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Abstract—In this paper, we study a sampling problem in which
fresh samples of a signal (source) are sent through an unreliable
channel to a remote estimator, and acknowledgments are sent
back over a feedback channel. Both the forward and feedback
channels are subject to random transmission times. Motivated
by distributed sensing, the estimator can estimate the real-time
value of the source signal by combining the signal samples
received through the channel and noisy signal observations
collected from a local sensor. We prove that the estimation error
is a non-decreasing function of the Age of Information (AoI)
for received signal samples and design an optimal sampling
strategy that minimizes the long-term average estimation error.
The optimal sampler design follows a threshold strategy: If
the last transmission was successful, the source waits until the
expected estimation error upon delivery exceeds a threshold and
then sends out a new sample. If the last transmission fails, the
source immediately sends out a new sample without waiting. The
threshold is the unique root of a fixed-point equation and can be
solved with low complexity (e.g., by bisection search). In addition,
the proposed sampling strategy is also optimal for minimizing the
long-term average of general non-decreasing functions of the AoI.
Its optimality holds for general transmission time distributions
of the forward and feedback channels.

I. INTRODUCTION

Timely updates are crucial in a large number of applications
such as vehicular networks, wireless sensor networks, and
UAV navigations. To achieve timely updates, we require the
destination of the network to receive the fresh information
from the remote source as quickly as possible. The information
freshness is measured by age of information, or simply age,
which has been widely explored in recent years (e.g., [1]–
[21]). Age of information with the function of current time t
is defined as t − Ut, where Ut is the generation time of the
freshest information data. In several different queuing systems,
the Last-Generated, First-Served (LGFS) policy is shown
to achieve age-optimality [18]–[20]. Scheduling policies in
various wireless networks are studied to minimize age [11]–
[13], [16], [17]. A literature review of the recent studies in
age of information is provided in [3].

Recently, a connection between age of information and
remote estimation of time-varying processes (e.g., Wiener
process or Ornstein-Uhlenbeck (OU) process) was established
[6], [10], [15]. One of the remote estimation objectives in
these early studies is to design an optimal sampling policy to
minimize the long-term average minimum mean square error
(MMSE). The MMSE is equal to a function of age if the
sampling policy is independent of the signal being sampled.

However, among these studies, the estimator obtains the signal
samples that are subject to delay, but neglects the instant noisy
observation. For example, in vehicular networks, the estimator
can estimate a signal via both the exact signal samples from the
remote sensor and the instant camera streaming from the close
vehicle sensor over time. To consider both the delayed signal
samples and the instant noisy observations, we will apply the
Kalman Filter [22] and study the relationship between the new
MMSE and age of information.

The desire for timely updates and the study of the new
remote estimation problem motivate us to design an optimal
sampling policy for minimizing general nonlinear age func-
tions. To reduce the age, the source may need to wait before
submitting a new sample [2]. The study in [4] generalizes the
result in [2], proposes an optimal sampling policy under a
Markov channel with sampling rate constraint, and observes
that the zero-wait policy is far from optimal if, for example,
the transmission times are heavy-tail distributed or positively
correlated. In [5], the authors provide a survey of the age
penalty functions that are related to autocorrelation, remote
estimation, and mutual information. The optimal sampling
solution is a deterministic or randomized threshold policy
based on the objective value and the sampling rate constraint.
However, in real-time network systems, not only the forward
direction but also the feedback direction have a random delay.
Such a random two-way delay model is considered in e.g.,
[8], [9]. In [9], the paper provides a low complexity algorithm
with a quadratic convergence rate to compute the optimal
threshold. In [8], an optimal joint cost-and-AoI minimization
solution is provided for multiple coexisting source-destination
pairs with heterogeneous AoI penalty functions. Although the
above studies have optimized sampling strategies, they assume
that the transmission process is reliable. However, due to the
channel fading, the channel conditions are time-varying and
thus the transmission process is unreliable.

While most past works in optimizing sampling consider re-
liable transmissions, the studies in [7], [21] are the exceptions
that consider unreliable transmissions. In [7], the authors con-
sider quantization errors, noisy channel, and non-zero receiver
processing time, and they establish the relationship between
the MMSE and age. For general age functions, they provide the
optimal sampling policies given that the sampler needs to wait
before receiving feedback. When the sampler does not need to
wait, they provide the enhanced sampling policies that perform



better than the previous ones. In [21], the authors choose idle
or transmit at each time slot to minimize joint age penalty
and transmission cost. The optimality of a threshold-based
policy is shown, and the threshold of the policy is computed
efficiently. Nevertheless, transmission delays are random rather
than constant because of the congestions, random sample size,
etc.

