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ABSTRACT
We study the stochastic multi-armed bandit (MAB) prob-
lem in the presence of side-observations across actions. In
our model, choosing an action provides additional side obser-
vations for a subset of the remaining actions. One example
of this model occurs in the problem of targeting users in
online social networks where users respond to their friends’s
activity, thus providing information about each other’s pref-
erences. Our contributions are as follows: 1) We derive an
asymptotic (with respect to time) lower bound (as a func-
tion of the network structure) on the regret (loss) of any
uniformly good policy that achieves the maximum long term
average reward. 2) We propose two policies - a randomized
policy and a policy based on the well-known upper confi-
dence bound (UCB) policies, both of which explore each
action at a rate that is a function of its network position.
We show that these policies achieve the asymptotic lower
bound on the regret up to a multiplicative factor indepen-
dent of network structure. The upper bound guarantees on
the regret of these policies are better than those of existing
policies. Finally, we use numerical examples on a real-world
social network to demonstrate the significant benefits ob-
tained by our policies against other existing policies.

Categories and Subject Descriptors
H.1 [Models and Principles]: Miscellaneous; I.2 [Artificial
Intelligence]: Miscellaneous

Keywords
Multiarmed bandits; Side observations; Social networks

1. INTRODUCTION
Multi-armed bandit (MAB) problems have received re-

newed interest over the past decade because of the emer-
gence of content recommendation, online advertising, and
social networks. In the classical MAB setting, at each time,
a policy must choose an action from a set of K actions with
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unknown probability distributions. Choosing an action i at
time t gives a random reward Xi(t) drawn from the distri-
bution of action i. The regret of any policy is defined as the
difference between the total reward obtained from the ac-
tion with the highest average reward and the given policy’s
total reward. The goal is to find policies that minimize the
expected regret over a given time horizon.

In our work, we consider an important MAB setting, sim-
ilar to that of [12] and [6], where choosing an action i not
only generates a reward from action i, but also reveals obser-
vations for a subset of the remaining actions. An example of
such a scenario is as follows: a decision maker must choose
one user at each time in an online social network (FaceBook,
etc.) to offer a promotion [6]. Each time the decision maker
offers a promotion to a user, he also has an opportunity to
survey1 the user’s neighbors in the network regarding their
potential interest in a similar offer (see Figure 1). Users are
found to be more responsive to such surveys using social net-
work information compared to generic surveys [3] and this
effect can be leveraged to construct side-observations. In
this example, choosing an action in the multi-armed bandit
problem corresponds to choosing a user in the network and
side-observations across actions are captured by the links in
the social network. Another example is when the actions
in the MAB problem are advertisements [12] - the deci-
sion maker constructs a graph of different vacation places
(Hawaii, Caribbean, Paris, etc.), where links capture sim-
ilarities between different places. When a customer shows
interest in one of the places, he is also asked to provide his
opinion about the neighboring places in the graph.

For the setting of side-observations, the authors in [12]
consider adversarial bandits, while [6] considers stochastic
bandits as in our current work. In [6], the authors pro-
pose modified upper-confidence bound (UCB) based poli-
cies and show that the regret of these policies is at most
O(χ̄(G) log(t)), where χ̄(G) is the clique partition number
(see Definition 1) of the side-observation networkG(K).How-
ever, it is possible to achieve a lower regret. For example, in
the star network with one central action linked to all other
actions, exploring the central action yields sufficient explo-
ration for the rest of the network. In this case, the optimal
regret is at most O(log(t)), while χ̄(G) scales as O(K) for
the star network.

1This is possible when the online network has an additional
survey feature that generates side observations. For exam-
ple, when user i is offered a promotion, her neighbors may be
queried as follows: “User i was recently offered a promotion.
Would you also be interested in the offer?”



Motivated by this observation, in our work, we aim to
characterize the asymptotic lower bound on the regret for a
general stochastic multi-armed bandit problem in the pres-
ence of side-observations and investigate policies that achieve
this lower bound by taking the network structure into ac-
count. Our main contributions are as follows:

• We model the MAB problem in the presence of side-
observations and derive an asymptotic (with respect to
time) lower bound (as a function of the network struc-
ture) on the regret of any uniformly good policy which
achieves the maximum long term average reward. This
lower bound is presented in terms of the optimal value
of a linear program (LP), namely, P1.

• Motivated by LP P1, we propose and investigate the
performance of a randomized policy, we call εt-greedy-
LP policy, as well as an upper confidence bound based
policy, we call UCB-LP policy. Both of these policies
explore each action at a rate that is a function of its
network position. We show that these policies are op-
timal in the sense that they achieve the asymptotic
lower bound on the regret up to a multiplicative con-
stant independent of the network structure under mild
assumptions.

• We also show that the upper bound on the regret of our
policies scales as O(γ(G) log(t)), where γ(G) is the size
of the minimum dominating set of the network of ac-
tions. We show that the regret performance of our poli-
cies can be strictly better than those proposed in [6]
for some important network structures. Finally, we use
numerical results on a social network dataset obtained
from Flixster2 to empirically compare the performance
of our policies against those in [6].

The model considered in our work can be viewed as a
first step in the direction of more general models of inter-
dependence across actions. For this model, we show that
as the number of actions becomes large, significant benefits
can be obtained from policies that explicitly take network
structure into account. While εt-greedy-LP policy explores
actions at a rate proportional to their network position, its
exploration is oblivious to the average rewards of the sub-
optimal actions. On the other hand, UCB-LP policy takes
into account both the upper confidence bounds on the mean
rewards as well as network position of different actions at
each time. The rest of the paper is organized as follows. In
Section 2, we briefly discuss the related existing literature.
We introduce the model in Section 3 and we present our
main results in Sections 4, 5, 6. Finally, we present some
numerical results in Section 7 and the proofs of our theoret-
ical results are given in Section 8. We conclude our work in
Section 9.

2. RELATED WORK
The seminal work of [10] shows that the asymptotic lower

bound on the regret of any uniformly good policy scales log-
arithmically with time with a multiplicative constant which

2Flixster is a movie recommendation network with a social
graph. Datasets from this network are made publicly avail-
able by authors of [9] at http://www.cs.ubc.ca/~jamalim/
datasets/.

is a function of the distributions of actions. Further, the au-
thors of [10] provide constructive policies called Upper Con-
fidence Bound (UCB) policies based on the concept of opti-
mism in the face of uncertainty that asymptotically achieve
the lower bound. More recently, the authors in [1] consider
the case of bounded rewards and propose simpler sample-
mean based UCB policies and decreasing-εt-greedy policy
that achieve logarithmic regret uniformly over time, rather
than only asymptotically as in the previous works. The UCB
index of any action i at time t introduced in [1] is given be-
low:

x̄i(t) +

√
2 log(t)

si(t)
, (1)

where x̄i(t) is the average reward and si(t) is the total num-
ber of observations available for action i at time t.

The traditional multi-armed bandit policies incur a regret
that is linear in the number of suboptimal arms. This makes
them unsuitable in settings such as content recommenda-
tion, advertising, etc, where the action space is typically
very large. To overcome this difficulty, richer models spec-
ifying additional information across reward distributions of
different actions have been studied, such as dependent ban-
dits [13], X -armed bandits [5], linear bandits [14], contextual
side information in bandit problems [11], etc..

