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Abstract—Social networking platforms are major players in the
discussion and formation of opinions in diverse areas including,
but not limited to, political discourse, market trends, news and
social movements. Often, these opinions are of a competing
nature, e.g., radical vs. peaceful ideologies, correct information vs.
misinformation on a piece of news, one technology vs. another. We
study the battle of such competing opinions over evolving social
networks. In particular, we model the interactions of multiple
opinions over a common networking platform, and characterize
how they evolve over a dynamically expanding opinion network.
The novelty of our model is that it captures the exposure and
adoption dynamics of opinions that account for the preferential
and random nature of exposure as well as the persuasion power
of different opinions. We provide a complete characterization
of the mean opinion dynamics over time as a function of the
initial adoption as well as the particular exposure and adoption
dynamics. Our analysis, supported by case studies, reveals the
key metrics that govern the spread of opinions and establishes
the means to engineer the desired impact of an opinion in the
presence of other competing opinions. These results can also
be used to reverse-engineer an observed “battle of opinions” to
estimate the inherent persuasion power of the opinions.

I. INTRODUCTION

Social networks, whether face-to-face or digital, capture the
connections and interactions between people on a wide range
of platforms. They are a medium for the spread of diverse
influences including opinion, information, innovation, riots,
biological or computer viruses, and even obesity [1]. As such,
social networks play a key role in shaping human behavior.

We are interested in understanding the principles and dy-
namics of multiple influences spreading over an evolving
social network. Even though the underlying social network
platform might be considered static over a shorter time frame,
the “influence” subnetwork in which the new influence orig-
inates and spreads is dynamically growing. As an example,
we regularly see battles of opinions on social platforms, e.g.,
Twitter, as a reaction to a piece of possibly controversial news.
The information spread and opinion formation start with a set
of initial nodes. Over time, followers of these initial nodes are
exposed to the news and join the dynamically growing opinion
subnetwork of nodes who have heard the news and formed an
opinion.

Understanding the fate of such competing opinions over so-
cial networks demands new models that capture the spreading
and adoption dynamics of different opinions over a common
network platform. This motivates us in this work to model
and study the spreading dynamics of multiple influences
over a growing dynamic network. We require our network
model to capture several phenomena, such as a heavy-tailed
degree distribution, that are observed in many real-world social
networks.

The degree or connectivity of a node in a network is
the number of its connections. Online social networks such
as Twitter have been show to have a heavy-tailed degree
distribution [2]. This discovery has ignited renewed interest
in the theory of scale-free networks. In a scale-free network,
the fraction P (d) of vertices with degree d is proportional to
d−γ , where γ is a constant. Scale-free networks enjoyed a
great deal of attention since it was discovered that the degree
distribution of the World Wide Web (WWW) obeys a power
law [3], [4].

The heavy-tailed degree distribution of scale-free networks
necessitates a new random graph model other than the Erdös-
Rényi random graph. In an Erdös-Rényi graph, any two nodes
are connected with a given probability independently of other
connections in the network [5]. Such a random attachment
model gives rise to a Poisson degree distribution as the
number of nodes increases [6]. In [7], the authors propose
the preferential attachment model as a mechanism that gives
rise to a power-law degree distribution. In the preferential
attachment model, the probability that a node is connected
to a given node is proportional to the degree of the given
node. A formal proof for the power-law degree distribution is
presented in [8].

Various hybrid models that mix preferential and random
attachment have been studied in several scenarios of growing
networks, social or otherwise (e.g., [9], [10], [11]). In these
works, the authors show that networks evolving according
to hybrid random-preferential attachment models exhibit a
power-law degree distribution and other desirable properties
that mimic social networks (e.g., short average distance, large
clustering coefficients and positive degree correlation).

There is a rich history of research on the problem of evolv-
ing complex networks (e.g., [12], [13] and references therein)
as well as influence propagation on static networks (e.g., [14],
[15], [16]). But to the best of our knowledge these topics are
always studied individually. In addition, there is very little
work that concentrates on influence propagation specifically
on scale-free networks. In [17] and [18], the authors study
the spread of a single virus in a static network generated
according to the preferential attachment model. However, they
do not seek to characterize the time evolution of the influence
spread; their focus is on conditions that give rise to a persistent
epidemic.

In this work, we capture the following phenomena: the
preferential versus random nature of attachment of newcomer
nodes; the varying power of different types of influence in per-
suading newcomers to adopt their type; varying responsiveness
of newcomers to adopt different influences. In particular, we
want to answer the following key questions:



• How do the initial acceptance and the persuasion power
of different types of influences affect their evolution
and limiting dominance? If the source of influence has
limited resources to control the initial acceptance and the
persuasiveness, how should it distribute it?

• What is the impact of preferential versus random attach-
ment dynamics on the influence spread? Is the influence
spread sensitive or robust to such dynamics?

• Supposing that persuasion parameters are not known a
priori, can we infer them based on the observed influence
spread? This might be viewed as a means of assessing the
quality of an idea/product/etc.

