
1

Secrecy Outage Capacity of Fading Channels
Onur Gungor, Jian Tan, Can Emre Koksal, Hesham El-Gamal, Ness B. Shroff

Abstract—This paper considers point to point secure communi-
cation over flat fading channels under an outage constraint.More
specifically, we extend the definition of outage capacity to account
for the secrecy constraint and obtain sharp characterizations
of the corresponding fundamental limits under two different
assumptions on the transmitter channel state information (CSI).
First, we find the outage secrecy capacity assuming that the trans-
mitter has perfect knowledge of the legitimate and eavesdropper
channel gains. In this scenario, the capacity achieving scheme
relies on opportunistically exchanging private keys between the
legitimate nodes. These keys are stored in a key buffer and later
used to secure delay sensitive data using the Vernam’s one time
pad technique. We then extend our results to the more practical
scenario where the transmitter is assumed to know only the
legitimate channel gain. Here, our achievability arguments rely on
privacy amplification techniques to generate secret key bits. In the
two cases, we also characterize the optimal power control policies
which, interestingly, turn out to be a judicious combination of
channel inversion and the optimal ergodic strategy. Finally, we
analyze the effect of key buffer overflow on the overall outage
probability.

I. I NTRODUCTION

Secure communication is a topic that is becoming increas-
ingly important thanks to the proliferation of wireless devices.
Over the years, several secrecy protocols have been developed
and incorporated in several wireless standards; e.g., the IEEE
802.11 specifications for Wi-Fi. However, as new schemes are
being developed, methods to counter the specific techniques
also appear. Breaking this cycle is critically dependent onthe
design of protocols that offer provable secrecy guarantees. The
information theoretic secrecy paradigm adopted here, allows
for a systematic approach for the design of low complexity
and provable secrecy protocols that fully exploit the intrinsic
properties of the wireless medium.

Most of the recent work on information theoretic secrecy
is, arguably, inspired by Wyner’s wiretap channel [1]. In this
setup, a passive eavesdropper listens to the communication
between two legitimate nodes over a separate communication
channel. While attempting to decipher the message, no limit
is imposed on the computational resources available to the
eavesdropper. This assumption led to definingperfect secrecy
capacity as the maximum achievable rate subject to zero mu-
tual information rate between the transmitted message and the
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signal received by the eavesdropper. In the additive Gaussian
noise scenario [2], the perfect secrecy capacity turned out
to be the difference between the capacities of the legitimate
and eavesdropper channels. Therefore, if the eavesdropper
channel has a higher channel gain, information theoretic secure
communication is not possible over the main channel. Recent
works have shown how to exploit multipath fading to avoid
this limitation [3]–[5]. The basic idea is to opportunistically
exploit the instants when the main channel enjoys a higher gain
than the eavesdropper channel to exchange secure messages.
This opportunistic secrecy approach was shown to achieve
non-zeroergodic secrecy capacityeven whenon average
the eavesdropper channel has favorable conditions over thele-
gitimate channel. Remarkably, this result still holds evenwhen
the channel state information of the eavesdropper channel is
not available at the legitimate nodes [3].

The ergodic result in [3] applies only to delay tolerant
traffic, e.g., file downloads. Early attempts at characterizing the
delay limited secrecy capacity drew the negative conclusion
that non-zero delay limited secrecy rates are not achievable,
over almost all channel distributions, due tosecrecy outage
events corresponding to the instants when the eavesdropper
channel gain is larger than the main one [6], [7]. Later, it
was shown in [8] that, interestingly, a non-zero delay limited
secrecy rate could be achieved by introducingprivate key
queuesat both the transmitter and the receiver. These queues
are used to store private key bits that are sharedopportunis-
tically between the legitimate nodes when the main channel
is more favorable than the one seen by the eavesdropper.
These key bits are used later to secure the delay sensitive
data using the Vernam one time pad approach [9]. Hence,
secrecy outages are avoided by simply storing the secrecy
generated previously, in the form of key bits, and using them
whenever the channel conditions are more advantageous for
the eavesdropper. However, in [8], the authors do not provide
sharp capacity results or derive the corresponding optimal
power control policies, which is the main objective of this
paper. In particular,

• We consider delay limited communication in a block
fading channel where the messages to be transmitted in
a block has to be communicated securely within that
particular block. We find compact expressions of the
secrecy outage capacity for the scenario where (i) perfect
knowledge about the main and eavesdropper channels
are availablea-priori at the transmitter, referred to as
full channel state information (CSI), and (ii) only the
perfect knowledge main channel states are available at
the transmitter, referred to asmain CSI. We provide a
graphical approach to evaluate the capacity.

• We develop a (secrecy outage) capacity-achieving scheme
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that utilizes privacy amplification to generate secret key
bits from the transmitted signal, and store them in the
form of secret key bits in the transmitter and legit-
imate receiver. These key bits are utilized to secure
the delay sensitive data using Vernam’s one time pad.
This approach is proven to be optimal even when the
eavesdropper CSI is not known at the legitimate nodes,
since the statistical knowledge of eavesdropper channel
enables us to generate key bits over many fading blocks.

• We evaluate the optimal power allocation in order to
achieve the secrecy outage capacity and provide a novel
power controller, which combines secure waterfilling and
channel inversion policies.

• Past studies that make use of a key queue assume that the
associated buffer has an infinite size. Here, we analyze
the impact of a finite buffer and explicitly evaluate the
amount of reduction in the achievable secret data rate if
a finite key buffer is used.

The rest of this paper is organized as follows. We formally
introduce our system model in Section II. In Section III,
we obtain the capacity results for the full and main CSI
scenarios. The optimal power control policies, for both cases,
are derived in Section IV. The effect of key buffer overflow on
the outage probability is investigated in Section V. We provide
simulations to support our main results in Section VI. Finally,
Section VII offers some concluding remarks. To enhance the
flow of the paper, the proofs are collected in the Appendices.

II. SYSTEM MODEL

We study a point-to-point wireless communication link, in
which a transmitter wishes to send information to a legitimate
receiver, in the presence of a passive eavesdropper. We divide
time into discrete slots, where blocks are formed ofN channel
uses, andB blocks combine to form a super-block. Let the
communication period consist ofS super-blocks. We use the
notation(s, b) to denote thebth block in thesth super-block.
We adopt a block fading channel model, in which the channel
is assumed to be constant over a block, and changes randomly
from one block to the next. Within each block(s, b), the
observed signals at the receiver and at the eavesdropper are:

Y(s, b) = Gm(s, b)X(s, b) +Wm(s, b)

Z(s, b) = Ge(s, b)X(s, b) +We(s, b),

respectively, whereX(s, b) ∈ CN is the transmitted signal,
Y(s, b) ∈ CN is the received signal by the legitimate receiver,
Z(s, b) ∈ CN is the received signal by the eavesdropper, and
{Wm(s, b)}S,Bs=1,b=1 and{We(s, b)}

S,B
s=1,b=1 are two mutually

independent i.i.d. vector processes that are also independent
of other random variables. Each sample ofWm(s, b) ∈ C

N

and We(s, b) ∈ CN are independently drawn from circu-
larly symmetric, unit variance normal distribution. We assume
that the channel gains of the main channelGm(s, b) and
the eavesdropper channelGe(s, b) are i.i.d. complex random
variables. The power gains of the fading channels are denoted
by Hm(s, b) = |Gm(s, b)|2 and He(s, b) = |Ge(s, b)|

2. We
sometimes use the vector notationH(·) = [Hm(·) He(·)]
for simplicity, use the notationHs,b = {H}s,bs′=1,b′=1 to

denote the set of channel gainsH(s′, b′) observed until block
(s, b), and use backslash as relative complement operator, e.g.,
HS,B\H(s, b) denotes the set of gains of all blocks except
(s, b). We use identical notation for other parameters as well,
and denote the sample realization sequences with lowercase
letters. We assume that the probability density function of
instantaneous channel gains, denoted asf(h), is well defined,
and is known by all parties. Under both full CSI and main
CSI cases, the eavesdropper has complete knowledge of both
the main and the eavesdropper channels. LetP (s, b) denote
the power allocated at block(s, b). We consider a long term
power constraint (or average power constraint) such that,

1

SB

S
∑

s=1

B
∑

b=1

P (s, b) ≤ Pavg (1)

for somePavg > 0.
Let {W (s, b)}S,Bs=1,b=1 denote the set of messages to be

transmitted with a delay constraint.W (s, b) becomes available
to the transmitter at the beginning of block(s, b), and needs
to be securely communicated and decoded at the legitimate
receiver at the end of that particular block. We consider
the problem of constructing(2NR, N) codes to communicate
message packetsW (s, b) ∈ {1, · · · , 2NR} of equal size, which
consists of:

1) A stochastic encoder that maps(w(s, b), xs,b−1) to
x(s, b) based on the available CSI, wherexs,b−1 sum-
marizes the previously transmitted signals1, and

2) A decoding function that mapsys,b to ŵ(s, b) at the
legitimate receiver.

Note that we consider the current blockx(s, b) to be a function
of the past blocksxs,b−1 as well. This kind of generality
allows us to store shared randomness to be exploited in the
future to increase the achievable secrecy rate.

Define the error event with parameterδ at block (s, b) as

E(s, b, δ) =
{

Ŵ (s, b) 6= W (s, b)
}

∪
{

1

N
‖X(s, b)‖2 > P (s, b) + δ

}

(2)

which occurs either when the decoder makes an error, or
when the power expended is greater thanP (s, b) + δ. Let
WS,B\W (s, b) denote the messages to be communicated
in all the blocks exceptW (s, b). The equivocation rate at
the eavesdropper is defined as the entropy rate of the mes-
sage at block(s, b), conditioned on the received signal by
the eavesdropper during the transmission period, available
eavesdropper CSI, and messages2 to be communicated in all
blocks except the message at block(s, b), which is equal to
1
NH(W (s, b)|ZS,B,hS,B,WS,B\W (s, b)). The secrecy out-
age event at rateR with parameterδ at block(s, b) is defined
as

Osec(s, b, R, δ) = Oeq(s, b, R, δ) ∪Oinf(s, b, R, δ) (3)

1An exception is forb = 1, in which case the previous signals are
summarized byxs−1,B .

2Although the messages{W (s, b)}S,B
s=1,b=1

are mutually independent,
they may be dependent conditioned on eavesdroppers’ received signalZS,B ,
therefore equivocation expression includes conditioningon WS,B\W (s, b).
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where the equivocation outage occurs if the equivocation rate
at block (s, b) is less thanR− δ,

Oeq(s, b, R, δ) =
{

1

N
H
(

W (s, b)|ZS,B,WS,B\W (s, b),hS,B
)

< R− δ

}

(4)

and information outage occurs if accumulated mutual infor-
mation on the messageW (s, b) remains below its entropy,
R− δ:

Oinf(s, b, R, δ) =

{

1

N
I
(

W (s, b);Ys,b
)

< R− δ

}

. (5)

Defining Ōsec(·) as the complement of the eventOsec(·), we
now characterize the notion ofǫ-achievable secrecy capacity.

Definition 1: RateR is achievable securely with at mostǫ
probability of secrecy outage if, for any fixedδ > 0, there
exists a sequence of codes of rate no less thanR such that,
for all large enoughS,B andN , the conditions

P(E(s, b, δ)|Ōsec(s, b, R, δ)) < δ (6)

P(Osec(s, b, R, δ)) < ǫ+ δ (7)

are satisfied for all(s, b), s 6= 1.
We call suchR an ǫ-achievable secrecy rate. Note that the
conditioning in (4) is based on the realizationhS,B of all the
channel gains, and the probability expressions are overHs,b.
Also note that the security constraints are not imposed on the
first super-block.

