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Abstract—This paper considers point to point secure communi-
cation over flat fading channels under an outage constraintMore
specifically, we extend the definition of outage capacity toc@ount
for the secrecy constraint and obtain sharp characterizaibns
of the corresponding fundamental limits under two different
assumptions on the transmitter channel state information CSI).
First, we find the outage secrecy capacity assuming that theans-
mitter has perfect knowledge of the legitimate and eavesdmper
channel gains. In this scenario, the capacity achieving seime
relies on opportunistically exchanging private keys betwen the
legitimate nodes. These keys are stored in a key buffer and tier
used to secure delay sensitive data using the Vernam’s oneng
pad technique. We then extend our results to the more practil
scenario where the transmitter is assumed to know only the
legitimate channel gain. Here, our achievability argumens rely on
privacy amplification techniques to generate secret key bi. In the
two cases, we also characterize the optimal power control ficies
which, interestingly, turn out to be a judicious combination of
channel inversion and the optimal ergodic strategy. Finaly, we
analyze the effect of key buffer overflow on the overall outag
probability.

I. INTRODUCTION

signal received by the eavesdropper. In the additive Ganissi
noise scenario [2], the perfect secrecy capacity turned out
to be the difference between the capacities of the legigmat
and eavesdropper channels. Therefore, if the eavesdropper
channel has a higher channel gain, information theoreticrse
communication is not possible over the main channel. Recent
works have shown how to exploit multipath fading to avoid
this limitation [3]-[5]. The basic idea is to opportunistity
exploit the instants when the main channel enjoys a highier ga
than the eavesdropper channel to exchange secure messages.
This opportunistic secrecy approach was shown to achieve
non-zeroergodic secrecy capacityeven whenon average

the eavesdropper channel has favorable conditions ovée-the
gitimate channel. Remarkably, this result still holds ewdren

the channel state information of the eavesdropper chasnel i
not available at the legitimate nodes [3].

The ergodic result in [3] applies only to delay tolerant
traffic, e.g., file downloads. Early attempts at characiegithe
delay limited secrecy capacity drew the negative conctusio
that non-zero delay limited secrecy rates are not achieyabl

Secure communication is a topic that is becoming increasver almost all channel distributions, due gecrecy outage

ingly important thanks to the proliferation of wireless t®s.

events corresponding to the instants when the eavesdropper

Over the years, several secrecy protocols have been dedeloghannel gain is larger than the main one [6], [7]. Later, it

and incorporated in several wireless standards; e.g.BR& | was shown in [8] that, interestingly, a non-zero delay ledit
802.11 specifications for Wi-Fi. However, as new schemes aecrecy rate could be achieved by introducpiyate key
being developed, methods to counter the specific techniqugguesat both the transmitter and the receiver. These queues
also appear. Breaking this cycle is critically dependenthen are used to store private key bits that are shaggbrtunis-
design of protocols that offer provable secrecy guaranides tically between the legitimate nodes when the main channel
information theoretic secrecy paradigm adopted herewallois more favorable than the one seen by the eavesdropper.
for a systematic approach for the design of low complexiffhese key bits are used later to secure the delay sensitive
and provable secrecy protocols that fully exploit the mgi¢ data using the Vernam one time pad approach [9]. Hence,

properties of the wireless medium.

secrecy outages are avoided by simply storing the secrecy

Most of the recent work on information theoretic secrecyenerated previously, in the form of key bits, and using them
is, arguably, inspired by Wyner's wiretap channel [1]. listh whenever the channel conditions are more advantageous for
setup, a passive eavesdropper listens to the communicatio® eavesdropper. However, in [8], the authors do not peovid
between two legitimate nodes over a separate communicatsbrarp capacity results or derive the corresponding optimal
channel. While attempting to decipher the message, no limibwer control policies, which is the main objective of this
is imposed on the computational resources available to thaper. In particular,

eavesdropper. This assumption led to defirpegfect secrecy

capacity as the maximum achievable rate subject to zero mu-+ We consider delay limited communication in a block

tual information rate between the transmitted messageland t
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fading channel where the messages to be transmitted in
a block has to be communicated securely within that
particular block. We find compact expressions of the
secrecy outage capacity for the scenario where (i) perfect
knowledge about the main and eavesdropper channels
are availablea-priori at the transmitter, referred to as
full channel state information (CSland (ii) only the
perfect knowledge main channel states are available at
the transmitter, referred to amain CSl We provide a
graphical approach to evaluate the capacity.

o We develop a (secrecy outage) capacity-achieving scheme



that utilizes privacy amplification to generate secret keyenote the set of channel gailKs’, b’') observed until block
bits from the transmitted signal, and store them in thi, b), and use backslash as relative complement operator, e.g.,
form of secret key bits in the transmitter and legitF*-®\H(s,b) denotes the set of gains of all blocks except
imate receiver. These key bits are utilized to secufe,b). We use identical notation for other parameters as well,
the delay sensitive data using Vernam’s one time paahnd denote the sample realization sequences with lowercase
This approach is proven to be optimal even when tHetters. We assume that the probability density function of
eavesdropper CSI is not known at the legitimate nodeésstantaneous channel gains, denoted @s), is well defined,
since the statistical knowledge of eavesdropper chanreld is known by all parties. Under both full CSI and main
enables us to generate key bits over many fading block3SI cases, the eavesdropper has complete knowledge of both
o We evaluate the optimal power allocation in order tthe main and the eavesdropper channels. P&t b) denote
achieve the secrecy outage capacity and provide a notled power allocated at blocks, b). We consider a long term
power controller, which combines secure waterfilling angdower constraint (or average power constraint) such that,
channel inversion policies. s B
o Past studies that make use of a key queue assume that the L Z Z P(s,b) < P, (1)
associated buffer has an infinite size. Here, we analyze SB e
the impact of a finite buffer and explicitly evaluate th(?

amount of reduction in the achievable secret data rate ¥, S0M€ avg > %_B
a finite key buffer is used. Let {W(s,b)}. ] ,—; denote the set of messages to be

. . . itted with a del traift/(s,b) b ilabl
The rest of this paper is organized as follows. We formal ransmitied with a delay constrait/(s, b) becomes available

introd ‘ del in Section Il In Section Il the transmitter at the beginning of blo¢k b), and needs
Infroguce our system modet In- section 1. In >ection tP be securely communicated and decoded at the legitimate

we ob'Fam the capamty results for the .fl.J” and main CSreceiver at the end of that particular block. We consider
scenarios. The optimal power control policies, for bothesas the problem of constructin@2¥®, N') codes to communicate

are derived in Section IV. The effect of key buffer overflow on, NR . .
L . . : ) k b 1,---,2 f | , which
the outage probability is investigated in Section V. We [ulev coisssigt%eoaéc o (s,b) € {L,---, } of equal size, whic

simulations to support our main results in Section VI. Hipal hasti q h cbo1
Section VIl offers some concluding remarks. To enhance the) A stochastic encoder that magsu(s, b), X ) 1o
x(s,b) based on the available CSI, whexé®~" sum-

flow of the paper, the proofs are collected in the Appendices. _ . . .
W hap P I ppend marizes the previously transmitted sigrtaland

2) A decoding function that mapg*® to i (s,b) at the
legitimate receiver.

r:{veh study a pomt-tq-Eomt wwelzs_s fcomm_unlcanor I|_n_k, "Note that we consider the current blagks, b) to be a function
which a transmitter wishes to send information to a legitana ¢ past blocks<*~! as well. This kind of generality

receiver, :jn the prelsence r?f a E?ssllve ea\f/esdrcgzgter:. Vme?"’éllows us to store shared randomness to be exploited in the
time into discrete slots, where blocks are forme annel ¢, ture to increase the achievable secrecy rate.

1ses, an_dB .blOCkS _comblne_ to form a super-block. Let the " pone the error event with parameteat block (s, b) as
communication period consist ¢f super-blocks. We use the

s=1b=1

Il. SYSTEM MODEL

notation (s, b) to denote theéh™ block in the s" super-block. E(s,b,6) ={W(s,b) # W(s,b) }U
We adopt a block fading channel model, in which the channel 1 5
is assumed to be constant over a block, and changes randomly {N|X(Sv b)[|* > P(s,b) + 5} 2

from one block to the next. Within each blodk,b), the ) )
observed signals at the receiver and at the eavesdropper ailich occurs either when the decoder makes an error, or
when the power expended is greater th&fs,b) + §. Let
Y (s5,0) = Gin(s,0)X(s,b) + Win(s,b) WSB\W(s,b) denote the messages to be communicated
Z(s,b) = Go(5,0)X(5,b) + W(s,b), in all the blocks except¥(s,b). The equivocation rate at
) ) ) , the eavesdropper is defined as the entropy rate of the mes-
respectively, whereX(s,b) € C" is the transmitted signal, sage at block(s, b), conditioned on the received signal by

Y(s,b) € CV is the received signal by the legitimate receivefhe eavesdropper during the transmission period, availabl

Z(s,b) € CV is the received signal by the eavesdropper, a%vesdropper CSl, and messdg@sbe communicated in all

{Wou(s,0)105 ,_; and{W.(s,0)}75 ,_, are two mutually pjocs except the message at bloekb), which is equal to
independent i.i.d. ve_ctor processes that are also 'nde%‘endﬁH(W(s,b)|ZS’B7hsz,stB\W(&b)). The secrecy out-
of other random variables. Each sampleWf,,.(s,b) € C™ g6 event at rat& with parametes at block (s, b) is defined
d W.(s,b cN d dently d f

an (s, ).e " are independently drawn from circu-q
larly symmetric, unit variance normal distribution. We @&
that the channel gains of the main chanigl,(s,b) and Oseds,b, R, 0) = Oeq(s,b, R, 6) U Oint(s,b, R, 6)  (3)
the eavesdropper chann@l(s,b) are i.i.d. complex random o ' _ ' _
variables. The power gains of the fading channels are dénote AN QXCZPEOHSEL;OW = 1, in which case the previous signals are
by H,u(s,b) = |Gm(s,b)> and Heo(s,b) = |Ge(s,b)|2. We Sipranzedbve -

: . 2Although the message$W(s,b)}ff{_b:1 are mutually independent,
sometimes use the vector notatidd(-) = [Hy,(-) He(-)] they may be dependent conditioned on eavesdroppers’ egcsignalZ S5,

for simplicity, use the notatiorH*" = {H}z}b:Lb/:l to  therefore equivocation expression includes conditiorongV =B\ W (s, b).



where the equivocation outage occurs if the equivocatitan raf stationary power allocation policies that are functiais
at block (s, b) is less thanR — 4, h = [h,, h], Similarly for main CSI we consider the sé®?,,
of power allocation policies that are functions/gf, only. For
Oeq(s, b, R, 0) = a given power allocation functio® € P, define