In order to answer these questions, we propose a new mathe-
matical model for influence spread on an evolving network. We
perform a discrete-time analysis of the mean system dynamics.
Since this analysis yields exact results but limited insight,
we also provide a relaxed continuous-time analysis to obtain
further insights. Through simulation studies and analytical
arguments, we verify the closeness of our continuous-time
approximation to the discrete-time exact solution. We then
translate our analytical results into insights on the character-
istics and essential dynamics of important instances of the
problem. In particular, we first look at the spread of two
competing opinions in an evolving network. Next, we turn our
attention to the adoption of two competing technologies in an
evolving network with indifferent populations, focusing on the
market size and market shares. These investigations reveal the
impact of different attachment and adoption dynamics on the
transient and limiting behavior of influence spread.

II. NETWORK EVOLUTION AND INFLUENCE PROPAGATION
MODEL

In this paper, we study the propagation of multiple compet-
ing influences over a dynamically expanding network. To that
end, we propose a model where multiple types of influences
interact with each other as the network expands with new-
comer nodes. This model not only captures the popularity or
prominence of the existing nodes as measured by their number
of connections or degree (as in preferential attachment mod-
els), but also the possible differences in the persuasion power
of the influences themselves, which is typically determined by
the quality of the product or the strength of the opinion.

A. Network Evolution: Exposure to Opinions

The network evolution starts at time t0 with N0 > 0 initial
nodes and a total degree of D0 > 0. We use Ntot[t] and
Dtot[t] to denote the total number of nodes and total degree
at time t, respectively. At the end of each discrete-time period
t ∈ {t0+1, t0+2, t0+3, . . .}, a new node arrives1 and connects
to one of the existing nodes in the network. We refer to the
node to which the newcomer node connects as the parent node.

1The model can be readily extended to the case where newcomer nodes
arrive at possibly random times {T1, T2, . . .} with independent inter-arrival
times. In that case, all our results still hold when the network is sampled right
after the arrival of a new node.

Our current model accounts for a single parent node for each
newcomer node. While this assumption is certainly limiting, it
still allows our model to capture many real life scenarios where
it is possible to identify a most influential existing node for
each newcomer node. One example is singling out the node
of first exposure as the parent node. In the language of the
opinion subnetwork then, we say that node A is connected to
node B, if A is first exposed to the opinion via B.

An important factor in determining which one of the ex-
isting nodes will be the source of exposure to the newcomer
nodes is the visibility of the existing nodes as measured in
terms of their connectivity. In the Twitter example, the higher
the connectivity of a user, the more likely it is that the next
user will hear the news from that particular user. Likewise,
for customer reviews a higher number of helpful tags adds
to the visibility of a particular review, and Google PageRank
determines the visibility of personal blogs and other sites based
on the hits they have received so far. In all examples, it is
also possible that the next exposure will happen through a
randomly selected, rather unassuming node.

In order to capture these dual connection dynamics we
adopt a hybrid connection model composed of random and
preferential attachment. Each newcomer node choses either
the random attachment mode with probability q ∈ [0, 1] or
the preferential attachment mode with probability (1 − q)
independently from the choices of the previous nodes. We
refer to the probability q as the attachment parameter. In the
random attachment mode, the newcomer node attaches to an
existing node selected uniformly at random, i.e., each node
in the network is chosen with equal probability 1/Ntot[t]. In
the preferential attachment mode, each node in the network
is chosen with a probability that is proportional to its degree,
i.e., if a particular node has degree d then it is chosen with
probability d/Dtot[t].

B. Influence Propagation: Adoption of Opinion/Color

There are M different influences labeled 1, . . . ,M prop-
agating in the network. Influence can refer to a wide range
of things including opinions, ideas, innovations or products.
In the sequel, we will use the word color when referring to
these influences. Each node adopts only one out of M colors
(hence the name competing influences) at the time it joins the
network and does not change its color once adopted.

We assume that a newcomer node connects to the network
according to the hybrid attachment model described in Sec-
tion II-A independently of the colors of the exiting nodes. This
presumes that attachments are governed in part by the random
behavior of the newcomers and in part by the prominence of
the existing nodes, but not by the adopted colors of the existing
nodes. This assumption is justified in many scenarios where
the colors of the existing nodes are not discernable at the time
of first connection, but their prominence is readily observable
by the newcomer through their number of connections.

Once a newcomer connects to a parent node, it becomes
receptive to the influence. The newcomer node is not restricted
to adopt the same color as its parent node. The parent node’s



influence only determines the likelihood of the newcomer node
adopting each color, e.g., the node can be more likely to adopt
the same color as its parent. In particular, if the parent has
color j ∈ {1, . . . ,M}, then the newcomer node adopts color
i ∈ {1, . . . ,M} with probability pij , i.e.,

pij = P(Node adopts color i|Parent node has color j),

where 0 ≤ pij ≤ 1 for all i and j, and
∑
i pij = 1 for each j.

The set of adoption parameters {pij} captures the persuasion
power of different types of influences. Depending on the type
of influence, these parameters may reflect the strength of an
opinion or inherent quality of a product.

