per-
forming computations at each node in the network, the clas-
sical flow-conservation law [12] fails to hold in computation
analytics network flows. For example, from the zoom-in view
for node n10 in Fig. 4, it can be seen that the total incoming
flow rate is:

x
(e7)

(n9,n10)
+ x

(e8)

(n9,n10)
+ x

(e9)

(n10,n11)
+ x

(e9)

(n10,n11)
= 5.

However, due to the addition computations performed at

66 Performance Evaluation Review, Vol. 40, No. 4, March 2013

n1 n2 n3 n4

n5 n6 n7 n8

n9 n10

n14 n16n15n13

n12

e2:1

e1:1
e1:1.5

e8:1.5

e7:1.5

e7:1

e3:1

e5:1

e2:1.5 e3:1.5

e4:1.5

e4:1

e12:1.5
e12:1

e9:1.5
n11 e13:1

e9:1

e9:1 e10:1.5

e11:1

e6:1.5
e6:1

e8:1

e11:1.5

e10:1.5

e13:1.5

Figure 3: A time-sharing between two mappings in
Fig. 2(a) and Fig. 2(b), each accounting for 50% of
time.

e8:1.5

e9:1.5

e12:1

e7:1

e8:1.5

link (n10,n9) link (n11,n10)n10

link (n10,n14)

e9:1

e9:1.5

link (n9,n10) link (n10,n11)

Figure 4: Zoom-in view of node n10 in Fig. 3. Due to
the addition computations, the total incoming and
outgoing flow rates at n10 are not equal.

node n10, the total outgoing flow rate is:

x
(e9)

(n10,n9)
+ x

(e8)

(n10,n11)
+ x

(e12)

(n10,n14)
= 4.

This shows that, for computation analytics in cloud comput-
ing, the total input and output network flow are unbalanced.
Although the traditional flow-conservation law no longer

holds here, upon a closer look at each incoming edge and
their corresponding outgoing or successor edges at n7, it is
not difficult to observe another form of flow-conservation
law. As shown in Fig. 4, for the incoming edge e4 that does
not involve any computation at n7, we have:

x
(e9)

(n11,n10)
= x

(e9)

(n10,n9)
,

i.e., the incoming rate equals the outgoing rate. The same
is also true for the incoming edge e8. On the other hand,
for the incoming edge e7 that involves in the addition with
incoming edge e9, we have:

x
(e7)

(n9,n10)
= x

(e12)

(n10,n14)
and x

(e9)

(n11,n10)
= x

(e12)

(n10,n14)
,

i.e., the outgoing rate of the successor edge of e7 is equal to
the incoming rate of e7.
To model this new form of flow-conservation law, it is im-

portant to recognize that: for a subcomputation, say e, that
is injecting to node n, a portion of its flow is terminated at n

to compute the successor edges of e (i.e., Ψ(e)). For conve-
nience, we label the links in the physical network as 1, . . . , L

instead of using node pairs (nj , nk). We let x
(e)
l ≥ 0 repre-

sent the flow amount of subcomputation task e on link l. In
all valid mappings M , since the start node of a source edge
ei ∈ S and the end node of a sink edge ei′ ∈ K are always
mapped to their respective physical nodes in the network,
we let Src(ei) � α(M(ei)) and Dst(ei′) � β(M(ei′)) be the
physical source and end nodes of ei and ei′ for simplicity.
Then, based on the previous observations, we have the fol-
lowing result:

Lemma 1. When computation analytics are performed over
an underlying networked system, the following generalized
flow-conservation law holds:∑
l∈O(nk)

x
(ei)
l + y

(ej)
nk −

∑
l∈I(nk)

x
(ei)
l − y(ei)

nk
= λ, ∀ei ∈ S,

∀ej ∈ Ψ(ei), nk = Src(ei), (1)∑
l∈O(nk)

x
(ei)
l + y

(ej)
nk −

∑
l∈I(nk)

x
(ei)
l − y(ei)

nk
= 0, ∀ei ∈ E\K,

∀ej ∈ Ψ(ei), and nk �= Src(ei) if ei ∈ S, (2)∑
l∈O(nk)

x
(ei)
l −

∑
l∈I(nk)

x
(ei)
l − y(ei)

nk
= 0, ∀ei ∈ K, nk �= Dst(ei),

(3)∑
l∈O(nk)

x
(ei)
l −

∑
l∈I(nk)

x
(ei)
l − y(ei)

nk
= −λ,

∀ei ∈ K, nk = Dst(ei), (4)

where O (nk) and I (nk) represent the sets of outgoing and

incoming links at node nk, respectively; and y
(ei)
nk represents

the subcomputation ei generated at node nk.