Definition 2: The ǫ-achievable secrecy capacity is the
supremum of allǫ-achievable secrecy rates.

Remark 1:The notion of secrecy outage was previous
defined and used in [6], [7]. However, those works did not
consider the technique of storing shared randomness for future
use, and in that case, secrecy outage depends only on the
instantaneous channel states, and hence the achievable data
rates were rather suboptimal. In our case, secrecy outage
depends on previous channel states as well. We illustrate
the suboptimality of the previous works in Example 1. Note
that we do not impose a secrecy outage constraint on the
first superblock (s = 1). We refer to the first superblock
as an initialization phase used to generate initial common
randomness between the legitimate nodes. This phase only
needs to appearonce in the communication lifetime of that
link. In other words, when a session (which consists ofS
superblocks) between the associated nodes is over, they would
have sufficient number of common key bits for the subsequent
session, and would not need to initiate the initialization step
again.

III. C APACITY RESULTS

In this section, we investigateǫ-achievable secrecy capacity
under two different cases; full CSI and main CSI at the
transmitter. We show in capacity proofs that the outage ca-
pacity achieving power allocation functions lie in the space
of stationary power allocation functions that are functions
of instantaneous transmitter CSI. Hence forfull CSI , we
constrain ourselves to the setPF : {h} → R+ ∪ {0}

of stationary power allocation policies that are functionsof
h = [hm he], Similarly for main CSI we consider the setPM

of power allocation policies that are functions ofhm only. For
a given power allocation functionP ∈ PF , define

Rm(h, P (h)) , log(1 + P (h)hm) (8)

Rs(h, P (h)) , [log(1 + P (h)hm)− log(1 + P (h)he)]
+

(9)

where [·]+ = max(·, 0), and the logarithms are with respect
to base2. Note that,Rm(·) is the supremum of achievable
main channel rates, without the secrecy constraint. Also,Rs(·)
is the non-negative difference between main channel and
eavesdropper channel’s supremum achievable rates. Similarly,
for main CSI, we considerRm(h, P (hm)) andRs(h, P (hm))
for P ∈ PM .

A. Full CSI

Theorem 1:Let the transmitter have full CSI. Then, for any
ǫ, 0 ≤ ǫ < 1, the ǫ-achievable secrecy capacity is equal to
CF (ǫ) bits per channel use, where

CF (ǫ) = max
P∈PF

E[Rs(H, P (H))]

1− ǫ
(10)

subject to:

P

(

Rm(H, P (H)) <
E[Rs(H, P (H))]

1− ǫ

)

≤ ǫ (11)

E[P (H)] ≤ Pavg (12)

A detailed proof of achievability and converse part is provided
in Appendix A. Here, we briefly justify the result. For a
given power allocation functionP ∈ PF , Rs(h, P (h)) is
the supremum of the secret key generation rates within a
block that experiences channel gainsh [2]. This implies that
the expected achievable secrecy rate [3] isE[Rs(H, P (H))]
without the outage constraint. With the outage constraint,the
fluctuations ofRs(H, P (H)) due to fading are unacceptable,
sinceRs(H, P (H)) can go below the desired rate when the
channel conditions are unfavorable (e.g., whenHm < He,
Rs(H, P (H)) = 0). Hence, we utilize secret key buffers
to smoothen out these fluctuations to provide secrecy rate
of E[Rs(H, P (H))] at each block. The generated secrecy is
stored in secret key buffers of both the transmitter and receiver,
and is utilized to secure message of same size using Vernam’s
one-time pad technique. Note that every single generated key
bit is usedexactly once, such that keys generated ins-th
superblock are used ins + 1’st superblock. Secrecy outage
may still occur when either there is not enough key bits left
at the key queue, or the main channel rate for the block
remains below the desired rate. In this case, we do not attempt
to transmit the message, hence no key bits are expended.
Therefore, withǫ probability of secrecy outage, a secrecy
rate of E[Rs(H, P (H))]/(1 − ǫ) could be achieved. The
channel outage constraint (11) on the other hand is a necessary
condition for the main channel to support the desired rate,
avoid information outages (5), and satisfy the secrecy outage
constraint in (7).
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Example 1:Consider a four state system, whereHm and
He takes values from the set{1, 10} and the joint probabilities
are as given in Table I. Let the average power constraint be
Pavg = 0.5, and there is no power control, i.e.,P (h) = Pavg

∀h. The achievable instantaneous secrecy rate, and the main
channel rate at each state are given in Tables II and III, re-
spectively. According to the pessimistic result in [6,8], no non-
zero rate can be achieved with a secrecy outage probability
ǫ < 0.6 in this case. However, according to Theorem 1, rate
R =

E[Rs(H,Pavg)]
1−ǫ = 0.8

1−ǫ can be achieved withǫ secrecy
outage probability3 for anyǫ ≥ 0.2. A sample path is provided
for both schemes in Figure 1, and it is shown how our scheme
avoids secrecy outage in the second block. Note that, for
ǫ < 0.2, the rateR =

E[Rs(H,Pavg)]
1−ǫ cannot be achieved due

the limitation of instantaneous main channel rate, as shown
in Table III. Instead, a secrecy rate of onlyR = 0.58 can be
achieved. In Example 2, we show that, through a more clever
control of the power expended, we can achieve much higher
rates.

TABLE I
P(h)

↓ hm \ he → 1 10

1 0.1 0.1
10 0.4 0.4

TABLE II
Rs(h, PAVG )

↓ hm \ he → 1 10

1 0 0
10 2 0

TABLE III
Rm(h, PAVG )

↓ hm \ he → 1 10

1 0.58 0.58
10 2.58 2.58

B. Main CSI

Theorem 2:Let the transmitter have main CSI. Then, for
any ǫ, 0 ≤ ǫ < 1, the ǫ-achievable secrecy capacity is equal
to CM (ǫ) bits per channel use, where

CM (ǫ) = max
P∈PM

E[Rs(H, P (Hm))]

1− ǫ
(13)

subject to:

P

(

Rm(H, P (Hm)) <
E[Rs(H, P (Hm))]

1− ǫ

)

≤ ǫ (14)

E[P (Hm)] ≤ Pavg (15)

Although the problems (10)-(12) and (13)-(15) are of the same
form, due to the absence of eavesdropper CSI, the maximiza-
tion in this case is over power allocation functionsPM that de-
pend on the main channel state only. Hence,CM (ǫ) ≤ CF (ǫ).
A detailed proof of achievability and converse is provided in
Appendix B. As in the full CSI case, our achievable scheme
uses similar key buffers and Vernam’s one time pad technique
to secure the message. The main difference is the generation
of secret key bits. Due to the lack of knowledge ofHe(s, b)

3Although Theorem 1 is stated for the case where random vectorH is
continuous, the result similarly applies to discreteH as well.

at the transmitter, secret key bits cannot be generated within a
block. In [8], a sub-optimal slot division approach was utilized,
in which part of each slot was used in generating keys, and
the other part was used in transmitting the delay sensitive
data. Instead, we generate keys over super-blocks using privacy
amplification, carefully designed based on the sample distribu-
tion of He(s, b). Roughly, over a superblock the receiver can
reliably obtainNBE[Rm(H, P (Hm))] bits of information,
while the eavesdropper can obtainNBE[Rm(H, P (Hm)) −
Rs(H, P (Hm))] bits of information. With privacy ampli-
fication, NBE[Rs(H, P (Hm))] bits of secret key can be
extracted.

Now, we show that power allocation policy has minimal
impact on the performance in the high power regime.

Theorem 3:For anyǫ > 0, theǫ-achievable secrecy capac-
ities with full CSI and main CSI converge to the same value

lim
Pavg→∞

CF (ǫ) = lim
Pavg→∞

CM (ǫ) =
E [log (Hm/He)]

+

(1− ǫ)
(16)

Proof: For h ≡ [hm he] such thathm > he, we can

see from (9) thatlimP (h)→∞ Rs(h, P (h)) = log
(

hm

he

)

, and

for hm ≤ he, Rs(h, P (h)) = 0. Furthermore, forhm > 0,
we can see from (8) thatlimP (h)→∞ Rm(h, P (h)) = ∞. Let
P (h) = Pavg ∀h (no power control), which does not require
any CSI. Then, we get

lim
Pavg→∞

E[Rs(H, Pavg)] = E [log (Hm/He)]
+
< ∞. (17)

Combining (16) and (17), we get

lim
Pavg→∞

P

(

Rm(H, Pavg) <
E[Rs(H, Pavg)]

1− ǫ

)

= P(Hm = 0)

and P(Hm = 0) = 0, since probability density function of
H is well defined. Hence, channel outage constraints (11) and
(14) are not active in the high power regime. From (10)-(12)
and (13)-(15), we conclude that (16) holds.
Our simulation results also illustrate that the power allocation
policy has minimal impact on the importance in the high power
regime. On the other hand, when the average power is limited,
the optimality of the power allocation function is of critical
importance, which is the focus of the following section.

IV. OPTIMAL POWER ALLOCATION STRATEGY

A. Full CSI

The optimal power control strategy,P ∗ ∈ PF is the
stationary strategy that solves the optimization problem (10)-
(12). In this section, we will show thatP ∗ is a time-sharing
between the channel inversion power policy, and the secure
waterfilling policy. We first introduce the channel inversion
power policyPinv, which is theminimumrequired power to
maintain main channel rate ofR.

Pinv(hm, R) =
2R − 1

hm
(18)
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R = 2.58,  R = 2      

Fig. 1. A sample path. With strategy 2, secrecy outage can be avoided for blockt = 2 via the use of key bits.

Note that, main CSI knowledge is sufficent forPinv. Next we
introducePwf,

Pwf(h, λ) =
1

2

[

√

(

1

he
−

1

hm

)2

+
4

λ

(

1

he
−

1

hm

)

−

(

1

he
+

1

hm

)

]+

. (19)

We call it the ’secure waterfilling’ power policy because it
maximizes the ergodic secrecy rate without any outage con-
straint, and resembles the ’waterfilling’ power control policy.
Here, the parameterλ determines the power expended on
average. Now, let us define a time-sharing region

G(λ, k) =

{

h : [Rs(h, Pinv(hm, R))−Rs(h, Pwf(h, λ))]
+

− λ [Pinv(hm, R)− Pwf(h, λ)]
+ ≥ k

}

(20)

which is a function of parametersλ andk.
Theorem 4:P ∗ is the unique solution to

P ∗(h) =Pwf(h, λ
∗)

+1
(

h ∈ G(λ∗, k∗)
)(

Pinv(hm, CF (ǫ))− Pwf(h, λ
∗)
)+

(21)

subject to:k∗ ≤ 0, λ∗ > 0

CF (ǫ) = E[Rs(H, P ∗(H))]/(1− ǫ) (22)

P(H ∈ G(λ∗, k∗)) = 1− ǫ (23)

E[P ∗(H)] = Pavg (24)

Proof: Define a sub-problem

E[Rs(H, PR(H))] = max
P∈PF

E [Rs(H, P (H))] (25)

subject to:P (h) ≥ 0, ∀h

E[P (H)] ≤ Pavg, (26)

P
(

Rm(H, P (H)) < R
)

≤ ǫ (27)

Let PR be the power allocation function that solves this sub-
problem. Note that forR = E[Rs(H, PR(H))]/(1 − ǫ), this
problem is identical to (10)-(12), hence giving usR = CF (ǫ),
andPR = P ∗. We will prove the existence and uniqueness of
suchR.

Lemma 1:There exists a uniqueRmax > 0 such that the
sub-problem (25)-(27) has a solution for allR ≤ Rmax, which

is found by solving

Pavg =

∫

hm≥c

Pinv(hm, Rmax)f(h)dh (28)

for h ≡ [hm he], where the constantc is chosen such that
P(Hm ≤ c) = ǫ.
Proof is provided in Appendix C-A.

