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Abstract—We investigate the problem of minimizing the sum of
the queue lengths of all the nodes in a wireless network with a tree
topology. Nodes send their packets to the tree’s root (sink). We
consider a time-slotted system, and a K-hop interference model.
We characterize the existence of causal sample-path optimal
scheduling policies in these networks, i.e., we wish to find a policy
such that at each time slot, for any traffic arrival pattern, the
sum of the queue lengths of all the nodes is minimum among
all policies. We provide an algorithm that takes any tree and
K as inputs, and outputs whether a causal sample-path optimal
policy exists for this tree under the K-hop interference model.
We show that when this algorithm returns FALSE, there exists a
traffic arrival pattern for which no causal sample-path optimal
policy exists for the given tree structure. We further show that
for certain tree structures, even non-causal sample-path optimal
policies do not exist. We provide causal sample-path optimal
policies for those tree structures for which the algorithm returns
TRUE. Thus, we completely characterize the existence of such
policies for all trees under the K-hop interference model. The
non-existence of sample-path optimal policies in a large class of
tree structures implies that we need to study other (relatively)
weaker metrics for this problem.

I. INTRODUCTION

We investigate the problem of finding sample-path optimal
scheduling policies for minimizing the sum of the queue
lengths of all the nodes for convergecasting [1] in a wireless
network with a tree topology. In the convergecasting problem,
nodes send their packets to a sink (which is the root of
the tree). The convergecasting problem is of importance in
multi-hop wireless networks with a centralized node to which
packets are sent. For instance, it is of importance in sensor
networks where the centralized node performs fusion of data
received from multiple sensor nodes. We are interested in
minimizing the sum of the queue lengths of all the nodes
in the system as it can be shown to minimize the long term
time average delay experienced by packets in the system.

We briefly overview the existing literature. Tassiulas et
al., [2] first studied the problem of dynamic scheduling for
convergecasting in tandem networks with the sink at the root
of the chain. They showed that for the primary (or 1-hop)
interference model (where two links that share a node cannot
be active at the same time), for any traffic arrival pattern,
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any maximal matching policy that gives priority to the link
closer to the sink is optimal in the sense that the sum of the
queue lengths of all the nodes in the network is minimum at
each time slot. This is a very strong result because for any
sample-path (arrival pattern), this policy is optimal. Further,
the policy is causal as it does not require knowledge of future
arrivals. Ji et al., [3] develop a sample-path optimal policy
for generalized switches with three links, and a heavy-traffic
optimal policy for switches with four links. In [4], Gupta
et al., have provided a sample-path delay optimal policy for
a clique wireless network where only one link can transmit
at any time, and there are multi-hop flows. Hariharan et al.,
[5] characterized the existence of causal sample-path optimal
policies in trees under the 1-hop interference model. In this
work, we generalize this result for the K-hop interference
model. In the K-hop interference model, no two links that
are separated by less than K links can be active during the
same time slot. The 1-hop and 2-hop models are well known
in the literature, and have been used to model interference in
wireless systems. For instance, the 1-hop model is appropriate
for Bluetooth [6] and FH-CDMA networks [7], while the 2-
hop model is appropriate for IEEE 802.11.

Apart from the literature considering traffic arrivals,
[8]–[10] study the convergecasting problem in the absence of
arrivals (evacuation time optimality).

Our contributions in this work are the following.

• While previous works have mostly studied the primary
interference model, we characterize the existence of
sample-path optimal policies for the convergecasting
problem in trees under the K-hop interference model.

• We provide an algorithm that takes any tree and K as
inputs, and returns a decision on whether a causal sample-
path optimal policy exists for the given tree under the
K-hop interference model.

• We prove the correctness of this algorithm, i.e., whenever
the algorithm returns FALSE, we show that there exists
a traffic arrival pattern such that no causal sample-path
optimal policy exists for the given tree under the K-hop
interference model. When the algorithm returns TRUE,
we show that there exists a causal sample-path optimal
policy for the given tree. Thus, we characterize the
existence of causal sample-path optimal policies for all
tree structures under the K-hop interference model.

The rest of this paper is organized as follows. In Section II,
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we describe the model and notations. In Section III, we provide
an algorithm that classifies whether a given tree has a causal
sample-path optimal policy under the K-hop interference
model. In Sections IV and V, we prove the correctness of the
algorithm by showing that no causal sample-path optimal pol-
icy can exist when the algorithm returns FALSE, and provide
a policy when the algorithm returns TRUE, respectively. In
Section VI, we apply our results for the 1-hop and 2-hop inter-
ference models. Finally, we conclude the paper in Section VII.

II. SYSTEM MODEL AND NOTATIONS

We model the network as a graph G(V,E), where V is the
set of nodes, |V | = N , and E is the set of links. The graph G is
a tree. We denote 0 to be the sink which is the root of the tree.
The sink does not make any transmissions. We assume a time-
slotted and synchronized system, and consider a K-hop inter-
ference model where two links that are separated by less than
K links cannot be active at the same time. As in [2], [8], [5],
we assume unit capacity links, i.e., a node can at most transmit
one packet to its parent during each time slot. The external
packet arrival pattern at nodes is arbitrary and unknown. All
packets in the network have sink 0 as the eventual destination.

We use the following notations. Whenever we consider a
tandem (or linear) network, we denote a node that is i hops
away from the root as node i. For a given node r, mr

1 repre-
sents the depth of the tree rooted at r, i.e., it is the length of
the deepest branch of r. mr

2 represents the length of the second
deepest branch rooted at r. Note that the deepest branch and
the second deepest branch belong to different children of r.

III. CLASSIFICATION ALGORITHM

In this section, we propose an algorithm that identifies
whether a causal sample-path optimal policy exists for a
given tree under the K-hop interference model. We prove the
correctness of this algorithm in later sections.