1
{NH(W(s,b)|ZS=B,WS’B\W(s,b%hS’B) <R- 5} Ry (h, P(h)) 2 log(1 + P(h)h,,) ®)
(4)  Ry(h,P(h)) £ [log(1 + P(h)hy,) —log(1 + P(h)h.)]"
and information outage occurs if accumulated mutual infor- ©)

mation on the messag@’ (s,b) remains below its entropy,

R & where [-]* = max(-,0), and the logarithms are with respect

to base2. Note that,R,,(-) is the supremum of achievable
main channel rates, without the secrecy constraint. Asd;)
is the non-negative difference between main channel and

N eavesdropper channel's supremum achievable rates. 8ymila
Defining Osed ) as the complement of the evefted-), we for main CSl, we consideR,, (h, P(h,,)) and Ry (h, P(hn,))
now characterize the notion efachievable secrecy Capacity.]cor PePy ' ’ ’

Definition 1: Rate R is achievable securely with at most
probability of secrecy outage if, for any fixed > 0, there
exists a sequence of codes of rate no less tRasuch that, A. Full CSI

Oinf(S, b, R, 5) e {%I (VV(S7 b);Ys,b) <R-— 5} ) (5)

for all large enougtt, B and N, the conditions Theorem 1:Let the transmitter have full CSI. Then, for any
P(E(s,b, 8)|Osed s, b, R, 8)) < § 6 © 0 < e < 1, the e-achievable secrecy capacity is equal to
Cr(e) bits per channel use, where
P(Osed s,b, R,0)) <€+ (7)
are satisfied for al(s,b), s # 1. Cr(e) = max %IZ(H))] (10)
We call suchR an e-achievable secrecy rate. Note that the g
conditioning in (4) is based on the realizatibfi-? of all the subject to:
channel gains, and the probability expressions are B/et. E[R,(H, P(H))]
Also note that the security constraints are not imposed en th ]P)<Rm(H7 P(H)) < 51—;6) <e (11)

first super-block.
Definition 2: The e-achievable secrecy capacity is the

supremum of alk-achievable secrecy rates. A detailed proof of achievability and converse part is pded
Remark 1: The notion of secrecy outage was previoug, Appendix A. Here, we briefly justify the result. For a
defined and used in [6], [7]. However, those works did NQfiven power allocation functior® € Pp, Ry(h, P(h)) is
considerthe technique of storing shared randomness forefutp, o supremum of the secret key generation rates within a
use, and in that case, secrecy outage depends only on yRgk that experiences channel gaing2]. This implies that
instantaneous channel states, and hence the achievahble giat expected achievable secrecy rate [3E|R, (H, P(H))|
rates were rather suboptimal. In our case, secrecy outggénout the outage constraint. With the outage constraim,
depends on previous channel states as well. We illustratg-tyations ofR,(H, P(H)) due to fading are unacceptable,
the suboptimality of the previous works in Example 1. NOt@inceRs(H,P(H)) can go below the desired rate when the
that we do not impose a secrecy outage constraint on ¥€snnel conditions are unfavorable (e.g., whép, < H.,
first supgr_blpckli = 1). We refer to the first. §9perb|OCkRs(H7P(H)) = 0). Hence, we utilize secret key buffers
as an initialization phase used to generate initial comm@sl smoothen out these fluctuations to provide secrecy rate
randomness between the Ieg|t|mate_ no_des._ ThIS phase %‘!’XE[RS(H,P(H))] at each block. The generated secrecy is
needs to appeawncein the communication lifetime of that sioreq in secret key buffers of both the transmitter andivece
link. In other words, when a session (which consistsSof 5 s utilized to secure message of same size using Vernam’s
superblocks) between the associated nodes is over, thed Wqyhe_time pad technique. Note that every single generatgd ke
have sufficient number of common key bits for the subsequeg s used exactly once, such that keys generated dth
session, and would not need to initiate the initializatiteps superblock are used is + 1'st superblock. Secrecy outage
again. may still occur when either there is not enough key bits left
at the key queue, or the main channel rate for the block
[Il. CAPACITY RESULTS remains below the desired rate. In this case, we do not attemp
In this section, we investigateachievable secrecy capacityto transmit the message, hence no key bits are expended.
under two different cases; full CSI and main CSI at th&herefore, withe probability of secrecy outage, a secrecy
transmitter. We show in capacity proofs that the outage c@te of E[R,(H, P(H))]/(1 — ¢) could be achieved. The
pacity achieving power allocation functions lie in the spacchannel outage constraint (11) on the other hand is a negessa
of stationary power allocation functions that are funcsiorcondition for the main channel to support the desired rate,
of instantaneous transmitter CSI. Hence fall CSI, we avoid information outages (5), and satisfy the secrecygrita
constrain ourselves to the s@» : {h} — Rt U {0} constraintin (7).

E[P(H)] < Pay (12)



Example 1:Consider a four state system, whelg, and at the transmitter, secret key bits cannot be generatedwath
H, takes values from the s¢t, 10} and the joint probabilities block. In [8], a sub-optimal slot division approach wasiaéH,
are as given in Table I. Let the average power constraint lmewhich part of each slot was used in generating keys, and
Payg = 0.5, and there is no power control, i.é?(h) = P.yq the other part was used in transmitting the delay sensitive
Vvh. The achievable instantaneous secrecy rate, and the ndéta. Instead, we generate keys over super-blocks usivagpri
channel rate at each state are given in Tables Il and Ill, r@mplification, carefully designed based on the sampleilistr
spectively. According to the pessimistic result in [6,8),mon-  tion of H.(s,b). Roughly, over a superblock the receiver can
zero rate can be achieved with a secrecy outage probabiligjiably obtain N BE[R,,(H, P(H,,))] bits of information,
e < 0.6 in this case. However, according to Theorem 1, ratehile the eavesdropper can obtaWWBE([R,,(H, P(H,,)) —
R = w = 22 can be achieved with secrecy R,(H,P(H,,))] bits of information. With privacy ampli-
outage probabilityfor anye > 0.2. A sample path is provided fication, N BE[R,(H, P(H,,))] bits of secret key can be
for both schemes in Figure 1, and it is shown how our scher@istracted.
avoids secrecy outage in the second block. Note that, forNow, we show that power allocation policy has minimal
e < 0.2, the rateR = =MLl cannot be achieved dueimpact on the performance in the high power regime.
the limitation of instantaneous main channel rate, as shownTheorem 3:For anye > 0, the e-achievable secrecy capac-
in Table IIl. Instead, a secrecy rate of only= 0.58 can be ities with full CSI and main CSI converge to the same value
achieved. In Example 2, we show that, through a more clever

i i E [log (H,,/H.)] "
control of the power expended, we can achieve much higher lim Cp(e) = lim Cale) = [log (Hm/H.)] (16)
rates. Payg—00 Payg—00 (I1—¢)
TABLE | TABLE Il : _

F(h) Re(h, Pave) Proof: For h = [h,, h.] such thath,, > he}; we can

see from (9) thatimp ) Rs(h, P(h)) = log (h—m) and

Lhm \ he— | 1 | 10 bhm \ he— | 1] 10 for h,, < he, Rs(h, P(h)) = 0. Furthermore, forh,, > 0,

1 01101 1 ol o we can see from (8) thatm p(n)—,o0 R (h, P(h)) = co. Let
10 0.4 ‘ 0.4 10 ‘ 2 ‘ 0 P(h) = Payg Yh (no power control), which does not require

TABLE Il any CSI. Then, we get
R’m (h7 PAVG) +
Plim E[Rs(H, Pay)| = E[log (H,,,/H.)]" < o0.  (17)
avg—r OQ
bhm\ he— | 1 | 10 !
1 058 | 058 Combining (16) and (17), we get
10 ‘ 2.58‘ 2.58
E[Rs(H, P,
lim P <Rm(H,Pavg) < M) =P(H,, = 0)
Pyyg—ro00 1—c¢

B. Main CSI and P(H,, = 0) = 0, since probability density function of

Theorem 2:Let the transmitter have main CSI. Then. fofd is well defined. Hence, channel outage constraints (11) and
anye, 0 < e < 1, the e-achievable secrecy capacity is equeﬁl4) are not active in the high power regime. From (10)-(12)
to C(e) bits per channel use, where and (13)-(15), we conclude that (16) holds. |

Our simulation results also illustrate that the power altamm
E[Ry(H, P(Hyn))]

Ch(e) = max (13) Policy has minimal impact on the importance in the high power

PEPM l—e regime. On the other hand, when the average power is limited,
subject to: the optimality of the power allocation function is of criic
importance, which is the focus of the following section.
E[Rs(H, P(H,,
p( Ry (a1. P, < LI <o gy
E[P(Hy,)] < Payg (15) IV. OPTIMAL POWERALLOCATION STRATEGY

Although the problems (10)-(12) and (13)-(15) are of thesanA. Full CSI

form, due to the absence of eavesdropper CSlI, the maximiza- ) . .

tion in this case is over power allocation functioRg that de- The optimal power control strateg_y?_ < Pr is the
pend on the main channel state only. Her@g;(¢) < Cr(c). stationary strategy that solves the optimization problé&@)-

A detailed proof of achievability and converse is providad i(lz)' In this section, we Wi”,ShOW thak* is. a time-sharing
Appendix B. As in the full CSI case, our achievable sche tween the channel inversion power policy, and the secure

uses similar key buffers and Vernam’s one time pad techniqwgterﬁ”ing policy. W_e fir_st intrO(_ju_ce the ch_annel inversio
to secure the message. The main difference is the generafff??‘lver _pollcyPim,r,] wh|clh IS tt;;mlnlmumrequwed power to
of secret key bits. Due to the lack of knowledge i (s, b) maintain main channel rate d.

2ft 1
SAlthough Theorem 1 is stated for the case where random védtds Pim,(hm7 R) =
continuous, the result similarly applies to discréfeas well. him

(18)



block 1 h =[10 1]

block 2 h = [10 10]

Rates RF258, R=2 R7258 R=0
wiretap Outage wiretap
Strategy 1 __channel ) channel
[data} 2t [ r=p [LUaDI Gaa] LDt oo |nodaabie
S
] No Outage )
L ke wiretap lg‘f Ly keg g ke{l wiretap ke
B _ quélie channel quéue _ quetie channel quétie
Strategy 2 fandom bt~ s gosermdl o [,
's™ 's™
@ 1 bit 1 data bi@ - 1 bit. 1 bit @ 1 d?t
encrypted br

Fig. 1. A sample path. With strategy 2, secrecy outage canvbieled for blockt = 2 via the use of key bits.