Lemma 2:For anyR ≤ Rmax,

PR(h) =Pwf(h, λ)

+1 (h ∈ G(λ, k)) (Pinv(hm, R)− Pwf(h, λ))
+ (29)

where k ∈ (−∞, 0] and λ ∈ (0,+∞) are parameters that
satisfy (26) and (27) with equality.
Proof is provided in Appendix D. It is left to show there exists
a uniqueR that satisfiesR = E[Rs(H, PR(H))]/(1− ǫ).

Lemma 3:E[Rs(H, PR(H))] is a continuous non-
increasing function ofR.
Proof is provided in Appendix C-B.

Lemma 4:There exists a uniqueR, 0 ≤ R ≤ Rmax, which
satisfiesR = E[Rs(H, PR(H))]/(1 − ǫ).
Proof is provided in Appendix C-C. This concludes the proof
of the theorem.
Due to (21), the optimal power allocation function is a time-
sharing between the channel inversion and secure waterfilling;
a balance between avoiding channel outages, hence secrecy
outages, and maximizing the expected secrecy rate. The time
sharing regionG(λ, k) determines the instantsh, for which
avoiding channel outages are guaranteed through the choice
of P (h) = max(Pinv(hm, R), Pwf(h, λ)). (23) ensures that
channel outage probability is at mostǫ, and (24) ensures that
average power constraint is met with equality. (22), on the
other hand, is an immediate consequence of (10).

Note that, an extreme case isP ∗(h) = Pwf(h, λ
∗) ∀h,

which occurs whenPinv(h, R) ≤ Pwf(h, λ
∗) for any h ∈

G(λ∗, k∗), i.e., the secure waterfilling solution itself satisfies
the channel outage probability in (11). However, that the
other extreme (P ∗(h) = Pinv(hm, R∗) ∀h) cannot occur
for any non-zeroǫ due to (21). The parameterCF (ǫ) can
be found graphically as shown in Figure 2, by plotting
E[Rs(H, PR(H))] and and(1− ǫ)R as a function ofR. The
abcissa of the unique intersection point isR = CF (ǫ).

Example 2:Consider the same system model in Example 1.
We have found that forR = 0.8

1−ǫ bits/channel use is achievable
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with ǫ probability of secrecy outage with no power control,
i.e., P (h) = 0.5 ∀h for ǫ ≥ 0.2. Let ǫ = 0.2, we will see
if we can do better thanR = 1 with power control. Solving
the problem (21)-(24), we can see that4 the time-sharing, and
power expended in each state are as given in Tables IV and V.
For h ≡ [hm he] = [10 1], i.e., the legitimate channel has a
better gain, secure waterfilling is used and whenh = [10 10],
secret key bits cannot be generated, but channel inversion is
used to guarantee a main channel rate ofR, which is secured
by the excess keys generated during the stateh = [10 1]. As
a result, we can see that a rate ofCF (0.2) = 1.26 bits per
channel use is achievable, which corresponds to26% increase
with respect to no power control. As mentioned in Theorem 3,
this gain diminishes at the high power regime, i.e., when
Pavg → ∞.

We also study the case withǫ = 0, for which a secrecy
rate ofR = 0.58 can be achieved, as illustrated in Example 1.
Solving Problem (21)-(24) forǫ = 0, we obtain the power
allocation in Table VII, for which a secrecy rate ofCF (0) =
0.9 bit per channel use is achievable. As shown in Table VI,
channel inversion guarantees a main channel rate ofCF (0) at
all times, which was not possible without power control as
shown in Example 1.

TABLE IV
T IME SHARING REGIONS,

ǫ = 0.2

↓ hm \ he → 1 10

1 wf wf
10 wf inv

TABLE V
P ∗(h), ǫ = 0.2

↓ hm \ he → 1 10

1 0 0
10 1.11 0.14

TABLE VI
T IME SHARING REGIONS, ǫ = 0

↓ hm \ he → 1 10

1 inv inv
10 wf inv

TABLE VII
P ∗(h), ǫ = 0

↓ hm \ he → 1 10

1 0.86 0.86
10 0.73 0.08

4Although Theorem 4 assumesH is a continuous random vector, the results
similarly hold for the discrete case as well.

B. Main CSI

Here, we find the optimal power control strategyP ∗ ∈ PM ,
which solves the optimization problem (13)-(15). Let us define
the main CSI secure waterfilling power policyPw, such that
Pw(hm, λ) is the maximum of0, and the solution of the
following equation

∂E[Rs(H, P (H))]

∂P (hm)
=

hmP(he ≤ hm)

1 + hmP (hm)

−

∫ hm

0

(

he

1 + heP (hm)

)

f(he)dhe − λ = 0 (30)

Theorem 5:P ∗(hm) is the unique solution to

P ∗(hm) =Pw(hm, λ∗)

+1(hm ≥ c) (Pinv(hm, CM (ǫ))− Pw(hm, λ∗))
+ (31)

subject to:λ∗ > 0

CM (ǫ) = E[Rs(H, P ∗(Hm))]/(1− ǫ) (32)

P(Hm ≥ c) = 1− ǫ (33)

E[P ∗(Hm)] = Pavg (34)

whereE[Rs(H, P ∗(Hm))] is the expected secrecy rate under
the power allocation policyP ∗.
Note that, optimal power allocation function takes a form
similar to Theorem 4, exceptPw(hm, λ) replacesPwf(h, λ),
and the time-sharing regions are different.

Proof: The proof follows the approach in Full CSI case,
hence we omit the details for brevity. Define the sub-problem

E[Rs(H, PR(Hm))] = max
P∈PM

E
[

Rs(H, P (Hm))
]

(35)

subject to:P (hm) ≥ 0, ∀hm

E[P (Hm)] ≤ Pavg, (36)

P (Rm(H, P (Hm)) < R) ≤ ǫ (37)

LetPR ∈ PM be the power allocation function that solves this
sub-problem. Lemmas 1 and 4 also hold in this case. The only
difference is the following lemma, which replaces Lemma 2
in Full CSI.

Lemma 5:For anyR ≤ Rmax andhm,

PR(hm) = Pw(hm, λ)

+ 1(hm > c) (Pinv(hm, R)− Pw(hm, λ))
+

wherec is a constant that satisfiesP(Hm ≥ c) = 1 − ǫ, and
λ ∈ (0,+∞) is a constant that satisfies (36) with equality.
The proof is similar to the proof of Lemma 2, and is provided
in Appendix E.

The graphical solution in Figure 2 to findCF (ǫ) also
generalizes to the main CSI case.

V. SIZING THE KEY BUFFER

The proofs of the capacity results of Section III assume
availability of infinite sizesecret key buffers at the transmitter
and receiver, which mitigate the effect of fluctuations in
the achievable secret key bit rate due to fading. Finite-sized
buffers, on the other hand will lead to a higher secrecy outage
probability due to wasted key bits by the key buffer overflows.
Here, we revisit the full CSI problem, and consider key buffer
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sizesnormalizedwith respect to the number of channel uses
in a block, N , as follows. We defineM(ǫ, R) to be the
normalized buffer size5, in terms of bits per channel use,
required to achieve rateR with at mostǫ probability of secrecy
outage.

Theorem 6:Let ǫ′ > ǫ, andκ(x) , x log(x). Then,

lim
ǫ′ցǫ

M(ǫ′, CF (ǫ))

κ

(

Var[Rs(H,PCF (ǫ)(H))]+(CF (ǫ))2ǫ(1−ǫ)
(ǫ′−ǫ)CF (ǫ)

) ≤ 1 (38)

wherePCF (ǫ) ∈ PF is the power allocation policy defined in
(29), for parameterR = CF (ǫ).
Before providing the proof, we first interpret this result.
If buffer size is infinite, we can achieve rateCF (ǫ) with
ǫ probability of secrecy outage. With finite buffer, we can
achieve the same rate withǫ′ probability of secrecy outage.
Considering this difference to be the price that we have to
pay due to the finiteness of the buffer, we can see that the
normalized buffer size required scales with O

(

1
ǫ′−ǫ log

1
ǫ′−ǫ

)

,

as ǫ′ − ǫ → 0.
Proof: Achievability follows from simple modifications to

the capacity achieving scheme described in Appendix A. We
will first study the key queue dynamics, then using the heavy
traffic limits, we provide an upper bound to the key loss ratio
due to buffer overflows. Then, we relate key loss ratio to the
secrecy outage probability, and conclude the proof.

For the key queue dynamics, we use a single indext to
denote the time index instead of the double index(s, b), where
t = sB + b. We consider transmission at outage secrecy rate
of R, and use power allocation functionPR, which solves
the problem (25)-(27). Let us define{QM (t)}∞t=1 as the key
queue process with buffer sizeM , and letQM (1) = 0. To
simplify notation, let us considerRs(t) ≡ Rs(h(t), P

R(h(t)))
to denote the value ofRs(·) at block t, and similarly define
Rm(t) as well. Then, during each blockt,

1) The transmitter and receiver agree on secret key bits at
rateRs(t) bits /channel use using privacy amplification,
and store the key on their secret key buffers.

2) The transmitter pulls key bits at rateR bits / channel use
from its secret key buffer to secure the message stream at
rateR bits/ channel use using one time pad, and transmits
over the channel.

as explained in Appendix A. The last phase is skipped if
outage (Oenc(t)) is declared, which is triggered by one of the
following events

• Channel Outage (Och(t)): The channel cannot support
reliable transmission at rateR, i.e. Rm(t) < R.

• Key Outage (Okey(t)): There are not enough key bits in
the key queue to secure the message at rateR. This event
occurs whenQM (t) +Rs(t)−R < 0.

• Artificial outage (Oa(t)): Outage is artificially declared,
even though reliable transmission at rateR is possible.

Due to the definition ofPR, P(Och(t)) ≤ ǫ ∀t, and the set
{Och(t)} of events indexed byt are i.i.d. We choose{Oa(t)}

5Note that, actual key buffer would be of sizeNM(ǫ,R) bits.

such thatOx(t) = Och(t) ∪ Oa(t) is i.i.d. as well, and

P(Ox(t)) = ǫ, ∀t

The dynamics of thenormalizedkey queue6 can therefore be
modeled by

QM (t+ 1) = min(M,QM (t) +Rs(t)− 1(Ōenc(t))R) (39)

Note thatQM (t) ≥ 0 ∀t, due to the definition ofOkey(t). Let
LT (M) be the time average loss ratio over the firstT blocks,
for buffer sizeM , which is defined as the ratio of the amount
of loss of key bits due to overflows, and the total amount of
input key bits

LT (M) =

∑T
t=1

(

QM (t) +Rs(t)− 1(Ōenc(t))R −M
)+

∑T
t=1 Rs(t)

(40)

Then, we can see that∀T > 0,

(1 − LT (M))

T
∑

t=1

Rs(t) = QM (T ) +

T
∑

t=1

R1(Ōenc(t)) (41)

follows from (39), (40), and the fact thatQM (1) = 0.
Lemma 6:QM (t) converges in distribution to an almost

surely finite random variable.
The proof is provided in Appendix F-A. This implies that
limt→∞ P(Oenc(t)) exists. Now, we provide our asymptotic
result for the key loss ratio. We define the drift and variance
of this process as

µR = E[Rs(t)−R1(Ōx(t))]

= E[Rs(H, PR(H))]−R(1− ǫ) (42)

and

σ2
R = Var[Rs(t)−R1(Ōx(t))]

respectively, where (42) follows from the definition ofOx(t).
Lemma 7:For anyM > 0, the key loss ratio satisfies the

following asymptotic relationship

lim
RցCF (ǫ)

lim
T→∞

LT

(

M
σ2
R

|µR|

)

×

2|µR|E[Rs(H, PR(H))]e
−2R|µR|

σ2
R

σ2
R

≤ e−2M (43)

The proof is provided in Appendix F-B.
Lemma 8: If limt→∞ P(Oenc(t)) = ǫ′, then ǫ′ secrecy

outage probability (7) is satisfied.
Proof: Find B such thatP(Oenc(t)) = ǫ′ + δ for any

t > B. In 2-index time notation(s, b) with t = sB + b, it
corresponds toP(Oenc(s, b, R)) = ǫ′ + δ, ∀(s, b) : s 6= 1.
Then.