In algorithm (Asp) given in Table I, we use the continue
statement to skip the current iteration and start the next
iteration. This algorithm uses a subroutine sp (Table I).
Asp identifies a line in the tree rooted at the sink that is of

maximum depth. If there are multiple lines of equal length,
the algorithm picks one of them arbitrarily. The nodes in
this line are labeled from 0 to m0

1, where m0
1 is the length

of the deepest branch of the tree. We are only interested in
the first bK2 c nodes in this line (when m0

1 > bK2 c). Starting
from the last such node, i.e., node l = min(m0

1, bK2 c), we
investigate the deepest and second deepest branches rooted at
l. Note that the deepest branch rooted at l has length m0

1 − l.
If ml

1 and ml
2 satisfies certain conditions, we move to node

l− 1. Otherwise, the algorithm returns that there is no causal
sample-path optimal policy for the given tree structure. If the
conditions are satisfied at all nodes from 0 to min(m0

1, bK2 c),
the algorithm returns that a causal sample-path optimal policy
exists for the given tree structure.

Figure 1 illustrates two examples explaining the functioning
of Asp for the 3-hop interference model. Consider Figure 1(a).
The depth of the tree is 3, and suppose that Asp chooses the

Inputs: Tree, K
Select a line of maximum depth in the tree
m0

1 = Length of tree rooted at 0
for l = min(m0

1, bK2 c) to 0
Consider the node in the line that is l hops from 0
ml

1 = m0
1 − l

ml
2 = Length of the second deepest branch rooted at l

if l == K
2

continue
else if l == K−1

2

if ml
2 ≤ K+1

2
continue

else
return FALSE

end
else

if ml
2 ≤ l

continue
else
t = sp(ml

1,m
l
2,K)

if t
continue

else
return FALSE

end
end

end
end
return TRUE

boolean sp(m1,m2,K)
if m2 ≤ bK2 c

if m1 +m2 ≤ K + 1
return TRUE

else
return FALSE

end
else

if m1 +m2 ≤ K + 2
return TRUE

else
return FALSE

end
end

TABLE I
ALGORITHM Asp

0

1

2

3

(a) Asp returns FALSE

0

1

2

3

(b) Asp returns TRUE

Fig. 1. Examples illustrating the functioning of Asp for K = 3

line 0− 1− 2− 3. Since K−1
2 = 1, Asp starts at node 1. At

node 1, m1
2 = 0. Hence, Asp will continue to the previous

node in the line. At node 0, m0
2 = 3, and m0

1 = 3. Therefore,
m0

1 +m0
2 = 6 > K +2 = 5. Hence, subroutine sp will return

FALSE, and hence Asp will return FALSE. Now, consider
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Figure 1(b). Suppose that Asp chooses the line 0−1−2−3. At
node 1, we again have m1

2 = 0, and hence Asp will continue to
node 0. At node 0, we now have m0

2 = 2, and m0
1 = 3. Hence,

m0
1+m

0
2 = 5 = K+2, and m0

2 = 2 ≥ K+1
2 . Hence, subroutine

sp will return TRUE, Asp will exit out of the loop (since
node 0 has been reached), and will return TRUE for this tree.

We now provide some intuition behind Asp. The following
result shows why the choice of the line (of maximum depth)
does not affect the outcome of Asp.

Theorem 1. If there are two or more lines of maximum
depth in the tree, and Asp returns TRUE (or FALSE) for
an arbitrarily chosen line, it will return TRUE (or FALSE,
respectively) even if any other line of equal depth is chosen.

Proof: Suppose that there are n lines of maximum depth
in the tree, p1, p2, ..., pn. WLOG, suppose that p1 was
chosen, and that Asp had returned FALSE for p1. We have
the following cases.
Case 1: K is odd, and at l = K−1

2 in p1, ml
2 >

K+1
2 . Then,

ml
2 ≥ K+3

2 . Consider any line pi, i > 1. Consider the node A
at which p1 branches away from pi. If node A is closer to the
root than node l = K−1

2 , then two longest lines at node A are
those corresponding to p1 and pi. Further, mA

1 ≥ K+3
2 and

mA
2 ≥ K+3

2 . Therefore, mA
1 +mA

2 ≥ K +3 > K +2. Hence,
subroutine sp would have returned FALSE at node A even if
the line pi had been chosen instead of p1. If node A is the same
as node l, or is farther away from the root than node l = K−1

2 ,
then it immediately follows that whether p1 or pi had been
chosen, Asp would have returned FALSE at node l = K−1

2 .
Case 2: At a node l < bK2 c in p1, sp returns FALSE, and
hence Asp returns FALSE. As before, consider any line pi,
i > 1, and consider the node A at which p1 branches away
from pi. If node A is closer to the root than node l, then two
longest lines at node A are those corresponding to p1 and pi.
Since sp returns FALSE at node l, and mA

1 +mA
2 > ml

1+m
l
2,

sp would have returned FALSE at node A even if we had
chosen line pi instead of p1.

Hence, we have shown that if Asp returns FALSE for an
arbitrarily chosen line of maximum depth, then it will return
FALSE even if any other line (of maximum depth) is chosen.