Note that, main CSI knowledge is sufficent fBf,. Next we
introduce P,

o= (-2 4 ()
oad))

We call it the 'secure waterfilling’ power policy because it R
maximizes the ergodic secrecy rate without any outage con- P (h) =PFi(h, A)
straint, and resembles the 'waterfilling’ power controlipgl

+1(h € G(A k) (Prw(hum, R) — Put(b,0))" (29)
Here, the parametek determines the power expended on
average. Now, let us define a time-sharing region wherek € (—o0,0] and A € (0, +o0) are parameters that

satisfy (26) and (27) with equality.
Proof is provided in Appendix D. It is left to show there exist
a uniqueR that satisfies? = E[R,(H, PF(H))]/(1 — e).

is found by solving

Pan = / Pinv(hrru Rmax)f(h)dh (28)
hm>c

for h = [h,, h.], where the constant is chosen such that
P(H,, <c¢)=c¢.
(19)  Proof is provided in Appendix C-A.
Lemma 2:For anyR < Rpax,

GO\ k) —{h - [Ra(h, Pry(ms R)) — Ra(l, Pag(, V)]

Lemma 3:E[R;(H, PR(H))] is a continuous non-
— AP (i, R) — Par(h, )] > k} (20) ' increasing function of.
Proof is provided in Appendix C-B.
which is a function of parameters and k. Lemma 4: There exists a uniqu®, 0 < R < Ruax, Which
Theorem 4: P* is the unique solution to satisfiesk = E[R,(H, PE(H))]/(1 — ¢).
X X Proof is provided in Appendix C-C. This concludes the proof
P (h) =Pu(h, A7) of the chorem. PP 2
+1(h € GO, k) (Bv(hum, Cr(€)) — Pu(B,A%)) T (21)  Due to (21), the optimal power allocation function is a time-

sharing between the channel inversion and secure wategfilli
a balance between avoiding channel outages, hence secrecy
outages, and maximizing the expected secrecy rate. The time

subject to:k* < 0,\* >0
Cr(e) =E[R;(H, P*(H))]/(1 —¢) (22)

PHe G\ k7)) =1~ (23) sharing regionG(\, k) determines the instants, for which
E[P*(H)] = Payg (24) avoiding channel outages are guaranteed through the choice
o of P(h) = max(Puny(hm, R), Pst(h,\)). (23) ensures that
Proof: Define a sub-problem channel outage probability is at mastand (24) ensures that
E[Rs(H, PF(H))] = max E[R,(H, P(H))] (25) average power constraint is met with equality. (22), on the
. PePr other hand, is an immediate consequence of (10).
subject to:P(h) > 0, Vh Note that, an extreme case B*(h) = Py(h,\*) Vh,
E[P(H)] < Payg, (26) which occurs whenPp, (h, R) < Put(h,\*) for any h €
P(R,(H,P(H)) < R) <¢ (27) G(\*,k*), i.e., the secure waterfilling solution itself satisfies

the channel outage probability in (11). However, that the
Let P2 be the power allocation function that solves this sutether extreme R*(h) = Pny(h.,, R*) Vh) cannot occur

problem. Note that foRR = E[R,(H, P*(H))]/(1 — ¢), this
problem is identical to (10)-(12), hence giving Bs= Cr(e),
and P = P*. We will prove the existence and uniqueness d&[R.(H, P*(H))] and and(1 — ¢)R as a function ofR. The

suchR.

Lemma 1:There exists a uniqu&mnax > 0 such that the

for any non-zeroe due to (21). The paramet&rr(e) can
be found graphically as shown in Figure 2, by plotting

abcissa of the unique intersection pointiis= Cr(e).
Example 2:Consider the same system model in Example 1.

sub-problem (25)-(27) has a solution for &< R,,.., which We have found that foR = % bits/channel use is achievable



Finding C_(e) on Graph B. Main CSI

Here, we find the optimal power control strateBy € Py,
which solves the optimization problem (13)-(15). Let us wnlefi
""" a-er the main CSI secure waterfilling power polid@y,, such that
‘ Py (hm, ) is the maximum of0, and the solution of the
following equation

OE[Rs(H, PH))] _ hmP(he < him)

——ER (HPR(H)]

s

Expected secrecy rate, E[R_( H,P¥( H))]

OP(hum) 1+ hpP(hy)
h7n h
— ———— | f(he)dhe — X = 30
[ (riry )i =2=0 0
Oo/ Cele) R Theorem 5: P*(h,,) is the unique solution to

Rate, R . .

Fig. 2. FindingCr (¢) with graphical approach P (hm) =Py (hm’ A )

+1(hm > ¢) (Pry(Bom, Cpr(€)) = Py (him, X))T (31)
subject to:A* > 0
with e probability of secrecy outage with no power control, Chi(e) = E[R(H, P*(H,))]/(1 — ) (32)
i.e., P(h) = 0.5 Vh for ¢ > 0.2. Let ¢ = 0.2, we will see P(Hy > ) = 1— ¢ (33)
if we can do better tha®? = 1 with power control. Solving me==
the problem (21)-(24), we can see théite time-sharing, and E[P*(Hy,)] = Pavg (34)
power expended in each state are as given in Tables IV andv%ereE[Rs(H, P*(H,,))] is the expected secrecy rate under
Forh = [h;, he] = [10 1], i.e., the legitimate channel has gj,o power allocation policy?*.
better gain, secure waterfilling is used and wies [10 10},  Note that, optimal power allocation function takes a form

secret key bits cannot be generated, but channel inversioniyiiar to Theorem 4 exce®, (hm, \) replacesPy(h, \)
used to guarantee a main channel rate?oivhich is secured a4 the time-sharing ,regions are different. e

by the excess keys generated during the diate [10 1]. As Proof: The proof follows the approach in Full CSI case,

a result, we can see that a rate @f(0.2) = 1.26 bits per pence we omit the details for brevity. Define the sub-problem
channel use is achievable, which correspond#6ts increase
with respect to no power control. As mentioned in Theorem 3, E[R(H, P*(H,,))] = JInax E[Rs(H, P(H,,))] (35)

M

this gain diminishes at the high power regime, i.e., when subject t0:P(hm) > 0, Vi

We also study the case with = 0, for which a secrecy E[P(Hm)] < Pavg, (36)
rate of R = 0.58 can be achieved, as illustrated in Example 1. P(R,,(H,P(Hp,)) < R) <e (37)

Solving Problem (21)-(24) foe = 0, we obtain the power

0 . Let PR be the power allocation function that solves this
allocation in Table VII, for which a secrecy rate 6f-(0) = € P P

V?ub-problem. Lemmas 1 and 4 also hold in this case. The only

0.9 bit per channel use is achievable. As shown in Table . ; .
. . . difference is the following lemma, which replaces Lemma 2
channel inversion guarantees a main channel ratédb) at in Eull CSI

all tlme.s, which was not possible without power control as Lemma 5:For any R < Ruay and fi,,
shown in Example 1.
PR(hm) = Pw(hmv)\)

TABLE IV +
TIME SHARING REGIONS P*-I(-1A1|)3LE VO ) + 1(him > ¢) (Bov(hm, R) = Pu(him, A))
c=02 A wherec is a constant that satisfid H,, > c¢) = 1 — ¢, and
T\ e | 1] 10 T\ | 1] 10 A€ (0, +o<_)) is a constant that satisfies (36) with (_aquallty.
1 — T 5 5 The proof is similar to the proof of Lemma 2, and is provided
10 ‘ wf ‘ inv 10 ‘ 1.11‘ 0.14 in Appendix E. R _ -
The graphical solution in Figure 2 to find'x(¢) also
TABLE VI TABLE VII generalizes to the main CSI case.
TIME SHARING REGIONS € = 0 P*(h),e=0
V. SIZING THE KEY BUFFER
Bn \ he 1| 10 B \ e 1 10 . .
hm \ he = | | Vhm \ he = | | The proofs of the capacity results of Section Il assume
1 inv | inv 1 0.86 | 0.86 Hahili A ; ;
10 wh | inv 10 ‘ 073 ‘ 0.08 availability of infinite sizesecret key buffers at the transmitter

and receiver, which mitigate the effect of fluctuations in
the achievable secret key bit rate due to fading. Finiteesiz
buffers, on the other hand will lead to a higher secrecy aitag

4Although Theorem 4 assum#$ is a continuous random vector, the resultsprObabi“ty du_e_ to wasted key bits by the key bu.ﬁer overflows
similarly hold for the discrete case as well. Here, we revisit the full CSI problem, and consider key buffe




sizesnormalizedwith respect to the number of channel usesuch thatOx(t) = Ocn(t) U O4(t) is i.i.d. as well, and
in a block, N, as follows. We defineM (e, R) to be the
normalized buffer siZg in terms of bits per channel use, P(O«(t)) =¢, ¥t

required to achieve ratg with at moste probability of secrecy The dynamics of thaormalizedkey queué can therefore be
outage. modeled by

Theorem 6:Let ¢ > ¢, andx(x) = zlog(x). Then, Quit +1) = min(M, Qui(t) + Ra(t) — 1(Oenclt))R) (39)

M(e,C .
lim (¢, Cr (o)) <1 (38) Note thatQ,(t) > 0 V¢, due to the definition 0Oyey(t). Let
e ,{<Var[Rs(HVPC?;,EL(EP)I%)]J(;()CF(@)%UE>) LT (M) be the time average loss ratio over the fifsblocks,
g for buffer sizeM, which is defined as the ratio of the amount

where PC*() ¢ Py is the power allocation policy defined in,Of loss of key bits due to overflows, and the total amount of

(29), for parameteRR = Cr(¢). input key bits

Before providing the proof, we first interpret this result. - ZtT—1 (QM(t)JrRS(t) — 1(@enc(t))R—M)+
If buffer size is infinite, we can achieve ra@p(e) with L (M) === S0
e probability of secrecy outage. With finite buffer, we can t=17" (40)

achieve the same rate witth probability of secrecy outage.
Considering this difference to be the price that we have den, we can see thatl’ > 0,
pay due to the finiteness of the buffer, we can see that the T T
normalized buffer size required scales witl'(5917—5 log 51—75) (1—=L"(M)) Y Ry(t) = Qu(T)+ > _ R1(Oendt)) (41)
ase’ —e — 0. t=1 t=1

Proof: Achievability follows from simple modifications to follows from (39), (40), and the fact th&2,,(1) = 0.
the capacity achieving scheme described in Appendix A. WeLemma 6:Q(t) converges in distribution to an almost
will first study the key queue dynamics, then using the heagyrely finite random variable.
traffic limits, we provide an upper bound to the key loss ratibhe proof is provided in Appendix F-A. This implies that
due to buffer overflows. Then, we relate key loss ratio to tHen;— .. P(Oend(t)) exists. Now, we provide our asymptotic

secrecy outage probability, and conclude the proof. result for the key loss ratio. We define the drift and variance
For the key queue dynamics, we use a single intlém Of this process as
denote the time index instead of the double inge»), where A
. L ’ =E|Rs(t) — R1 t
t = sB + b. We consider transmission at outage secrecy rate Hr [Rs(t) l;t; (Ox())]
of R, and use power allocation functioR?, which solves = E[R,(H, P"(H))] — R(1 —¢) (42)

the problem (25)-(27). Let us defing).;(t)}52, as the key zng
queue process with buffer siz&f, and letQu/(1) = 0. To _
simplify notation, let us conside®, (¢) = R, (h(t), PR (h(t))) o = Var[R,(t) — R1(Ox(t))]
to denote the value aft,(-) at block¢, and similarly define oqpectively, where (42) follows from the definition 6% ().
Ry (t) as well. Then, during each bloak Lemma 7:For any M > 0, the key loss ratio satisfies the
1) The transmitter and receiver agree on secret key bitsfa@lowing asymptotic relationship
rate R, (¢) bits /channel use using privacy amplification, 9
and store the key on their secret key buffers. lim  lim LT (MU—R) X
2) The transmitter pulls key bits at rafebits / channel use ~ #Cr(e) T=ee g
from its secret key buffer to secure the message stream at 2|un B[Ry (H, PR(H))]e%‘?:i‘

rate R bits/ channel use using one time pad, and transmits 5 <e M (43)
over the channel. _ _ _ R _
as explained in Appendix A. The last phase is skipped I Proof is provided in Appendix F-B.
Lemma 8:If lim; oo P(Oendt)) = €, then ¢’ secrecy

outage t)) is declared, which is triggered by one of the o ° eNey
folilov?/ing?\j(er)w)tsl WIEHLIS 1199 y outage probability (7) is satisfied.