Here, the equalities in (1) and (2) represent that the total
incoming flow rate of any non-sink edge ei at node nk should
be equal to the sum of the outgoing flow rates of ei and
its successor edge ej , and this relationship holds for every
successor edge of ei. Moreover, Eq.(1) states that if ei is
a source edge and nk happens to be its source node, then
the net injection rate of ei at nk is λ. On the other hand,
Eqs.(3) and (4) say that, for a sink edge ei that does not
have any successor edge, the net output flow rate should be
equal to λ at its physical location and zero elsewhere.

3.4 Problem Formulation
We let Cl denote the capacity of link l. Since the total net-

work flow traversing a link cannot exceed the link’s capacity,

we have
∑E

i=1
x

(ei)
l ≤ Cl, l = 1, . . . , L. We let the network

utility be a function of λ, denoted by U(λ) : R+ → R. We
assume that U(λ) is concave, monotonically increasing, and
twice continuously differentiable. The concavity of U(·) rep-
resents the “diminishing returns” effect. When U(·) is linear
(as a special case of concavity), we are simply maximizing
the computation rate itself.

In the physical network, each outgoing edge at a node
represents a subcomputation (see, e.g., edges e9, e10, and e13
in Fig. 4), which incurs certain costs (e.g., consumed energy
per unit amount of computation). We let ρk represent the
unit cost for performing computation at node nk. Then, the
total cost due to computation at node nk can be computed

Performance Evaluation Review, Vol. 40, No. 4, March 2013 67

as:

|S|∑
i=1

ρk

⎛
⎝λ+ y(ei)

nk
+

∑
l∈I(nk)

x
(ei)
l −

∑
l∈O(nk)

x
(ei)
l

⎞
⎠+

E−K∑
i=|S|+1

ρk

⎛
⎝y(ei)

nk
+

∑
l∈I(nk)

x
(ei)
l −

∑
l∈O(nk)

x
(ei)
l

⎞
⎠ . (5)

In (5), the term λ+ y
(ei)
nk +

∑
l∈I(nk)

x
(ei)
l −∑l∈O(nk)

x
(ei)
l

is the total flow rate of source edge ei that is terminated
at node nk and used to compute its successor edges. Like-

wise, the term y
(ei)
nk +

∑
l∈I(nk)

x
(ei)
l −∑

l∈O(nk)
x

(ei)
l rep-

resents the total flow rate of non-source and non-sink edge
ei terminated at nk. Our objective is to maximize the net
network utility, defined as network utility minus the total
costs. Putting together the discussions earlier, we can for-
mulate the problem as follows:

CRUM:

Max U(λ)−
N∑

k=1

⎛
⎝ |S|∑

i=1

ρk

⎛
⎝λ+ y(ei)

nk
+

∑
l∈I(nk)

x
(ei)
l

−
∑

l∈O(nk)

x
(ei)
l

⎞
⎠+

E−K∑
i=|S|+1

ρk

⎛
⎝y(ei)

nk
+
∑

l∈I(nk)

x
(ei)
l −

∑
l∈O(nk)

x
(ei)
l

⎞
⎠
⎞
⎠

s.t. Eqs. (1), (2), (3), (4),

E∑
i=1

x
(ei)
l ≤ Cl, ∀l = 1, . . . , L,

x
(ei)
l ≥ 0, ∀i, l; λ ≥ 0.

Now, it is not difficult to recognize that with the pro-
posed network flow model in Lemma 1, Problem CRUM is
a convex program. Moreover, the nice separable structure
of the objective function enables the design of distributed
algorithm to solve Problem CRUM, which will be the focus
of the next section.

4. DISTRIBUTED SOLUTION PROCEDURE
In this section, we will present the key steps in design-

ing a distributed algorithm based on dual decomposition to
solve Problem CRUM. In Section 4.1, we will first reformu-
late Problem CRUM into its Lagrangian dual problem and
show how to appropriately decompose the Lagrangian dual
problem. Based on these results, we introduce the basic idea
in designing a distributed algorithm in Section 4.2. In Sec-
tion 4.3, we offer some interesting networking and economics
interpretations of the proposed distributed algorithm. Then,
we will present some numerical results in Section 5.