Suppose that Asp had returned TRUE for p1. We show by
contradiction that it cannot return FALSE even if any other
line (of maximum depth) had been chosen. Assume that Asp

returns FALSE for line pj , j > 1. By the previous result, it fol-
lows that if Asp returns FALSE for pj , it will return FALSE for
p1, which contradicts the fact that it returned TRUE for p1.
Remark 1: Asp only considers the two longest branches at
any node (at distance at most bK2 c from the sink) in a line of
maximum depth. The intuition behind this is as follows. Sup-
pose we select the deepest node in the longest branch, and the
deepest node in the second longest branch at a node l. If these
two nodes cannot simultaneously transmit according to the K-
hop interference model, then it implies that no two nodes in
different branches of l can simultaneously transmit according
to the K-hop interference model. In fact, we will see that in
many tree structures, there exists no causal sample-path opti-

mal policy even if there is only a possibility of having simul-
taneous transmissions (under the K-hop interference model).
Remark 2: At any node l ≤ bK2 c (in a line in the deepest
branch of the tree), if ml

2 ≤ l, Asp skips to the next node closer
to the sink in that line. The intuition is that if ml

2 ≤ l, no two
nodes in two different branches of l need to simultaneously
transmit even if they can potentially do so under the K-hop
interference model (refer to [11]). The implication of this is
that we can hope to convert the tree into an equivalent line
network [8], [5], and schedule the tree as though the schedule
is in a line network. Section V explains this in detail.
Remark 3: Asp does not consider nodes that are at distance
greater than bK2 c from the sink. The reasoning is similar
to the previous case. Consider any node l > bK2 c. Even if
ml

2 ≥ l, then the deepest node in the second deepest branch
at l is at least K+1 hops away from the sink. We will see in
Section V that we can schedule many of these trees according
to a schedule in an equivalent linear network.

IV. PROOF OF “NON-EXISTENCE”
In this section, we prove one part of the correctness of

Algorithm Asp, i.e., we show that whenever Asp returns
FALSE for an input tree structure, there exists a traffic arrival
pattern such that there exists no causal sample-path optimal
policy for the tree. Further, we also observe that, in some
cases, even a non-causal sample-path optimal policy does not
exist for the given tree structure.

Theorem 2. For a given tree and K as inputs to Algorithm
Asp, consider any node l, 0 ≤ l < bK2 c, in a line in the
deepest branch in the tree. If the length of the second deepest
branch rooted at node l is longer than l, i.e., ml

2 > l and
sp(ml

1,m
l
2,K) returns FALSE, there exists no causal sample-

path optimal policy for the given tree structure under the K-
hop interference model.

Proof: We prove this result by contradiction.

0

A

l

B

C

(a) ml
2 ≤ b

K
2
c

0

A B

D
C

l

(K
+
3
)/
2

(b) ml
2 > bK

2
c

Fig. 2. No causal sample-path optimal policy

Suppose that the result was not true. For a given l, 0 ≤
l < bK2 c, we consider the simplest tree structure that does not
satisfy the conditions in the subroutine sp.

Case 1: l < ml
2 ≤ bK2 c and ml

1 +ml
2 = K + 2.

Consider a tree with the first l links in a line (as shown
in Figure 2(a)), and with two lines at node l, one of depth
ml

2 > l, and the other of depth ml
1 = K + 2−ml

2.
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Consider the following traffic arrival pattern. At time t = 0,
there exists one packet each at nodes A and B. Node A is at a
depth l+ml

2 from the root of the tree, and node B is at a depth
l+ml

1−1. Since ml
2 ≤ bK2 c, m

l
1 ≥ K−bK2 c+2 ≥ bK2 c+2.

Hence, ml
2 < ml

1 − 1. Therefore, the packet at node A is at
a lower distance from the root than the packet at node B.
Further, nodes A and B cannot be scheduled simultaneously
under the K-hop interference model. In fact, since l < bK2 c,
the only nodes in this network that can simultaneously
transmit are A and C. This implies that we need to schedule
A before node B. This is because if we schedule node B
instead, the time for the first packet to exit the system will
be ml

1 + l. On the other hand, if we schedule node A, the
time for the first packet to exit the system will only be
ml

2 + l < ml
1 + l. Hence, in any sample-path optimal policy,

we always need to schedule the closest packet to the root of
the tree. However, suppose that we schedule A at time t = 0,
and a packet arrives at node C at time t = 1. Further, assume
that there are no other packet arrivals in the system. Then the
total time (after the slot t = 1) for the three packets to exit
the system is l+ml

2−1+ l+ml
1−1+ l+ml

1 = 3l+K+ml
1.

On the other hand, if we had scheduled B during the first
time slot, since nodes A and C can transmit simultaneously,
the packets at nodes A and C can be transmitted to their
respective parents during the same time slot. Therefore, the
total time for the three packets to exit the system is now
l+ml

1−2+l+ml
2+l+m

l
1−1 = 3l+K+ml

1−1 < 3l+K+ml
1.

Thus, we get a contradiction for this case.
We can further infer from the above counterexample that

even a non-causal sample-path optimal policy cannot exist for
this tree structure under the K-hop interference model. This
is because even if we knew that a packet was going to arrive
at node C at slot t = 1, we would still have to schedule node
A at slot t = 0 since it is closer to the root than node B.

Case 2: ml
2 > bK2 c and ml

1 +ml
2 = K + 3.

Suppose K is even. Then, ml
2 = K

2 + 1 and ml
1 = K

2 + 2.
From Case 1, we know that for a network with ml

2 = K
2 and

ml
1 = K

2 + 2, there exists a traffic arrival pattern such that
there exists no sample-path optimal policy for this network.
Since the network with ml

2 = K
2 + 1 contains the network

with ml
2 = K

2 as a substructure, there exists no sample-path
optimal policy for this structure as well.

Suppose K is odd. Then, ml
2 = K+1

2 and ml
1 = K+5

2 , or
ml

1 = ml
2 = K+3

2 . For the former scenario, from Case 1, we
know that there exists no sample-path optimal policy even
for the network with ml

2 = K−1
2 and ml

1 = K+5
2 . Hence, it

follows that there exists no sample-path optimal policy for
this network as well. For the latter scenario, we construct the
following traffic arrival pattern.