Proof: Find B such thatP(Oenc(t)) = ¢ + ¢ for any
¢ Channel OUtageth(t)): The_ channel cannot support, - g |n 2.index time notation(s, b) with t = sB + b, it
reliable transmission at rat®, i.e. R,,(t) < R. __corresponds t&®(Oend(s, b, R)) = ¢ + 4, ¥(s,b) : s # 1.
o Key Outage QOkey(t)): There are not enough key bits iNThen
the key queue to secure the message atRRafehis event '

occurs wherQy; (t) + Ry(t) — R < 0. P(Oseds, b, R,6)) < P(Oseds, b, R, 8)|Oencls, b, R))
« Artificial outage (D4(t)): Outage is artificially declared, + P(Oends, b, R)) (44)
even though reliable transmission at rdtds possible. < P(Oend(s, b, R)) (45)
= enc\ =, Y,
Due to the definition ofPZ, P(Oen(t)) < € V¢, and the set <4 (46)

{Ocn(t)} of events indexed by are i.i.d. We choos¢Ox(t)}

5Note that, the actual key queue process scales Withe., NQ s (t) bits
5Note that, actual key buffer would be of si2éM (e, R) bits. are in the key queue at bloak



Here, (44) follows from the union bound, and second termhere the main channel and eavesdropper channel power gains
follows from (63) and (75) in Appendix A, which showsfollow exponential distribution with means 2 and 1, respec-
that there exists some packet sixelarge enough such thattively. Since Rayleigh channel is non-invertible, maintag
P(Osed s, b, R, 6)|Oends,b, R)) = 0. Equation (46) implies a non-zero secrecy rate with zero secrecy outage prolyabilit
that ¢’ secrecy outage probability (7) is satisfied. B is impossible. In Figure 3, we plot theachievable secrecy
Let lim;— oo P(Oend(t)) = €. Since P(Ok(t)) = € and capacity as a function of the average power, fo= 0.02
Oenc(t) = Ox(t) U Okey(t), we havelim,_, ., P(Okey(t)) > 0. outage probability, for both full CSI and main CSI cases. It
This implies thatimy_, o %QM(T) = 0 (since otherwise, key can be clearly observed from the figure that the gap between
outage probability would be zero), which, due to (41) impliecapacities under full CSI and main CSI vanishes as average
. T R power increases, which support the result of Theorem 3.

(1= Th—I>I<1>oL (M))E[E; (H, P7(H))] In the second example, we study the relationship between
= (1 — lim P(Oendt)))R the buffer size, key loss ratio and the outage probabilitg. W

tfoo assume that both the main and eavesdropper channel gains
=(1-€)R (47) follow a chi-square distribution of degree 2, but with means
Here, due to the choice of power allocation pO”ESﬁ- we and 1, respectively. We focus on the full CSI case, and censid
haveE[R,(H, PE(H))] = limy_, oo % ZtT:1 R.(t). Plugging the scheme described in Section V. We consider transmission
the result of Lemma 7 into (47), we obtain the required ke3t secrecy rate ak with the use of the power allocation policy

buffer size to achieve’ probability of secrecy outage PT that solves the problem (25)-(27). For= 0.02, and the
) M(¢,R) - R average power constraitityg = 1, we plot the key loss ratio
1m

. . <1 (40), as a function of buffer sizé/ in Figure 4, forR =

RO o log ( spmrmEma i ) Cr(e), R=1.01Cp(e) andR = 1.02Cr(c), whereCh(c) is
(48) the e-achievable secrecy capacity. It is shown in Lemma 7 of
) . Section V that expect the key loss ratid (M) decreases as

We know from (10) that ande’-achievable secrecy capacitiesy jncreases, which is observed in Figure 4. Finally, we study
satisfy the conditionsl —¢')Cr(¢') = E[R (CH, PEr)(H))] e relationship between the secrecy outage probabiliyttae
and (1 — Cp(e) = ERMHPUrOM)] = pfer size for a given rate. In Figure 5, we plot the secrecy
E[R;(H, P*(H))], re%pectlvely. By Lemma 3, Wey,tage probabilities, denoted dsas a function of buffer size
know that E[R,(H, P"(H))|] is a continuous function »; tor the same encoder parameters. On the same graph, we
of R, hence for any givene’ > ¢ there existS gi50 plot our asymptotic result given in Theorem 6, which
an IR S%Ch that Cp(e) < R < Cp(€), and provides an upper bound on the required buffer size to aehiev
E[Ry(h, P*(H))|] = (1 — <5=)R. Furthermore, as’ — ¢, ¢/ gutage probability for rat€'s(c), with the assumption that
Cr(€) = Cr(e). Let us define a monotonically decreasingsg) s an equality for any’. We can see that, this theoretical

sequence (€}, €, ---), such thatlim; € = € FOr requit serves as an upper bound on the required buffer size
any i € N, find R; such thatCr(e) < Ri < Cr(€j), whene — e, which is the additional secrecy outages due to key
and E[R,(H,PR(H))] = (1 — Z%)R;, therefore puffer overflows, is very small. Another important obseioat
pr, = (e —€)/(2R;). From (48), we get from Figures 4 and 5 is that, for a fixed buffer size, although
. M(¢,R;) — R; the key loss ratio decreases &sincreases, secrecy outage
JAim ——r—— <1 (49)  probability increases. This is due to the fact that key bits a
K (m) pulled from the key queue at a faster rate, hence the decrease

in the key loss ratio does not compensate for the increase of
We can see that (38) follows from (49), since:as oo, the rate that key bits are pulled from the key queue, theeefor
e R, — Cr(e), whereCr(e) < oo converges as shownthe required buffer size to achieve samés higher for larger
in (17), hence we can safely drop that term from thealues ofR.
numerator, since the denominator diverges.
o € >

2 2
* OR, = 0, Where

VII. CONCLUSIONS
) _ This paper obtained sharp characterizations of the secrecy
TCr(e) = Var[Rs(t) = Cr(€)1(Ox(1))] outage capacity of block flat fading channels under the as-
< Var[Rs(H, P79 (H))] — ¢(1 — €)Cp(e).  sumption full and main CSI at the transmitter. In the two
cases, our achievability scheme relies on opportunisfical
exchanging private keys between the legitimate nodes and
using them later to secure the delay sensitive information.
VI. NUMERICAL RESULTS We further derive the optimal power control policy in each
In this section, we conduct simulations to illustrate ouirmascenario revealing an interesting structure based by ipuc
results with two examples. In the first example, we analyziene sharing between time sharing and the optimal strategy
the relationship between-achievable secrecy capacity andor the ergodic. Finally, we investigate the effect of keyfeu
average power. We assume that both the main channel awveérflow on the secrecy outage probability when the key Ibuffe
eavesdropper channel are characterized by Rayleigh fadisige is finite.
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any (s, b) ’
P(Ocn(s, b, R)) =

APPENDIXA

w) < e (50)

« Key outage Qkey(s, b, R)): There are not enough key bits
in the key queue to secui& (s, b), i.e.,
First, we prove the achievability. Let us fibR < B b
E[Rs(H,P(H))]/(1 — ¢), and consider a power allocation (Z H(\V(s—1,b)) — Z H(K(s,b’))) <0
policy P € Pp, that satisfies the constraints (14),(15). We b'=1 b'=1

show that for anys > 0, there exist someé3 and N large . Artificial outage (Da(s, b, R)): The transmitter declares
enough such that the constraints in Definition 1 are satisfied 'outage’, even though reliable secure transmission of

P <Rm(H, P(H)) <
A. Proof of Theorem 1

which implies that anyR < E[R,(H,P(H))]/(1 — ¢) is

an e-achievable secrecy rate. The outage capacity is then

found by maximizing E[R,(H, P(H))]/(1 — ¢) based on
constraints (10)-(14). For notational simplicity, we wilse
Rs(s,b) = Rs(H(s,b), P(H(s,b))) to denote the value of

W (s, b) is possible. This is introduced to control the key
queue dynamics and bound the probability of key outages,
which is covered in the secrecy outage analysis. By
definition, the event§Oa(s,b, R)} "} ,_, are mutually
independent, they are also indepen7dent of other random

Rs(-) at block(s,b), and similarly defineR,, (s, b). variables, and satisfy the equality
P(Och(sa b7 R) U Oa(S, ba R)) =€

for any (s, b).

Our scheme, shown in Figure 6, utilizes secret key buffers
at both the transmitter and legitimate receiver, where

i) At the end of every block(s,b), using privacy amplifi- . .
cation, legitimate nodes (transmitter and receiver) WBerNOte that, due to our assumption that keys generatéghin )-

N(Rs(s,b)—0) bits of secret key from the transmitted signal irft ?uperblglck are_ulsedbmth Slliperbl(:Ck’ alltrt]he ?IOCKS the
that particular block, and store it in their secret key bisf&Ve Irst superblocks = 1) observe key outages, therefore secrecy

denote the generated secret key at the transmittéf (ash), Zf;?gne;éﬁta'tt (\:j\f)ee\s/viﬁllosthvtgfl)\lat:‘]ea:r;grcf:\)nStragn;zelrr]eDee)Iilggo
and at the receiver &s(s, b). ' >0, '

ii) At every block (s,b), s # 1, the transmitter pullsV R bits B and N are large enough such that the eveis(s, b, )

from its secret key buffer to secure the outage constrain%'ad Oint(s, b, R, 0) are equivalent.

message of sizegd(W(s,b)) = NR, using Vernam’s one L

. . Encoding:

time pad. The receiver uses the same key to correctly deccasie .
ur random coding arguments rely on an ensemble of code-

the message. We denote the pulled key at the transmitterb%%ks enerated according to a zero mean Gaussian distribu-
K(s,b), and at the receiver a&(s,b). Keys generated at 9 9

) tion with varianceP (s, b) .
(s —1)-st superblock are U.SEd only in theth superblock, 1) WhenQOen((s, b, R) does not occur, the message is secured
and every generated key is only usedce When certain

conditions are not met, this stage is skipped; the messe‘*’vﬁfqz tgae&secret key bits pulled from the key queue, using one

W (s,b) is not transmitted, and the keys are not pulled from
the key queue. We call this particular event “encoder outage
and denote it a®enc(s, b, R) = Ocn(s, b, R) U Okey(s, b, R) U
Oa(s,b, R), where

(51)

Wiee(s,0) = W(s,b) ® K(s,b) (52)
"Here, we interchangeably us@,,(s,b) = R (H(s,b), P(H(s,b))),

and due to stationarity of, drop index(s, b).