4.1 Lagrangian Dual Reformulation and De-
composition

As mentioned earlier, since Problem CRUM is a convex
program, it can be equivalently solved in its Lagrangian dual
domain because of a zero duality gap [20]. To solve the Prob-
lem CRUM in its Lagrangian dual domain, we first slightly
modify the constraints in (1)–(4) into inequality constraints
as follows:

∑
l∈O(nk)

x
(ei)
l + y

(ej)
nk −

∑
l∈I(nk)

x
(ei)
l − y(ei)

nk
≥ λ, ∀ei ∈ S,

∀ej ∈ Ψ(ei), nk = Src(ei), (6)∑
l∈O(nk)

x
(ei)
l + y

(ej)
nk −

∑
l∈I(nk)

x
(ei)
l − y(ei)

nk
≥ 0, ∀ei ∈ E\K,

∀ej ∈ Ψ(ei), and nk �= Src(ei) if ei ∈ S, (7)∑
l∈O(nk)

x
(ei)
l −

∑
l∈I(nk)

x
(ei)
l − y(ei)

nk
≥ 0, ∀ei ∈ K, nk �= Dst(ei),

(8)∑
l∈O(nk)

x
(ei)
l −

∑
l∈I(nk)

x
(ei)
l − y(ei)

nk
≥ −λ,

∀ei ∈ K, nk = Dst(ei), (9)

It is not difficult to show that these modifications do not
affect the solution at optimality. Interestingly, these mod-
ifications can also be interpreted from a network stability
perspective: the total service rate at each node is no less
than the total arrival rate.

Next, we associate dual variables μ
(ij)
k ≥ 0 and w

(i)
k ≥ 0

for each constraint in (6)–(7) and (8)–(9), respectively. For
notational simplicity, we use Ψi to represent the index set
{j : ej ∈ Ψ(ei)}. Also, we use vectors x, μ, and w to
group all x-, μ- and w-variables. By accommodating the
constraints into the objective function and combining re-
lated terms, we have that the Lagrangian can be written as
follows:

L(λ,x,μ,w) =U(λ)−
N∑

k=1

⎛
⎝ |S|∑

i=1

ρk

⎛
⎝λ+ y(ei)

nk
+
∑

l∈I(nk)

x
(ei)
l −

∑
l∈O(nk)

x
(ei)
l

⎞
⎠+

E−K∑
i=|S|+1

ρk

⎛
⎝y(ei)

nk
+
∑

l∈I(nk)

x
(ei)
l −

∑
l∈O(nk)

x
(ei)
l

⎞
⎠
⎞
⎠

+

E∑
i=1

∑
j∈Ψi

N∑
k=1

μ
(ij)
k

⎛
⎝ ∑

l∈O(nk)

x
(ei)
l + y

(ej)
nk −

∑
l∈I(nk)

x
(ei)
l − y(ei)

nk

⎞
⎠

+

E∑
i=E−K−1

N∑
k=1

w
(i)
k

⎛
⎝ ∑

l∈O(nk)

x
(ei)
l −

∑
l∈I(nk)

x
(ei)
l − y(ei)

nk

⎞
⎠

+ (−λ)
|S|∑
i=1

∑
j∈Ψi

μ
(ij)

Src(i) + λ

E∑
i=E−K+1

w
(i)

Dst(i). (10)

Then, the Lagrangian dual function can be written as:

Φ(μ,w) = sup
λ,x

{
L(λ,x,μ,w)

∣∣∣∣∣
∑E

i=1
x

(ei)
l ≤ Cl, ∀l,

x
(ei)
l ≥ 0, ∀i, l;λ ≥ 0.

}
.(11)

Finally, the dual problem can be written as:

D: Minimize Φ(u)
subject to u ≥ 0.

(12)

Next, it is important to recognize that the Lagrangian
function in (11) possesses a decomposable structure, which
leads to a distributed computation scheme. More specifi-
cally, by appropriately switching summation orders and re-
arranging terms in (11), we have the following result (see
Appendix A for proof details):

68 Performance Evaluation Review, Vol. 40, No. 4, March 2013

Proposition 2. The Lagrangian in (11) can be decom-
posed in a source-wise and link-wise fashion as follows:

Φ(μ,w) = ΦFC(μ,w) +

L∑
l=1

Φ
(l)
R
(μ,w) +

N∑
k=1

Φ
(k)

C
(μ,w),

where ΦFC(μ,w), Φ
(l)
R
(μ,w), and Φ

(n)

C
(μ,w) represent the

flow control, per-link routing, and per-node computation sub-
problems at each source, each link, and each node, respec-

tively. Here, ΦFC(μ,w) and Φ
(l)
R
(μ,w) are defined as fol-

lows, respectively:

ΦFC(μ,w) � max
λ≥0

{
U(λ)−

λ

[|S|∑
i=1

(∑
j∈Ψi

μ
(ij)

Src(i) +

N∑
k=1

ρk
)
−

E∑
i=E−K+1

w
(i)

Dst(i)

]}
;

Φ
(l)
R
(μ,w) �

{
max

E∑
i=1

(
w̃

(i)

Tx(l) − w̃
(i)

Rx(l)

)
x

(ei)
l

s.t.