Consider the tree shown in Figure 2(b) where the first l
links are in a line and the node l has two branches, each of
length K+3

2 . Suppose that at t = 0, there is one packet each
at nodes A and B which are both at depth K+1

2 from l as
shown in the figure. A and B cannot simultaneously transmit
under the K-hop interference model. Also, since l < K−1

2 ,
the nodes in the network that can simultaneously transmit in

the same slot are A and D, or B and C, or C and D. Since
both the packets are at the same depth from the root, without
having knowledge of future traffic arrivals, we can only
arbitrarily choose A or B to schedule. Suppose we choose
A to schedule, and a packet arrives at node D at slot t = 1.
Then, the total time after this slot for the three packets to exit
the system is l + K−1

2 + l + K+1
2 + l + K+3

2 = 3l + 3K+3
2 .

On the other hand, if we knew that a packet was going
to arrive at D at slot t = 1, we could have scheduled B
during the first time slot. In this case, A and D could have
simultaneously been scheduled in a later time slot. Hence, the
total time after the first slot for these packets to exit the system
is l+ K−1

2 + l+ K+1
2 + l+ K+1

2 = 3l+ 3K+1
2 < 3l+ 3K+3

2 .
Thus, we get a contradiction.

Hence, Theorem 2 follows.

Theorem 3. Let K be an odd number. Let l be the K−1
2

th

node in a line in the deepest branch in the tree. If the length of
the second deepest branch rooted at node K−1

2 is longer than
K+1
2 , i.e., ml

2 >
K+1
2 , then there exists no causal sample-path

optimal policy for this tree structure.

Proof: Similar to the proof of Theorem 2, we can again
construct a traffic arrival pattern for which there exists no
causal sample-path optimal policy. The details can be found
in our technical report [11].

Theorem 4. Algorithm Asp correctly identifies tree structures
for which there exist no causal sample-path optimal policy
under the K-hop interference model, i.e., whenever Asp re-
turns FALSE for a given tree structure, there exists no causal
sample-path optimal policy for that tree structure.

Proof: This result follows from Theorems 2 and 3.
Theorem 2 proves it for 0 ≤ l < bK2 c, and Theorem 3 shows
the result for l = bK2 c.

The implication of the above results is that sample-path
optimal policies may only exist in restricted tree topologies.

V. “EXISTENCE” PROOFS

In this section, we develop sample-path optimal policies
for all tree structures for which Algorithm Asp returns TRUE
under the K-hop interference model. We divide the set of
trees for which Asp returns TRUE into six classes, and
develop a sample-path optimal policy for each class.

A. Classification of Trees

We now classify the tree structures for which Asp returns
TRUE into six classes. The following theorem forms an initial
basis for classification. It classifies trees for which the depth
of the tree must be bounded by K in order for Asp to return
TRUE, and those for which the depth need not be bounded.

Theorem 5. For any tree for which Asp returns TRUE, m0
1

can be greater than K if and only if the following conditions
are satisfied.

1) If K is odd, for each l such that 0 ≤ l < K−1
2 , ml

2 ≤ l.
2) If K is even, for each l such that 0 ≤ l < K

2 , ml
2 ≤ l.
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Proof: We first show that m0
1 can be greater than K if

the given conditions are satisfied. Whether K is odd or even,
it can be immediately seen from Asp that if the corresponding
conditions (for odd and even K) are satisfied, there is no
constraint on ml

1 for any l (since if the conditions are satisfied,
we have the continue statement). Therefore, the depth of the
tree can be any arbitrary quantity.

We prove the converse by contradiction. We consider the
case where K is odd. The proof when K is even can be found
in our technical report [11].
Case 1: Suppose that for some l such that 0 ≤ l < K−1

2 ,
ml

2 > l, and m0
1 > K. First consider the case, ml

2 ≤ K−1
2 .

Note that ml
1 = m0

1 − l > K − l. Consider any ml
1 and

ml
2 such that ml

1 ≥ ml
2, l < ml

2 ≤ K−1
2 , and ml

1 > K − l.
Therefore, we have ml

1 ≥ K + 1− l, and ml
2 ≥ l + 1. Then,

ml
1+m

l
2 ≥ K+1− l+ l+1 = K+2. Therefore, according to

subroutine sp, Asp will return FALSE for this tree structure.
This contradicts our assumption that Asp returns TRUE.
Case 2: Consider any l such that 0 ≤ l < K−1

2 , ml
2 >

K−1
2 ,

and m0
1 > K. Since l < K−1

2 , l ≤ K−3
2 , and hence,

ml
1 = m0

1− l > K+3
2 . Therefore, ml

1 ≥ K+5
2 and ml

2 ≥ K+1
2 .

Hence, ml
1 + ml

2 > K + 2. Therefore, subroutine sp will
return FALSE, and hence Asp will return FALSE, resulting
in a contradiction.

Corollary 1 (Corollary to Theorem 5). For any tree for which
Asp returns TRUE, m0

1 must be bounded by K if and only if
the following conditions are satisfied.

1) If K is odd, ml
2 > l for at least one node l (0 ≤ l <

K−1
2 ) in a line in the deepest branch of the tree.

2) If K is even, ml
2 > l for at least one node l (0 ≤ l < K

2 )
in a line in the deepest branch of the tree.

We now have the following classes of trees.
Class I: The tree satisfies the conditions in Corollary 1.
Hence, the depth of the tree is bounded by K. In addition,
it satisfies the condition that at each node l in a line in the
deepest branch of the tree, ml

1+m
l
2 ≤ K+1. It can be easily

seen that no two links in such a tree can be simultaneously
scheduled (due to the K-hop interference model).
Class II: K is odd, the tree satisfies the first condition in
Corollary 1, and does not satisfy the additional condition for
Class I trees.
Class III: K is even, the tree satisfies the second condition
in Corollary 1, and does not satisfy the additional condition
for Class I trees. Simultaneous transmissions are possible
among certain links in trees belonging to Classes II and III.
Class IV: The tree satisfies the conditions in Theorem 5.
Hence, the tree can be of arbitrary depth. In addition, it
satisfies the condition that at node l = bK2 c, m

l
2 ≤ l.