8Note that, it is also possible to use a finite number of codkbday

. ; ; partitioning the set{h} of channel gains, and using a different Gaussian
o Channel outage@cn(s, b, R)): Channel is not suitable for codebook for every partition [3],

re”ablle FransmiSSion at rate, i-e-{Rr.n(Sv.b) < R. SinCe  se assume that both the message and the key are convertedaty bi
P satisfies (14), due to the definition in (11), (12), foform in this process.
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W(s,b) @W=e=(5'b’ Wbl e ) o a universal hasf function on the exchanged signals in that
I - particular block. First, we provide the definition of a unisal
— s hash function.
Key Queue “ V(s,b) alel) Definition 3: ( [11]) A class G of functions A — B is
: universal, if for anyz; # x2 in A, the probability that
a) Transmitter g(z1) = g(x2) is at mostE when g is chosen at random
from G according to a uniform distribution.
Lemma 9:For anyS > 0, B > 0, there existgV, (S, B) >
0 such that,vN > Ny(S, B), and for any block(s, b), the
transmitter and receiver generate secret key bifs,b) =
G(Wx(s,b)) and V(s,b) = G(Wx(s,b)) respectively, such

¥sh) | Wi(s.b) \i’gx(&b)_,@ﬂ"\" b

Privacy
Amp.

I

Wia(s.b) K(s.b) :
> that V(s,b) = V(s,b) if the error eventE,(s,b) does not
V(s.b) occur, and
Key Queue
b) Receiver H(V(s,b)) = N(Rs(s,b) —9) (53)
) . o . . . 1 )
\l,:\;ﬁér?ben'cl'(r;?bfa}gag%saﬁgltegg\cgur.scheme, transmitter andivexceperation NI(V(S’ b); Z(s,b),h(s,b),G) < 5B (54)
The proof follows the approach of [12], which applies pri-
vacy amplification to Gaussian channels. We provide it in
Clearly, Wiee(s,b) € Wsee = {1,---,2N8} Fur- Appendix A-B.
thermore, let {Wz1(s,b)}fib:1 denote an iid. se- Now, we will show that for this scheme, the error con-
quence where{W,i(s,b)} € {1,--- 2NEn(b)-FE=01 straint in (6), and the secrecy outage constraint in (7) is
is uniformly distributed. The encoder formd’x(s,b) = satisfied. To simplify notation, we will frequently usé& (s, :
[Wiee(s,b) Wai(s,b)] by concatenation, and transmits the = {W(s,b)}£ ;. Note that, for anys, the markov chain in
codewordX(s, b) indexed byWx (s, b) over the channel. Figure 7 is satisfied, which could be observed from Figure 6.

2) When Oend(s, b, R) occurs, W(s,b) is not transmit- These markov relations will be repeatedly used in secrecy
ted. Let{W,a(s,b)}-5 | denote an i.i.d. sequence wher@utage analysis.
{Waa(s,b)} € {1,---,2NEn(s0)=0)1 js uniformly dis-

tributed. The encoder form&x(s,b) = [W.a(s,b)], and X(s-1,) X(s,:)
transmits the codeworX (s, b) indexed byWx (s, b) over the
channel. T T
The reason for transmittingV,.,(s,b) and Wy2(s,b) is to o o n Mo I T
confuse the eavesdropper to the fullest extent in the privac
amplification process. ‘
Decoding: . W(s-1,9) W(s,:)
The receiver finds the jointly typicdWx (s,b), Y (s, b)) pair,
where
o o o Fig. 7. Markov chains
1) Wx(s,b) = [Wsee(s,b) Wyi(s,b)] when Oene(s, b, R)
does not occur. Error Analysis: The probability of error event in (6) can
2) Wx(s,b) = [Waa(s,b)] whenOends, b, R) occurs. be bounded as

Define the error events P(E(s,b,6)|@se({s,b,R, 5)

Bx(s,b) = {Wx(s,0) # W (5,0))} < B(E(5,,6)|Oend(s, b, 1))
1 +P(Oend(s, b, R)|Osed s, b, R, 5)) (55)
Es(s,0,0) = {NllX(s,b)ll2 > P(s,b) + 6} = P(E(s,b,0)|Oends,b, R))  (56)

) ) where (56) follows since
Note that, the main channel at slft, b) can be viewed as

an Additive White Gaussian Noise (AWGN) channel with P(Oend(s, b, R)|Oseds, b, R, J))

channel gainH(s,b), which has instantaneous capacity of < P(Oends, b, R)|Ont (s, b, R, 8)) =0 (57)
R, (s,b) = R,,(H, P(H)) [9]. The encoding rate (rate of

Wx (s,b)) is equal toR,(s,b) — &, which is below the in- due to the fact that information outag®i(s, b, R, d)) does
stantaneous main channel capacity. Therefore, randomgoddot occur, theny H(W (s,0)[Y**,h*?) > R — § which
arguments guarantee us tha® > 0, IN;(B) > 0 such that eliminates the possibility of an encoder outad®d{(s, b, 1?)).

VN > Ny(B), P(E1(s,b)) < 2= andP(Es(s,b,8)) < 2.
n 1( ) ( 1( )) - 3B ( 2( )) — 3 1%privacy amplification can also be performed using extraftmctions.

Privqcy Amplificatipn: At the end of every blO(.:Ks, b), .the In [10], it is shown that in fading Gaussian channels, samerktes can be
transmitter and receiver generate secret key bits, by agply achieved by using extractor functions, as compared to tsavéash functions.
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For any N > max(N;(B), N2(S, B)), and (s,b) such that from the union bound. Now, we upper bound the first term.

s > 1, (56) can be bounded as Note that
_ ~ 1
P(E(s,b,0)|Oends, b, ) P(Oeq(5,b, R, 8)|Oends, b, R)) = ]P’<NH(W(S, b)|Z55,
; 1X(s,0)|?
< - _
<P(W(s,b) # W(s,b)) + P ( ~ > P(s,b) + 6 hSE WS B\ (5. ), G, Oond(s, b, R)) > R — 5> (64)
(58)
= P(Waeo(s,b) ® K (s,b) # Wsec(s,b)GBK(s,b)) by d_efinition in (4), and the fact that the universal hash
X(s,b)||2 function G used is revealed to the eavesdropper, hence the
+P <S’7|| > P(s,b) + 5> (59) entropy of W (s, b) is conditioned onG' as well. Fors > 1,
N . . we bound the equivocation as follotts
< P(Weee(s, b Wiee(s, b)) +P(K(s,b K(s,b _
( (|X)(fb)|2 (5,0 R ) 2 KL 0) H(W(s,0)|Z°%7 08 WSP\W (s,b), G, Oends, b, R))
+P (T > P(s,b) + 5) 60) > H(W(s,b)|Z%F 03B WHB\W (s,b), G,

where (58) follows from (2), and the union bound, (59) Oend(s,, R;’szeg(;’b))SB (63)
follows from the fact that whe®end(s, b, R) does not occur, — HEK(S’Z’)'Z TP WEIAW (s, 0), G,

Wiee(s,b) = W(s,b) @ K(s,b), and (60) follows from Oend(s, b, R), Wiec(s, b)) (66)
the union bound. The first term of (60) can be bounded_ H(K(s,b))—I(K(s,b);ZS’B,hS’B,WS’B\W(S,b),
as P(Wsee(s,0) # Weee(s, b)) < 33 due to definition of G, Oondl5,b, R), Waee(s b))

FE,(s,b), and the choice ofV. Similarly, the third term can Penam A Tseek
be bounded a® (L[| X(s,b)[? > P(s,b) + 6) < §/3 due to = H (K (s,0)—

definition of E5(s, b, §), and the choice olV. The second term I(V(s—1,:); 258 b8 WSB\W(s,0), G) (67)
can be bounded as = H(K(s,b))—
P(K(s,b) # K(s,1)) [(V(s—1,:;;Z°" V8 he LB w18 @) (68)
s—2
<1—H]P) S—ll V(S—l,l)) —H(K(S,b))—ZI(V(S—L),Z(S—l—l),
=0
B h(s—1—1i,:),W(s—1—1i,:),G|
<D P(V(s—1,0) # V(s —1,4)) _ . .
; {Z(S—l—]),h(S—1—'],:),W(S—1—_],Z)}j_z>
B
L5 (69)
< ;P(El(s —1i) < Bop
= ZI( s—1,:
where (a) follows from the fact that keys used in-th
superblock are generated i3 — 1)-st superblock, andb) {Z(s —1—j),h(s —1—3,:),W(s—1—3, ;)}?:l;
follows due to the definition oF (s, b). Therefore, the error =0
constraint in (6) is satisfied. Z(s—1—14),h(s—=1—14,:),W(s—1—1,:), G) (70)
Secrecy Outage AnalysisThe following lemmas will be )
useful in the secrecy outage analysis. - L _
Lemma 10:For any B, there exists someVs such that = H(K(s,b)) — ZI<V(S —1-4,:)Z(s =1 -9),
for N > N3(B), the eventend(s, b, R) and Oi(s, b, R, ) =0
coincide with probabilityl, i.e., h(s—1—14,:),W(s—1—1,:), G) (72)
]P)(Oenc(sa ba R)|@inf(57 ba R7 5)) S . . .
 P(Ot(s,5, R, )| Oends, b, R)) = 0. (61) = HE(:0) =) I(V(i,:): 200, h(,).G) - (72)

—

i=

Proof of Lemma 10 is provided in Appendix A-B. Secrecy 5 B
outage probability can be bounded above as = ZZI ,J); 0@ 5), G) (73)
i=1 j=1
]P)(Osec(s7 b, R, 5)) - P(Oeq(S, b, R, 5) U Oinf(s, b, R, 6)) Z N(R — 5) (74)
= P(Oeq(s, b, R.9) L{OQ”C(S’b’ R)) (62) where (65) follows from the fact that conditioning reduces
< P(Oeq(s, b, R, 0)|Oend s, b, R)) entropy, (66) follows due td (s,b) = Waee(s,b) ® W (s, b),
+ P(Oend(s, b, R)) (63) (67)sinceK (s,b) is pulled from the key buffer, which contains

the key bitsV (s — 1,:) generated during superblock— 1,
where the first equality follows from the definition of segrec

outage in (3), (62) follows from Lemma 10, and (63) follows !in (69) and (70){-}’_f =0 for i < 1.