P(Osec(s, b, R, δ)) ≤ P(Osec(s, b, R, δ)|Ōenc(s, b, R))

+ P(Oenc(s, b, R)) (44)

≤ P(Oenc(s, b, R)) (45)

≤ ǫ′ + δ (46)

6Note that, the actual key queue process scales withN , i.e.,NQM (t) bits
are in the key queue at blockt.
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Here, (44) follows from the union bound, and second term
follows from (63) and (75) in Appendix A, which shows
that there exists some packet sizeN large enough such that
P(Osec(s, b, R, δ)|Ōenc(s, b, R)) = 0. Equation (46) implies
that ǫ′ secrecy outage probability (7) is satisfied.
Let limt→∞ P(Oenc(t)) = ǫ′. Since P(Ox(t)) = ǫ and
Oenc(t) = Ox(t) ∪ Okey(t), we havelimt→∞ P(Okey(t)) > 0.
This implies thatlimT→∞

1
T QM (T ) = 0 (since otherwise, key

outage probability would be zero), which, due to (41) implies

(1− lim
T→∞

LT (M))E[Rs(H, PR(H))]

= (1− lim
t→∞

P(Oenc(t)))R

= (1− ǫ′)R (47)

Here, due to the choice of power allocation policyPR, we
haveE[Rs(H, PR(H))] = limT→∞

1
T

∑T
t=1 Rs(t). Plugging

the result of Lemma 7 into (47), we obtain the required key
buffer size to achieveǫ′ probability of secrecy outage

lim
RցCF (ǫ)

M(ǫ′, R)−R
σ2
R

2|µR| log
(

σ2
R

2|µR|(E[Rs(H,PR(H))]−(1−ǫ′)R)

) ≤ 1

(48)

We know from (10) thatǫ andǫ′-achievable secrecy capacities
satisfy the conditions(1−ǫ′)CF (ǫ

′) = E[Rs(H, PCF (ǫ′)(H))]
and (1 − ǫ)CF (ǫ) = E[Rs(H, PCF (ǫ)(H))] =
E[Rs(H, P ∗(H))], respectively. By Lemma 3, we
know that E[Rs(H, PR(H))] is a continuous function
of R, hence for any given ǫ′ > ǫ, there exists
an R such that CF (ǫ) < R < CF (ǫ

′), and
E[Rs(h, P

R(H))] = (1 − ǫ+ǫ′

2 )R. Furthermore, asǫ′ → ǫ,
CF (ǫ

′) → CF (ǫ). Let us define a monotonically decreasing
sequence(ǫ′1, ǫ

′
2, · · · ), such that limi→∞ ǫ′i = ǫ. For

any i ∈ N, find Ri such thatCF (ǫ) < Ri < CF (ǫ
′
i),

and E[Rs(H, PRi(H))] = (1 −
ǫ+ǫ′i
2 )Ri, therefore

µRi
= (ǫ − ǫ′)/(2Ri). From (48), we get

lim
i→∞

M(ǫ′i, Ri)−Ri

κ

(

σ2
Ri

Ri(ǫ′i−ǫ)

) ≤ 1 (49)

We can see that (38) follows from (49), since asi → ∞,

• Ri → CF (ǫ), whereCF (ǫ) < ∞ converges as shown
in (17), hence we can safely drop that term from the
numerator, since the denominator diverges.

• ǫ′i → ǫ.
• σ2

Ri
→ σ2

CF (ǫ), where

σ2
CF (ǫ) = Var[Rs(t)− CF (ǫ)1(Ōx(t))]

≤ Var[Rs(H, PCF (ǫ)(H))]− ǫ(1− ǫ)CF (ǫ).

VI. N UMERICAL RESULTS

In this section, we conduct simulations to illustrate our main
results with two examples. In the first example, we analyze
the relationship betweenǫ-achievable secrecy capacity and
average power. We assume that both the main channel and
eavesdropper channel are characterized by Rayleigh fading,

where the main channel and eavesdropper channel power gains
follow exponential distribution with means 2 and 1, respec-
tively. Since Rayleigh channel is non-invertible, maintaining
a non-zero secrecy rate with zero secrecy outage probability
is impossible. In Figure 3, we plot theǫ-achievable secrecy
capacity as a function of the average power, forǫ = 0.02
outage probability, for both full CSI and main CSI cases. It
can be clearly observed from the figure that the gap between
capacities under full CSI and main CSI vanishes as average
power increases, which support the result of Theorem 3.

In the second example, we study the relationship between
the buffer size, key loss ratio and the outage probability. We
assume that both the main and eavesdropper channel gains
follow a chi-square distribution of degree 2, but with means2
and 1, respectively. We focus on the full CSI case, and consider
the scheme described in Section V. We consider transmission
at secrecy rate ofR with the use of the power allocation policy
PR that solves the problem (25)-(27). Forǫ = 0.02, and the
average power constraintPavg = 1, we plot the key loss ratio
(40), as a function of buffer sizeM in Figure 4, forR =
CF (ǫ), R = 1.01CF (ǫ) andR = 1.02CF (ǫ), whereCF (ǫ) is
the ǫ-achievable secrecy capacity. It is shown in Lemma 7 of
Section V that expect the key loss ratioLT (M) decreases as
R increases, which is observed in Figure 4. Finally, we study
the relationship between the secrecy outage probability and the
buffer size for a given rate. In Figure 5, we plot the secrecy
outage probabilities, denoted asǫ′, as a function of buffer size
M for the same encoder parameters. On the same graph, we
also plot our asymptotic result given in Theorem 6, which
provides an upper bound on the required buffer size to achieve
ǫ′ outage probability for rateCF (ǫ), with the assumption that
(38) is an equality for anyǫ′. We can see that, this theoretical
result serves as an upper bound on the required buffer size
whenǫ′−ǫ, which is the additional secrecy outages due to key
buffer overflows, is very small. Another important observation
from Figures 4 and 5 is that, for a fixed buffer size, although
the key loss ratio decreases asR increases, secrecy outage
probability increases. This is due to the fact that key bits are
pulled from the key queue at a faster rate, hence the decrease
in the key loss ratio does not compensate for the increase of
the rate that key bits are pulled from the key queue, therefore
the required buffer size to achieve sameǫ′ is higher for larger
values ofR.

VII. C ONCLUSIONS

This paper obtained sharp characterizations of the secrecy
outage capacity of block flat fading channels under the as-
sumption full and main CSI at the transmitter. In the two
cases, our achievability scheme relies on opportunistically
exchanging private keys between the legitimate nodes and
using them later to secure the delay sensitive information.
We further derive the optimal power control policy in each
scenario revealing an interesting structure based by judicious
time sharing between time sharing and the optimal strategy
for the ergodic. Finally, we investigate the effect of key buffer
overflow on the secrecy outage probability when the key buffer
size is finite.
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APPENDIX A

A. Proof of Theorem 1

First, we prove the achievability. Let us fixR <
E[Rs(H, P (H))]/(1 − ǫ), and consider a power allocation
policy P ∈ PF , that satisfies the constraints (14),(15). We
show that for anyδ > 0, there exist someB and N large
enough such that the constraints in Definition 1 are satisfied,
which implies that anyR < E[Rs(H, P (H))]/(1 − ǫ) is
an ǫ-achievable secrecy rate. The outage capacity is then
found by maximizingE[Rs(H, P (H))]/(1 − ǫ) based on
constraints (10)-(14). For notational simplicity, we willuse
Rs(s, b) ≡ Rs(H(s, b), P (H(s, b))) to denote the value of
Rs(·) at block (s, b), and similarly defineRm(s, b).

Our scheme, shown in Figure 6, utilizes secret key buffers
at both the transmitter and legitimate receiver, where
i) At the end of every block(s, b), using privacy amplifi-
cation, legitimate nodes (transmitter and receiver) generate
N(Rs(s, b)−δ) bits of secret key from the transmitted signal in
that particular block, and store it in their secret key buffers. We
denote the generated secret key at the transmitter asV (s, b),
and at the receiver aŝV (s, b).
ii) At every block (s, b), s 6= 1, the transmitter pullsNR bits
from its secret key buffer to secure the outage constrained
message of sizeH(W (s, b)) = NR, using Vernam’s one
time pad. The receiver uses the same key to correctly decode
the message. We denote the pulled key at the transmitter as
K(s, b), and at the receiver aŝK(s, b). Keys generated at
(s − 1)-st superblock are used only in thes-th superblock,
and every generated key is only usedonce. When certain
conditions are not met, this stage is skipped; the message
W (s, b) is not transmitted, and the keys are not pulled from
the key queue. We call this particular event “encoder outage”,
and denote it asOenc(s, b, R) , Och(s, b, R)∪Okey(s, b, R)∪
Oa(s, b, R), where

• Channel outage (Och(s, b, R)): Channel is not suitable for
reliable transmission at rateR, i.e.,Rm(s, b) < R. Since
P satisfies (14), due to the definition in (11), (12), for

any (s, b) 7

P(Och(s, b, R)) =

P

(

Rm(H, P (H)) <
E[Rs(H, P (H))]

1− ǫ

)

≤ ǫ. (50)

• Key outage (Okey(s, b, R)): There are not enough key bits
in the key queue to secureW (s, b), i.e.,

(

B
∑

b′=1

H(V (s− 1, b′))−

b
∑

b′=1

H(K(s, b′))

)

< 0

• Artificial outage (Oa(s, b, R)): The transmitter declares
’outage’, even though reliable secure transmission of
W (s, b) is possible. This is introduced to control the key
queue dynamics and bound the probability of key outages,
which is covered in the secrecy outage analysis. By
definition, the events{Oa(s, b, R)}S,Bs=1,b=1 are mutually
independent, they are also independent of other random
variables, and satisfy the equality

P(Och(s, b, R) ∪ Oa(s, b, R)) = ǫ. (51)

for any (s, b).
Note that, due to our assumption that keys generated in(s−1)-
st superblock are used ins-th superblock, all the blocks the
first superblock(s = 1) observe key outages, therefore secrecy
outages, yet it does not violate the constraints in Definition 1.
Also note that, we will show that for anyδ > 0, there existS,
B andN are large enough such that the eventsOenc(s, b, R)
andOinf(s, b, R, δ) are equivalent.

Encoding:
Our random coding arguments rely on an ensemble of code-
books generated according to a zero mean Gaussian distribu-
tion with varianceP (s, b) 8.
1) WhenOenc(s, b, R) does not occur, the message is secured
with the secret key bits pulled from the key queue, using one
time pad9

Wsec(s, b) = W (s, b)⊕K(s, b) (52)

7Here, we interchangeably useRm(s, b) ≡ Rm(H(s, b), P (H(s, b))),
and due to stationarity ofP , drop index(s, b).

8Note that, it is also possible to use a finite number of codebooks by
partitioning the set{h} of channel gains, and using a different Gaussian
codebook for every partition [3].

9We assume that both the message and the key are converted to binary
form in this process.
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Fig. 6. The capacity achieving scheme, transmitter and receiver operation
whenOenc(s, b,R) does not occur.