Class V: K is odd, the tree satisfies the first condition in Theo-
rem 5, and it does not satisfy the additional condition for Class
IV trees, i.e., for l = bK2 c, m

l
2 > l. Note that since Asp returns

TRUE for this class, it follows that for l = K−1
2 , ml

2 ≤ K+1
2 .

Class VI: K is even, the tree satisfies the second condition
in Theorem 5, and it does not satisfy the additional condition
for Class IV trees, i.e., for l = bK2 c, m

l
2 > l.

Theorem 6. Classes I-VI characterize all trees for which
Algorithm Asp returns TRUE under the K-hop interference
model, i.e., for any tree that does not belong to Classes I-VI,
Asp returns FALSE.

Proof: From Theorem 5, Corollary 1, and the definitions
of Classes I-VI, the result follows.

We now provide a causal sample-path optimal policy for
each class of trees.

B. Class I

We recall that Class I is the class of trees for which the
depth of the tree must be bounded by K, and no two links in
the tree can simultaneously transmit. Figure 8(a) provides an
example of Class I trees under the 2-hop interference model.
We define the causal policy, πI

0 , for Class I trees as follows.
Policy πI

0 : At each slot, determine the packet i whose hop
distance to the sink is minimum among all packets in the
system, and schedule it. If there are multiple such packets,
schedule one of them arbitrarily.

C. Class II

We study Class II trees in this section. K is assumed to
be odd. At exactly one node l in a line in the deepest branch
of the tree, ml

1 + ml
2 = K + 2, where ml

2 = K+1
2 , and

at all other nodes l in the line, ml
1 + ml

2 ≤ K + 1. It is
easy to see that if there are two or more nodes for which
ml

1 +ml
2 = K + 2, Asp will return FALSE.

Consider the node l for which ml
1 + ml

2 = K + 2. The
nodes that are at depth K+1

2 in the second deepest branch of
node l, and the nodes that are at depth K+3

2 in the deepest
branch of node l are separated by K links. Therefore, one of
these nodes in the second deepest branch and one of these
nodes in the deepest branch can transmit simultaneously in a
slot. Further, since ml

1 +ml
2 ≤ K + 1 for all other nodes l,

no other nodes in the tree can transmit simultaneously.
We define the following notation. Consider the node

l in a line in the deepest branch of the tree for which
ml

1 +ml
2 = K + 2. We define N1 to be the set of packets at

leaf nodes that are at depth K+3
2 from node l in the deepest

branch rooted at node l, and N2 to be the set of packets at
leaf nodes at depth K+1

2 from node l in any other branch
rooted at node l. For example, consider Figure 3(a). This
represents a Class II tree under the 5-hop interference model.
At l = 1, m1

1 +m1
2 = 4 + 3 = 7 = K + 2. Hence, packets at

nodes B, C, and D belong to N1, and those at nodes F , and
G belong to N2. Further, note that packets at nodes A, H , J ,
and E neither belong to N1 nor to N2 because they are in the
same branch of node l = 1 as the packets that belong to N1.
Policy πII

0 : At each time slot, schedule a packet that is closest
to the root of the tree. If multiple packets are at the same depth
from the root, a packet can be arbitrarily chosen to schedule
in all but the following scenario. Suppose that at node l in
a line in the deepest branch of the tree, ml

1 +ml
2 = K + 2.

Any packet that lies at a node at depth K+1
2 from l in the

branch of l corresponding to nodes in N1 is given priority
over packets that lie at nodes at depth K+1

2 from l in any
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0

1

A

B C D

E F G
JH

(a) Class II, K = 5
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Fig. 3. Examples for Classes II and III

other branch of l. If the only packets left in the system are
those that lie in the set N1 ∪N2, then select one packet from
N1 and one packet from N2 to transmit simultaneously.

In Figure 3(a), if A and F both have a packet, then A will
be given priority over F . If B and F both have a packet, they
will transmit simultaneously to their respective parents.

D. Class III

We now consider Class III trees. K is assumed to be even.
At exactly one node l in a line in the deepest branch of the
tree, ml

1 +ml
2 = K +2, where ml

2 = K
2 +1, and at all other

nodes l in the line, ml
1 +ml

2 ≤ K + 1.
Consider the node l for which ml

1 + ml
2 = K + 2. This

means that l has at least two branches of depth K
2 + 1.

Assume that l has p branches of depth K
2 + 1, p ≥ 2. We

define Ni, i = 1, 2, ..., p, to be the set of packets at leaf
nodes that are at depth K

2 +1 in the ith branch of l. Consider
any node a1 ∈ N1, a2 ∈ N2,..., ap ∈ Np. a1, a2, ..., ap can
all transmit during the same slot since any two nodes in the
set {a1, a2, ..., ap} are separated by K links. Further, since
ml

1 + ml
2 ≤ K + 1 for all other nodes l, no other nodes in

the tree can transmit simultaneously. We provide an example
to explain this scheduling (Figure 3(b), K = 4). At l = 1, we
have m1

1 = m1
2 = 3. Hence, m1

1 +m1
2 = 6 = K + 2. Also,

there are three branches of depth 3 from node 1. Therefore,
p = 3. Packets at nodes A, B, C, and D belong to N1, those
at E and F belong to N2 and N3, respectively. Note that
packets at node G do not belong to N1 ∪N2 ∪N3.

We now propose policy πIII
0 for this class of trees.