E∑
i=1

x
(ei)
l ≤ Cl, x

(ei)
l ≥ 0, ∀i.

}
,

where w̃
(i)
k , ∀k = 1, . . . , N , ∀i = 1, . . . , E, are defined as:

w̃
(i)
k �

{
ρk +

∑
j∈Ψi μ

(ij)
k , i = 1, . . . , E −K,

w
(i)
k +

∑
j∈Ψi μ

(ij)
k , i = E −K + 1, . . . , E;

(13)

Φ
(k)

C
(μ,w) � max

y
(ei)
nk

≥0,∀i

{
E∑

i=1

[∑
j∈Ψi

μ
(ij)
k (y

(ej)
nk − y(ei)

nk
)− ŵ

(i)
k y(ei)

nk

]}
,

where ŵ
(i)
k , ∀k = 1, . . . , N , ∀i = 1, . . . , E, are defined as:

w̃
(i)
k �

{
ρk, i = 1, . . . , E −K,

w
(i)
k , i = E −K + 1, . . . , E.

(14)

Based on Proposition 2, the Lagrangian dual problem D
in (12) can be transformed into the following master dual
problem:

MD: Minimize ΦFC(μ,w) +

L∑
l=1

Φ
(l)
R (μ,w) +

N∑
k=1

Φ
(k)

C (μ,w)

subject to μ ≥ 0, w ≥ 0.

Then, the task of solving the Lagrangian dual problem D
boils down to distributedly solving the subproblems ΦFC(μ,w),

Φ
(l)
R (μ,w), and Φ

(k)

C (μ,w), and then the master dual prob-
lem MD.

4.2 Design of Distributed Algorithm
Note that at each source node, the flow control and com-

putation subproblems ΦFC has a concave objective func-
tion with a single non-negative decision variable. Thus,
ΦFC can be trivially and efficiently solved (e.g., by sim-
ple bisection search method). Also, it can be observed that

the routing subproblem Φ
(l)
R at each link is a lower dimen-

sional linear programming problem (with a single constraint,
O(EV 2) variables, and all problem coefficients are locally
available), which means that it can be efficiently solved as

Algorithm 1 A subgradient algorithm for solving Problem
CRUM.
Initialization:
1. Choose initial starting points μ(0) and w(0). Let m = 0.
Main Iteration:
2. Compute the source computation rate λ(m) by solving

the flow control subproblem ΦFC(μ
(m),w(m)) by using,

e.g., bisection method.

3. Compute the routing decisions x
(ei)
l (m) at each link by

solving the routing subproblem ΦR(μ
(m),w(m)), a linear

programming problem.
4. Choose an appropriate step size πm. Compute the sub-

gradients d
(ij)
μ,k (m) and d

(i)
w,k(m) using (17) and (18) with

λ(m) and x
(ei)
l (m).

5. Update dual variables μ(m+1) and w(m+1) with d
(ij)
μ,k (m)

and d
(i)
w,k(m).

6. If ‖μ(m+1) −μ(m)‖ < ε and ‖w(m+1) −w(m)‖ < ε, then

return λ(m) and x
(ei)
l (m). Otherwise, let k ← k+1 and

go to Step 2.

well. For the master dual problem MD, since its objective
function is piece-wise differentiable, one can apply subgra-
dient method [20]. More specifically, starting with an initial

μ(0) and w(0) and after evaluating ΦFC(μ
(m),w(m)) and

Φ
(l)
R (μ(m),w(m)) in the m-th iteration, we update the dual

variables as follows:

μ
(ij)
k (m+ 1) = max{μ(ij)

k (m)− πmd
(ij)
μ,k (m), 0}, (15)

w
(i)
k (m+ 1) = max{w(i)

k (m)− πmd
(i)
w,k(m), 0}, (16)

where πm > 0 denotes a positive scalar step size, and d
(ij)
μ,k (m)

and d
(ij)
w,k(m) represent the subgradients of the dual variables

μ
(ij)
k and w

(i)
k in the m-th iteration, respectively.