Although each node adopts a single color, this model can
also encompass scenarios where newcomer nodes may adopt
zero or multiple colors. Examples include the newcomer node
not subscribing to any of the existing opinions, not buying
any product, or buying multiple products. In these cases a
new color is assigned to these choices.

We use Ni[t] and Di[t] to denote the number and the total
degree of nodes of color i at time t, where

∑M
i=1Ni[t] =

Ntot[t] and
∑M
i=1Di[t] = Dtot[t]. In order to facilitate a more

compact presentation, we define the state vector

X[t] , (N[t],D[t])T , (1)

in terms of the number of nodes N[t] , (N1[t], . . . , NM [t])
and degrees D[t] , (D1[t], . . . , DM [t]). The initial state of
the network at time t0 is given by X[t0] = X0.

III. MEAN SYSTEM DYNAMICS

In this section, we provide analytical results that describe the
mean dynamics of the evolving influence network introduced
in Section II. We first derive exact results based on the
discrete-time (DT) model. The form of these exact results,
however, provides only a limited insight into the effect of the
various system parameters on the evolution of the system. In
order to achieve further insight, we develop and analyze an
approximate continuous-time (CT) model. We use these results
to reveal important network formation and influence dynamics
in the case studies of the subsequent section.

A. Discrete-Time Mean System Analysis

In this subsection, we provide an exact characterization of
the mean behavior of the system dynamics in discrete-time
by investigating the conditional mean drift of the system state
X[t] defined in (1). In particular, we obtain a linear system
with time-varying coefficients to describe the mean system
evolution. These coefficients provide valuable information
concerning the impact of the hybrid attachment model and
the persuasion power parameters on the spread and the degree
distribution of different types of influences. We present our
main result regarding the nature of influence spread under such
dynamics.

Theorem 1 (Linear Time-Varying DT System Description and
Solution). The one-step time evolution of the mean network

state described in Section II is governed by the following time-
varying linear difference equation

E[X[t+ 1]−X[t] | X[t]] = A[t]X[t], (2)

for t ∈ {t0, t0 +1, . . .} and initial condition X[t0] = X0. A[t]
is a 2M × 2M matrix composed of four M × M constant
submatrices Aij , Ntot[t] and Dtot[t] as follows:

A[t] =

[
A11/Ntot[t] 2A12/Dtot[t]
A21/Ntot[t] 2A22/Dtot[t]

]
, (3)

where the entries of the constant submatrices are given by

[A11]i,j = qpij ,

[A12]i,j =
1

2
(1− q)pij ,

[A21]i,j =

{
q(1 + pii), if i = j

qpij , if i 6= j
(4)

[A22]i,j =

{
1
2 (1− q)(1 + pii), if i = j
1
2 (1− q)pij , if i 6= j.

The mean state of the system at time t is given by

E[X[t] | X0] =

(
t−1∏
s=t0

(A[s] + I)

)
X0, (5)

where I is the 2M × 2M identity matrix.

Proof. The proof is given in Appendix A.

It is possible, and insightful, to derive a more explicit
solution to the general equation governing the network evo-
lution in (5) by imposing a restriction on the initial state of
the system. We observe that the total degree in the network
Dtot[t] = 2(t − t0) + D0 approaches twice the number
of nodes Ntot[t] = (t − t0) + N0 with increasing time
t. If we impose the condition D0 = 2N0 from the onset
to ensure Dtot[t] = 2Ntot[t] for all t, then we can write
A[t] = A/(t − t0 + N0) where A is the constant matrix
composed of the submatrices defined in (4) as follows

A =

[
A11 A12

A21 A22

]
. (6)

The following corollary summarizes our results for this spe-
cific case.

Corollary 1. Provided that D0 = 2N0, and that the matrix A
is diagonalizable, the expected state of the network described
in Section II at time t is given by

E[X[t] | X0] = VΛ[t]V−1X0, (7)

where Λ[t] is the 2M × 2M diagonal matrix with entries

[Λ[t]]i,i = exp

(
t−1∑
s=t0

log

(
1 +

λi
s− t0 +N0

))
(8)

and {λi}2Mi=1 and V are the eigenvalues and eigenvector matrix
of A, respectively.

Proof. The result follows readily from (5) by replacing A[s]
with A/(s− t0 +N0) and A with V diag

(
{λi}2Mi=1

)
V−1.



B. Continuous-Time Approximation

In this subsection, we propose a continuous-time approx-
imation to the mean evolution of the influence network.
Throughout the paper, we use (t) instead of [t] to distinguish
continuous-time variables from their discrete-time counter-
parts. We introduce the short-hand notation x(t) , E[X(t)] to
denote the CT approximation of the mean state vector. Next,
we obtain a heuristic continuous-time approximation for the
evolution of the network by replacing the difference equation
in (2) by a differential equation.

Definition 1 (Continuous-Time Approximation of the System
State Evolution). The continuous-time evolution of the mean
system state x(t) is described by the following time-varying
linear differential equation:

dx(t)

dt
= A(t)x(t), for t ≥ t0, and x(t0) = X0 (9)

where A(t) has the same form as A[t] defined in (3).