Policy πIII
0 : At each time slot, schedule a packet that is closest

to the root of the tree as long as it does not belong to N1 ∪
N2∪...∪Np. If multiple packets are at the same depth from the
root, a packet can be arbitrarily chosen to schedule. If the only
packets left in the system belong to N1∪N2∪...∪Np, select one
packet in each of N1, N2, ..., Np (as long as a packet exists),
and schedule these packets simultaneously during that slot.

In Figure 3(b), if there is one packet each at nodes A, E,
and F , these packets will be scheduled simultaneously.

E. Class IV

We now discuss tree structures for which the depth need
not be bounded by K in order for a causal sample-path
optimal policy to exist. We study Class IV trees in this

section. These trees satisfy the conditions in Theorem 5.
Hence, the tree can be of arbitrary depth. In addition, they
satisfy the condition that for each l such that 0 ≤ l ≤ bK2 c,
ml

2 ≤ l. This additional condition ensures that no two nodes
that are at distance K + 1 or lesser from the sink can
transmit simultaneously under the K-hop interference model.
Figures 6(b) and 9(a) are examples of Class IV trees for the
1-hop and 2-hop interference models, respectively.

We show that these trees can be scheduled as though the
schedule is in a linear network under the K-hop interference
model. We recall the definition of the equivalent linear
network for a given tree below [8].

For a tree network G(V,E) with V nodes and E edges,
where each node i has βi packets during a given time slot,
the equivalent linear network G(Vl, El) is defined as follows:
Vl = {0, 1, ..., N}, El = {(i − 1, i), 1 ≤ i ≤ N} where
N = max

i∈V
(d(0, i)). d(0, i) represents the distance of node

i from the sink node 0. Further, each node j ∈ Vl has αj

packets during the same time slot, where αj =
∑

i∈V :d(0,i)=j

βi.

Figure 4 gives an example of this transformation. The far-
thest node in the tree is 3 hops away from the sink. Therefore,
the equivalent linear network has 3 nodes and the sink. The
number of packets at each node is mentioned in the figure. The
total number of packets from nodes that are 2 hops away from
the sink is 7 (=3+4), and that from nodes that are 3 hops away
from the sink is 9 (=6+1+2). Therefore, the equivalent linear
network has 7 packets in node 2, and 9 packets in node 3.

0

5

4

21
6

9

7

5

3

1

3

2

0

A

CB

D E F

Fig. 4. Equivalent Linear Network

We now propose policy πIV
0 for Class IV trees.

Policy πIV
0 : Consider node 1 in the equivalent linear

network. If node 1 has a packet, schedule it. Else, go to
the next node. For any node i ≤ K + 1, if none of the
nodes 1, 2, ..., i − 1 have been scheduled, and if node i has
a packet, schedule node i. Otherwise, go to the next node.
For any node i > K + 1, if none of the nodes in the set
{i − 1, i − 2, ..., i − K} have been scheduled, and if node i
has a packet, schedule node i. Otherwise, go to the next node.

This policy is a generalized version of the policy in [2] for
a linear network under the 1-hop interference model.

We recall some of the implications of this policy using the
1-hop interference model as an example (as noted in [5]).
Remark 4: According to policy πIV

0 , any node i in the equiva-
lent linear network can schedule at most one packet during any
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time slot. This means that among all nodes that are i hops away
from node 0 in the original tree, at most one packet will be
scheduled. Note that multiple nodes (at the same distance from
the sink) can potentially schedule their transmissions simulta-
neously if they don’t have the same parent (under the 1-hop
interference model). This implies that even without scheduling
a maximal set of non-interfering links, this policy is optimal.
Remark 5: Suppose that a node i in the equivalent linear
network is selected to schedule during a certain slot according
to πIV

0 . Consider nodes that are i hops away from node 0 in
the original tree that have at least one packet to schedule. One
of these nodes can be chosen arbitrarily to schedule its packet
during that slot. This means that the optimal solution neither
depends on the structure of the Class IV tree nor the number
of packets at each node. For example, in Figure 4, we can arbi-
trarily choose to schedule one of {D,E, F} according to πIV

0 .

F. Class V

We investigate causal sample-path optimal policies for Class
V trees in this section. K is odd, the tree satisfies the first
condition in Theorem 5, and does not satisfy the additional
condition that Class IV trees satisfy. Therefore, at node l =
K−1
2 in a line in the deepest branch of the tree, ml

2 = K+1
2 .

We first define a similar notation as used for Class II trees.
Consider the node l = K−1

2 in a line in the deepest branch
of the tree. We define N1 to be the set of packets at nodes at
depth ≥ K+3

2 from node l in the deepest branch rooted at node
l, and N2 to be the set of packets at leaf nodes at depth K+1

2
from node l in any other branch rooted at node l. A packet
in N2 and a packet in N1 can potentially simultaneously
transmit according to the K-hop interference model.

We now propose policy πV
0 for this class of trees.

Policy πV
0 : At each time slot, do the following. For packets

that are at distance ≤ K− 1 from the sink, schedule a packet
that is closest to the sink, say, at distance d ≤ K − 1 to the
sink. Do not schedule any packets at distance ≤ d+K from
the sink. Schedule packets in N1 at distance > d+K from the
sink according to a schedule in an equivalent linear network.
If there are no packets at distance d ≤ K − 1 from the sink,
consider node l = K−1

2 in a line in the deepest branch of
the tree. Any packet that lies at a node at depth K+1

2 from
l in the branch of l corresponding to nodes in N1 is given
priority over packets that lie at nodes at depth K+1

2 from l in
any other branch of l, and the rest of the schedule for packets
in N1 (at distance > 2K from the sink) is according to one
in an equivalent linear network. If the only packets left in the
system are those that lie in the set N1 ∪ N2, then select the
packet closest to the sink from N1 and one packet from N2

to transmit simultaneously. Schedule the rest of the packets in
N1 according to a schedule in an equivalent linear network.