It is known that for the subgradient iterative schemes in
(15) and (16) to converge, a sufficient condition is that the
step size πm satisfies πm → 0 as m → ∞,

∑∞
m=0

= ∞,
and

∑∞
m=0

(πm)2 [20]. A popular step size selection strategy

is the divergent harmonic series: πm = β
m
, m = 1, 2, . . .,

where β is some given system parameter. For the master
dual problem MD, the subgradient for the Lagrangian dual
function in (10) can be computed as:

d
(ij)
μ,k (m) =

∑
l∈O(nk)

x
(ei)
l + y

(ej)
nk −

∑
l∈I(nk)

x
(ei)
l

− y(ei)
nk

− λ�{ei∈S,nk=Src(ei)}, (17)

d
(i)
w,k(m) =

∑
l∈O(nk)

x
(ei)
l −

∑
l∈I(nk)

x
(ei)
l

− y(ei)
nk

+ λ�{ei∈S,nk=Dst(ei)}, (18)

where �{·} represents the indicator function, which equals
1 if the condition in {·} is satisfied and 0 otherwise. To
summarize, the design of distributed subgradient algorithm
for solving Problem CRUM is illustrated in Algorithm 1.

4.3 Networking and Economics Interpretations
Several interesting networking and economics insights for

the subgradient-based distributed algorithm are in order.

Queue length interpretations of the dual variables:

Performance Evaluation Review, Vol. 40, No. 4, March 2013 69

It can be seen that by dividing the step size πm on both

sides of (15) and (16) and letting Q
(ij)
k (m) � μ

(ij)
k /πm and

Q̄
(i)
k (m) � w

(i)
k /πm, we have:

Q
(ij)
k (m+ 1) = max

{
Q

(ij)
k (m)−

∑
l∈O(nk)

x
(ei)
l − y

(ej)
nk + y(ei)

nk

+
∑

l∈I(nk)

x
(ei)
l + λ�{ei∈S,nk=Src(ei)}, 0

}
, (19)

Q̄
(i)
k (m+ 1) = max

{
Q̄

(i)
k (m)−

∑
l∈O(nk)

x
(ei)
l

− λ�{ei∈S,nk=Dst(ei)} +
∑

l∈I(nk)

x
(ei)
l + y(ei)

nk
, 0

}
. (20)

A closer look reveals that (19) and (20) behave exactly the
same as “queue length evolution” as seen in traditional data

communications networks. Indeed, if we let Q
(ij)
k (m) repre-

sent the queuing backlog for computing the successive edge
j of edge i at node k in time instant m, then this queu-

ing backlog and the dual variable μ
(ij)
k (m) are intimately

related (differ only by a scaling factor πm). By the same

token, Q̄
(i)
k (m) can be similarly interpreted as the queuing

backlog of the terminating edges ei ∈ K at node m.

Connections to the back-pressure algorithm: Clearly,
in cases where in-network computation is disabled, i.e., by

forcing x
(ej)

l = 0 for all ej ∈ Ψ(ei) and for all l, the network
degenerates into a traditional communication network. As
expected, it is easy to check that the queue length evolutions
in (19) and (20) reduce to the conventional queue length
evolution:

Q
(i)
k (m+ 1) = max

{
Q

(i)
k (m)−

∑
l∈O(nk)

x
(ei)
l +

∑
l∈I(nk)

x
(ei)
l

+ λ
(
�{ei∈S,nk=Src(ei)} − �{ei∈S,nk=Dst(ei)}

)
, 0

}
. (21)

Moreover, since all dual μ-variables become 0, it is easy

to verify that the computation subproblem Φ
(k)

C admits a

trivial optimal solution: y
(ei)
nk = 0, ∀k, i. Also, with dual

μ-variables being 0, it is not difficult to see that the routing

subproblem Φ
(l)
R
(w) admits a trivial solution as follows: for

a given link l, pick a subcomputation task ei that has the

largest (w̃
(i)

Tx(l) − w̃
(i)

Rx(l))-value, say e∗i , and let e∗i use up the

link capacity Cl. This is exactly the same strategy used
in the celebrated “back-pressure” algorithm that was first
discovered in [21].

Pricing interpretation of the dual subgradient up-

dating scheme: The dual variables μ
(ij)
k (m) and w

(i)
k (m)

can also be economically interpreted as “congestion prices”
at node k during the m-iteration. The dual updating scheme
of the subgradient algorithm can then be viewed as a pricing
scheme. When node k becomes increasingly congested, then

d
(ij)
μ,k < 0. From (15), we can see the price of node k will

be increased. On the other hand, when node k becomes less

congested, then d
(ij)
μ,k > 0. Again, from (16), it can be sen

that the price will be decreased.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

5

10

15

20

25

30

Node ID

F
lo

w
 R

at
e

North Out
South Out
East Out
West Out
Self Comp.