We derive an explicit solution to the system state evolution
in (9) for the case that the initial state satisfies the constraint
D0 = 2N0 as in Corollary 1. In this case, we note that
A(s) commutes with A(t) for all values of s and t, i.e.,
A(s)A(t) = A(t)A(s) for all s, t. The Magnus series [19]
consists of a single term and yields the solution given in
Corollary 2. Alternatively, we can show that (10) given below
solves (9) by direct substitution.

Corollary 2. When D0 = 2N0, the solution to (9) is given by

x(t) = exp

(
log

(
t− t0 +N0

N0

)
A
)
X0. (10)

For diagonalizable A, we can further reduce this
solution by substituting the eigendecompostion
A = V diag

(
{λi}2Mi=1

)
V−1 in the definition of the matrix

exponential to obtain

x(t) = V diag

{( t− t0 +N0

N0

)λi
}2M

i=1

V−1X0. (11)

Next we argue analytically that the CT approximate solution
x(t) obtained in (11) is indeed a reasonable approximation
of the DT exact solution X[t] obtained in (7). We start by
noting that for small x, log(1 + x) ≈ x. Hence, for large
s, the log

(
1 + λi

s−t0+N0

)
terms in (8) can be approximated

by λi

s−t0+N0
. Further approximating the sum of the harmonic

terms by the corresponding integral results in the following
approximation for the entries of the diagonal matrix:

exp

(
t−1∑
s=t0

log

(
1 +

λi
s− t0 +N0

))

≈ exp

(
λi

t−1∑
s=t0

1

s− t0 +N0

)
≈ exp (λi (log(t− t0 +N0)− log(N0)))

=

(
t− t0 +N0

N0

)λi

With this approximation, (7) reduces to (11) as claimed. We
also note that the diagonal terms corresponding to zero eigen-
values in the DT solution given in (7) and CT approximate
solution given in (11) are an exact match. Hence, only non-
zero eigenvalues contribute to the difference between the two
solutions.

Finally, we present a continuous-time arrival model under
which the differential equation (9) holds exactly. To mimic the
linear arrivals in the DT model (i.e., Ntot[t] = (t− t0) +N0

for t ∈ {t0, t0 + 1, . . .}), we suppose that the arrival process
in the CT model is generated according to

P(Exact 1 newcomer node arrives during (k, k + δ]) = δ

P(No newcomer node arrives during (k, k + δ]) = 1− δ,

where k ∈ {t0, t0 + 1, . . .} and δ ∈ (0, 1]. Then, the number
of nodes under the CT model at time t ∈ {t0, t0 + 1, . . .} is
Ntot(t) = (t− t0) +N0 with probability 1, which is identical
to that of the DT model.

For this CT arrival model, we can extend the difference
equation (2) in Theorem 1 to

E[X(t+ δ)−X(t)|X(t)] = δA(t)X(t), (12)

for any t ≥ t0 and δ ∈ [0, 1]. Recalling that x(t) = E[X(t)],
the expectation of the left-hand side of (12) reduces to

E
[
E[X(t+ δ)−X(t)|X(t)]

]
= E[X(t+ δ)−X(t)]

= E[X(t+ δ)]− E[X(t)]

= x(t+ δ)− x(t).

Hence, the expectation of (12) yields

x(t+ δ)− x(t) = δA(t)x(t). (13)

Since (13) holds for all δ ∈ (0, 1], it follows that

lim
δ→0

x(t+ δ)− x(t)

δ
= A(t)x(t),

which is the differential equation (9) in our CT approximation.
We have compared both DT and CT results and Monte Carlo

simulations of our model for several sets of system parameters.
Our results verify that the difference between the DT and CT
evolutions is negligible. Fig. 1 depicts the typical discrepancy
between the DT and CT solutions for a set of parameters in
an evolving network with two opinions.

In the subsequent two sections, we proceed to translate
these analytical results into insights on the characteristics and
essential dynamics of important instances of the problem.
These investigations reveal the impact of different attachment
and adoption dynamics on the transient and limiting behavior
of influence spread.
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Fig. 1. The DT solution and the CT approximation for the mean frac-
tion of nodes of one opinion in an evolving network with two opinions.
The connection parameter has value q = 0.5 and the set of adoption
parameters are given by p12 ∈ {0.05, 0.1, 0.2, 0.3, 0.4, 0.45} and p21 ∈
{0.45, 0.4, 0.3, 0.2, 0.2, 0.05}. The network evolves from one node of each
opinion in all cases.

IV. BATTLE OF TWO OPINIONS

In this section, we present the detailed solution to the
continuous-time approximation with two competing influences
in the network. Binary systems arise in a vast number of
real life scenarios that are based on adopting or rejecting a
single opinion, belief, technology or product. The importance
of studying the two influence case is not only due to its
applicability to these scenarios. Its relative simplicity allows
us to gain insights into the dynamics of influence propagation
on evolving systems, which can be generalized to scenarios
with larger number of influences.