More recently, [12] and [6] propose to handle the large
number of actions by assuming that choosing an action re-
veals observations for a larger set of actions. The policies
proposed in [12] achieve the best possible regret in the adver-
sarial setting (see [4] for a survey of adversarial MABs) with
side-observations and the regret bounds of these policies are
in terms of the independence number of the network.

For the setting of stochastic bandits with side-observations,
it can be easily shown that, except in the trivial case where
all actions have a neighboring action which is optimal, the
regret due to any uniformly good policy is lower bounded
by Ω(log(t)). A formal proof is given in [6]. Further, the
authors in [6] propose two modified UCB policies, namely,
UCB-N and UCB-MaxN, and show that the regret of these
policies is at most O(χ̄(G) log(t)), where χ̄(G) is the clique
partition number (see Definition 1).

In our work, we consider the stochastic MAB problem
with side-observations similar to [6] and characterize the
asymptotic lower bound on the regret as a function of the
network structure for the stochastic MAB problem in the
presence of side-observations. Further, we propose two poli-
cies: 1) εt-greedy-LP policy, 2) UCB-LP policy, which achieve
the asymptotic regret lower bound up to a multiplicative
constant independent of the network structure. Further, the
regret of our policies is at most O(γ(G) log(t)), where γ(G)
is the size of the minimum dominating set of the network of
actions. Since, γ(G) ≤ χ̄(G) for any network G, the regret
obtained by our policies can be better than that of UCB-N
and UCB-MaxN proposed in [6].

3. MODEL
In this section, we formally define the K-armed bandit

problem in the presence of side observations across actions.
Let K = {1, . . . ,K} denote the set of actions. A decision
maker must choose an action i ∈ K at each time t. Let
Xi(t) denote the reward obtained by the decision maker on
choosing action i at time t. The random variable Xi(t) has
an unknown probability distribution Fi. Let μi be the mean



of the random variable Xi(t). We assume that {Xi(t), t ≥ 0}
are i.i.d for each i and {Xi(t),∀i ∈ K} are independent for
each time t. We further assume that the distribution, Fi

has a bounded support in [0, b] for each i. We let b = 1 for
simplicity of exposition in our work.
Side-observation model : The actions K form nodes in
a network G(K), represented by the adjacency matrix G =
[g(i, j)]i,j∈K, where g(i, j) ∈ {0, 1} and g(i, i) = 1 for all i.
Let Ki be the set of neighbors of action i (including i), i.e,
g(j, i) = 1,∀j ∈ Ki. While all the results in our work can be
easily extended to directed networks, we assume that G(K)
is undirected for simplicity of notation.

We assume that when the decision maker chooses an ac-
tion i at time t, he receives a reward Xi(t) and also receives
observations Xj(t), for all j ∈ Ki such that E[Xj(t)] = μj .
In general, not all neighboring actions are equally responsive
in providing side-observations. This scenario can be mod-
eled by assuming that each action i has a known probability
pi of providing side-observations when any of its neighbors
are actually chosen. We let pi = 1 for all i for the sake of
clarity. Our results can be easily extended to the setting of
imperfect side-observations with pi ≤ 1. We will discuss this
extension in Remark 5 in Section 6.

Figure 1: At time t, suppose the decision maker chooses
user i to offer a promotion. He then receives a response
Xi(t) from user i. Using the social interconnections, he also
observes responses Xj(t) and Xk(t) of i’s neighbors j and k.

Figure 1 illustrates the side-observation model for the ex-
ample of targeting users in an online social network. Such
side observations are made possible in settings of online so-
cial networks like Facebook by surveying or tracking a user’s
neighbors reactions (likes, dislikes, no opinion, etc.) to the
user’s activity. This is possible when the online social net-
work has a survey or a like/dislike indicator that generates
side observations. For example, when user i is offered a pro-
motion, her neighbors may be queried as follows: “User i was
recently offered a promotion. Would you also be interested
in the offer?3”
Objective: An allocation strategy or policy φ chooses the
action to be played at each time. Formally, φ is a sequence of
random variables {φ(t), t ≥ 0}, where φ(t) ∈ K is the action
chosen by policy φ at time t. Let Xφ(t) be the reward and
side-observations obtained by the policy φ at time t. Then,
the event {φi(t) = i} belongs to the σ-field generated by
{φ(m),Xφ(m),m ≤ t− 1}.

3Since, the neighbors do not have any information on
whether the user i accepted the promotion, they act inde-
pendently according to their own preferences in answering
this survey. The network itself provides a better way for
surveying and obtaining side observations.

Let T φ
i (t) be the total number of times action i is cho-

sen up to time t by policy φ. For each action, rewards are
only obtained when the action is chosen by the policy (side-
observations do not contribute to the total reward). Then,
the regret of policy φ at time t for a fixed μ = (μ1, . . . , μK)
is defined by

Rφ
μ(t) = μ∗t−

K∑
i=1

μiE[T
φ
i (t)] =

K∑
i=1

ΔiE[T
φ
i (t)],

where Δi � μ∗ − μi and μ∗ � max
i∈K

μi. Henceforth, we drop

the superscript φ unless it is required. The objective is to
find policies that minimize the rate at which the regret grows
as a function of time for every fixed network G(K). We focus
our investigation on the class of uniformly good policies [10]
defined below:
Uniformly good policies: An allocation rule φ is said to
be uniformly good if for every fixed μ, the following condi-
tion is satisfied as t → ∞ :

Rμ(t) = o(tb), for every b > 0.

The above condition implies that uniformly good policies
achieve the optimal long term average reward of μ∗. Next, we
define two structures that will be useful later to bound the
performance of allocation strategies in terms of the network
structure G(K).

Definition 1. A clique covering C of a network G(K) is
a partition of all its nodes into sets C ∈ C such that the
sub-network formed by each C is a clique. Let χ̄(G) be
the smallest number of cliques into which the nodes of the
network G(K) can be partitioned, also called the clique par-
tition number.

Definition 2. A dominating set D of a network G(K) is
such that every node in the network is either in D or has
at least one neighbor in D. Let γ(G) denote the size of the
minimum dominating set of network G(K), also called the
domination number. Note that γ(G) ≤ χ̄(G) for any net-
work G(K).

In the next section, we obtain an asymptotic lower bound
on the regret of uniformly good policies for the setting of
MABs with side-observations. This lower bound is expressed
as the optimal value of a linear program (LP), where the
constraints of the LP capture the connectivity of each action
in the network.

4. REGRET LOWER BOUND
In order to derive a lower bound on the regret, we need

some mild regularity assumptions (Assumptions 1, 2, and 3)
on the distributions Fi that are similar to the ones in [10].
Let the probability distribution Fi have a univariate density
function f(x; θi) with unknown parameters θi. Let D(θ||σ)
denote the Kullback Leibler (KL) distance between distri-
butions with density functions f(x; θ) and f(x;σ) and with
means μ(θ) and μ(σ) respectively.

Assumption 1. (Finiteness) We assume that f(·; ·) is
such that 0 < D(θ||σ) < ∞ whenever μ(σ) > μ(θ).