Clearly, Wsec(s, b) ∈ Wsec = {1, · · · , 2NR}. Fur-
thermore, let {Wx1(s, b)}

S,B
s=1,b=1 denote an i.i.d. se-

quence where{Wx1(s, b)} ∈ {1, · · · , 2N(Rm(s,b)−R−δ)}
is uniformly distributed. The encoder formsWX(s, b) =
[Wsec(s, b) Wx1(s, b)] by concatenation, and transmits the
codewordX(s, b) indexed byWX(s, b) over the channel.

2) When Oenc(s, b, R) occurs, W (s, b) is not transmit-
ted. Let {Wx2(s, b)}

S,B
s=1,b=1 denote an i.i.d. sequence where

{Wx2(s, b)} ∈ {1, · · · , 2N(Rm(s,b)−δ)} is uniformly dis-
tributed. The encoder formsWX(s, b) = [Wx2(s, b)], and
transmits the codewordX(s, b) indexed byWX(s, b) over the
channel.
The reason for transmittingWx1(s, b) and Wx2(s, b) is to
confuse the eavesdropper to the fullest extent in the privacy
amplification process.

Decoding:
The receiver finds the jointly typical(ŴX(s, b),Y(s, b)) pair,
where

1) ŴX(s, b) = [Ŵsec(s, b) Ŵx1(s, b)] when Oenc(s, b, R)
does not occur.

2) ŴX(s, b) = [Ŵx2(s, b)] whenOenc(s, b, R) occurs.

Define the error events

E1(s, b) =
{

ŴX(s, b) 6= WX(s, b))
}

E2(s, b, δ) =

{

1

N
‖X(s, b)‖2 > P (s, b) + δ

}

Note that, the main channel at slot(s, b) can be viewed as
an Additive White Gaussian Noise (AWGN) channel with
channel gainH(s, b), which has instantaneous capacity of
Rm(s, b) ≡ Rm(H, P (H)) [9]. The encoding rate (rate of
WX(s, b)) is equal toRm(s, b) − δ, which is below the in-
stantaneous main channel capacity. Therefore, random coding
arguments guarantee us that∀B > 0, ∃N1(B) > 0 such that
∀N ≥ N1(B), P(E1(s, b)) ≤

δ
3B andP(E2(s, b, δ)) ≤

δ
3 .

Privacy Amplification: At the end of every block(s, b), the
transmitter and receiver generate secret key bits, by applying

a universal hash10 function on the exchanged signals in that
particular block. First, we provide the definition of a universal
hash function.

Definition 3: ( [11]) A class G of functionsA → B is
universal, if for anyx1 6= x2 in A, the probability that
g(x1) = g(x2) is at most 1

B when g is chosen at random
from G according to a uniform distribution.

Lemma 9:For anyS > 0, B > 0, there existsN2(S,B) >
0 such that,∀N ≥ N2(S,B), and for any block(s, b), the
transmitter and receiver generate secret key bitsV (s, b) =
G(WX(s, b)) and V̂ (s, b) = G(ŴX(s, b)) respectively, such
that V (s, b) = V̂ (s, b) if the error eventE1(s, b) does not
occur, and

H(V (s, b)) = N(Rs(s, b)− δ) (53)
1

N
I(V (s, b);Z(s, b),h(s, b), G) ≤

δ

SB
(54)

The proof follows the approach of [12], which applies pri-
vacy amplification to Gaussian channels. We provide it in
Appendix A-B.

Now, we will show that for this scheme, the error con-
straint in (6), and the secrecy outage constraint in (7) is
satisfied. To simplify notation, we will frequently useW (s, :
) = {W (s, b)}Bb=1. Note that, for anys, the markov chain in
Figure 7 is satisfied, which could be observed from Figure 6.
These markov relations will be repeatedly used in secrecy
outage analysis.

Fig. 7. Markov chains

Error Analysis: The probability of error event in (6) can
be bounded as

P(E(s, b, δ)|Ōsec(s, b, R, δ))

≤ P(E(s, b, δ)|Ōenc(s, b, R))

+P(Oenc(s, b, R)|Ōsec(s, b, R, δ)) (55)

= P(E(s, b, δ)|Ōenc(s, b, R)) (56)

where (56) follows since

P(Oenc(s, b, R)|Ōsec(s, b, R, δ))

≤ P(Oenc(s, b, R)|Ōinf(s, b, R, δ)) = 0 (57)

due to the fact that information outage (Oinf(s, b, R, δ)) does
not occur, then 1

NH(W (s, b)|Ys,b,hs,b) > R − δ which
eliminates the possibility of an encoder outage (Oenc(s, b, R)).

10Privacy amplification can also be performed using extractorfunctions.
In [10], it is shown that in fading Gaussian channels, same key rates can be
achieved by using extractor functions, as compared to universal hash functions.
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For anyN ≥ max(N1(B), N2(S,B)), and (s, b) such that
s > 1, (56) can be bounded as

P(E(s, b, δ)|Ōenc(s, b, R))

≤ P(W (s, b) 6= Ŵ (s, b)) + P

(

‖X(s, b)‖2

N
> P (s, b) + δ

)

(58)

= P(Wsec(s, b)⊕K(s, b) 6= Ŵsec(s, b)⊕ K̂(s, b))

+ P

(

X(s, b)‖2

N
‖ > P (s, b) + δ

)

(59)

≤ P(Wsec(s, b) 6= Ŵsec(s, b)) + P(K(s, b) 6= K̂(s, b))

+ P

(

‖X(s, b)‖2

N
> P (s, b) + δ

)

(60)

where (58) follows from (2), and the union bound, (59)
follows from the fact that whenOenc(s, b, R) does not occur,
Wsec(s, b) = W (s, b) ⊕ K(s, b), and (60) follows from
the union bound. The first term of (60) can be bounded
as P(Wsec(s, b) 6= Ŵsec(s, b)) ≤ δ

3B due to definition of
E1(s, b), and the choice ofN . Similarly, the third term can
be bounded asP

(

1
N ‖X(s, b)‖2 > P (s, b) + δ

)

≤ δ/3 due to
definition ofE2(s, b, δ), and the choice ofN . The second term
can be bounded as

P
(

K(s, b) 6= K̂(s, b)
)

(a)

≤ 1−

B
∏

i=1

P(V (s− 1, i) = V̂ (s− 1, i))

≤

B
∑

i=1

P(V (s− 1, i) 6= V̂ (s− 1, i))

≤

B
∑

i=1

P(E1(s− 1, i))
(b)

≤ B
δ

3B

where (a) follows from the fact that keys used ins-th
superblock are generated in(s − 1)-st superblock, and(b)
follows due to the definition ofE1(s, b). Therefore, the error
constraint in (6) is satisfied.

Secrecy Outage Analysis:The following lemmas will be
useful in the secrecy outage analysis.

Lemma 10:For any B, there exists someN3 such that
for N ≥ N3(B), the eventsOenc(s, b, R) andOinf(s, b, R, δ)
coincide with probability1, i.e.,

P(Oenc(s, b, R)|Ōinf(s, b, R, δ))

+ P(Oinf(s, b, R, δ)|Ōenc(s, b, R)) = 0. (61)

Proof of Lemma 10 is provided in Appendix A-B. Secrecy
outage probability can be bounded above as

P(Osec(s, b, R, δ)) = P(Oeq(s, b, R, δ) ∪ Oinf(s, b, R, δ))

= P(Oeq(s, b, R, δ) ∪ Oenc(s, b, R)) (62)

≤ P(Oeq(s, b, R, δ)|Ōenc(s, b, R))

+ P(Oenc(s, b, R)) (63)

where the first equality follows from the definition of secrecy
outage in (3), (62) follows from Lemma 10, and (63) follows

from the union bound. Now, we upper bound the first term.
Note that

P(Oeq(s, b, R, δ)|Ōenc(s, b, R)) = P

(

1

N
H(W (s, b)|ZS,B,

hS,B,WS,B\W (s, b), G, Ōenc(s, b, R)) ≥ R− δ

)

(64)

by definition in (4), and the fact that the universal hash
function G used is revealed to the eavesdropper, hence the
entropy ofW (s, b) is conditioned onG as well. Fors > 1,
we bound the equivocation as follows11

H(W (s, b)|ZS,B,hS,B,WS,B\W (s, b), G, Ōenc(s, b, R))

≥ H
(

W (s, b)|ZS,B,hS,B,WS,B\W (s, b), G,

Ōenc(s, b, R),Wsec(s, b)
)

(65)

= H
(

K(s, b)|ZS,B,hS,B,WS,B\W (s, b), G,

Ōenc(s, b, R),Wsec(s, b)
)

(66)

= H(K(s, b))− I
(

K(s, b);ZS,B,hS,B,WS,B\W (s, b),

G, Ōenc(s, b, R),Wsec(s, b)
)

≥ H(K(s, b))−

I
(

V (s− 1, :);ZS,B,hS,B,WS,B\W (s, b), G
)

(67)

= H(K(s, b))−

I
(

V (s− 1, :);Zs−1,B ,hs−1,B,W s−1,B, G
)

(68)

= H(K(s, b))−

s−2
∑

i=0

I

(

V (s− 1, :);Z(s− 1− i),

h(s− 1− i, :),W (s− 1− i, :), G
∣

∣

{

Z(s− 1− j),h(s− 1− j, :),W (s− 1− j, :)
}i−1

j=0

)

(69)

≥ H(K(s, b))−
s−2
∑

i=0

I

(

V (s− 1, :),

{

Z(s− 1− j),h(s− 1− j, :),W (s− 1− j, :)
}i−1

j=0
;

Z(s− 1− i),h(s− 1− i, :),W (s− 1− i, :), G

)

(70)

≥ H(K(s, b))−

s−2
∑

i=0

I

(

V (s− 1− i, :);Z(s− 1− i),

h(s− 1− i, :),W (s− 1− i, :), G

)

(71)

≥ H(K(s, b))−

S
∑

i=1

I
(

V (i, :);Z(i, :),h(i, :), G
)

(72)

≥ H(K(s, b))−

S
∑

i=1

B
∑

j=1

I
(

V (i, j);Z(i, j),h(i, j), G
)

(73)

≥ N(R − δ) (74)

where (65) follows from the fact that conditioning reduces
entropy, (66) follows due toK(s, b) = Wsec(s, b)⊕W (s, b),
(67) sinceK(s, b) is pulled from the key buffer, which contains
the key bitsV (s − 1, :) generated during superblocks − 1,

11In (69) and (70),{·}i−1

j=0
= ∅ for i ≤ 1.
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henceH(K(s, b)|V (s − 1, :)) = 0. (68) follows due to the
Markov relation in Figure 7, along with the Markov chain
WX(s, b) → X(s, b) → Z(s, b), and the fact thatK(s, :) is
independent ofWsec(s, :). The independence ofK(s, :) from
Wsec(s, :) follows sinceW (s, b) is perfectly compressed, i.e.,
is of sizeNR bits with entropyNR, the one time pad performs
as a Vernam cipher. (69) follows due to the chain rule, (70)
follows since for any random variablesA,B,C, I(A;B|C) ≤
I(A,B;C), and (71) follows since

V (s, :), {Z(s− j),h(s− j, :),W (s− j, :)}i−1
j=0 →

V (s− i, :) → Z(s− i),h(s− i, :),W (s− i, :)

forms a Markov chain for anys andi, which can be observed
from Figure 7. (72) follows since for anyi, V (i, :) is inde-
pendent ofW (i, :) due to the one time pad. Similarly, (73)
follows since for anyi, j, j′ such thatj 6= j′,

(Z(i, j),h(i, j)) → V (i, j) → WX(i, j) → K(i, :) →

WX(i, j′) → V (i, j′) → (Z(i, j′),h(i, j′))

and the fact thatWX(i, j) andWX(i, j′) is independent due
to one time pad. Finally, (74) follows due to the privacy
amplification result in Lemma 9. Then,