We consider a scenario in which nodes in an evolving
network adopt opinion 1 or opinion 2 as described in Section
II. The system can be fully described in terms of the initial
state X0, the attachment parameter q, and the two cross-
adoption parameters p12 and p21. The latter quantify the rate of
defection from an opinion, i.e. the failure rate of an existing
node to persuade newcomer nodes to subscribe to the same
opinion as itself. We define p̃ = p12 + p21 and exclude the
degenerate case of p̃ = 0 from our discussion. In this case,
newcomer nodes adopt their parent node’s opinion without
fail.

We assume, without loss of generality, that the network
evolution starts at time t0 = 0. For the initial state X0 =
(N1(0), N2(0), D1(0), D2(0))T , we impose the condition that
D0 = 2N0 (i.e., D1(0) + D2(0) = 2(N1(0) + N2(0))) in
order to facilitate an algebraic solution. The following is the
main result of this case study, which describes the evolution
of mean adoption dynamics in terms of initial conditions as
well as attachment and influence dynamics.

Theorem 2. For the network evolution and influence prop-
agation dynamics described above, the continuous-time ap-
proximation to the mean number of nodes ni(t) = E[Ni(t)]

adopting each opinion is given by

n1(t) = α1(t+N0) + β

(
t+N0

N0

)λ
+ γ,

n2(t) = α2(t+N0)− β
(
t+N0

N0

)λ
− γ,

(14)

where the coefficients αi, β, γ and the exponent λ depend on
the system parameters as follows:

λ = 1− 1

2
(1 + q)p̃, α1 =

p12
p̃
, α2 =

p21
p̃
,

β =
2(1− p̃)(p21N1(0)− p12N2(0))

p̃(2− (1 + q)p̃)
,

γ =
(1− q)(p21N1(0)− p12N2(0))

2− (1 + q)p̃
.

Proof. The proof is given in Appendix B.

Several observations can be made concerning the evolution
of the mean number of nodes adopting each opinion.

Linear and Sublinear Terms in the Evolution: The first
term in each expression indicates a linear growth of the mean
number of nodes with time. The exponent that governs the
second terms is common, and satisfies λ ∈ [−1, 1] for all
system dynamics. The extreme case of λ = 1 is achieved
only when p̃ = 0. Hence, the second term is sublinear and
will eventually be dominated by the linear first term. It is also
interesting to observe that λ can take negative values, in which
case the contribution of the second terms vanish with t.

Long-Term Adoption Characteristics: In view of the
previous observation, as long as the defection rate p̃ > 0,
the long-term adoption of an opinion is dominated by the
linearly increasing component of the evolution. In particular,
the fractions of the two opinions in the network converge
to α1 = p12/p̃ and α2 = p21/p̃, respectively. Thus, the
long-term market share of a product is not influenced by the
attachment dynamics (as captured by q) or the initial number
of the early adopters (as captured by X0)), but solely by the
persuasiveness of the opinions (as captured by cross-adoption
probabilities p12, p21). Fig. 2 confirms this long-term behavior
by showing that the fraction of two opinions converges to the
same limit for different values of q.

Impact of Attachment Model on the Evolution: Despite
the dominance of the linear term in the long-term, the sublinear
terms associated with the exponent λ and the coefficient β may
have non-negligible short-term effects. In fact, such short-term
characteristics may be of greater interest for many scenarios
in which the influence spread occurs over a short/moderate
lifetime. Here, we first observe that the exponent λ increases
both with decreasing defection rate p̃ and with decreasing
randomness of attachment q. In other words, as the attach-
ment model tends more towards pure preferential attachment,
i.e., q decreases towards 0, the short-term effects are more
pronounced in the exponent. Fig. 2 depicts this effect. The
evolution curves with q = 0 corresponding to pure preferential
attachment approach the limiting ratios α1 and α2 more
slowly.
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Fig. 2. The impact of the attachment parameter q on the mean fraction of
nodes in an evolving network with two opinions. The attachment parameter
varies as q ∈ {0, 0.5, 1}, while the cross-adoption parameters are fixed as
p12 = 0.3 and p21 = 0.1 resulting in the limits α1 = 0.75 and α2 = 0.25.
The upper set of curves depicts the fraction of nodes adopting opinion 1,
while the lower set of curves depicts the fraction of nodes adopting opinion
2.

Impact of Initial Adopters on the Evolution: The coeffi-
cient β of the sublinear term depends on the composition of
the early adopters as well as the cross-adoption probabilities.
The effect of the initial network composition on the evolution
of the system is through this coefficient only. Fig. 3 depicts
the results of Monte Carlo simulations. First, we note how in
accordance with the previous observations the long-term limits
of α1 and α2 are unaffected by the initial network composition.
We also observe that even starting from an extreme initial
condition, i.e., all initial nodes of a single opinion, the expected
fraction of nodes of each opinion reaches an equilibrium in
relatively short time.

time (t) ×10
4

0 1 2 3 4 5 6 7 8 9 10

F
ra

c
ti
o

n
 o

f 
N

o
d

e
s
 o

f 
O

p
in

io
n

s
 1

 a
n

d
 2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Dependence on Initial State X
0

Fig. 3. The dependence of the mean fraction of nodes in an evolving network
with two opinions on the initial state X0of the network. The upper set of
curves depicts the fraction of nodes adopting opinion 1, while the lower set
of curves depicts the fraction of nodes adopting opinion 2. Individual curves
show the evolution starting with varying ratios {0, 0.25, 0.5, 0.75, 1} of nodes
of each opinion. The attachment parameter is q = 0.5 and the adoption
parameters are p12 = 0.3, p21 = 0.1 resulting in the limits α1 = 0.75 and
α2 = 0.25.