Figure 5: Outgoing links and self-loop flow rates at
each node for edge e12.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

5

10

15

20

25

30

Node ID

F
lo

w
 R

at
e

North Out
South Out
East Out
West Out
Self Comp.

Figure 6: Outgoing links and self-loop flow rates at
each node for edge e13.

5. NUMERICAL RESULTS
In this section, we use Fig. 1 as an example to illustrate

our proposed network flow model and distributed solution
procedure. That is, we want to optimize the deployment of
the MIMO-DAG computation framework in Fig. 1(a) onto
the 16-node 2-D torus interconneced network in Fig. 1(b).
The physical locations of both Θ1 and Θ2 are at node n16.
Here, we let the capacity of each link in Fig. 1(b) be 10
and let the per-node unit computation cost be 0.001. Our
objective is to maximize the computation rate, i.e., letting
U(λ) = λ. After optimization, the maximum computation
rate is 15.95. Due to space limitation and the large number
of optimal link flow rate variables for this example (5×16×
13 = 1040 variables), we only plot in Figs. 5 and 6 the
outgoing links and self-loops flow rates for edges e12 and e13
to illustrate part of the optimal solution. The “North Out,”
“South Out,” “East Out,” and “West Out” in Figs. 5 and 6
represent the outgoing links at each node in Fig. 1(b) along
the specified directions, respectively. Recall from Fig. 1(a)
that edges e12 and e13 are sink edges, which correspond
to the final results of functions Θ1 and Θ2, respectively.
Surprisingly, it can be seen that the computations of these
sink edges are not deployed close to the physical output node
n16. The majority of the computations of e12 and e13 are
done at node 2 (see the rates of self-loops at node 2 and node
1). This shows that the heuristic “proximity” deployment
rule may not be optimal. From Figs. 5 and 6, it is also not
difficult to see the optimal routing paths for edges e12 and

70 Performance Evaluation Review, Vol. 40, No. 4, March 2013

1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

12

14

16

18

Normalized Nodal Computation Cost

N
or
m
al
iz
ed

 C
om

pu
at
io
n

R
at
e

Figure 7: The change of maximum end-to-end com-
putation rate with respect to the change of per-node
unit computation cost.

10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

120

140

160

180

Normalized Link Capacity

N
or
m
al
iz
ed

 C
om

pu
at
io
n

R
at
e

Figure 8: The change of maximum end-to-end com-
putation rate with respect to the change of link ca-
pacity.

e13. For example, the optimal routing paths for edge e13
are:

n1

W→ n4

N→ n16, n2

E→ n3

E→ n4

N→ n16,

n2

S→ n6

E→ n7

E→ n8

S→ n12

S→ n16, n2

W→ n1

W→ n4

N→ n16,

n2

N→ n14

E→ n15

E→ n16, n12

S→ n16,

where the letter above each arrow denotes the routing di-
rection at that hop. Next, we illustrate in Figs. 7 and 8 the
changes of maximum end-to-end computation rate with re-
spect to the changes of per-node unit computation cost and
link capacity, respectively. In Fig. 7, we can see as expected
that the end-to-end computation rate decreases as the unit
computation cost at each node increases from 1 to 10 units
(step size is 0.001). Likewise, we can see from Fig. 8 the
end-to-end computation rate increases as the link capacity
increases from 10 to 100.

6. CONCLUSION
In this paper, we investigated the design of distributed

algorithms for cloud computing programming frameworks
deployments. We formulated the computation rate utility
maximization problem (CRUM) by developing a new net-
work flow model with a generalized flow-conservation law.
Based on this enabling framework, we developed a dual de-
composition based distributed algorithm to solve Problem
CRUM. We provided important networking interpretations

and key implementation insights for our proposed algorithm
and pointed out the connections and distinctions to dis-
tributed algorithms design in traditional data communica-
tions networks. Collectively, these results serve as the first
building block of a new theoretical framework for the de-
ployment of cloud computing programming frameworks.

7. REFERENCES

[1] A. S. Szalay, “Extreme data-intensive scientific
computing,” IEEE Computing in Science and
Engineering, vol. 13, no. 6, pp. 34–41, Nov. 2011.

[2] “Data, data everywhere,” Economist, 2010. [Online].
Available: http://www.economist.com

[3] J. Dean and S. Ghemawat, “MapReduce: Simplified
data processing on large clusters,” in Proc. USENIX
OSDI, San Francisco, CA, Dec. 6-8, 2004, pp. 137–149.