We provide an example to explain this policy. Consider
Figure 5(a). This is an example of a Class V tree under
the 3-hop interference model. At node l = 1, m1

1 ≥ 3, and
m1

2 = 2. Packets in nodes A, B, C, D, and in the sub-trees
rooted at these nodes belong to N1. Packets at nodes E and F
belong to N2. If there is one packet each at G and E, then G

will be given priority over E. If there is one packet each at A
and E, then these packets will be scheduled simultaneously.
If B is scheduled during a particular slot, then since B is 4
hops away from the sink 0, only packets that are at least 8
hops away from the sink will be scheduled. This schedule is
equivalent to one in an equivalent linear network.

0

1

A

E F

B C D

G

(a) Class V, K = 3

A
B C D E F G

0

1

2

(b) Class VI, K = 4

Fig. 5. Examples for Classes V and VI

G. Class VI

Finally, we investigate Class VI trees. K is even, the tree
satisfies the second condition in Theorem 5, and does not
satisfy the additional condition that Class IV trees satisfy.
Therefore, at node l = K

2 in a line in the deepest branch of
the tree, the branches originating from this node can be of
arbitrary depth. Since these trees do not satisfy the additional
condition that Class IV trees satisfy, there exist at least two
branches at node l whose depth from l is greater than l.

We define a similar notation as used for Class III trees.
Consider the node l = K

2 in a line in the deepest branch of
the tree. Suppose that l has p branches whose depth from l is
greater than l. We define Ni to be the set of packets at nodes
at depth ≥ K

2 + 1 from node l in branch i, i = 1, 2, ..., p.
We now propose policy πV I

0 for this class of trees.
Policy πV I

0 : At each time slot, do the following. For packets
that are at distance ≤ K from the sink, schedule a packet
that is closest to the sink, say, at distance d ≤ K to the sink.
Do not schedule any packets at distance ≤ d + K from the
sink. Consider packets at distance ≥ d + K + 1 from the
sink. These packets belong to N1 ∪ N2 ∪ ... ∪ Np. For Ni,
i = 1, 2, ..., p, schedule packets in Ni at distance ≥ d+K+1
from the sink according to a schedule in an equivalent linear
network. The schedule of packets in Ni is independent of the
schedule of packets in Nj for any i 6= j.

We provide an example to explain this policy. Consider
Figure 5(b). This represents a Class VI tree for K = 4. The
tree rooted at node K

2 = 2 can be arbitrary. This node has
3 branches of depth at least K

2 + 1 = 3. Therefore, p = 3.
Packets in nodes A, B, C, D, and in their subtrees belong to
N1. Those in E, and its subtree belong to N2, and those in
F , G, and their subtrees belong to N3. If there is one packet
each at nodes C, E, and G, these packets will be transmitted
simultaneously to their respective parents. The three branches
of node 2 can be converted into three equivalent linear
networks, and the schedule in each branch till the packet
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reaches a node at distance K+1 = 5 from the sink is according
to a schedule in an equivalent linear network for that branch.

The following result shows the optimality of policy πi
0 for

Class i trees, i = I, II, ..., V I .

Theorem 7. For Class i of trees, i = I, II, ..., V I , policy πi
0

minimizes the sum of the queue lengths of all the nodes in the
given tree under the K-hop interference model at each time
slot and for any traffic arrival pattern.

Proof: Due to space limitations, and the lengthy nature
of sample-path optimality proofs in general, we provide the
details in our technical report [11]. The proof for each class
consists of three components: a recursive relationship for the
time at which each packet leaves the system, a proof for
optimality in the absence of arrivals, and finally a proof for
optimality when there are packet arrivals in the system.
Remark 6: One of the key intuitions to the fact that there
exists causal sample-path optimal policies for these six classes
of trees is the relationship of the scheduling policy to that
in an equivalent linear network (or some extensions of it).
Classes I and IV can be scheduled according to a schedule
in an equivalent linear network, while the optimal schedules
for the other classes is a modification of a schedule in an
equivalent linear network.
Remark 7: It can be shown from Theorem 7, and from
Little’s law that πi

0 minimizes the long term time average
delay in the system for Class i trees, i = I, II, ..., V I .

Theorem 8. Algorithm Asp correctly classifies trees for which
a causal sample-path optimal policy exists, and those for
which such a policy does not exist.

Proof: The result for non-existence of causal sample-
path optimal policies follows from Theorem 4, and that for
existence follows from Theorems 6 and 7 for Classes I-VI.

Thus, we have completely characterized the existence of
causal sample-path optimal policies for all trees under the K-
hop interference model for the convergecasting problem.

VI. EXAMPLES - 1-HOP AND 2-HOP

In this section, we apply the results in Sections IV and V
to the 1-hop and 2-hop interference models, and completely
characterize the tree structures for which causal sample-path
optimal policies exist for these interference models. The
results for the 1-hop interference model derived in [5] serves
as a sanity check for the results in this work.

A. 1-hop

Since, K = 1, we have K−1
2 = 0, and K+1

2 = 1. We first
look at the tree structures for which no causal sample-path op-
timal policy exists. From Theorem 3, at node l = 0 in a line in
the deepest branch of the tree, if m0

2 > 1, there exists no causal
sample-path optimal policy for the given tree. Thus, if the root
of the tree has more than one child that is not a leaf node,
there exists no causal sample-path optimal policy for the given
tree. This implies that the tree in Figure 6(a) has no causal
sample-path optimal policy. This verifies Theorem 3 in [5].