The above observations suggest an interesting connection
between attachment dynamics and the early spread of an

influence. In particular, the emergence of prominent (well-
connected) members in a society as determined by the at-
tachment dynamics allows the initial influence of the early
adopters to survive longer. More specifically, as the q pa-
rameter decreases, the degree distribution has heavier tails,
thereby indicating emergence of influential/prominent agents.
The color of these prominent members will be shaped by
the initial composition of the network, which, in turn, will
sustain these early impacts for increasingly longer time frames
depending on the value of λ. Yet, our model also reveals that
the long-term spread of two competing opinions is ultimately
governed by their inherent strengths.

V. TWO COMPETING TECHNOLOGIES IN A NETWORK
WITH INDIFFERENT POPULATIONS

In this section, we study the dynamics of innovation spread
in the case of two competing alternatives in an evolving
network where nodes are allowed to remain indifferent, i.e.,
they adopt neither of the two technologies. We model a word-
of-mouth marketing scenario in which newcomer nodes are
exposed to the innovation only if their parent node has adopted
one of the technologies. In that case, they can adopt one of
the innovations (including the competitor of the technology
adopted by the parent node) or they can remain indifferent.
Indifferent nodes, on the other hand, play a special role in
this model in which they do not expose newcomer nodes to
either innovation. Any newcomer node that connects to an
indifferent node remains indifferent with probability 1.

With the presence of indifferent nodes, not every node
partakes in adopting the innovation. This is in contrast to the
model in Section IV where each node actively participated in
the battle of opinions. With indifferent nodes in the network,
we are interested both in the individual number of adopters of
each technology and the size of the entire market.

In the language of Section II, we have three colors: adopting
one of the two technologies (labeled colors 1 and 2) and
remaining indifferent (labeled color 3). Given the adoption
dynamics described above the system can be fully described
by the attachment parameter q and the adoption parameters
p11, p12, p21 and p22. (Note that p13 = p23 = 0, p33 = 1,
p31 = 1− (p11 + p21) and p32 = 1− (p12 + p22). ) As in the
previous section, we assume, without loss of generality, that
the network evolution starts at time t0 = 0. We also assume
that the initial number of nodes and initial total degree in the
network satisfy D0 = 2N0.

Theorem 3. For the network evolution and influence prop-
agation dynamics described above, the continuous-time ap-
proximation to the mean number of nodes ni(t) = E[Ni(t)]
adopting each technology is given by

n1(t) = α1

(
t+N0

N0

)λ1

+ β1

(
t+N0

N0

)λ2

+ γ1,

n2(t) = α2

(
t+N0

N0

)λ1

+ β2

(
t+N0

N0

)λ2

+ γ2,

(15)



while the mean number of indifferent nodes is

n3(t) = t+N0 − n1(t)− n2(t).

The coefficients αi ≥ 0, βi, γi are constants that depend on
the system parameters p11, p12, p21, p22, q and initial state X0.
The exponents λ1 and λ2 are given by

λ1 =
1

2
(1− q) +

1

4
(1 + q)(p11 + p22 + ∆),

λ2 =
1

2
(1− q) +

1

4
(1 + q)(p11 + p22 −∆),

(16)

where ∆ =
√

(p11 − p22)2 + 4p12p21. The exponents satisfy
λ2 ≤ λ1 ≤ 1 and the latter equality holds if and only if

p11 + p21 = p12 + p22 = 1. (17)

Proof. The derivation of (15) and (16) is similar to the proof of
Theorem 2 given in Appendix B. Hence, we omit the details.
To establish the range of the exponents, we note that

∆ =
√

(p11 − p22)2 + 4p12p21

≤
√

(p11 − p22)2 + 4(1− p22)(1− p11) (18)

=
√

((p11 + p22)− 2)2 = 2− p11 − p22. (19)

Hence, we obtain the bound p11 + p22 + ∆ ≤ 2 and conclude
that λ1 ≤ 1. Note that (18) is met with equality if and only
if (17) is satisfied. Therefore, λ1 = 1 if and only if (17)
holds.

The dependence of the coefficients αi, βi, γi in Theorem 3
on the system parameters {pij}, q and X0 is quite complex.
For the case of q = 1 corresponding to pure random attach-
ment, we have

α1 =
1

2∆
((p11 − p22 + ∆)N1(0) + 2p12N2(0)) ,

α2 =
1

2∆
(2p21N1(0) + (−p11 + p22 + ∆)N2(0)) ,

β1 =
1

2∆
((−p11 + p22 + ∆)N1(0)− 2p12N2(0)) ,

β2 =
1

2∆
((−2p21N1(0) + (p11 − p22 + ∆)N2(0)) ,

γ1 = γ2 = 0.