Assumption 2. (Continuity) For any ε > 0 and θ, σ such
that μ(σ) > μ(θ), there exists η > 0 for which |D(θ||σ) −
D(θ||ρ)| < ε whenever μ(σ) < μ(ρ) < μ(σ) + η.



Assumption 3. (Denseness) For each i ∈ K, θi ∈ Θ
where the set Θ satisfies: for all θ ∈ Θ and for all η > 0,
there exists θ′ ∈ Θ such that μ(θ) < μ(θ′) < μ(θ) + η.

The following proposition is obtained using Theorem 2
in [10]. It provides an asymptotic lower bound on the regret
of any uniformly good policy under the model described in
Section 3:

Proposition 1. Suppose Assumptions 1, 2, and 3 hold.
Let U = {i : μi < μ∗} be the set of suboptimal actions. Also,
let Δi = μ∗ − μi. Recall that Ki is the set of neighbors of i,
including i, in the network G(K). Then, under any uniformly
good policy φ, the expected regret is asymptotically bounded
below as follows:

lim inf
t→∞

Rμ(t)

log(t)
≥ cμ, (2)

where cμ is the optimal value of the following linear program
(LP) P1:

P1 : min
∑
i∈U

Δiwi,

subject to:
∑
j∈Ki

wj ≥ 1

D(θi||θ∗) , ∀i ∈ U ,

wi ≥ 0, ∀i ∈ K.

Proof. (Sketch) Let Si(t) be the total number of obser-
vations corresponding to action i available at time t. Then,
by modifying the proof of Theorem 2 of [10], we have that,
for i ∈ U ,

lim inf
t→∞

E[Si(t)]

log(t)
≥ 1

D(θi||θ∗) .

An observation is received for action i whenever any action

in Ki is chosen. Hence, Si(t) =
∑
j∈Ki

Tj(t). These two facts

give us the constraints in LP P1. See Section 8 for the full
proof.

The linear program given in P1 contains the graphical infor-
mation that governs the lower bound. However, it requires
the knowledge of θi and θ∗, which are unknown. This mo-
tivates the construction of the following linear program, LP
P2, which preserves the graphical structure while eliminat-
ing the distributional dependence on θi and θ∗.

P2 : min
∑
i∈K

zi

subject to:
∑
j∈Ki

zj ≥ 1, ∀i ∈ K,

and zi ≥ 0, ∀i ∈ K.

Let z∗ = (z∗i )i∈K be the optimal solution of LP P2. In Sec-
tions 5 and 6, we use the above LP P2 to modify the ε-
greedy policy in [1] and UCB policy in [2] for the setting
of side-observations. We provide regret guarantees of these
modified policies in terms of the optimal value

∑
i∈K z∗i of

LP P2. We note that the linear program P2 is, in fact, the
LP relaxation of the minimum dominating set problem on
network G(K). Since, any dominating set of network G(K)
is a feasible solution to the LP P2, we have that the optimal
value of the LP

∑
i∈K z∗i ≤ γ(G) ≤ χ̄(G). As we will see in

Remark 2, for a rich network structure, it is possible to have
γ(G) << χ̄(G).

In the next proposition, we provide a lower bound on cμ
in Equation (2) using the optimal solution z∗ = (z∗i )i∈K of
LP P2.

Proposition 2. Let U = {i : μi < μ∗
i } be the set of

suboptimal actions. Let O = {i : μi = μ∗} be the set of
optimal actions. Then,

maxi∈U D(θi||θ∗)
mini∈U Δi

cμ + |O| ≥
∑
i∈K

z∗i ≥ mini∈U D(θi||θ∗)
maxi∈U Δi

cμ.

(3)

Proof. (Sketch) Let I = {i ∈ U : Ki ∩ O 	= ∅} be the
set of suboptimal actions with neighbors in O. Using the
optimal solution of LP P1, we construct a feasible solution
satisfying constraints in LP P2 for actions in U \ I. In order
to satisfy the constraints for actions in I ∪O, we use zi = 1
for all i in O. The feasible solution constructed in this way
gives an upper bound on the optimal value of LP P2 in
terms of the optimal value of LP P1. For the lower bound,
any feasible solution of P2, in particular z∗, can be used to
construct a feasible solution of P1. See Section 8 for the full
proof.

∑
i∈K z∗i = Θ(cμ) completely captures the time dependence

of regret on network structure under the following assump-
tion:

Assumption 4. The quantities |O|, min
i∈U

Δi, and

min
i∈U

D(θi||θ∗) are constants that are independent of network

size K.

Note that the constants in the above assumption are un-
known to the decision maker. In the next section, we pro-
pose the εt-greedy-LP policy which achieves the regret lower
bound of cμ log(t) up to a multiplicative constant factor that
is independent of the network structure and time.

5. EPSILON-GREEDY-LP POLICY
Motivated by the LPs P1 and P2, we propose a network-

aware randomized policy called the εt-greedy-LP policy. We
provide an upper bound on the regret of this policy and
show that it achieves the asymptotic lower bound up to a
constant multiplier, independent of network structure. Let
x̄i(t) be the empirical average of observations (rewards and
side-observations combined) available for action i up to time
t. The εt-greedy-LP policy is described in Algorithm 1. The
policy consists of two phases - exploitation and exploration,
where the exploration probability decreases as 1/t, similar
to the εt-greedy policy proposed in [1]. However, in our
policy, we choose the exploration probability for action i to
be proportional to z∗i /t, where z∗ is the optimal solution of
LP P2, while in the original policy in [1], the exploration
probability is uniform over all actions.

The following proposition provides performance guaran-
tees on the εt-greedy-LP policy:

Proposition 3. For 0 < d < min
i∈U

Δi, any c > 0, and

α > 1, the probability with which a suboptimal action i is
selected by the εt-greedy-LP policy, described in Algorithm 1,



Algorithm 1 : εt-greedy-LP

Input: c > 0, 0 < d < 1, optimal solution z∗ of LP P2.
for each time t do

Let ε(t) = min

(
1,

c
∑

i∈K z∗i
d2t

)
and a∗ = argmax

i∈K
x̄i(t).

With probability 1− ε(t), pick action φ(t) = a∗

With probability ε(t), pick action φ(t) = i with proba-

bility
z∗i∑
i∈K z∗i

for all i ∈ K.

end for
Update average rewards x̄v(t+ 1), ∀v ∈ Kφ(t).

for all t > t′ =
c
∑

i∈K z∗i
d2

is at most

( c

d2t
z∗i
)
+

4

d2

(
et′

t

)c/2α

+
2δc

αd2

(
et′

t

)cr/αd2

log

(
e2t

t′

)
,

(4)

where r = 3(α−1)2

8α−2
, and δ is the maximum degree in the

network.

Proof. (Sketch) Since z∗ satisfies the constraints in LP
P2, there is sufficient exploration within each suboptimal
action’s neighborhood. The proof is then a combination of
this fact and the proof of Theorem 3 in [1]. See Section 8
for the full proof.