12

henceH (K (s,b)|V(s — 1,:)) = 0. (68) follows due to the thatVB > Bi, P(Okwey(s,b,R)) < d, s # 1. Therefore, for
Markov relation in Figure 7, along with the Markov chairthe choiceB = By, N = max(N1(B1), N2(S, B1), N3(B1)),

Wx (s,b) — X(s,b) — Z(s,b), and the fact that<(s,:) is P(Oseds,b, R,0)) < e+ due to (76), (63) and (75). Hence
independent oiV,..(s,:). The independence df (s,:) from the secrecy outage constraint in (7) is satisfied. This cofed
Wiee(s, :) follows smceW(s b) is perfectly compressed i.e.,the achievability.

is of sizeN R bits with entropyN R, the one time pad performs Now, we prove the converse. Consider a power allocation
as a Vernam cipher. (69) follows due to the chain rule, (7@plicy P, which satisfies the average power constraint in (1).
follows since for any random variables B, C, I(A4; B|C) < Let R be ane-achievable secrecy rate. We will show thaik

I(A, B;C), and (71) follows since Cr(e). Letd > 0. ThendBy, Ny such thatVB > By, N > N;
Vi(s,:). {Z(s—j),h(s —j,:), W(s — j, ) }iog — 1 X
- == H(W(s,0)|Z57 0P WSP\W (s,b
V(s —i,:) = Z(s — i), h(s —i,2), W(s —i,7) SBN;; (W (s, ) \W(s,0))
forms a Markov chain for any andi, which can be observed S 1 _
from Figure 7. (72) follows since for any V (i,:) is inde- = ZZ S_B(R = 0)1(Osed s, b, R, 0)) (78)
pendent ofi¥(i,:) due to the one time pad. Similarly, (73) s=1b=1
follows since for anyi, j, 5 such thatj # j’, > (R=0)(1-€=9) (79)
. o o . . here (78) follows directly from the definition of the event
Z(i,j),h v 1% K w
(Z(i.5) (Z’])),_: (i-7) ,_>., X(Z’j),_?, ( ,),,_> Osed s, b, R,5), and (79) follows from applying the secrecy
Wx(i,5") = V(i,5") = (Z(i,5"),h(i,j")) outage constraint (7), and the law of large numbers.

and the fact that¥x (4, j) and W (i, j') is independent due It follows from the converse proof of ergodic secrecy
to one time pad. Finally, (74) follows due to the privacgapacity [3], and law of large numbers thaB,, N, such

amplification result in Lemma 9. Then, that for everyS, B > By, and N > N,, the time-average
B equivocation rat€ is bounded as
]P)(OEQ(Sv ba R7 5) |OenC(Sa b7 R)) = O (75) S B
due to (64) and (74). Now, we bound the second term. By the g5 Z Z H(W (5,b)|Z>7, 0P WP\W (s,b))
union bound, s=1b= 1
S,B|7S,B 1,5,B
P(Oenc(saba R)) < SBNH(W |Z h ) (80)
< P(Okey(8, b, R)) + P(Ocn(s, b, R) U Oa(s, b, R)) S 1
<li — :
= P(Okey(5,b, R)) + € (76) < limsup ; ; o fts(s,0) +90 (81)
where (76) follows due to (51). Fdg, b), s # 1 Also note that,
P(Okey(s, b, R)) Osed s,b, R, ) 2 Opnt(s,b, R, )
b 1 s,b 1.8,b
=P <ZH (s—1,4)) = Y H(K(s,i)) < 0) = {N (W(s,0); Y>7, h*") > R—é}
i=1
1
> { KDY (s.0) 2 R=5) @2
= ]P’< Z N(Rs(s—1,i) —0)— N
2 {Ru(s,b) > R — 8} (83)

b
Z NR1(Ocn(s,i, R) N Oq(s,i, R)) < o>

i=1

where (82) follows from the fact thatiW(s,b) —
(X(s,b),Xb71) = (Y(s,b),X*"1) — Y=t forms a

B Markov chain. From the converse of the coding theorem [13];
< P(Z [Rs(s 1) — o the mutual information expression in (82) is maximized when

X(s,b) becomes a Gaussian random vector, and the supremum
~ ~ is the expression in (83).
R1(Ocn(s, i, R) N Oa(s,i, R))] < 0) (77)  From (78), (81) and (83), it follows that amyachievable
rate R is bounded above as

i=1

Note that, the termg R(s — 1,4)} and {1(Ocn(s,i, R) N

Oa(s,i, R))} in (77) are ii.d. with respect ta and i, and R< HmSHPZZ /(1 —¢) (84)

are independent of each other. Therefore, the expression in S B—o0 i1 pm1 SB

(77) represents a random walk with expected drift = subject to:P(R,,(s,b) > R) < € (85)
E[R;(H, P(H))]—d—R(1—¢) due to the definition of artificial s B

outage Oa(s,b, ) in (51). For? R < EULULEUDI, limsup == 33 P(s,6) < Pag  (86)

© > 0, hence by the law of large numbers3, > O such S.B—oo OB =t o

12The reason for introducing artificial outages is to make shat the B3For any reliable code that yields vanishing probability afoe as
expected drift is positive. S,B, N — oo.
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Since R,,(s,b) and Rs(s,b) are both deterministic func- are satisfied. To relate min-entropy to Shannon entropy, we
tions of the powerP(s,b) and instantaneous channel gainsse the result of Theorem 1 of [12])’ > 0, 3 a block length
h(s,b), it follows that the power allocation function thatN’ such thatv’N > N’,

maximizes the right hand side of (84)-(86) is a stationary 1 A 1 s oA

function of instantaneous channel galng, b). Interchanging NHXZZ) < S H(XP(Z7) +6/(SB) (88)

the notationsP(s,b) = P(h), Rs(s,b) = Rs(h, P(h)) and

R, (s,b) = Ry (h, P(h)), we can see that the right hand sideNOW' we proceed as follows,

of (84)-(86) become€’r(¢), which completes the proof. Hoo(Wx|Z?) = lim HY (W|Z2)
§'—0
> H(Wx) — I(Wx;2%) = N§/(SB) (89)
B. Proofs of Lemmas used in Appendix A > H(Wx)—1(X;Z)— N6/(SB) (90)
Proof of Lemma 9:First, we introduce the information the- = NRs— N¢/(SB) (91)
oretic quantities required for the proof. For random vadab

where (89) follows from (88), and the appropriate choice

A, B, define of N’. (90) follows from the fact thaty — X —
« Renyi entropy ofA aslog E[P4(a)] Z — Z* forms a Markov chain. (91) follows from the
o Min-entropy asA as H.(A) = min, log (m) fact that H(Wx) = N(R,, — ¢), and similarly I(X;Z) <
« Conditional min-entropy of4 given B as H.,(A|B) = N(Rm — Rs — ), which is the eavesdropper's maximum
infy, Hy (A|B = ). achievable rate. LeV” = <22 log (‘”;ggg) . For the choice
. d-smooth min-entropy of A as HX(A) = of H(V)=r= N(R,-d), andN > max(N’, N), we get

ma'XA’:”PAflP’A/H<5 HOO (A/)
Without loss of generality, we drop the block indéx b)
andR, and focus on the first blodi, 1), and assume the event

I(V;G,Z) = H(G(Wx)) - H(G(Wx)|Z,G)
9—N(B-1)/B 5

< + (92)
Oenc does not occur. LetVx = [Wie. We1], with sample log 2 25B
realization sequences denotedy. LetV = G(Wx ), where < 0 ©3)
G denotes a random universal hash function that m&gsto - SB

to an r-bit binary messagé € {0,1}". Then, itis clear that if where (92) follows from (87), (91), and the fact thet =

error eventt; does not occur) =V sinceWx = Wx, for  G(Wx). (93) follows due to the choice oV”. Hence, for
any choice ofG. To show that the security constraints (53)V > max(N’, N”), the constraints (53), (54) are satisfied.
(54) are satisfied, we cite the privacy amplification theqrem Proof of Lemma 10:The probability of the first term i

which is originally defined for discrete channels. For thidue to (57). For the second term, note that

purpose, we define a quantization functionwith sensitivity _

parameterA = sup, |z — ¢(z)|. Let Z& = ¢(Z) denote P(E(s,b,0)|Oend(s, b, R)) <.

the quantized version oF. where z® denotes realization From Fano’s inequality, we get

sequences. Then, by Theorem 3 of [11] there exists a unlversa

function G such that4 NH(W(S, b)Y 15, Ognd(s, b, R))
r—R(Wx|Z2=2") 1 ~
HGWX)[Z® = 52,6) 2 r = e < 7 H(E(5,,8)|Ocnds, b, R)))+
§ NRE(E(s,b,5)| Oenc(s. b, )
Now, we relate this expression to the Shannon entropy of the <§ (94)

message, conditioned on eavesdropper’s actual receiyedlsi
Using the factdl..(Wx) < R(Wx) andH,(Wx|Z?,G) < In the error analysis, it is shown that

H,,(Wx|Z” = z®,@), it is easy to show that P(E(s,b,6)|Oend(s, b, R)) can be made arbitrarily small
N with increasing block lengtiV, which shows that there exists
27~ Hoo (Wx|Z7) N3 such that forN = max(N,(B), No(S, B), N3(B)), (94)

A
H(GWx)|Z7,G) 2 r - log 2 holds, which proves that the probability of the second tesm i

also0.
Then, due to the asymptotic relationship between contisuou

random variables and their quantized versions [13], theistse

o . . APPENDIX B
a quantization functio such thatA is small enough, and PROOF OFTHEOREM 2
d The proof is very similar to the proof for full CSI, hence
> Ay :
H(GWx)IG,2) = H(GWX)IG, 27) 2SB we only point out the differences. For full CSI, key generati
or—Hoo (Wx|Z2) 5 occurs at the end of evelylock using privacy amplification.
= log 2 T 958 (87)  Due to lack of eavesdropper channel state at the legitimate

nodes, this is no longer possible. However, as shown in{3], i
L4we omit hS'B in the following parts of the proof of Lemma 9 for IS Still posslble to generate secret key bI'FS ovesugerblock
notational simplicity. The following lemma replaces Lemma 9 in the full CSI case.
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Note that, we will use the notatioW (s,:) = {W(s,b)}2 | prove thatE[R,(H, P(H))] is continuous. From Lemma 2,

for simplicity. we know that
Lemma 11:Let Wx(s,b) be defined as in full CSI case, "
where P7(h) = Pui(h,Ar)+

1(h € G(Ag, kr))(Poy(ham, R) — Pat(h, Ag)) "
P% (h) = Pyt(h, Mg/ )+
l(h S g(/\R/,kR/))(BnV(hm, R/) — ow(h, )\R/))+