Several observations can be made concerning the evolution
of the mean number of nodes adopting each technology and
can be contrasted to the two color case without indifferent
nodes.

Sublinear Growth of the Market Size: We note that only
the expression for the mean number of indifferent nodes n3(t)
has a linear term. The mean number of nodes adopting one
of the two active influences is governed by the sublinear
tλ1 term. According to Theorem 3, λ1 < 1 unless nodes
exposed to either form of innovation do not have the option of
remaining indifferent. We omit this case from the discussion
below. As a result, the fraction of each active influence within
the total network population tends to zero in the long term.
Nevertheless, there are two important measures to be studied:
the total number of nodes adopting a new technology and the

fraction of each technology among these nodes, i.e., the market
size and the market share.
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Fig. 4. The impact of the adoption parameters {pij} on the market size in an
evolving network with indifferent nodes. The technology retention probability
p11 + p21 = p12 + p22 varies as {0.1, 0.3, 0.5, 0.7, 0.9}. The fraction of
nodes that opt for the same technology are 80% and 70%, respectively, for
technologies 1 and 2. The attachment parameter is fixed as q = 0.5 and the
network evolution starts with one node of each color.

Impact of Adoption Model on the Market Size: The size
of the market is given by the total number of nodes adopting
a new technology, i.e., n1(t)+n2(t). While the market size is
affected by all system parameters, the largest effect is due to
the adoption parameters {pij}. In particular, the market grows
monotonically with growing sums p11 + p21 and p12 + p22, as
these sums represent the probability that a node exposed to the
innovation does adopt either form of it. We call this measure
the technology retention probability. Fig. 4 depicts the growth
of the market with increasing technology retention probability.

Impact of Attachment Model on the Market Size: The
growth of the market size is dominated by the (α1 + α2)tλ1

term. Hence, the largest impact of the attachment model on
the market size, especially in the long term, is through the
dependence of the exponent λ1 on the attachment parameter
q. In light of (19), λ1 = 1

4 (p11+p22+∆+2)+ 1
4q(p11+p22+

∆ − 2) is a linearly decreasing function of q for all sets of
adoption parameters {pij}. As a result, the market size grows
as the rate of random attachment q decreases. A higher rate
of preferential attachment allows individual nodes to establish
higher prominence. Early technology adopters develop high
degree, which attracts more of the newcomer nodes to one of
the technologies, resulting in a larger market. Fig. 5 visualizes
this effect of the attachment parameter q on the market size.

Long-Term Market Share Characteristics: The long-term
market share of each technology is determined by the coeffi-
cients α1 and α2 of the tλ1 term in (15). These coefficients
depend not only on the adoption parameters {pij} but also
on the attachment parameter q and the initial state of the
network X0. This dependence is in apparent contrast to the
previous case of two opinions presented in Section IV, where
the leading coefficients α1 and α2 in (14) depended only on the
adoption parameters. Nevertheless, the long-term market share
of each product is not influenced by the attachment dynamics
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Fig. 5. The impact of the attachment parameter q on the market size in
an evolving network with indifferent nodes. The attachment parameter varies
as q ∈ {0, 0.25, 0.5, 0.75, 1}, while the adoption parameters are fixed as
p11 = 0.6, p21 = 0.3, p12 = 0.1 and p22 = 0.8 The network evolution
starts with one node of each color.

(as captured by q) nor the initial number of the early adopters
(as captured by X0). In particular, the long-term fraction of
technology 1 within the market is given as follows (product 2
occupies the remaining fraction of the market):

α1

α1 + α2
=

p11 − 2p12 + ∆− p22
2(p11 − p12 + p21 − p22)

.

Consequently, the attachment model and the preferences of
the initial adopters have only short-term effects on the market
share. In the long term, the effect of the adoption parameters
dominates. Fig. 6 demonstrates how the effect of the initial
network composition on the evolution of the market shares
diminishes with time.
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Fig. 6. The dependence of the market share on the initial network
state. The ratio of the initial adopters of the two technologies vary as
{0, 0.25, 0.5, 0.75, 1}. The attachment parameter is fixed as q = 1, the
adoption parameters are fixed as p11 = 0.6, p21 = 0.3, p12 = 0.1 and
p22 = 0.8. The network evolution starts with one node of each color.

These observations reiterate the suggestion that the long-
term spread of two competing influences is ultimately governed
by their inherent strength. The attachment dynamics and the
early adopters have only a secondary effect on the market size
and market share.