P(Oeq(s, b, R, δ)|Ōenc(s, b, R)) = 0 (75)

due to (64) and (74). Now, we bound the second term. By the
union bound,

P(Oenc(s, b, R))

≤ P(Okey(s, b, R)) + P(Och(s, b, R) ∪ Oa(s, b, R))

= P(Okey(s, b, R)) + ǫ (76)

where (76) follows due to (51). For(s, b), s 6= 1

P(Okey(s, b, R))

= P

(

B
∑

i=1

H(V (s− 1, i))−
b
∑

i=1

H(K(s, i)) < 0

)

= P

( B
∑

i=1

N(Rs(s− 1, i)− δ)−

b
∑

i=1

NR1(Ōch(s, i, R) ∩ Ōa(s, i, R)) < 0

)

≤ P

( B
∑

i=1

[

Rs(s− 1, i)− δ−

R1(Ōch(s, i, R) ∩ Ōa(s, i, R))
]

< 0

)

(77)

Note that, the terms{Rs(s − 1, i)} and {1(Ōch(s, i, R) ∩
Ōa(s, i, R))} in (77) are i.i.d. with respect tos and i, and
are independent of each other. Therefore, the expression in
(77) represents a random walk with expected driftµ =
E[Rs(H, P (H))]−δ−R(1−ǫ) due to the definition of artificial
outageOa(s, b, R)) in (51). For12 R ≤ E[Rs(H,P (H))]−δ

1−ǫ ,
µ > 0, hence by the law of large numbers,∃B1 > 0 such

12The reason for introducing artificial outages is to make surethat the
expected drift is positive.

that ∀B > B1, P(Okey(s, b, R)) < δ, s 6= 1. Therefore, for
the choiceB = B1, N = max(N1(B1), N2(S,B1), N3(B1)),
P(Osec(s, b, R, δ)) ≤ ǫ + δ due to (76), (63) and (75). Hence
the secrecy outage constraint in (7) is satisfied. This concludes
the achievability.

Now, we prove the converse. Consider a power allocation
policy P , which satisfies the average power constraint in (1).
Let R be anǫ-achievable secrecy rate. We will show thatR <
CF (ǫ). Let δ > 0. Then∃B1, N1 such that∀B > B1, N > N1

1

SBN

S
∑

s=1

B
∑

b=1

H(W (s, b)|ZS,B,hS,B,WS,B\W (s, b))

≥

S
∑

s=1

B
∑

b=1

1

SB
(R− δ)1(Ōsec(s, b, R, δ)) (78)

≥ (R − δ)(1− ǫ− δ) (79)

where (78) follows directly from the definition of the event
Ōsec(s, b, R, δ), and (79) follows from applying the secrecy
outage constraint (7), and the law of large numbers.

It follows from the converse proof of ergodic secrecy
capacity [3], and law of large numbers that∃B2, N2 such
that for everyS, B > B2, andN > N2, the time-average
equivocation rate13 is bounded as

1

SBN

S
∑

s=1

B
∑

b=1

H(W (s, b)|ZS,B,hS,B,WS,B\W (s, b))

≤
1

SBN
H(WS,B|ZS,B,hS,B) (80)

≤ lim sup
S,B→∞

S
∑

s=1

B
∑

b=1

1

SB
Rs(s, b) + δ. (81)

Also note that,

Ōsec(s, b, R, δ) ⊇ Ōinf(s, b, R, δ)

⊇

{

1

N
I(W (s, b);Ys,b,hs,b) ≥ R− δ

}

⊇

{

1

N
I(X(s, b);Y(s, b)) ≥ R− δ

}

(82)

⊇ {Rm(s, b) ≥ R− δ} (83)

where (82) follows from the fact thatW (s, b) →
(X(s, b),Xs,b−1) → (Y(s, b),Xs,b−1) → Ys,b forms a
Markov chain. From the converse of the coding theorem [13];
the mutual information expression in (82) is maximized when
X(s, b) becomes a Gaussian random vector, and the supremum
is the expression in (83).

From (78), (81) and (83), it follows that anyǫ-achievable
rateR is bounded above as

R ≤ lim sup
S,B→∞

S
∑

s=1

B
∑

b=1

1

SB
Rs(s, b)/(1− ǫ) (84)

subject to:P(Rm(s, b) ≥ R) ≤ ǫ (85)

lim sup
S,B→∞

1

SB

S
∑

s=1

B
∑

b=1

P (s, b) ≤ Pavg (86)

13For any reliable code that yields vanishing probability of error as
S,B,N → ∞.
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Since Rm(s, b) and Rs(s, b) are both deterministic func-
tions of the powerP (s, b) and instantaneous channel gains
h(s, b), it follows that the power allocation function that
maximizes the right hand side of (84)-(86) is a stationary
function of instantaneous channel gainsh(s, b). Interchanging
the notationsP (s, b) ≡ P (h), Rs(s, b) ≡ Rs(h, P (h)) and
Rm(s, b) ≡ Rm(h, P (h)), we can see that the right hand side
of (84)-(86) becomesCF (ǫ), which completes the proof.

B. Proofs of Lemmas used in Appendix A

Proof of Lemma 9:First, we introduce the information the-
oretic quantities required for the proof. For random variables
A,B, define

• Renyi entropy ofA as logE[PA(a)]

• Min-entropy asA asH∞(A) = mina log
(

1
PA(a)

)

.

• Conditional min-entropy ofA given B asH∞(A|B) =
infb H∞(A|B = b).

• δ-smooth min-entropy of A as Hδ
∞(A) =

maxA′:‖PA−PA′‖<δ H∞(A′).

Without loss of generality, we drop the block index(s, b)
andR, and focus on the first block(1, 1), and assume the event
Oenc does not occur. LetWX = [Wsec Wx1], with sample
realization sequences denoted bywx. Let V = G(WX), where
G denotes a random universal hash function that mapsWX to
to an r-bit binary messageV ∈ {0, 1}r. Then, it is clear that if
error eventE1 does not occur,̂V = V sinceWX = ŴX , for
any choice ofG. To show that the security constraints (53)-
(54) are satisfied, we cite the privacy amplification theorem,
which is originally defined for discrete channels. For this
purpose, we define a quantization functionφ, with sensitivity
parameter∆ = supz |z − φ(z)|. Let Z∆ = φ(Z) denote
the quantized version ofZ. where z∆ denotes realization
sequences. Then, by Theorem 3 of [11] there exists a universal
functionG such that14

H(G(WX)|Z∆ = z∆, G) ≥ r −
2r−R(WX |Z∆=z

∆)

log 2

Now, we relate this expression to the Shannon entropy of the
message, conditioned on eavesdropper’s actual received signal.
Using the factsH∞(WX) ≤ R(WX) andH∞(WX |Z∆, G) ≤
H∞(WX |Z∆ = z∆, G), it is easy to show that

H(G(WX)|Z∆, G) ≥ r −
2r−H∞(WX |Z∆)

log 2

Then, due to the asymptotic relationship between continuous
random variables and their quantized versions [13], there exists
a quantization functionφ such that∆ is small enough, and

H(G(WX)|G,Z) ≥ H(G(WX)|G,Z∆)−
δ

2SB

≥ r −
2r−H∞(WX |Z∆)

log 2
−

δ

2SB
(87)

14We omit hS,B in the following parts of the proof of Lemma 9 for
notational simplicity.

are satisfied. To relate min-entropy to Shannon entropy, we
use the result of Theorem 1 of [12];∀δ′ > 0, ∃ a block length
N ′ such that∀N > N ′,

1

N
H(X∆|Z∆) ≤

1

N
Hδ′

∞(X∆|Z∆) + δ/(SB) (88)

Now, we proceed as follows,

H∞(WX |Z∆) = lim
δ′→0

Hδ′

∞(W |Z∆)

≥ H(WX)− I(WX ;Z∆)−Nδ/(SB) (89)

≥ H(WX)− I(X;Z)−Nδ/(SB) (90)

= NRs −Nδ/(SB) (91)

where (89) follows from (88), and the appropriate choice
of N ′. (90) follows from the fact thatWX → X →
Z → Z∆ forms a Markov chain. (91) follows from the
fact thatH(WX) = N(Rm − δ), and similarly I(X;Z) ≤
N(Rm − Rs − δ), which is the eavesdropper’s maximum

achievable rate. LetN ′′ = SB
SB−1 log

(

δ log(2)
2SB

)

. For the choice

of H(V ) = r = N(Rs − δ), andN ≥ max(N ′, N ′′), we get

I(V ;G,Z) = H(G(WX))−H(G(WX)|Z, G)

≤
2−N(B−1)/B

log 2
+

δ

2SB
(92)

≤
δ

SB
(93)

where (92) follows from (87), (91), and the fact thatV =
G(WX). (93) follows due to the choice ofN ′′. Hence, for
N ≥ max(N ′, N ′′), the constraints (53), (54) are satisfied.

Proof of Lemma 10:The probability of the first term is0
due to (57). For the second term, note that

P(E(s, b, δ)|Ōenc(s, b, R)) < δ.

From Fano’s inequality, we get

1

N
H(W (s, b)|Ys,b,hs,b, Ōenc(s, b, R))

≤
1

N
H(E(s, b, δ)|Ōenc(s, b, R)))+

NRP(E(s, b, δ)|Ōenc(s, b, R)))

≤ δ (94)

In the error analysis, it is shown that
P(E(s, b, δ)|Ōenc(s, b, R)) can be made arbitrarily small
with increasing block lengthN , which shows that there exists
N3 such that forN = max(N1(B), N2(S,B), N3(B)), (94)
holds, which proves that the probability of the second term is
also0.

APPENDIX B
PROOF OFTHEOREM 2

The proof is very similar to the proof for full CSI, hence
we only point out the differences. For full CSI, key generation
occurs at the end of everyblock, using privacy amplification.
Due to lack of eavesdropper channel state at the legitimate
nodes, this is no longer possible. However, as shown in [3], it
is still possible to generate secret key bits over asuperblock.
The following lemma replaces Lemma 9 in the full CSI case.
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Note that, we will use the notationW (s, :) = {W (s, b)}Bb=1

for simplicity.
Lemma 11:Let WX(s, b) be defined as in full CSI case,

where

WX(s, b) =
{

[Wsec(s, b) Wx1(s, b)], if Oenc(s, b, R) does not occur

[Wx2(s, b)], if Oenc(s, b, R) occurs

There existsN2 > 0, B1 > 0 such that,∀N > N2, B >
B1, and for any superblocks, the transmitter and the receiver
generates secret key bitsV (s) = G(WX(s, :)) and V̂ (s) =
G([ŴX(s, :)) respectively, such thatV (s) = V̂ (s) if none of
the error eventsE1(s, :) occur in superblocks, and

H(V (s)) = NB
(

E[Rs(H, P (Hm))]− δ
)

(95)
1

N
I(V (s);Z(s, :),h(s, :), G) ≤

δ

S
(96)

The proof is very similar to the proof of Lemma 9, and is
omitted here. Following the same error and secrecy outage
analysis in the full CSI case, we can see that any rateR <
CM (ǫ) is achievable. The converse proof is also the same as
in full CSI case, and is omitted here.