WX (S, b) =

[WSEC(S’ b) Wi (Sv b)]v if Oenc(S, b, R) does not occur
[(Waa(s,b)], if Oend(s,b, R) occurs

where (g, kr) and (\gr/, k) are constants that satisfy (23)

There existsN, > 0,51 > 0 such that’VN > Np, B > and (24) with equality with respect to paramet&sand R/,
Bi, and for any superblock, the transmitter and the receiver = velv. Due to the fact that the functiofs (hy,. 1)
generates secret key bits(s) = G(Wx(s,:)) and V(s) = P Y- v(Pm,

< _ ; = . is continuous and monotone increasing with respecikio
G([Wx(s,:)) respectively, such thdf (s) = V(s) if none of Pui(h, \) is continuous and monotone increasing with respect
the error eventd (s, :) occur in superblock, and

to A, and the fact that integration preserves continuity, for an
H(V(s)) = NB(E[Rs(H, P(H,,))] — 0) (95) :Sh;t 0 such thatR > R’ > R — ¢, we can findy > 0 such

1 0
—I(V(s);Z(s,:),h(s,:),G) < = (96) 1) 7> Ag—Aw >0

N S
The proof is very similar to the proof of Lemma 9, and is g; %(Eiwéngz;ig(&hé:\]fj%));f’jh

omitted here. Following the same error and secrecy outagg) kg — k| <
analysis in the full CSI case, we can see that any rfate 5) Vi P Fh ;) Pry(hm, R') > 0, Vh
inv ms - 4inv ms ]

Chs(e) is achievable. The converse proof is also the same as _ _
in full CSI case, and is omitted here. Finally, due to the fact thaf?,(h, P) is a continuous and

monotone increasing function of powét, and itemsl — 2,

we conclude thaE[R,(H, P#(H))] is continuous.
APPENDIXC

PROOFS OFRESULTS IN SECTION IV-A
A. Proof of Lemma 1 C. Proof of Lemma 4

The parameteR,,.. is the maximum value for which the If E[Rs(H, P*(H))|[r=o = 0, then the unique solution
problem (25)-(27) has a solution; hence the average powdr? = E[Rs(H, P*(H))|/(1 —¢) is R = 0. So, con-
constraint (26) is active. Moreover, the outage constr@y  Sider E[R.(H, PF(H))]|r—o = 0. It is easy to see that,
is also active, and due to the fact tha}, (h, P) is a concave E[RS(H’Pm:aX(H))] < (1 —¢), since
increasing function ofP, we haveP(R,,(H, PR=(H)) =

Runax) = (1 — ¢), since otherwise one can further increase E[R, (H, PR (H))| :/ Ry(h, P(h))f(h)dh

Rmax to find a power allocation function that satisfies the hom >c
equality. Since for a giveh = [h,, h.], the power allocation < Ry (h, P(h))(1 —¢)
function that yieldsRumax 1S Poy(hm, Rmax), We have — Roae(1— )
Pavg:/ P (B, Binax) f(h)dh follows from definition of parameter, and the inequality
hek

Rs(h,P(h)) < R, (h,P(h)). Combining the facts that,
wherek the set of channel gains for which the system operatg& function w is continuous and strictly de-
at rate Rynax, andP(H € K) = (1 — €). The setK contains creasing on(0, Rumax, limp or E[R.(H,P?(H))]
channel gainsh for which Py (A, Rimax) takes minimum oo (10 -0 R _

L ooy SR LD H))] () _ ) by the intermediate value
values, so that the average power constraint is satisfied fOr  Ruax = € By _ e
the maximum possibleR. Since Ppy(h, R) = 2;;;1 is a theoreI;n, tge?le exists a unigue > 0, which satisfiesk =
decreasing function of,,, one can see that the choice /of E[Rs(H, PT(H))l/(1 —¢).
that yieldsR,,.x is K = {h : h,, > ¢}. Since the probability

= oo and

density function off is well definedP(H,, = 0) = 0, hence APPENDIXD
¢ > 0, which, along withPayg > 0, implies thatR,,., > 0. PROOE OFLEMMA 2
We use Lagrangian optimization approach to fiRé. We
B. Proof of Lemma 3 can expres&[R,(H, P?(H))] given in (25)-(27) as
Let Rynax > R > R’ > 0. Then, any policyP that
satisfiesP(R,,(H, P(H)) < R) < ¢ would also satisfy max J(P)

P(R,,(H,P(H)) < R") < e. So, the set of power allocation
functions that satisfy (27) shrinks aB increases, hence
E[Rs(H, PZ(H))] is a non-increasing function @t. Now, we

StRy(h,P(h)) > R, Vheg
PHeG)=1—c¢ (97)
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where the Lagrangiad (P) is given by the equatidi If for someh € K, the valueP(h) is negative, then due to the

concavity of J(P) with respect toP(h), the optimal value of
J(P) = /Rs(h7 P(h))f(h)dh P(h) is zero [3]. Therefore, the solution yields
Y |:/P(h)f(h)dh _ Pavg (98) P(h) = ow(h)7 vhe K (102)

] ) ) ) Combining the result with the minimum power constraint
Here, is a set which consists &f for which 2, (h, P(h)) > inside seg, the solution of (99) yields (100), which concludes
R must be satisfied. We will show in this proof that it is oy proof. -

the form (20). This problem is identical to (25), since theiNow, we find PE. We proceed by further simplifying the
constraint sets are identical. Hence solution of this bl Lagrangian in (98), for the case wheR— Pg, for a given
would also yieldP*. In the following two-step approach, Wes as follows. ' ’

proceed to findP%. Let us fix A > 0.
1) Foranyg C [0,00)x [0, c0), we find P, which is defined J(Pg) = / [Rs(h, P(h)) — AP(h)] f(h)dh
heg

as
Py — arg max J(P) + [ R, P() = AP(h)] £(b)ah
PePr h¢g
st Bm(h P(h) 2 Ryheg  (99) = / [Ra(b, Pur(h)) = ARt ()] f (h)dh
2) Using the result of part 1, we finB?, by finding the set N
G that maximizes/(P), subject to a constrairi(H + /g {[Rs(h7 Piv(h)) = Rs(h, Pyt (h))]
G)=1-c
+
We start with step 1. Since bothand R are fixed, therefore = A [Py (h) — Put(h)] }f(h)dh (103)

we drop them fromPiny (-) and Pur(+), in the following parts g i simplification, the first term in (103) does not éeg

to simplify the notation. . R

) . . on G. We conclude the proof by showing th&™ = Pg-
_ Lemma 12:If the problem (99) has a feasible solution, the(/'vhere the seg” is defined as follows,

it could be expressed as

Pg(h) = Pyi(h) + [Pnv(h) — Pui(h)]"1(h € G)  (100) g* = {h : [Ry(h, Pry(h)) — Ry (b, Par(h))] "
h d inv i i d s -
:K/e?;_ePM(h) and Py (h) are given in (19) and (18), respec A [Pe(h) — Pu(b)]* > k} (104)

Proof: We will interchangeably usk = [h,, h.]. Due to ] o
(99), Ron(h, P(h)) = log(1+P(h)h,,) > R, Vh € G. Hence, Where the parametéris a constant that satisfiésH < ¢*) =

there is a minimum power constraint for @t as (1 —€). We prove this by contradiction. First defigéh) =
[Rs(h, Pry(h)) = Ry(h, Pur())]" — A[Bny(h) = Pur(h)] "
R . . .
P(h) > Ppy(h) = 27 -1 Vh e g (101) Then, it follows from (103) that;* is the set that maximize
- I, (103), so
Define_IC as thg set in which the minimum power constraint G = argmax/ ¢(h) f(h)dh
(101) is not active, i.e., g Jg
K={hegG:P(h) > Pnh)}uUg Assume that some oth&l’ # G* is optimal, whereP(H <

- . . G'")=1-—e. However, we have
whereg is complement ofj. First, we focus on the solution in

the non-boundary set. Since the optimal solution mustfgatis J(Pg+) — J(Pg)
the Euler-Lagrange equations,
— [ ctsman— [ ¢y smyan
dI(P) _ ) ek g g’
AP () — [ esman [ e
For h € K, we get the following condition G\g’ gn\g-
A i >0 (105)
m o e _ )\ _ O
1+ h,Ph) 1+h.P(h) since
whose solution yields / f(h)dh = / f(h)dh
- ge\g’ g\g
() i)
1e 17" ¢ m £(h)|hegs > §(h)[neg, Vh
- <h_e+m>} by definition. This contradicts our assumption th@t is

optimal. Note thatG* is identical to (21). This concludes the
15Note that we leave the constraint (27) as is, and not includre J(P).  proof.
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APPENDIXE Then,
PROOF OFLEMMA 5
o ) ) . J(Pg+) — J(Pg) =
The proof goes along similar lines as in Appendix D, so

we skip the details here. We solve the problem for a fixed {/ (€r(h) — /\ﬁp(hm))f(hm)dhm} f(he)dhe
A > 0. First, for any giverg € [0, o), we define the following ~ *"« **/m 9"

problem, the solution of which yields. _/ {/ (Er(h) — Xép(hm)) f(hm)dhm} f(he)dhe
h hm€gG’
Pg = arg max J(P) (108) Note that, for anyi/, € G*\G' and 1/, € G'\G*, we have

subject to:R,, (h, P(hy)) > R,Yh,, € G (107) T > hay. Since Py (hy,, A) = Pu(hiy,, A) and By (hy,,, A) <
.m,(h /\) we havelp(hl,) < Ep(Rhl). Since Rs(h, P) is
Lemma 13:1f the problem (106) has a feasible solutiona concave increasing function & [3], and forw -\
then it can be expressed as for any h, we have

Pg(him) = Puw(him, A) Er([hr, hel) = Xep(hy,) > Er([hiy, he]) + Ap(hyy,)
+ 1(hn € G) (Biw(hmy R) — Pu(hm, A))T (108)  Combining this result with the packing arguments following

Proof: The proof uses the same approach as in proof Qf04) in Appendix D, we get
Lemma 12. We define the sét such that for any, € K, J(Pg«) — J(Pg) >0
the minimum rate constraint in (107) is not active. Since the
optimal solution must satisfy the Euler Lagrange equatio
we have

ence concluding the proof. Note that, this result can aéso b
proved using the arguments of Section 4 in [14]. |
dJ(P(hm))

dP(hm) 0, hm € K APPENDIX F
PROOFS INSECTION V

A. Proof of Lemma 6

hmP(He < hin) /hm he F(he)dh, — Due to Theorem 1.2 of Section VI in [15], it suffices to show
1+ hmP(hp) 0 14+ heP(hm) N that Qs (t) is a positive recurrent regenerative process. Note

If the power allocation function that solves the equation is |hat @u(t) is @ Markov process with an uncountable state

negative, then by the convexity of the objective functioh [3 pa?]?/[lo éw ) t ?':CIE%Q(]% (_) lc(eg (bf r;N gtterg S;erfér: }1%) (;
the optimal value ofP(h.,) is 0. Hence, we getP,(h, A) and Ot )]gre ii.d., ANy (t X {QMkey Ra(t)— R >SO}
as the resulting power allocation function. Whenever téa pends only o (£) anéR (). Therefore QM(H—I) is
minimum rate constraint (37) is active, we get the channe?dependent o Qni(i)} =} given Qn(¢), hence Markovity

inversion power allocation functiorkn, (b, f). u follows. Now, we prove théQM( t)isa re<,:urrent regenerative

Now, using Lemma 13, we solve the following problem, process where regeneration occurs at times, - - - such that

If we solve the equation for any given,,, we get

max J(P) (109) Qu(ti) = M. A sufficient condition for this is to show that

PG Q@ (t) has an accessible atom [16].
StRy(h,P(h)) >R, VYheg Definition 4: An accessible atomM is a state that is
P(H, €G)=1—¢ hit with positive probability starting from any state, j.e.