In the above proposition, for large enough c, we see that
second and third terms are O(1/t1+ε) for some ε > 0 [1].
Using this fact, the following corollary bounds the expected
regret of the εt-greedy-LP policy:

Corollary 1. Choose parameters c and d such that,

0 < d < min
i∈U

Δi, and c > max(2αd2/r, 2α),

for any α > 1. Then, the expected regret at time t of the
εt-greedy-LP policy described in Algorithm 1 is at most(

c

d2

∑
i∈U

Δiz
∗
i

)
log(t) +O(K), (5)

where the O(K) term captures constants independent of time
but dependent on the network structure.

Remark 1. Under Assumption 4, we can see from Propo-
sition 2 and Corollary 1 that, εt-greedy-LP algorithm is or-

der optimal achieving the lower bound O

(∑
i∈U

z∗i log(t)

)
=

O (cμ log(t)) as the network and time scale.

While εt-greedy-LP policy is network aware, its exploration
is oblivious to the average rewards of the sub-optimal ac-
tions. Further, its performance guarantees depend on the
knowledge of mini∈U Δi, which is the difference between the
best and the second best optimal actions. On the other
hand, the UCB-LP policy proposed in the next section is
network-aware taking into account the average rewards of
suboptimal actions. This could lead to better performance
compared to εt-greedy-LP policy in certain situations, for
example, when the highly connected action is also highly
suboptimal.

6. UCB-LP POLICY
In this section we propose the UCB-LP policy defined in

Algorithm 2 and obtain upper bounds on its regret. The
UCB-LP policy is based on the improved UCB policy pro-
posed in [2], which can be summarized as follows: the policy

estimates the values of Δi in each round by a value Δ̃m

which is initialized to 1 and halved in each round m. By
each round m, the policy draws n(m) observations for each
action in the set of actions not eliminated by round m, where
n(m) is determined by Δ̃m. Then, it eliminates those ac-
tions whose UCB indices perform poorly. Our policy dif-
fers from the one in [2] by accounting for the presence of
side-observations - this is achieved by choosing each action
according to the optimal solution of LP P2, while ensur-
ing that n(m) observations are available for each action not
eliminated by round m.

Algorithm 2 : UCB-LP policy

Input: Set of actions K, time horizon T, and optimal solu-
tion z∗ of LP P2.

Initialization: Let Δ̃0 := 1, S0 := K, and B0 := K
for round m = 0, 1, 2, . . . , � 1

2
log2

T
e
 do

Action Selection: Let n(m) :=

⌈
2 log(T Δ̃2

m)

Δ̃2
m

⌉

If |Bm| == 1: choose the single action in Bm until time
T.

Else If
∑
i∈Sm

z∗i ≤ 2|Bm|Δ̃m : For each action i in Sm,

choose it z∗i [n(m)− n(m− 1)] times.

Else For each action i in Bm, choose it
[n(m)− n(m− 1)] times.

Update the average rewards of all actions in Bm.

Action Elimination:
To get Bm+1, delete all actions i in Bm for which

x̄i(m)+

√
log(T Δ̃2

m)

2si(m)
≤ max

a∈Bm

⎧⎨
⎩x̄a(m)−

√
log(T Δ̃2

m)

2sa(m)

⎫⎬
⎭ ,

where x̄i(m) is the empirical average reward of action i,
and si(m) is the total number of observations for action
i up to round m.

Reset:
The set Sm+1 of actions with neighbors in Bm+1 is given
as Sm+1 = {i : Ki ∩ Bm+1 	= ∅}. Note that Bm+1 ⊆
Sm+1.

Let Δ̃m+1 = Δ̃m
2

.

end for

The following proposition provides performance guaran-
tees on the expected regret due to UCB-LP policy:

Proposition 4. For action i, define round mi as follows:

mi := min

{
m : Δ̃m <

Δi

2

}
.



Define m̄ = min

{
m :
∑
i∈K

z∗i >
∑

i:mi>m

2−m+1

}
and the

set B = {i ∈ U : mi > m̄}.

Then, the expected regret due to the UCB-LP policy described
in Algorithm 2 is at most

∑
i∈U\B

Δiz
∗
i
32 log(T Δ̂2

i )

Δ̂2
i

+
∑
i∈B

32 log(TΔ2
i )

Δi
+O(Kδ), (6)

where Δ̂i = max{2−m̄+2,minKi{Δj}} and (z∗i ) is the solu-
tion of LP P2. δ is the maximum degree in the network. The
O(Kδ) term captures constants independent of time. Fur-
ther, under Assumption 4, the regret is also at most

O

(∑
i∈K

z∗i log(T )

)
+O(Kδ), (7)

where (z∗i ) entirely captures the time dependence on network
structure.

Proof. (Sketch) The log(T ) term in the regret follows
from the fact that, with high probability, each suboptimal
action i is eliminated (from the set Bm) on or before the

first round m such that Δ̃m < Δi/2. See Section 8 for the
full proof.

Next, we briefly describe the policies UCB-N and UCB-
MaxN proposed in [6]. In UCB-N policy, at each time, the
action with the highest UCB index (see (1)) is chosen similar
to UCB1 policy in [1]. In UCB-MaxN policy, at each time
t, the action i with the highest UCB index (1) is identified
and its neighboring action j ∈ Ki with the highest empirical
average reward at time t is chosen.

Remark 2. The regret upper bound of UCB-N policy is

inf
C

∑
C∈C

8maxi∈C Δi

mini∈C Δ2
i

log(T ) +O(K),

where C is a clique covering of the sub-network of suboptimal
actions. The regret upper bound for UCB-MaxN is the same
as that for UCB-N with an O(|C|) term instead of the time-
invariant O(K) term. We show a better regret performance
for UCB-LP policy and εt-greedy-LP policies with respect to
the log(T ) term because

∑
i∈K z∗i ≤ γ(G) ≤ χ̄(G). However,

the time-invariant term in our policies is O(K) and O(Kδ),
which can be worse than the time-invariant term O(|C|) in
UCB-MaxN.

To see the possible gap between γ(G) and χ̄(G), consider
an Erdos-Renyi random graph G(K, p). As noted in [12], as
K → ∞, for any fixed p > 0, γ(G) is at most O(log(K))
while χ̄(G) is at least O(K/ log(K)). On the other hand, it
has been shown [7] that for power law graphs, both γ(G)
and χ̄(G) scale linearly with N, although γ(G) has a lower
slope. We note that the social network of interest may or
may not display a power law behavior. We find that the
subgraphs of the Flixster network have a degree distribution
that is a straight line on a log-log plot indicating a power
law distribution display while the authors in [15] show that
the degree distribution of the global Facebook network is
not a straight line on log-log plot. Our numerical results in
Section 7 show that our policies outperform existing policies
even for the Flixster network.

Remark 3. All uniformly good policies that ignore side-
observations incur a regret that is at least Ω(|U| log(t)) [10],
where |U| is the number of suboptimal actions. This could
be significantly higher than the guarantees on the regret
of both εt-greedy-LP policy and UCB-LP policy for a rich
network structure as discussed in Remark 2.

Remark 4. While εt-greedy-LP does not require knowl-
edge of the time horizon T, UCB-LP policy requires the
knowledge of T. UCB-LP policy can be extended to the case
of an unknown time horizon similar to the suggestion in [2].
Start with T0 = 2 and at end of each Tl, set Tl+1 = T 2

l . The
regret bound for this case is expected to be similar to the
one in Proposition 4.