APPENDIX C
PROOFS OFRESULTS IN SECTION IV-A

A. Proof of Lemma 1

The parameterRmax is the maximum value for which the
problem (25)-(27) has a solution; hence the average power
constraint (26) is active. Moreover, the outage constraint(27)
is also active, and due to the fact thatRm(h, P ) is a concave
increasing function ofP , we haveP(Rm(H, PRmax(H)) =
Rmax) = (1 − ǫ), since otherwise one can further increase
Rmax to find a power allocation function that satisfies the
equality. Since for a givenh = [hm he], the power allocation
function that yieldsRmax is Pinv(hm, Rmax), we have

Pavg =

∫

h∈K

Pinv(hm, Rmax)f(h)dh

whereK the set of channel gains for which the system operates
at rateRmax, andP(H ∈ K) = (1 − ǫ). The setK contains
channel gainsh for which Pinv(hm, Rmax) takes minimum
values, so that the average power constraint is satisfied for
the maximum possibleR. Since Pinv(h, R) = 2R−1

hm
is a

decreasing function ofhm, one can see that the choice ofK
that yieldsRmax is K = {h : hm ≥ c}. Since the probability
density function ofH is well defined,P(Hm = 0) = 0, hence
c > 0, which, along withPavg > 0, implies thatRmax > 0.

B. Proof of Lemma 3

Let Rmax > R > R′ > 0. Then, any policyP that
satisfiesP(Rm(H, P (H)) < R) ≤ ǫ, would also satisfy
P(Rm(H, P (H)) < R′) ≤ ǫ. So, the set of power allocation
functions that satisfy (27) shrinks asR increases, hence
E[Rs(H, PR(H))] is a non-increasing function ofR. Now, we

prove thatE[Rs(H, PR(H))] is continuous. From Lemma 2,
we know that

PR(h) = Pwf(h, λR)+

1(h ∈ G(λR, kR))(Pinv(hm, R)− Pwf(h, λR))
+

PR′

(h) = Pwf(h, λR′ )+

1(h ∈ G(λR′ , kR′))(Pinv(hm, R′)− Pwf(h, λR′ ))+

where(λR, kR) and (λR′ , kR′) are constants that satisfy (23)
and (24) with equality with respect to parametersR andR′,
respectively. Due to the fact that the functionsPinv(hm, R)
is continuous and monotone increasing with respect toR,
Pwf(h, λ) is continuous and monotone increasing with respect
to λ, and the fact that integration preserves continuity, for any
δ > 0 such thatR > R′ > R − δ, we can findγ > 0 such
that

1) γ > λR − λR′ > 0
2) γ > Pwf(h, λR′)− Pwf(h, λR) > 0, ∀h
3) P(H ∈ G(λR′ , kR′)\G(λR, kR)) < γ
4) |kR′ − kR| < γ
5) γ > Pinv(hm, R)− Pinv(hm, R′) > 0, ∀h

Finally, due to the fact thatRs(h, P ) is a continuous and
monotone increasing function of powerP , and items1 − 2,
we conclude thatE[Rs(H, PR(H))] is continuous.

C. Proof of Lemma 4

If E[Rs(H, PR(H))]|R=0 = 0, then the unique solution
of R = E[Rs(H, PR(H))]/(1 − ǫ) is R = 0. So, con-
sider E[Rs(H, PR(H))]|R=0 = 0. It is easy to see that,
E[Rs(H,PRmax (H))]

Rmax
≤ (1 − ǫ), since

E[Rs(H, PRmax(H))] =

∫

hm≥c

Rs(h, P (h))f(h)dh

≤ Rm(h, P (h))(1 − ǫ)

= Rmax(1− ǫ)

follows from definition of parameterc, and the inequality
Rs(h, P (h)) ≤ Rm(h, P (h)). Combining the facts that,
the function E[Rs(H,PR(H))]

R is continuous and strictly de-

creasing on(0, Rmax], limR→0+
E[Rs(H,PR(H))]

R = ∞ and
E[Rs(H,PRmax (H))]

Rmax
≤ (1 − ǫ), by the intermediate value

theorem, there exists a uniqueR > 0, which satisfiesR =
E[Rs(H, PR(H))]/(1− ǫ).

APPENDIX D
PROOF OFLEMMA 2

We use Lagrangian optimization approach to findPR. We
can expressE[Rs(H, PR(H))] given in (25)-(27) as

max
P,G

J(P )

s.tRm(h, P (h)) ≥ R, ∀h ∈ G

P(H ∈ G) = 1− ǫ (97)
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where the LagrangianJ(P ) is given by the equation15

J(P ) =

∫

Rs(h, P (h))f(h)dh

− λ

[
∫

P (h)f(h)dh − Pavg

]

(98)

Here,G is a set which consists ofh for whichRm(h, P (h)) ≥
R must be satisfied. We will show in this proof that it is of
the form (20). This problem is identical to (25), since their
constraint sets are identical. Hence solution of this problem
would also yieldPR. In the following two-step approach, we
proceed to findPR. Let us fixλ > 0.

1) For anyG ⊆ [0,∞)×[0,∞), we findPG , which is defined
as

PG = arg max
P∈PF

J(P )

s.t Rm(h, P (h)) ≥ R, ∀h ∈ G (99)

2) Using the result of part 1, we findPR, by finding the set
G that maximizesJ(P ), subject to a constraintP(H ∈
G) = 1− ǫ.

We start with step 1. Since bothλ andR are fixed, therefore
we drop them fromPinv(·) andPwf(·), in the following parts
to simplify the notation.

Lemma 12:If the problem (99) has a feasible solution, then
it could be expressed as

PG(h) = Pwf(h) + [Pinv(h)− Pwf(h)]
+1(h ∈ G) (100)

wherePwf(h) andPinv(h) are given in (19) and (18), respec-
tively.

Proof: We will interchangeably useh = [hm he]. Due to
(99),Rm(h, P (h)) = log(1+P (h)hm) ≥ R, ∀h ∈ G. Hence,
there is a minimum power constraint for setG, as

P (h) ≥ Pinv(h) =
2R − 1

hm
, ∀h ∈ G (101)

DefineK as the set in which the minimum power constraint
(101) is not active, i.e.,

K = {h ∈ G : P (h) > Pinv(h)} ∪ Ḡ

whereḠ is complement ofG. First, we focus on the solution in
the non-boundary set. Since the optimal solution must satisfy
the Euler-Lagrange equations,

dJ(P )

dP (h)
= 0,h ∈ K

For h ∈ K, we get the following condition

hm

1 + hmP (h)
−

he

1 + heP (h)
− λ = 0

whose solution yields

P (h) =
1

2

[

√

(

1

he
−

1

hm

)2

+
4

λ

(

1

he
−

1

hm

)

−

(

1

he
+

1

hm

)]

15Note that we leave the constraint (27) as is, and not include it in J(P ).

If for someh ∈ K, the valueP (h) is negative, then due to the
concavity ofJ(P ) with respect toP (h), the optimal value of
P (h) is zero [3]. Therefore, the solution yields

P (h) = Pwf(h), ∀h ∈ K (102)

Combining the result with the minimum power constraint
inside setG, the solution of (99) yields (100), which concludes
the proof.
Now, we find PR. We proceed by further simplifying the
Lagrangian in (98), for the case whereP = PG , for a given
G as follows.

J(PG) =

∫

h∈G

[Rs(h, P (h))− λP (h)] f(h)dh

+

∫

h/∈G

[Rs(h, P (h))− λP (h)] f(h)dh

=

∫

[Rs(h, Pwf(h))− λPwf(h)] f(h)dh

+

∫

G

{

[Rs(h, Pinv(h)) −Rs(h, Pwf(h))]
+

− λ [Pinv(h)− Pwf(h)]
+
}

f(h)dh (103)

After this simplification, the first term in (103) does not depend
on G. We conclude the proof by showing thatPR = PG∗

where the setG∗ is defined as follows,

G∗ =

{

h : [Rs(h, Pinv(h))−Rs(h, Pwf(h))]
+

− λ [Pinv(h)− Pwf(h)]
+
≥ k

}

(104)

where the parameterk is a constant that satisfiesP(H ∈ G∗) =
(1 − ǫ). We prove this by contradiction. First defineξ(h) =
[Rs(h, Pinv(h))−Rs(h, Pwf(h))]

+
− λ [Pinv(h)− Pwf(h)]

+.
Then, it follows from (103) thatG∗ is the set that maximize
(103), so

G∗ = argmax
G

∫

G

ξ(h)f(h)dh

Assume that some otherG′ 6= G∗ is optimal, whereP(H ∈
G′) = 1− ǫ. However, we have

J(PG∗)− J(PG′ )

=

∫

G∗

ξ(h)f(h)dh −

∫

G′

ξ(h)f(h)dh

=

∫

G∗\G′

ξ(h)f(h)dh −

∫

G′\G∗

ξ(h)f(h)dh

≥ 0 (105)

since
∫

G∗\G′

f(h)dh =

∫

G′\G∗

f(h)dh

and
ξ(h)|h∈G∗ ≥ ξ(h)|h∈G′ , ∀h

by definition. This contradicts our assumption thatG′ is
optimal. Note that,G∗ is identical to (21). This concludes the
proof.
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APPENDIX E
PROOF OFLEMMA 5

The proof goes along similar lines as in Appendix D, so
we skip the details here. We solve the problem for a fixed
λ > 0. First, for any givenG ∈ [0,∞), we define the following
problem, the solution of which yieldsPG .

PG = arg max
P∈PM

J(P ) (106)

subject to:Rm(h, P (hm)) ≥ R, ∀hm ∈ G (107)

Lemma 13:If the problem (106) has a feasible solution,
then it can be expressed as

PG(hm) = Pw(hm, λ)

+ 1(hm ∈ G) (Pinv(hm, R)− Pw(hm, λ))
+ (108)

Proof: The proof uses the same approach as in proof of
Lemma 12. We define the setK such that for anyhm ∈ K,
the minimum rate constraint in (107) is not active. Since the
optimal solution must satisfy the Euler Lagrange equations,
we have

dJ(P (hm))

dP (hm)
= 0, hm ∈ K

If we solve the equation for any givenhm, we get

hmP(He ≤ hm)

1 + hmP (hm)
−

∫ hm

0

(

he

1 + heP (hm)

)

f(he)dhe = λ

If the power allocation function that solves the equation is
negative, then by the convexity of the objective function [3],
the optimal value ofP (hm) is 0. Hence, we getPw(h, λ)
as the resulting power allocation function. Whenever the
minimum rate constraint (37) is active, we get the channel
inversion power allocation function,Pinv(h, R).
Now, using Lemma 13, we solve the following problem,

max
P,G

J(P ) (109)

s.tRm(h, P (h)) ≥ R, ∀h ∈ G

P(Hm ∈ G) = 1− ǫ

the solution of which yieldsPR. Lemma 13 proves that the
solution is a time-sharing between policiesPw andPinv. Now,
we find the optimalG.

Lemma 14:The solution of (109) is of the form (108), with
the setG∗ = [c,∞), where c is a constant which solves
P(Hm ≥ c) = 1− ǫ.

Proof: Let PG∗ and PG′ be the power allocation func-
tions that are solutions of (108) given the setsG∗ and G′,
respectively. We show that, any choice ofG′ 6= G∗, such that
P(Hm ∈ G′) = 1− ǫ is suboptimal, i.e.,

J(PG∗)− J(PG′) ≥ 0

We continue as follows. To simplify notation, forh = [hm he],
let us denote

ξR(h) = [Rs(h, Pinv(hm, R))−Rs(h, Pw(hm, λ))]
+

ξP (hm) = [Pinv(hm, R)− Pwf(hm, λ)]+

Then,

J(PG∗)− J(PG′) =
∫

he

{
∫

hm∈G∗

(ξR(h)− λξP (hm)) f(hm)dhm

}

f(he)dhe

−

∫

he

{
∫

hm∈G′

(ξR(h)− λξP (hm)) f(hm)dhm

}

f(he)dhe

Note that, for anyh′
m ∈ G∗\G′ and h′′

m ∈ G′\G∗, we have
h′
m > h′′

m. SincePw(h
′
m, λ) ≥ Pw(h

′′
m, λ) andPinv(h

′
m, λ) <

Pinv(h
′′
m, λ), we haveξP (h′

m) ≤ ξP (h
′′
m). SinceRs(h, P ) is

a concave increasing function ofP [3], and for dPw(h,P )
dP = λ

for anyh, we have

ξR([h
′
m he])− λξP (h

′
m) ≥ ξR([h

′′
m he]) + λξP (h

′′
m)

Combining this result with the packing arguments following
(104) in Appendix D, we get

J(PG∗)− J(PG′) ≥ 0

hence concluding the proof. Note that, this result can also be
proved using the arguments of Section 4 in [14].