VI. CONCLUSION

In this paper, we have introduced a new analytical model
to study the battle of opinions over social networking plat-
forms. In particular, we focused on the spread of multiple
competing influences over a simultaneously evolving network.
This simple yet powerful model, has allowed us to capture a
range of exposure and adoption dynamics, which account for
both the preferential and random nature of exposure, as well
as different persuasion power of different opinions. We have
analytically characterized the evolution of the mean influence
spread over time as a function of the initial adoption, as well
as, exposure and adoption dynamics. Our analysis, supported
by two case studies for further insights, has shown that the
persuasion power of an influence has the most potent effect
on the extend of its spread. We have further observed how
exposure dynamics determine whether the initial adopters
plays a short or long lived effect on the evolution of the
influence spread. Our work has provided a useful new model
with several potential directions for extension.

APPENDIX A
PROOF OF THEOREM 1

The number of nodes of color i increases by one when the
newcomer node adopts color i, regardless of the color of the
parent node. Thus, the mean change in the number of nodes
of color i from time t to t + 1 is captured by the following
difference equation:

E[Ni[t+ 1]−Ni[t] | X[t]]

=

M∑
j=1

P
(

New node connects to color j
and adopts color i | X[t]

)

=

M∑
j=1

pijP (New node connects to color j | X[t])

=

M∑
j=1

pij

(
q
Nj [t]

Ntot[t]
+ (1− q) Dj [t]

Dtot[t]

)
. (20)

Next, to quantify the mean change in the total degree of
the nodes of color i, note that the total degree of the nodes of
color i increases by 2 when the newcomer node connects to an
existing node of color i and adopts color i, while it increases
only by 1 when the newcomer node connects to a node of
color i but adopts another color, or when the newcomer node
connects to a node of another color and adopts color i. This
translates into the following conditional mean drift expression:

E[Di[t+ 1]−Di[t] | X[t]]

= 2P
(

New node connects to color i
and adopts color i | X[t]

)
+
∑
j 6=i

P
(

New node connects to color i
and adopts color j | X[t]

)
+
∑
j 6=i

P
(

New node connects to color j
and adopts color i | X[t]

)



= 2pii

(
q
Ni[t]

Ntot[t]
+ (1− q) Di[t]

Dtot[t]

)
+
∑
j 6=i

pji

(
q
Ni[t]

Ntot[t]
+ (1− q) Di[t]

Dtot[t]

)
+
∑
j 6=i

pij

(
q
Nj [t]

Ntot[t]
+ (1− q) Dj [t]

Dtot[t]

)
= (1 + pii)

(
q
Ni[t]

Ntot[t]
+ (1− q) Di[t]

Dtot[t]

)
+
∑
j 6=i

pij

(
q
Nj [t]

Ntot[t]
+ (1− q) Dj [t]

Dtot[t]

)
, (21)

where the last equality follows from the fact that
∑M
i=1 pij =

1. Combining (20) and (21) yields (2).
To obtain the solution to equation (2), we proceed as

follows:

E[X[t] | X0]−X0

=
t−1∑
s=0

E[X[s+ 1]−X[s] | X0] (22)

=

t−1∑
s=0

E[E[X[s+ 1]−X[s] | X[s],X0] | X0] (23)

=

t−1∑
s=0

A[s]E[X[s] | X0]. (24)

We express the mean state at time t as a telescoping sum of
one-step mean drifts in equation (22). Equation (23) follows
from the law of total expectation. We obtain equation (24)
by applying the drift expression obtained in (2) to the inner
expectation.

Finally, we arrive at the iterative expression for the mean
state by grouping terms together. The final result (5) is
obtained by iterating the last equation below:

E[X[t] | X0] = X0 +

t−1∑
s=0

A[s]E[X[s] | X0]

= X0 +

t−2∑
s=0

A[s]E[X[s] | X0]

+ A[t− 1]E[X[t− 1] | X0]

= (I + A[t− 1])E[X[t− 1] | X0].

APPENDIX B
PROOF OF THEOREM 2

Throughout this proof we use the complement notation c ,
1− c in order to facilitate a compact notation.

The continuous-time evolution of the mean state is given by
d

dt
x(t) =

1

t+N0
Ax(t), for t ≥ 0,

and x(0) = X0, where A is the constant matrix given by

A =


qp21 qp12

1
2q · p21

1
2qp12

qp21 qp12
1
2qp21

1
2q · p12

q(1+p21) qp12
1
2q(1+p21) 1

2qp12
qp21 q(1+p12) 1

2qp21
1
2q(1+p12)

 .

The matrix A is diagonalizable and has eigenvalues
{1, 0, 0, λ = 1 − 1

2 (1 + q)p̃}. After an eigendecomposition,
we evaluate the expression in (9) to obtain the results.
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[5] P. Erdös and A. Rényi, “On random graphs, I,” Publicationes Mathe-
maticae, vol. 6, pp. 290–297, 1959.

[6] M. E. J. Newman, S. H. Strogatz, and D. J. Watts, “Random graphs
with arbitrary degree distributions and their applications,” Phys. Rev. E,
vol. 64, p. 026118, Jul 2001.

[7] A.-L. Barabasi and R. Albert, “Emergence of scaling in random net-
works,” Science, vol. 286, no. 5439, pp. 509–512, 1999.

[8] B. Bollobás, O. Riordan, J. Spencer, and G. Tusnády, “The degree
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