Remark 5. In our work, we assumed that the side obser-
vations are always available. However, in reality, side ob-
servations may only be obtained sporadically. Suppose that
when action i is chosen, side-observations are obtained for
each neighboring action j with a known probability pj . In
this case, Proposition 1 holds with the replacement of LP
P1 with LP P ′

1 as follows:

P ′
1 : min

∑
i∈U

Δiwi,

subject to: wi + pi
∑

j∈Ki\{i}
wj ≥ 1

D(θi||θ∗) , ∀i ∈ U ,

wi ≥ 0, ∀i ∈ K.

Both of our policies work for this setting by changing the
LP P2 to P ′

2 as follows:

P ′
2 : min

∑
i∈K

zi

subject to: zi + pi
∑

j∈Ki\{i}
zj ≥ 1, ∀i ∈ K,

and zi ≥ 0, ∀i ∈ K.

The regret bounds of our policies will now depend on the
optimal solution of LP P ′

2.

7. NUMERICAL RESULTS
We consider the Flixster network dataset for the numer-

ical evaluation of our algorithms. The authors in [9] col-
lected this social network data, which contains about 1 mil-
lion users and 14 million links. We use graph clustering [8]
to identify two strongly clustered sub-networks of sizes 1000
and 2000 nodes. Both these sub-networks have a degree
distribution that is a straight line on a log-log plot indicat-
ing a power law distribution commonly observed in social
networks.

Our empirical setup is as follows. Each user in the network
is offered a promotion at each time, and accepts the promo-
tion with probability μi ∈ [0.3, 0.9]. The decision maker re-
ceives a random reward of 1 if a user accepts the promotion
or 0 reward otherwise. μi is chosen uniformly at random
from [0.3, 0.8] and there are 50 randomly chosen users with
optimal μi = 0.9. Figures 2 and 3 show the regret perfor-
mance as a function of time for the two sub-networks of sizes
1000 and 2000 respectively. For the εt-greedy-LP policy, we
let c = 5 and d = 0.2. For both networks, we see that our
policies outperform the UCB-N and UCB-MaxN policies.



We also observe that the improvement obtained by UCB-N
policy over the baseline UCB1 policy is marginal.
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Figure 2: Regret of all the policies for a network of size 1000.
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Figure 3: Regret of all the policies for a network of size 2000.

8. PROOFS
In what follows, we give the proofs of all propositions

stated in the earlier sections. These proofs make use of Lem-
mas 1, 2, and 3, and Proposition 5 given in the Appendix.

Proof of Proposition 1
Let U = {i : μi < μ∗} be the set of suboptimal actions.
Also, let Δi = μ∗−μi. Recall that Ki is the set of neighbors
of i, including i, in the network G(K). Also, Ti(t) is the total
number of times action i is chosen up to time t by policy φ.
Let Si(t) be the total number of observations corresponding
to action i available at time t. From Proposition 5 given in
the Appendix, we have,

lim inf
t→∞

E[Si(t)]

log(t)
≥ 1

D(θi||θ∗) , ∀i ∈ U . (8)

An observation is received for action i whenever any action
in Ki is chosen. Hence,

Si(t) =
∑
j∈Ki

Tj(t). (9)

Now, from Equations (8) and (9), for each i ∈ U ,

lim inf
t→∞

∑
j∈Ki

E[Tj(t)]

log(t)
≥ 1

D(θi||θ∗) . (10)

Using (10), we get the constraints of LP P1. Further, we
have from definition of regret that,

lim inf
t→∞

Rμ(t)

log(t)
= lim inf

t→∞

∑
i∈U

Δi
E[Ti(t)]

log(t)
.

The above equation along with the constraints of the LP
P1 obtained from (10) gives us the required lower bound on
regret.

Proof of Proposition 2
Let I = {i ∈ U : Ki ∩ O 	= ∅} be the set of suboptimal
actions with neighbors in O. Let (z∗i )i∈K be the optimal so-
lution of LP P2.
We will first prove the upper bound in Equation 3. Using
the optimal solution (w∗

i )i∈K of LP P1, we construct a feasi-
ble solution satisfying constraints in LP P2 in the following

way: For actions i ∈ U , let zi =
(
max
i∈U

D(θi||θ∗)
)
w∗

i . Then

(zi)i∈U satisfy constraints for all actions i ∈ U \ I because
w∗

i satisfy constraints of LP P1.
In order to satisfy the constraints for actions in I ∪ O, we
use zi = 1 for all i in O. The feasible solution constructed in
this way gives an upper bound on the optimal value of LP
P2. Hence,∑

i∈K
z∗i ≤

∑
i∈U

zi + |O|

≤
∑
i∈U

(
max
i∈U

D(θi||θ∗)
)
w∗

i + |O|

≤ maxi∈U D(θi||θ∗)
mini∈U Δi

∑
i∈U

Δiw
∗
i + |O|

≤ maxi∈U D(θi||θ∗)
mini∈U Δi

cμ + |O|

For the lower bound, any feasible solution of P2, in particular
z∗, can be used to construct a feasible solution of P1. For

actions i ∈ K, let wi =
z∗i

mini∈U D(θi||θ∗) . Then (wi)i∈K

satisfies the constraints of LP P1 and hence gives an upper
bound on its optimal value. Therefore, we have

cμ =
∑
i∈U

Δiw
∗
i ,

≤
∑
i∈K

Δiz
∗
i

mini∈U D(θi||θ∗)

≤
∑
i∈K

maxi∈U Δiz
∗
i

mini∈U D(θi||θ∗)

which gives us the required lower bound.

Proof of Proposition 3
Since z∗ satisfies the constraints in LP P2, there is sufficient
exploration within each suboptimal action’s neighborhood.
The proof is then a combination of this fact and the proof
of Theorem 3 in [1]. Let X̄i(t) be the random variable
denoting the sample mean of all observations available for



action i at time t. Let X̄∗(t) be the random variable de-
noting the sample mean of all observations available for an
optimal action at time t. Let Xi,m denote the sample mean
of m random variables drawn from the distribution Fi. Fix
a suboptimal action i. For some α > 1, define mi as follows,

mi =
1

α

∑
j∈Ki

z∗j∑
j∈K z∗i

t∑
m=1

ε(m)

Let φ(t) be the action chosen by εt-greedy-LP policy at time
t. Then,

P[φ(t) = i] ≤ ε(t)z∗i∑
i∈K z∗i

+ (1− ε(t))P[X̄i(t) ≥ X̄∗(t)]

We also have that,

P[X̄i(t) ≥ X̄∗(t)] ≤ P

[
X̄i(t) ≥ μi +

Δi

2

]

+ P

[
X̄∗(t) ≤ μ∗ − Δi

2

]
.