APPENDIX F
PROOFS INSECTION V

A. Proof of Lemma 6

Due to Theorem 1.2 of Section VI in [15], it suffices to show
thatQM (t) is a positive recurrent regenerative process. Note
that QM (t) is a Markov process with an uncountable state
space[0 M ], sinceQM (t) can be written asQM (t + 1) =
min(M,QM (t) + Rs(t) − 1(Ōx(t) ∩ Ōkey(t))) whereRs(t)
andŌx(t) are i.i.d., andŌkey(t) =

{

QM (t)+Rs(t)−R ≥ 0
}

depends only onQM (t) andRs(t). Therefore,QM (t+ 1) is
independent of{QM(i)}t−1

i=1 given QM (t), hence Markovity
follows. Now, we prove thatQM (t) is a recurrent regenerative
process where regeneration occurs at timest1, t2, · · · such that
QM (ti) = M . A sufficient condition for this is to show that
QM (t) has an accessible atom [16].

Definition 4: An accessible atomM is a state that is
hit with positive probability starting from any state, i.e.,
∑∞

t=1 P(QM (t) = M |QM (1) = i) > 0 ∀i.
Lemma 15:QM (t) has an accessible atomM .

Proof: AssumeQM (1) = i, i ∈ [0,M ]. Note that,
Rs(t) and Ox(t) are both i.i.d. Also note that,P

(

Rs(t) −
R1(Ōx(t)) > 0

)

> 0 ∀t 16. Find γ > 0 such that
P
(

Rs(t)−R1(Ōx(t)) > γ
)

= γ ∀t. Let ηi = ⌈M−i
γ ⌉. Then,

P(QM (ηi + 1) = M |QM (1) = i)

≥

ηi
∏

t=1

P

(

Rs(t) + 1(Ōx(t)) > δ

)

≥ γηi > 0

SinceQM (t) is a regenerative process, we know thatt2 −
t1, t3 − t2, · · · are i.i.d. random variables. Define a random
variable τ , with distribution identical toti+1 − ti. Now we

16Since considering otherwise would lead to the uninteresting scenario
where there are no buffer overflows (since the key queue cannot grow),
hence any buffer sizeM > CF (ǫ′) is sufficient to achieveǫ′ secrecy outage
probability.
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show thatQM (t) is positive recurrent, by showingE[τ ] < ∞.
Consider another recursion

Q′
M (t+ 1) = min

(

M,Q′
M (t) +Rs(t)−R1(Ōx(t))

)+

(110)

with Q′
M (1) = QM (1). It is clear thatQ′

M (t) is also regener-
ative, where regeneration occurs at{t′i}, whereQM (t′i) = M ,
and letτ ′ be equal in distribution tot′i+1 − t′i.

Lemma 16:

E[τ ] ≤ E[τ ′]

Proof: It suffices to show that whenQM (t) 6= M ,
Q′

M (t) ≤ QM (t). By induction, assumingQ′
M (t) ≤ QM (t),

we need to verify thatQ′
M (t + 1) ≤ QM (t + 1). Consider

QM (t+ 1) < M . Then,

QM (t+ 1) =
(

QM (t) +Rs(t)−R1(Ōx(t) ∩ Ōkey(t)
)+

≥
(

QM (t) +Rs(t)−R1(Ōx(t))
)+

≥
(

Q′
M (t) +Rs(t)−R1(Ōx(t))

)+

= Q′
M (t+ 1)

Note thatQ′
M (t) is regenerative both at states0 andM . Let

E[τ ′1] denote the expected time for the processQ′
M (t) to hit

0 from M , andE[τ ′2] denote the expected time to hitM from
0. Then,

E[τ ′] ≤ E[τ ′1] + E[τ ′2] (111)

Since the key queue has a negative drift, i.e.,µR =
E[Rs(H, PR(H)) − R1(Ōx(t))] < 0, it is clear thatE[τ ′1] <
∞. Now, we show thatE[τ ′2] < ∞. Following the approach of
Lemma 15, findγ > 0 such thatP

(

Rs(t)−R1(Ōx(t)) > γ
)

=
γ ∀t. Let η = ⌈M/γ⌉. Then,P(QM (η + 1) = M |QM (1) =
0) ≥ γη > 0, and

E[τ ′2] ≤

∞
∑

i=0

(η + i(E[τ ′1] + η))γη(1− γη)i

≤ ηγη
∞
∑

i=0

(1− γη)i +

∞
∑

i=0

(1− γη)ii(E[τ ′1] + γη)

< ∞

The first inequality follows from the fact that with probability
γη, QM (t) hitsM at η’th block and with probability(1−γη),
key queue goes back to state0 at (E[τ ′1] + γη)’th block (on
average). The last inequality follows from0 < γη < 1,
and ratio test. This result, along with (111) and Lemma 16
concludes thatQM (t) is a positive recurrent regenerative
process, which concludes the proof.

B. Proof of Lemma 7

We follow an indirect approach to prove the lemma. Let
{Q(t)}∞t=1 denote the key queue dynamics of the same system
for the infinite buffer case (M = ∞). First, we use the heavy
traffic results in [17] to calculate the overflow probability
of the infinite buffer queue. Then, we relate the overflow
probability of infinite buffer system to the loss ratio of the

finite buffer queue. The dynamics of the infinite buffer queue
is characterized by

Q(t+ 1) = Q(t) +Rs(t)− 1(Ōenc(t))R (112)

whereQ(1) = 0. The heavy traffic results we will use are for
queues that have a stationary distribution. Since it is not clear
whetherQ(t) is stationary or not, we will upper boundQ(t)
by another stationary processQ′(t), and the buffer overflow
probability result we will get forQ′(t) will serve as an upper
bound forQ(t).

Let {Q′(t)}t≥1 be the process that satisfies the following
recursion

Q′(t+ 1) =
(

Q′(t) +Rs(t)−R1(Ōx(t)
)+

(113)

with Q′(1) = 0. First, we relateQ′(t) to Q(t).
Lemma 17:

Q(t) ≤ Q′(t) +R, ∀t (114)

Proof: AssumingQ(t) ≤ Q′(t) + R, we need to show
by induction thatQ(t + 1) ≤ Q′(t + 1) + R. There are two
different scenarios.

1) If Q′(t) +Rs(t)−R1
(

Ōx(t)
)

≥ 0, then, using the facts
Ōenc(t) = Ōx(t) ∩ Ōkey(t) andQ′(t) ≤ Q(t), we obtain

Q(t) +Rs(t)−R1
(

Ōenc(t)
)

≥ Q′(t) +Rs(t)−R1
(

Ōx(t)
)

≥ 0

which, using the described key queue recursions in (112),
implies

Q(t+ 1) = Q(t) +Rs(t)−R1
(

Ōx(t)
)

(115)

Observe that, by (113),

Q′(t+ 1) = Q′(t) +Rs(t)−R1
(

Ōx(t)
)

which, in conjunction with (115) andQ(t) ≤ Q′(t) +R,
yieldsQ(t+ 1) ≤ Q′(t+ 1) +R.

2) If Q′(t)+Rs(t)−R1
(

Ōx(t)
)

< 0, thenQ′(t+1) = 0. We
further consider two cases. First, ifQ(t)+Rs(t)−R ≥ 0,
then,

Q(t+ 1) =
(

Q(t) +Rs(t)−R1
(

Ōx(t)
)

)+

≤
(

Q′(t) +R+Rs(t)−R1
(

Ōx(t)
)

)+

≤ Q′(t+ 1) +R = R (116)

Next, if Q(t) +Rs(t)−R < 0, then

Q(t+ 1) = Q(t) +Rs(t) < R = Q′(t+ 1) +R

which, combined with (116), yieldsQ(t + 1) ≤ Q′(t +
1) +R.

Now, we show thatQ′(t) converges in distribution to an almost
surely finite random variableQ′. First, we need to show that
the expected drift ofQ′(t) is negative. It is clear from (113)
that the expected drift of the processQ′(t) is equal toµR =
E[Rs(H, PR(H))]−R(1− ǫ).

Lemma 18:For R > CF (ǫ), we haveµR < 0, andµR is a
continuous decreasing function ofR.
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Proof: From Lemma 3 in Section IV-A, we know that
E[Rs(H, PR(H))] is a non-increasing continuous function of
R. Therefore,µR it is a continuous function ofR. Further-
more, by definition ofCF (ǫ) in (10), µCF (ǫ) = 0. Combining
these two facts, we conclude thatµR < 0, for R > CF (ǫ).

Lemma 19:There exists an almost surely finite random
variableQ′ such that, for allx,

lim sup
t→∞

P(Q(t) > x) ≤ P(Q′ +R > x) (117)

Proof: Combining Lemma 18 with the classic results by
Loynes [18], we can see thatQ′(t) converges in distribution
to an almost surely finite random variableQ′ such that

lim
t→∞

P(Q′(t) > x) = P(Q′ > x)

Using (114), we finish the proof of the lemma.
Now, we characterize the tail distribution of the key queue.

Lemma 20:For any givenM ≥ 0,

lim
RցCF (ǫ)

lim sup
t→∞

P

(

|µR|(Q(t)−R)

σ2
R

> M

)

≤ e−2M (118)

Proof: First, we prove that

lim
RցCF (ǫ)

P

(

|µR|Q
′

σ2
R

> y

)

= e−2y, (119)

which is based on the heavy traffic limit for queues developed
in [17], see also Theorem 7.1 in [15]. In order to prove
(119), we only need to verify the following three conditions: i)
limRցCF (ǫ) µR = 0; ii) limRցCF (ǫ) σ

2
R > 0; and iii) the set

{

(

Rs(H, PR)−R1(Ōx(t))
)2
}

of random variables indexed
by R is uniformly integrable.

i) From Lemma 18, we obtainlimRցCF (ǫ) µR = 0.
ii) Since Rs(H, P ∗(H)) − CF (ǫ)Ōx(t) is not a constant

random variable, almost surely

lim
RցCF (ǫ)

σ2
R = Var[Rs(H, P ∗(H))− CF (ǫ)(Ōx(t))] > 0

iii) Note that,R lies on the interval[0 Rmax], whereRmax,
defined in Lemma 1 then we have
(

Rs(H, PR(H))−R1(Ōx(t))
)2

=Rs(H, PR(H))2

− 2Rs(H, PR(H))R1
(

Ōx(t)
)

+R21
(

Ōx(t)
)

≤Rs(H, PR(H))2 +R2
max

SinceRs(h, P ) is a continuous function ofP , and for anyR
on the interval[0 Rmax], limc→∞ P(PR(H) > c) = 0, hence
we can see thatlimc→∞ P(Rs(H, PR(H)) > c) = 0. There-
fore, this class of random variables is uniformly integrable.
This completes the proof of (119). This result, in conjunction
with Lemma 19 completes the proof.
Using Lemma 1 in [19], we relate the loss ratio of our finite
buffer queueQM (t) to the overflow probability of the infinite
buffer queueQ(t) as follows

E[Rs(H, PR(H))] lim sup
T→∞

LT (M)

≤

∫ ∞

x=M

lim sup
t→∞

P(Q(t) > x)dx (120)

Combining Lemma 20 with (120), the proof is complete.
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