0

(a) No optimal
policy

0

(b) Class IV

0

(c) Class V

Fig. 6. Existence of sample-path optimal policies for K = 1

We now consider trees for which a causal sample-path
optimal policy exists. Since K is odd, we only need to
consider Classes I, II, IV, and V. Since K−1

2 = 0, from
Corollary 1, it follows that there are no Class I and Class
II trees under the 1-hop interference model. For Class IV
trees, for each 0 ≤ l ≤ K−1

2 , ml
2 ≤ l. This means that at the

root (l = 0), m0
2 ≤ 0. Therefore, the root can have only one

child. The rest of the tree can be arbitrary. For such trees, we
can transform the tree into an equivalent linear network, and
schedule the equivalent linear network according to the 1-hop
interference model. This concurs with Theorem 1 in [5].
Finally, for Class V trees, at node l = K−1

2 = 0, m0
2 ≤ 1. This

means that if the root has at most one non-leaf child, then
the tree has a causal sample-path optimal policy. Further, the
optimal policy (for Class V trees) is to always give priority
to that child of the root that is not a leaf node (when there is
contention among the root’s children), and to schedule the rest
of the tree according to the equivalent linear network schedule.
From Theorem 2 in [5], we can verify the correctness of both
the optimal policy, and the structure of this class of trees.
Figures 6(b) and 6(c) show examples of Class IV and Class
V trees for the 1-hop interference model, respectively.

B. 2-hop

Consider tree structures for which no causal sample-path
optimal policy exist under the 2-hop interference model.
Since K

2 = 1, by Theorem 2, m0
2 > 0. sp(m0

1,m
0
2, 2) will

return FALSE if m0
1 + m0

2 > K + 1 = 3 when m0
2 = 1,

and m0
1 +m0

2 > K + 2 = 4 when m0
2 = 2. Therefore, there

exists no causal sample-path optimal policy for tree structures
for which m0

1 = 3 and m0
2 = 1, and m0

1 = 3 and m0
2 = 2.

Figure 7 shows an example of such tree structures.

0

A

B

C

(a) m0
1 = 3 and

m0
2 = 1

0

A

D
B

C

(b) m0
1 = 3 and

m0
2 = 2

Fig. 7. No causal sample-path optimal policy, K = 2
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Indeed, if m0
1 = 3 and m0

2 = 1 (Figure 7(a)), suppose that
there is one packet at each node A and B at time slot 0. Since
node A is closer to the sink, we must schedule node A during
the first slot. However, if we do this, and a packet arrives
at node C at the beginning of the first slot, it would take
five additional time slots for the packets at B and C to reach
the sink. On the other hand, if we had scheduled B during
the first slot, then since A and C could have been scheduled
together, it would only take an additional four time slots for all
the packets to reach the sink. Thus, even a non-causal optimal
policy does not exist for this tree structure. Since there doesn’t
exist a sample-path optimal policy when m0

1 = 3 and m0
2 = 1,

there cannot exist a sample-path optimal policy when m0
1 = 3

and m0
2 = 2, for we can simply assume the same arrival pattern

in A, B, and C, and no packets in node D in Figure 7(b).
We now look at trees for which a causal sample-path

optimal policy exists under the 2-hop interference model.
Since K is even, we need to consider Classes I, III, IV, and
VI. By Corollary 1, if m0

2 > 0, the depth of the tree must be
bounded by K = 2. Therefore, we have the following two
cases for trees whose depth is bounded by K.
Class I: m0

2 = 1 and m0
1 ≤ 2, so that m0

1+m
0
2 ≤ 3. Figure 8(a)

shows Class I trees for the 2-hop interference model. Clearly,
no two nodes in this tree can simultaneously transmit.
Class III: m0

2 = 2 and m0
2 = 2, so that m0

1+m
0
2 = K+2 = 4.

Figure 8(b) shows Class III trees. The only nodes in this tree
that can simultaneously transmit are those at depth 2 from
node 0, and in different branches of node 0. For instance, A,
B, and C can simultaneously transmit.

0

(a) Class I

0

A B C

(b) Class III

Fig. 8. Examples of Class I and Class III trees for K = 2

For trees whose depth need not be bounded, we have the
following cases.
Class IV: At l = 0 and l = 1, we must have ml

2 ≤ l. There-
fore, m0

2 = 0, and m1
2 ≤ 1. Figure 9(a) shows an example

of this class of trees. These trees can be scheduled according
to a schedule in an equivalent linear network. Therefore, for
instance, nodes A and B in Figure 9(a) will not transmit
simultaneously even though they can potentially do so.
Class VI: For this class, we only have the condition that
m0

2 = 0. m1
2 can be arbitrary. Figure 9(b) illustrates this

class. The different branches of node 1 can be scheduled
according to an equivalent linear network in each branch, as
explained for Class VI trees. However, the entire tree cannot
be scheduled according to an equivalent linear network, since,
for instance, node A and node B in Figure 9(b) must transmit
simultaneously if they both have packets to transmit.

Thus, we have illustrated our results for completely charac-
terizing the existence of causal sample-path optimal policies

0

BA

(a) Class IV

0

A B

(b) Class VI

Fig. 9. Examples of Class IV and Class VI trees for K = 2

for trees under the 1-hop and 2-hop interference models.

VII. CONCLUSION

We have studied the existence of causal sample-path
optimal policies that, at each time slot, minimize the sum of
the queue lengths of all the nodes in a multi-hop wireless
network with a tree topology under the K-hop interference
model, for any sample-path traffic arrival pattern. We provided
necessary and sufficient conditions for the existence of such
policies, and rigorously proved their correctness. We observed
that causal sample-path optimal policies exist for a large
class of trees. Surprisingly, in many cases, the tree can be
scheduled as if as the schedule is in an equivalent linear
network. On the other hand, the class of trees for which such
policies do not exist is also large. Further, we showed that
there are tree structures for which no sample-path optimal
policy (even policies that are not necessarily causal) exists.
This is a limitation of the sample-path metric, and hence this
emphasizes the need to study other metrics for delay.
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