The analysis of both the terms in the right hand side of the

above expression is similar. Let S
(R)
i (t) be the total number

of observations available for action i from the exploration
phase of the policy up to time t. Let Si(t) be the total num-
ber of observations available for action i up to time t. Hence,
we have,

P

[
X̄i(t) ≥ μi +

Δi

2

]
=

t∑
m=1

P

[
Si(t) = m; X̄i(t) ≥ μi +

Δi

2

]

=

t∑
m=1

P

[
Si(t) = m|X̄i,m ≥ μi +

Δi

2

]
P

[
X̄i,m ≥ μi +

Δi

2

]

≤
�t�∑

m=1

P

[
Si(t) = m|X̄i,m ≥ μi +

Δi

2

]
e

−Δ2
im

2

(follows from Chernoff-Hoeffding bound in Lemma 1)

≤
�mi�∑
m=1

P

[
Si(t) = m|X̄i,m ≥ μi +

Δi

2

]
+

2

Δ2
i

e
−Δ2

imi
2

(
since

∞∑
m+1

e−ku =
1

k
e−km

)

≤
�mi�∑
m=1

P

[
S

(R)
i (t) ≤ m|X̄i,m ≥ μi +

Δi

2

]
+

2

Δ2
i

e
−Δ2

imi
2

≤ miP

[
S

(R)
i (t) ≤ mi

]
+

2

d2
e

−d2mi
2

In the above, the last equation follows from the fact that

S
(R)
i (t), which is the total number of observations for action

i available from the exploration phase of the policy up to
time t, is independent of the sample means of all actions.
Now,

E

[
S

(R)
i (t)

]
=

t∑
m=1

ε(m)
∑
j∈Ki

z∗j∑
j∈K z∗i

=

∑
j∈Ki

z∗j∑
j∈K z∗i

t∑
m=1

ε(m) = αmi

var
[
S

(R)
i (t)

]
=

t∑
m=1

⎡
⎣ε(m)

∑
j∈Ki

z∗j∑
j∈K z∗i

−
⎛
⎝ε(m)

∑
j∈Ki

z∗j∑
j∈K z∗i

⎞
⎠

2⎤
⎦

≤
t∑

m=1

ε(m)
∑
j∈Ki

z∗j∑
j∈K z∗i

= E

[
S

(R)
i (t)

]

Now, using Bernstein’s inequality given in Lemma 2, we have

P

[
S

(R)
i (t) ≤ mi

]
= P

[
S

(R)
i (t) ≤ E

[
S

(R)
i (t)

]
− (α− 1)mi

]
≤ exp (−rmi) ,

where r = 3(α−1)2

8α−2
. Now, we will obtain upper and lower

bounds on mi. For the upper bound, for any t > t′ =
c
∑

i∈K z∗i
d2

,

mi =
1

α

∑
j∈Ki

z∗j∑
j∈K z∗i

t∑
m=1

ε(m)

=
1

α

∑
j∈Ki

z∗j∑
j∈K z∗i

t′ +
1

α

∑
j∈Ki

z∗j∑
j∈K z∗i

t∑
m=t′+1

c
∑

j∈K z∗j
d2t

≤ 1

α

∑
j∈Ki

z∗j∑
j∈K z∗i

c
∑

i∈K z∗i
d2

+
δc

αd2

t∑
m=t′+1

1

t

≤ δc

αd2
log

(
e2t

t′

)
,

where δ is the maximum degree in the network. In the above,∑
i∈Ki

z∗i ≤ δ because z∗i ≤ 1, which is due to the fact that

(z∗i )i∈K is the optimal solution of LP P2. Next, for the lower
bound, we use the fact that

∑
j∈Ki

z∗i ≥ 1 for all i because

(z∗i )i∈K satisfies the constraints of LP P2. Thus

mi =
1

α

∑
j∈Ki

z∗j∑
j∈K z∗i

t∑
m=1

ε(m)

≥ 1

α

∑
j∈Ki

z∗j∑
j∈K z∗i

t∑
m=t′+1

c
∑

j∈K z∗j
d2t

≥ c

αd2

t∑
m=t′+1

1

t
≥ c

αd2
log

(
t

et′

)
.

Hence, combining the inequalities above,

P

[
X̄i(t) ≥ μi +

Δi

2

]
≤ miP

[
S

(R)
i (t) ≤ mi

]
+

2

d2
e

−d2mi
2

≤ mi exp (−rmi) +
2

d2
e

−d2mi
2

≤ δc

αd2

(
et′

t

)cr/αd2

log

(
e2t

t′

)
+

2

d2

(
et′

t

)c/2α

.

Now, similarly for the optimal action, we have, for all t > t′

P

[
X̄∗(t) ≤ μ∗ − Δi

2

]
≤ δc

αd2

(
et′

t

)cr/αd2

log

(
e2t

t′

)

+
2

d2

(
et′

t

)c/2α

.



Combining everything, we have for any suboptimal action i,
for all t > t′

P[φ(t) = i] ≤
( c

d2t
z∗i
)
+

4

d2

(
et′

t

)c/2α

+
2δc

αd2

(
et′

t

)cr/αd2

log

(
e2t

t′

)
.

Proof of Proposition 4
The proof technique in similar to that in [2]. We will ana-
lyze the regret by conditioning on two disjoint events. The
first event is that each suboptimal action a is eliminated by
an optimal action on or before the first round m such that
Δ̃m < Δa/2. This happens with high probability and leads
to logarithmic regret. The compliment of the first event
yields linear regret in time but occurs with probability pro-
portional to 1/T. The main difference from the proof in [2]
is that on the first event, the number of times we choose
each action is proportional to z∗i log(T ) in the exploration
phase of the policy. This gives us the required upper bound
in terms of optimal solution z∗ of LP P2.

Let ∗ denote any optimal action. Let m∗ denote the round
in which the last optimal action ∗ is eliminated. For each
suboptimal action, define round mi := min{m : Δ̃m < Δi

2
}.

For an optimal action i, mi = ∞ by convention. Then, by
the definition of mi, for all rounds m < mi, Δi ≤ 2Δ̃m, and

2

Δi
< 2mi =

1

Δ̃mi

≤ 4

Δi
<

1

Δmi+1
= 2mi+1. (11)

From Lemma 3 in the Appendix, the probability that action
i is not eliminated in round mi by ∗ is at most 2

T Δ̃2
mi

.

Let Ui = Ki∩U be the set of suboptimal neighbors of action
i. Let I(t) be the action chosen at time t by the UCB-LP
policy.
Let Em∗ be the event that all suboptimal actions with mi ≤
m∗ are eliminated by ∗ on or before their respective mi.
Then, the complement of Em∗ , denoted as Ec

m∗ , is the event
that there exists some suboptimal action i with mi ≤ m∗,
which is not eliminated in round mi. Let Ec

i be the event
that action i is not eliminated by round mi by ∗. Let mf =
� 1
2
log2

T
e
 and I(t) denote the action chosen at time t by

the policy. Recall that regret is denoted by Rμ(T ). Let
P[m∗ = m] be denoted by pm. Hence,

∑mf

m=0 pm = 1.