P(Qum(t) = M|Qnm(1) =14) >0 Vi.
the solution of which yieldsP”. Lemma 13 proves that the Lemma 15:Q(t) has an accessible atoi.

solution is a time-sharing between policiBs and P,. Now, Proof: Assume Qy/(1) = i, i € [0, M]. Note that,
we find the optimalg. R(t) and Ox(t) are both i.i.d. Also note thaﬂP’(RS(t) —

Lemma 14:The solution of (109) is of the form (108), with R1(O,(¢)) > 0) > 0 vt . Find v > 0 such that
the setG* = [¢,00), wherec is a constant which solveS]}D(Rs(t) — R1(Ox(t)) > ) =~ Vt. Letn, = (@1, Then,
P(H,, >c¢)=1—c¢.

Proof: Let P;. and Py be the power allocation func- P(@Qum(ni +1) = M|Qum(1) =1)
tions that are solutions of (108) given the séts and G, ‘
respectively. We show that, any choice@f+# G*, such that z H]P’( ) +1(Ox(t)) > 5) 29" >0
P(H,, € G') =1 — e is suboptimal, i.e.,
n
J(Pg«) — J(Pgr) 20 Since Qi (1) is a regenerative process, we know that—
t1,t3 — to,--- are i.i.d. random variables. Define a random

We continue as follows. To simplify notation, far= [h,, h.],

variable 7, with distribution identical tot;.; — ¢;. Now we
let us denote

+ 16since considering otherwise would lead to the unintergssuenario
fR(h) = [Rs(h7 Pinv(hm,R)) - Rs(hapw(hma /\))] where there are no buffer overflows (since the key queue tagrmw),
hence any buffer sizd/ > Cr(€’) is sufficient to achieve’ secrecy outage

fP (hm) = [Pinv(hma R) - ow(hma /\)]Jr probability.
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show thatQ ,,(¢) is positive recurrent, by showinB[r] < oco. finite buffer queue. The dynamics of the infinite buffer queue
Consider another recursion is characterized by

Qhy(t+1) = min (M, Q) (1) + Ro(t) = R1(Ox(1)) " Q(t +1) = Q(t) + Rs(t) — 1(Oend(t)) R (112)

(110) whereQ(1) = 0. The heavy traffic results we will use are for
with @Q),(1) = Qa(1). Itis clear thatQ’,(¢) is also regener- queues that have a stationary distribution. Since it is fesirc
ative, where regeneration occurs{af}, whereQ,(t;) = M, whetherQ(t) is stationary or not, we will upper bour@(t)
and let7’ be equal in distribution te;  , — ;. by another stationary procesg(¢), and the buffer overflow

Lemma 16: probability result we will get foiQ’ (¢) will serve as an upper
p bound forQ(t).
Elr] < B[] Let {Q’(t)(}zzl be the process that satisfies the following
Proof: It suffices to show that whem,,(¢t) # M, recursion

Q) () < Qu(t). By induction, assuming)’, (t) < Qas (1),

’ A +
we need to verify that),(t + 1) < Qum(t + 1). Consider Q'(t+1) = (Q'() + Ru(t) — R1(Ox(1)) (113)
Qum(t+1) < M. Then, with @Q’(1) = 0. First, we relateQ)’(t) to Q(¢).
- _ + Lemma 17:

Qute 1) = (Quelth+ Rl - O ﬁfgkey(t)) Q) < Q1) + R, Wt (114)
2 (Qu() + Ro() - Rl((?x(t)))Jr Proof: AssumingQ(t) < Q’(t) + R, we need to show
> (Q(t) + Rs(t) — R1(Ox(1))) by induction thatQ(t + 1) < Q'(t + 1) + R. There are two

=Qy(t+1) different scenarios.

g D Q@) +R(t)—R1 (Ox(t)) = 0, then, using the facts

a ) :
Note thatQ’,(¢) is regenerative both at statésand M. Let Oend(t) = Ox(t) N Okey(t) andQ'(¢) < Q(#), we obtain

E[r{] denote the expected time for the procégs (¢) to hit Q(t) + Rs(t) — R1 (Oendt))
0 from M, andE[r;] denote the expected time to Hif from > O'(H) + R.(t) — R1 (Ou(1)) > 0
0. Then, > Q'(t) + Rs(t) (Ox(t) >
, , , which, using the described key queue recursions in (112),
E[r'] <E[r] + E[r] (111) implies
Since the key queue has a negative drift, i.eg = Q(t +1) = Q(t) + R(t) — R1 (@x(t)) (115)

E[Rs(H, PE(H)) — R1(O«(t))] < 0, it is clear thatE[r{] <
oo. Now, we show thaE|[r}] < co. Following the approach of Observe that, by (113),
Lemma 15, findy > 0 such that?(R,(t)— R1(Ox(t)) > ) =

! / 2)
7 V. Letn = [M/~]. ThenB(Qu(n + 1) = M|Qar(1) = Qt+1) = Q')+ B(t) — RL(O«(t))
0) >~" >0, and which, in conjunction with (115) an@)(¢) < Q'(¢) + R,
0o yieIdsQ(t+1) <Q'(t+1)+R.
Elr) < 3 (0 +i(Elr}] + )" (1 - 77’ 2) If Q'(1)+R. (1)~ R1 (Oy(t)) < 0, then@'(+1) = 0. We
i—o further consider two cases. First(f(t)+ Rs(t)— R > 0,
o0 then,
<my" ) (L= + Y (1= A")i(E[r] +4") +
Z-; Z Q(t+1) = (Q(t) + Ry(t) - R1 (Ox(1)) )
< o0 B +
. | N < (@) + R+ R,(t) - R1(Ox(1)) )
The first inequality follows from the fact that with probahjl
~", Qs (t) hits M atn'th block and with probability(1—~"), <Qt+1)+R=R (116)
key queue goes back to staieat (E[r{] + v")'th block (on Next, if Q(t) + Ry(t) — R < 0, then
average). The last inequality follows froh < ~7 < 1,
and ratio test. This result, along with (111) and Lemma 16 Qt+1)=Q()+Rs(t) <R=Q'(t+1)+ R

concludes thatQ,(t) is a positive recurrent regenerative which, combined with (116), yield®(t + 1) < Q'(t +
process, which concludes the proof. )+ R ' -

[ ]

Now, we show tha)’(¢) converges in distribution to an almost

We follow an indirect approach to prove the lemma. Leturely finite random variabl€)’. First, we need to show that
{Q(t)}s2, denote the key queue dynamics of the same systéhe expected drift of)’(¢) is negative. It is clear from (113)
for the infinite buffer case/ = o). First, we use the heavy that the expected drift of the proce®s(t) is equal tour =
traffic results in [17] to calculate the overflow probabilityE[R,(H, P*(H))] — R(1 — ¢).
of the infinite buffer queue. Then, we relate the overflow Lemma 18:For R > Cr(€), we haveur < 0, andur is a
probability of infinite buffer system to the loss ratio of thecontinuous decreasing function &

B. Proof of Lemma 7



Proof: From Lemma 3 in Section IV-A, we know that
E[Rs(H, PZ(H))] is a non-increasing continuous function of [1]
R. Therefore,ur it is a continuous function of?. Further-
more, by definition ofCx(¢) in (10), ¢,y = 0. Combining
these two facts, we conclude thag < 0, for R > Crp(e). ®

Lemma 19:There exists an almost surely finite random[3]
variable@’ such that, for allr,

limsupP(Q(t) > z) <P(Q'+ R > z)
t—o0

(2]

(117) “

Proof: Combining Lemma 18 with the classic results bys
Loynes [18], we can see th&)'(t) converges in distribution
to an almost surely finite random varialdl¥ such that

Jim B(Q'(t) > ) = B(Q' > 1)

Using (114), we finish the proof of the lemma. |
Now, we characterize the tail distribution of the key queue.
Lemma 20:For any givenM > 0,

(6]

(7]

(8]

1) —
lim limsupP (M > M> <e M (118) [9]
RNCFR(€) t—o0 oR

Proof: First, we prove that [10]

!

lim P ('MR2|Q > y) —e %,
RN\CF(e) R
which is based on the heavy traffic limit for queues develop&?]
in [17], see also Theorem 7.1 in [15]. In order to prove
(119), we only need to verify the following three conditio)s [13]
1imR\cF(€) ur = 0; ||) 1imR\cF(€) 0'12% > 0; and |||) the set 14
{(RS(H, PRy — Rl(@x(t)))Q} of random variables indexed[ ]
by R is uniformly integrable.

i) From Lemma 18, we obtaitimg~ ¢ () r = 0.

i) Since Rs;(H, P*(H)) — Cr(e)Ox(t) is not a constant [16]
random variable, almost surely

0% = Var[Rs(H, P*(H)) — Cr(e)(Ox(t))] > 0

(11]

(119)

[15]

lim [17]
RNCF(€)
iii) Note that, R lies on the interval0 Ry,ax], whereR,ax,
defined in Lemma 1 then we have
(Rs(H, PR(H)) — R1(0x(1)))*
=R, (H, P (H))?
— 2R (H, P*(H))R1 (Ox(1)) + R*1 (Ox(t))
<R.(H,P"(H))> + R}

max

(18]

[19]

Since R (h, P) is a continuous function aP, and for anyR
on the interval0 Rpax), lime—oo P(PF(H) > ¢) = 0, hence
we can see thaim,. ., P(R;(H, P*(H)) > ¢) = 0. There-
fore, this class of random variables is uniformly integeabl
This completes the proof of (119). This result, in conjunicti
with Lemma 19 completes the proof. [ |
Using Lemma 1 in [19], we relate the loss ratio of our finite
buffer queuel s (t) to the overflow probability of the infinite
buffer queueR(t) as follows
E[R,(H, PE(H))]limsup L (M)

T—o0

oo
/m:]w

Combining Lemma 20 with (120), the proof is complete.

<

limsup P(Q(t) > z)dx (120)

t—o0
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