[4] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly,
“Dryad: Distributed data-parallel programs from
sequential building blocks,” in Proc. ACM
SIGOPS/Eurosys, Lisboa, Portugal, Mar. 21-23, 2007,
pp. 59–72.

[5] K.-H. Lee, Y.-J. Lee, H. Choi, Y. D. Chung, and
B. Moon, “Parallel data processing with MapReduce:
A survey,” ACM SIGMOD Record, vol. 40, no. 4, pp.
11–20, Dec. 2011.

[6] Y. Huai, R. Lee, S. Zhang, C. H. Xia, and X. Zhang,
“DOT: A matrix model for analyzing, optimizing and
deploying software for big data analytics in
distributed systems,” in Proc. ACM SOCC, Cascais,
Portugal, Oct. 27-28, 2011.

[7] Hadoop. http://hadoop.apache.org.

[8] M. Chiang, S. H. Low, A. R. Calderbank, and J. C.
Doyle, “Layering as optimization decomposition: A
mathematical theory of network architecture,” Proc.
IEEE, vol. 95, no. 1, pp. 255–312, Jan. 2007.

[9] F. P. Kelly, A. K. Malullo, and D. K. H. Tan, “Rate
control in communications networks: Shadow prices,
proportional fairness and stability,” Journal of the
Operational Research Society, vol. 49, pp. 237–252,
1998.

[10] X. Lin, N. B. Shroff, and R. Srikant, “A tutorial on
cross-layer optimization in wireless networks,” IEEE
J. Sel. Areas Commun., vol. 24, no. 8, pp. 1452–1463,
Aug. 2006.

[11] V. Shah, B. K. Dey, and D. Manjunath, “Network
flows for functions,” in Proc. IEEE International
Symposium on Information Theory (ISIT), St.
Petersburg, Russia, Jul.31–Aug.5, 2011, pp. 234–238.

[12] M. S. Bazaraa, J. J. Jarvis, and H. D. Sherali, Linear
Programming and Network Flows, 4th ed. New York:
John Wiley & Sons Inc., 2010.

[13] H. Feng, Z. Liu, C. Xia, and L. Zhang, “Load
shedding and distributed resource control of stream
processing networks,” Performance Evaluation,
vol. 64, no. 9-12, pp. 1102–1120, Oct. 2007.

[14] H. Zhao, C. H. Xia, Z. Liu, and D. Towsley, “A unified
modeling framework for distributed resource allocation
of general fork and join processing networks,” in Proc.
ACM Sigmetrics, New York, NY, Jun. 14-18, 2010.

[15] Z. Liu, A. Tang, C. H. Xia, and L. Zhang, “A
decentralized control mechanism for stream processing

Performance Evaluation Review, Vol. 40, No. 4, March 2013 71

networks,” Annals of Operations Research, vol. 170,
no. 1, pp. 161–182, Sep. 2009.

[16] F. T. Leighton, M. J. Newman, A. G. Ranade, and
E. J. Schwabe, “Dynamic tree embeddings in
butterflies and hypercubes,” SIAM Journal of
Computing, vol. 21, no. 4, pp. 639–654, Aug. 1992.

[17] O. Wohlmuth and F. Mayer-Lindenberg, “A method
for the embedding of arbitrary trees into hypercubes,”
in Proc. ACM Symposium on Applied Computing,
1998, pp. 569–574.

[18] V. Heun and E. W. Mayr, “Efficient dynamic
embeddings of arbitrary binary trees into hypercubes,”
Journal of Algorithms, vol. 43, pp. 51–84, 2002.

[19] A. W. Malik, A. Park, and R. M. Fujimoto,
“Optimistic synchronization of parallel simulations in
cloud computing environements,” in Proc. IEEE
International Conference on Cloud Computing,
Bangalore, India, Sep. 21-25, 2009, pp. 49–56.

[20] M. S. Bazaraa, H. D. Sherali, and C. M. Shetty,
Nonlinear Programming: Theory and Algorithms,
3rd ed. New York, NY: John Wiley & Sons Inc.,
2006.

[21] L. Tassiulas and A. Ephremides, “Stability properties
of constrained queuing systems and scheduling policies
for maximum throughput in multihop radio
networks,” IEEE Trans. Autom. Control, vol. 37,
no. 12, pp. 1936–1948, Dec. 1992.