E [Rμ(T )] =

mf∑
m=0

E [Rμ(T )|{m∗ = m}]P[m∗ = m]

=

mf∑
m=0

T∑
t=1

∑
j∈U

ΔjP [I(t) = j|{m∗ = m}] pm

=

mf∑
m=0

T∑
t=1

∑
j∈U

ΔjP [{I(t) = j} ∩ Em∗ |{m∗ = m}] pm

+

mf∑
m=0

T∑
t=1

∑
j∈U

ΔjP [{I(t) = j} ∩ Ec
m∗ |{m∗ = m}] pm

= (i) + (ii)

Next we will show that term (i) leads to logarithmic regret
while term (ii) leads to a constant regret with time.
First, consider the term (ii) of the regret expression. Recall

that Uj = Kj ∩U is the set of suboptimal neighbors of j. For
each j ∈ U , we have,

mf∑
m=0

T∑
t=1

P [{I(t) = j} ∩Ec
m∗ |{m∗ = m}] P[m∗ = m]

≤
mf∑
m=0

T∑
t=1

P [{I(t) = j} ∩ (∪i∈U :mi≤m∗Ec
i ) |{m∗ = m}] pm

=

mf∑
m=0

T∑
t=1

P
[{I(t) = j} ∩ (∪i∈Uj :mi≤m∗Ec

i

) |{m∗ = m}] pm
(because {I((t) = j} depends only on neighbors of j.)

≤
mf∑
m=0

T∑
t=1

(
P
[{I(t) = j}| (∪i∈Uj :mi≤m∗Ec

i

)
, {m∗ = m}]

P
[∪i∈Uj :mi≤m∗Ec

i |{m∗ = m}] pm)

≤ TP
[∪i∈UjE

c
i |{m∗ = mf}

] mf∑
m=0

pm

≤ T
∑
i∈Uj

2

T Δ̃2
mi

,

(
using Lemma 3, P [Ec

i |{m∗ = mf}] ≤ 2

T Δ̃2
mi

)

≤
∑
i∈Uj

32

Δ2
i

,

where the last inequality follows from Equation (11). Hence,
the term (ii) of regret is

mf∑
m=0

T∑
t=1

∑
j∈U

ΔjP [{I(t) = j} ∩Ec
m∗ |{m∗ = m}] pm

≤
∑
j∈U

Δj

∑
i∈Uj

32

Δ2
i

= O(Kδ), (12)

where δ is the maximum degree in the network.

Next, we consider the term (i). Recall that, in this term, we
consider the case that all suboptimal actions i with mi ≤ m∗

are eliminated by ∗ on or before mi.

(i) =

mf∑
m=0

T∑
t=1

∑
j∈U

ΔjP [{I(t) = j} ∩Em∗ |{m∗ = m}] pm

=

mf∑
m=0

E [Rμ(T )|{m∗ = m}, Em∗ ]P[Em∗ |{m∗ = m}]pm

≤
mf∑
m=0

(
E [Regret from {i : mi ≤ m∗}|{m∗ = m}, Em∗ ]

+ E [Regret from {i : mi > m∗}|{m∗ = m}, Em∗ ]
)
pm

≤
mf∑
m=0

(
E
[
Regret from {i : mi ≤ mf}|{m∗ = mf}, Emf

]
+ E [Regret from {i : mi > m∗}|{m∗ = m}, Em∗ ]

)
pm



≤ E
[
Rμ(T )|{m∗ = mf}, Emf

] mf∑
m=0

pm

+

mf∑
m=0

E [Regret from {i : mi > m∗}|{m∗ = m}, Em∗ ] pm

= (ia) + (ib)

Once again, we will consider the above two terms separately.
For the term (ia), under the event Emf , each suboptimal
action i is eliminated by ∗ by round mi. Define round m̄
and the set B as follows:

m̄ = min{m :
∑
i∈K

z∗i >
∑

i:mi>m

2−m+1},

B = {i ∈ U : mi > m̄}.
After round m̄, Algorithm 2 chooses only those actions with
mi > m̄. Also, by the definition of the Reset phase of Al-
gorithm 2, we have that any suboptimal action i /∈ B is
chosen (i.e. appears in the set Sm at round m) only until
all actions in its neighborhood are eliminated or until m̄,
whichever happens first. Define ni = min{m̄,max

Ki

{mj}} for

each suboptimal action i. Then any suboptimal action i /∈ B
is chosen for at most ni rounds.

(ia) = E
[
Rμ(T )|{m∗ = mf}, Emf

]
≤
∑

i∈U\B
Δiz

∗
i

2 log(T Δ̃2
ni
)

Δ̃2
ni

+
∑
i∈B

Δi
2 log(T Δ̃2

mi
)

Δ̃2
mi

≤
∑

i∈U\B
Δiz

∗
i
32 log(T Δ̂2

i )

Δ̂2
i

+
∑
i∈B

Δi
32 log(TΔ2

i )

Δ2
i

, (13)

where Δ̂i = max{2−m̄+2,minKi{Δj}} and (z∗i ) is the solu-
tion of LP P2.
Finally, we consider the term (ib). An optimal action ∗ is not
eliminated in round m∗ if (16) holds for m = m∗. Hence,
using (17) and (18), the probability pm that ∗ is eliminated
by a suboptimal action in any round m∗ is at most 2

T Δ̃2
m∗

.

Hence, term (ib) is given as:

mf∑
m=0

E [Regret from {i : mi > m∗}|{m∗ = m}, Em∗ ] pm

≤
mf∑
m=0

∑
i∈U :mi≥m

2

T Δ̃2
m

.T max
U

Δj

≤ max
U

Δj

mf∑
m=0

∑
i∈U :mi≥m

2

Δ̃2
m

.

≤
∑
i∈U

mi∑
m=0

2

Δ̃2
m

=
∑
i∈U

2.22mi+2 ≤
∑
i∈U

32

Δ2
i

= O(K). (14)

Now we get the result (6) by combining the bounds in (12),
(13), and (14).
Further, the definition of set B ensures that we have∑

i∈B

Δi ≤
∑
i∈K

z∗i .

Also, using the Assumption 4,
32Δi log(T Δ̂2

i )

Δ̂2
i

,
32 log(TΔ2

i )

Δ2
i

are

bounded by C log(T ), where C is a constant independent of
network structure. Hence, (13) can be bounded as:

∑
i∈U\B

Δiz
∗
i
32 log(T Δ̂2

i )

Δ̂2
i

+
∑
i∈B

Δi
32 log(TΔ2

i )

Δ2
i

≤
∑

i∈U\B
z∗i C log(T ) +

∑
i∈B

ΔiC log(T )

≤
∑

i∈U\B
z∗i C log(T ) +

∑
i∈B

2−m̄+1C log(T )

≤ 2
∑
i∈K

z∗i C log(T ). (15)

Hence, we get (7) from (15), (12), and (14).

9. CONCLUSION
In this work, we studied the stochastic multi-armed bandit

problem in the presence of side-observations across actions
that are embedded in a network. We obtained an asymp-
totic (with respect to time) lower bound as a function of
the network structure on the regret of any uniformly good
policy. Further, we proposed two policies: 1) the εt-greedy-
LP policy, and 2) the UCB-LP policy, both of which are
optimal in the sense that they achieve the asymptotic lower
bound on the regret, up to a multiplicative constant that
is independent of the network structure. These policies can
have a better regret performance than existing policies for
some important network structures. The εt-greedy-LP pol-
icy is a network-aware any-time policy, but its exploration is
oblivious to the average rewards of the suboptimal actions.
On the other hand, UCB-LP considers both the network
structure and the average rewards of actions. Finally, us-
ing numerical examples on the Flixster network dataset, we
confirmed the significant benefits obtained by our policies
against other existing policies.
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APPENDIX
Notation: Sn = 1

n

∑n
j=1 Xj is called the sample mean of

the random variables X1, . . . , Xn. The first two lemmas be-
low state the Chernoff-Hoeffding inequality and Bernstein’s
inequality.

