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ABSTRACT
We develop a class of schemes called GMWM that guaran-
tee optimal throughput for queuing systems with arbitrary
constraints on the set of jobs that can be served simultane-
ously. We obtain an analytical upper bound on the expected
queue length. To further tighten the upper bound, we for-
mulate it as a convex optimization problem. We also show
that whenever the arrival process is stabilizable, the scheme
is guaranteed to achieve an expected queue length that is
no larger than the expected queue length of any stationary
randomized policy.
Categories and Subject Descriptors: C.4 [Performance
Of Systems]: Modeling techniques; Performance attributes
General Terms: Performance, Theory.
Keywords: Scheduling, Lyapunov Theory.

1. INTRODUCTION
In modern computer and communication systems, jobs

compete with each other to access the limited resources in
the system. An example is shown in Figure 1 where jobs
are classified and queued according to the set of resources
they need to acquire simultaneously for successful process-
ing. Another familiar example is the wireless network where
a successful transmission at a given link, necessitates that all
interfering link stop transmitting. The system imposes con-
straints on the set of jobs that can be served simultaneously
at any given time. In this work we focus our attention on a
basic model, which we call the constrained queuing system
(CQS) (proposed by Tassiulas and Ephremides [2]). It is
well known that the Maximum Weighted Matching (MWM)
scheduling algorithm [2, 4] stabilizes the system for any in-
put load within the capacity region of the system. However,
the queuing analysis of such a scheduler is mainly limited to
providing stability guarantees and order results. It has been
shown in [4] that MWM algorithm is asymptotically delay
optimal in the heavy traffic regime, but it is not known if
such a result holds for arbitrary load in the system. Further,
no bounds on the delay performance have been provided.

2. SYSTEM MODEL
We consider a set of N parallel queues each having its

own exogenous i.i.d. arrival stream {Al(t)}
∞

t=1. Different in-
put streams may be correlated with each other. Let A(t) =
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Figure 1: Example of a Constrained Queuing System

with four classes of jobs. The resources requested by

each job are indicated.

(A1(t), . . . , AN (t)) represent the vector of exogenous arrivals,
where Al(t) is the number of jobs that arrive to queue l dur-
ing time slot t (for l ∈ 1, . . . , N). Let λ = (λ1, . . . , λN )
represent the corresponding arrival rate vector. Each job
has deterministic service time equal to one unit. Assume
that the second moments of the arrival processes E[A2

l ] are
finite.
The vector of the scheduled queues is denoted by I(t) =

(In(t)) : n = 1, ..N . There are constraints on the combina-
tion of queues that can be activated. These constraints can
be arbitrary. I(t) is a valid activation vector if it satisfies
the constraints. Let S be the collection of all activation vec-
tors, Ij . At each slot an activation vector I(t) is scheduled.
In this paper we analyze the scheduling policy called the
Generalized Weighted Maximum Matching (GMWM(w))
policy described in Figure 2. This describes a class of poli-
cies parameterized by the weights wi.
Let Qn(t) denote the queue length of queue n. The queue

length vector Q(t) = {Qn(t) : n = 1, 2, . . . , N}. The queue
is activated in a slot t only if Qn(t) > 0. The evolution of
the queue is as follows,

Qn(t+ 1) = (Qn(t) +An(t)− In(t))
+
, n = 1, .., N, (2.1)
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I(t) = argmax
Ij∈S

N
X

i=1

wiQiI
j
i (2.2)

where Iji is the i
th component of the jth activation

vector in set S and wi > 0 are fixed constants.

Figure 2: GMWM Scheduling Policy

where

(x)+ =



x if x > 0
0 otherwise

The following is a well known result [1], about the exis-
tence of a stable stationary randomized scheduling policy for
arbitrary load in the capacity region.

Lemma 2.1. For any feasible input rate vector

λ = (λ1, ..., λN ) which lies in the interior of the capacity

region, C there exists a vector µ = (µ1, ..., µN ) ∈ C such

that λl < µl for all queues l ∈ 1, .., N . Also, there exists a

stationary randomized scheduling policy, ΠR which chooses

activation vectors M(t) such that E[Ml(t)] = µl and hence

stabilizes the system.

3. ANALYSIS OF GMWM
Using the Foster-Lyapunov drift criteria for countable

Markov chains, it can be shown that the GMWM policy
achieves 100% throughput for every choice of w, such that
for all i, wi > 0.

Theorem 3.1. For any input load λ ∈ C, the GMWM

scheduling algorithm ensures that the resulting DTMC is

positive recurrent and ergodic.

Proof. Straight-forward and omitted for brevity.

Using the Lemma 3 from [3] we prove the following result
that bounds the sum of expected queue lengths in the sys-
tem.

Theorem 3.2. Given any input load vector λ ∈ C and

any vector µ ∈ C : µ > λ, the following bound on the expec-

tation of the sum of lengths of queues holds true in a system

operating under the GMWM policy where the weights wi
are chosen as wi =

1
(µi−λi)

:

N
X

i=1

E[Qi] ≤

N
X

i=1

(λi +E[A2
i ]− 2λ

2
i )

(µi − λi)

Proof. Omitted for brevity.

The above analysis naturally leads us to the question of
which µ > λ should be selected in the capacity region C

such that the upper bound is minimized. Intuitively, this
means that the distance between the load vector and the
service process should be as large as possible. We formulate
this as an optimization problem to compute the value of µ
that minimizes the upper bound (see Figure 3).

Minimize
N
X

i=1

(λi +E[A2
i ]− 2λ

2
i )

2(µi − λi)

subject to µ ∈ C

Figure 3: Optimization Problem for Minimizing the

Upper Bound

3.1 Comparison with a randomized
stationary policy

The stationary randomized scheduler ΠR, is unaware of
the backlog and chooses to schedule queue l independent of
whether the queue is empty or not. In every slot, if the
queue is scheduled, exactly one job is served, otherwise the
jobs in the queue wait for the next available slot. The system
evolves as follows

ql(t+ 1) = (ql(t) +Al(t)−Ml(t))
+ (3.3)

We can obtain the following result, which we state without
proof.

Theorem 3.3. Given any admissible arrival process {Al(t)}
∞

t=1,

there exists a class of scheduling policies GMWM opt for

which the sum of expected queue lengths Ql is no worse than

the sum of expected queue lengths ql of any other stabilizing

stationary randomized policy. In other words,

PN

l=1 E[Ql] ≤
PN

l=1 E[ql]

4. CONCLUSION
There is extensive work on designing schedulers that sta-

bilize the system for maximum throughput. However, there
have been only a few results which establish guarantees on
the performance metrics such as expected queue lengths,
delay, etc. In this paper, we have proposed a class of gen-
eralized max weighted schemes, GMWM , and derive an-
alytical bounds on the sum of expected queue lengths in
the system. We have also shown that for any given λ ∈ C,
the GMWMopt is no worse than any stationary randomized
scheduling policy.
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