APPENDIX

A. PROOF OF PROPOSITION 2
To derive the subproblem ΦFC(μ,w), we combine all terms

in (10) related to λ, which leads to:

U(λ)− λ

[|S|∑
i=1

(∑
j∈Ψi

μ
(ij)

Src(i) +

N∑
k=1

ρk
)
−

E∑
i=E−K+1

w
(i)

Dst(i)

]
.

Note that the above expression is exactly the objective func-
tion of ΦFC in Proposition 2.

Next, we derive the objective function of Φ
(l)
R , which is

relatively more involved. First, it is not difficult to verify
that by switching the summation order from node-based to
link-based, we can rewrite the fouth term in (10) as:

E∑
i=E−K−1

N∑
k=1

w
(i)
k

⎛
⎝ ∑

l∈O(nk)

x
(ei)
l −

∑
l∈I(nk)

x
(ei)
l − y(ei)

nk

⎞
⎠

=

L∑
l=1

E∑
i=E−K+1

(
w

(i)

Tx(l) − w
(i)

Rx(l)

)
x

(ei)
l −

N∑
k=1

E∑
i=E−K+1

w
(i)
k y(ei)

nk
.

(22)

By the same token, we can immediately rewrite the partial
second term (excluding the summation involving λ) in (10)
as:

E−K∑
i=1

N∑
k=1

ρk

⎛
⎝ ∑

l∈O(nk)

x
(ei)
l −

∑
l∈I(nk)

x
(ei)
l

⎞
⎠− N∑

k=1

E−K∑
i=|S|+1

ρky
(ei)
nk

=

L∑
l=1

E−K∑
i=1

(
ρTx(l) − ρRx(l)

)
x

(ei)
l −

N∑
k=1

E−K∑
i=|S|+1

ρky
(ei)
nk

. (23)

Now, for the more complex third term in (10), we have

E∑
i=1

∑
j∈Ψi

N∑
k=1

μ
(ij)
k

⎛
⎝ ∑

l∈O(nk)

x
(ei)
l + y

(ej)
nk −

∑
l∈I(nk)

x
(ei)
l − y(ei)

nk

⎞
⎠

(a)

=

E∑
i=1

N∑
k=1

((∑
l∈O(nk)

x
(ei)
l −

∑
l∈I(nk)

x
(ei)
l − y(ei)

nk

) ∑
j∈Ψi

μ
(ij)
k

+
∑
j∈Ψi

μ
(ij)
k y

(ej)
nk

)

=
E∑

i=1

N∑
k=1

(∑
l∈O(nk)

x
(ei)
l −

∑
l∈I(nk)

x
(ei)
l

) ∑
j∈Ψi

μ
(ij)
k

+
E∑

i=1

N∑
k=1

∑
j∈Ψi

μ
(ij)
k

(
y
(ej)
nk − y(ei)

nk

)

(b)
=

L∑
l=1

E∑
i=1

(∑
j∈Ψi

μ
(ij)

Tx(l) −
∑
j∈Ψi

μ
(ij)

Rx(l)

)
x

(ei)
l

+

N∑
k=1

E∑
i=1

∑
j∈Ψi

μ
(ij)
k

(
x

(ej)

l − y(ei)
nk

)
, (24)

where (a) holds because the summations of the x
(ei)
l -variables

do not involve index j and can be taken outside of the sum-
mation with respect to index j; and (b) follows from the
same token as in (22) and (23) and the fact that switching

the summation orders of the x
(ej)

l -variables does not change
their sum value.

Next, by adding (22), (23), (24) together and defining
new w̃- and ŵ-variables as in (13) and (14), we arrive at a
summation of the following two terms:

L∑
l=1

E∑
i=1

{(
w̃

(i)

Tx(l) − w̃
(i)

Rx(l)

)
x

(ei)
l

}
, (25)

N∑
k=1

E∑
i=1

[∑
j∈Ψi

μ
(ij)
k (y

(ej)
nk − y(ei)

nk
)− ŵ

(i)
k y(ei)

nk

]
, (26)

which is exactly the objective function of Φ
(l)
R and Φ

(k)

C . Note
that the outer summation in (25) is with respect to link in-
dices, each summand can be decomposed and computed at
each link locally. Likewise, the outer summation in (26) is
with respect to node indices, each summand can be decom-
posed and computed at each node locally.

Finally, noting that the constraints
∑E

i=1
x

(ei)
l , ∀l, can

also be separated in a link-wise fashion, we then have that
the maximization of L(λ,x,μ,w) can be equivalently com-
puted as the sum of a series of maximization subproblems
at the source and each link, which are defined as in Propo-
sition 2. This completes the proof.

72 Performance Evaluation Review, Vol. 40, No. 4, March 2013