Lemma 1. Let X1, . . . , Xn be a sequence of random vari-
ables with support [0, 1] and E[Xt] = μ for all t ≤ n. Let
Sn = 1

n

∑n
j=1 Xj . Then, for all ε > 0, we have,

P[Sn ≥ μ+ ε] ≤ e−2nε2

P[Sn ≤ μ− ε] ≤ e−2nε2 .

Lemma 2. Let X1, . . . , Xn be a sequence of random vari-
ables with support [0, 1] and

∑t
k=1 var[Xk|X1, . . . , Xk−1] ≤

σ2 for all t ≤ n. Let Sn =
∑n

j=1 Xj . Then, for all ε > 0, we
have,

P[Sn ≥ E[Sn] + ε] ≤ exp

{
− ε2

2σ2 + 2
3
ε

}

P[Sn ≤ E[Sn]− ε] ≤ exp

{
− ε2

2σ2 + 2
3
ε

}
.

The next lemma is used in the proof of Proposition 4.

Lemma 3. The probability that action i is not eliminated
in round mi by ∗ is at most 2

T Δ̃2
mi

.

Proof. Let X̄i(m) be the sample mean of all observa-
tions for action i available in round m. Let X̄∗(m) be the
sample mean of the optimal action. The constraints of LP
P2 ensure that at the end of each round m, for all actions in

Bm, we have n(m) :=
⌈

2 log(T Δ̃2
m)

Δ̃2
m

⌉
observations. Now, for

m = mi, if we have,

X̄i(m) ≤ μi+

√
log(T Δ̃2

m)

2n(m)
and X̄∗(m) ≥ μ∗−

√
log(T Δ̃2

m)

2n(m)
,

(16)
then, action i is eliminated by ∗ in round mi. In fact, in
round mi, we have√

log(T Δ̃2
mi

)

2n(mi)
≤ Δ̃mi

2
<

Δi

4
.

Hence, in the elimination phase of the UCB-LP policy, if (16)
holds for action i in round mi, we have,

X̄i(mi) +

√
log(T Δ̃2

mi
)

2n(mi)
≤ μi + 2

√
log(T Δ̃2

mi
)

2n(mi)

< μi +Δi − 2

√
log(T Δ̃2

mi
)

2n(mi)

= μ∗ − 2

√
log(T Δ̃2

mi
)

2n(mi)

≤ X̄∗(mi)−
√

log(T Δ̃2
mi

)

2n(mi)
,

and action i is eliminated. Hence, the probability that action
i is not eliminated in round mi is the probability that either
one of the inequalities in (16) do not hold. Using Chernoff-
Hoeffding bound (Lemma 1), we can bound this as follows,

P

⎡
⎣X̄i(m) > μi +

√
log(T Δ̃2

m)

2n(m)

⎤
⎦ ≤ 1

T Δ̃2
m

(17)

P

⎡
⎣X̄∗(m) < μ∗ −

√
log(T Δ̃2

m)

2n(m)

⎤
⎦ ≤ 1

T Δ̃2
m

. (18)

Summing the above two inequalities for m = mi gives us
that the probability that action i is not eliminated in round
mi by ∗ is at most 2

T Δ̃2
mi

.

The next proposition is a modified version of Theorem 2
in [10]. We use it to obtain the regret lower bound in Propo-
sition 1.

Proposition 5. Suppose Assumptions 1, 2, and 3 hold.
Then, under any uniformly good policy φ, we have that, for
each action i with μi < μ∗,

lim inf
t→∞

E[Si(t)]

log(t)
≥ 1

D(θi||θ∗) . (19)



Proof. This proof follows from the proof of Theorem 2
in [10]. To fix ideas, suppose i = 1 is a suboptimal action
and suppose action 2 is optimal. Let the parameters of the
reward distributions be θ = (θ1, . . . , θK) and the associated
means be μ = (μ1, . . . , μK). Then, for any 0 < δ < 1, due to
Assumptions 1, 2, 3, we have that there exists a parameter
λ and mean μλ associated with the density function f(·, λ)
such that

μλ > μ2 and |D(θ1||θ2)−D(θ1||λ)| ≤ δD(θ1||θ2). (20)

Now, consider the new sets of parameters η = (λ, . . . , θK),
where the mean rewards are changed to (μλ, μ2, . . . , μK).
For this set of parameters, action 1 is the unique optimal.
Then, for any uniformly good policy, for 0 < b < δ,

Eη[t − T1(t)] = o(tb)

and therefore,

Pη [T1(t) < (1− δ) log(t)/D(θ1||λ)] = o(tb−1),

similar to the asymptotic lower bound proof in [10]. Now,
using the fact that S1(t) ≥ T1(t), we have

Pη [S1(t) < (1− δ) log(t)/D(θ11||λ)] = o(tb−1).

Now the rest of the proof of Theorem 2 in [10] applies di-
rectly to S1(t). We will repeat it below for completeness.
Let (Yi(k))k≥1 be the observations drawn from distribution
Fi and define

Lm =

m∑
k=1

log

(
f(Y1(k); θ1)

f(Y1(k);λ)

)
.

Now, we have that Pη[Ct] = o(tb−1) where Ct = {S1(t) <
(1− δ) log(t)/D(θ1||λ) and LS1(t) ≤ (1− b) log(t)}.

Now,

Pη[T1(t) = t1, . . . , TK(t) = tK , Ls1 ≤ (1− b) log(t)]

= Eη [Pη [T1(t) = t1, . . . , TK(t) = tK ,

Ls1 ≤ (1− b) log(t)|(Yi(k)){i∈K,k=1,...,t

]]
= Eθ

[
s1∏

k=1

f(Y1(k);λ)

f(Y1(k); θ1)

Pθ [T1(t) = t1, . . . , TK(t) = tK ,

Ls1 ≤ (1− b) log(t)|(Yi(k)){i∈K,k=1,...,si

]]
≥ exp(−(1− b) log(t))Pθ [T1(t) = t1, . . . ,

TK(t) = tK , Ls1 ≤ (1− b) log(t)] , (21)

In the above, we used the definition s1 =
∑
j∈K1

tj .

Also, Ct is a disjoint union of events of the form {T1(t) =
t1, . . . , TK(t) = tK , Ls1 ≤ (1−b) log(t)} with t1+. . .+tM = t
and s1 ≤ (1− δ) log(t)/D(θ1||λ). Hence using (21),

Pθ[Ct] ≤ t(1−b)Pη[Ct] → 0. (22)

By strong law of large numbers Lm/m → D(θ1||λ) as m →
∞ and maxk≤m Lk/m → D(θ1||λ) almost surely. Now, since
1− b > 1− δ, it follows that as t → ∞,

Pθ [Lk ≥ (1− b) log(t) for some

k < (1− δ) log(t)/D(θ1||λ)] → 0. (23)

Hence, from (22) and (23),

Pθ [S1(t) < (1− δ) log(t)/D(θ1||λ)] = 0.

Now using the above equation with (20) gives us the asymp-
totic lower bound in (19).