Thus, in this paper, we focus our investigation on studying
optimal sampling in wireless networks under the following
more realistic (and general) conditions that have largely been
unexplored: unreliable transmissions and random delay in both
forward and feedback directions. Early studies on optimizing
sampling assuming reliable channels with random delays have
shown that the sampling problem is decomposed into a per-
sample problem. The per-sample problem can be further
solved by convex optimization (e.g., [2], [4], [5], [9]) or
optimal stopping rules (e.g., [6], [10], [15]). Similarly, our
problem assuming an unreliable channel is equivalent to a per-
epoch problem containing multiple samples until the success-
ful packet delivery. Therefore, the per-epoch problem is still
a Markov Decision Process (MDP) with an uncountable state
space, which is the key difference with past works, e.g., [2],
[4]–[6], [9], [10], [15] and faces the curse of dimensionality.
We further compare our technical differences with past works
in Section V-C. The main contributions of this paper are stated
as follows:

• We first formulate the problem where the estimator esti-
mates a signal in real-time by combining noisy signal
observations from a local sensor and accurate signal
samples received from a remote sensor. We show that if
the sampling policy is made independently of the signal
being sampled, the MMSE equals an increasing function
of the age of received signal samples.

• For general nonlinear age functions, or simply age penalty
functions, we then provide an exact solution for minimiz-
ing these data freshness metrics. The optimal sampling
policy has a simple threshold-type structure, and the
threshold, which can be efficiently computed by bisection
search and fixed-point iterations, is equal to the optimal
objective value to our problem. An interesting property
has been stated: if the previous transmission is successful,
the optimal policy may wait for a positive time period
before generating the next sample and sending it out;
otherwise, no waiting time should be added. The technical
proofs to our results are as follows: (i) The value function
of the policy proposed is a solution to the Bellman
equation. (ii) Under the contraction mapping assumption,
the solution to the Bellman equation is unique, which
guarantees the optimality of our proposed policy. Our
results apply to general monotone age penalty functions,
arbitrary probability of transmission failure, and general
delay distributions of both the forward and feedback
channels.

• Numerical simulations show that our optimal policy can
reduce the age compared with other approaches.
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Figure 1: System model.

We remind that although our sampling problem is continuous
time, it can be easily reduced to be discrete time. Therefore,
the result of discrete time case is omitted in this paper.

II. ESTIMATION AND THE AOI

A. System Model

Consider a status update system composed of the source,
destination, source-to-destination channel, and destination-to-
source channel, as is illustrated in Fig. 1. The source process
Ot is sampled and delivered to the destination via the forward
channel. The forward channel suffers from i.i.d. transmission
failures, and α is the probability of failure. Upon the delivery,
the destination then sends feedback about whether the trans-
mission is successful (ACK) or unsuccessful (NACK). The
feedback is sent via the feedback (backward) channel that is
reliable with an i.i.d. random delay.

To clarify the system model, we set i ∈ {1, 2, · · · } as the
label of a successful delivery in chronological order. Let us
denote the ith epoch to be the time period between i−1th and
ith successful deliveries. We denote Mi as the total number
of samples attempted during the ith epoch. Then, Mi’s are
i.i.d. and has a geometric distribution with parameter 1 − α.
We use j to describe sample process at the ith epoch, where
we have 1 ≤ j ≤ Mi. The case j = 1 implies that the
previous forward transmission is successful. Upon delivery,
the destination immediately sends the feedback to the sampler
and arrives at Ai,j via the backward channel with an i.i.d. delay
Xi,j , which satisfies E[Xi,j ] <∞. Then, the jth sample in the
ith epoch is generated at Si,j and is delivered at Di,j through
the forward channel with an i.i.d. delay Yi,j , which satisfies
E[Yi,j ] <∞.

We assume that the backward delays Xi,j’s and forward
delays Yi,j’s are mutually independent. In addition, the source
generates a sample after receiving the feedback of the previous
sample1, i.e., Si,j ≥ Ai,j . In other words, we have a non-
negative waiting time Zi,j for all epoch i and sample j. Thus,
the forward channel is always available for transmission at

1This assumption arises from the stop-and-wait Automatic Repeat Request
(ARQ) mechanism. When the backward delay Xi,j = 0, the policy that
samples ahead of receiving feedback is always suboptimal. Because such a
policy takes a new sample when the channel is busy and can be replaced by a
policy that samples at exact time of receiving feedback [5]. When Xi,j 6= 0,
however, it may be optimal to transmit before receiving acknowledgement,
which is out of the scope of this paper.
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Figure 2: Evolution of the age ∆t over time. The ith epoch
starts from Di−1,Mi−1 to Di,Mi .

Si,j . and we have Di,j = Si,j + Yi,j . Finally, note that the
total transmission delay needed in each epoch has a finite
expectation by Wald’s equation:

E

Mi∑
j=1

(Xi,j + Yi,j)

 = E [Xi,j + Yi,j ]E [Mi] <∞. (1)

After introducing the system model, we describe age of
information. Age of information (or simply age) is the metric
for evaluating data freshness and is equal to the time elapsed
between the current time t and the generation time of the fresh-
est delivered packet [1]. Let Ut = max{Si,Mi

: Di,Mi
≤ t}.

Note that only the Mith sample is successfully delivered for
the ith epoch. Then, the age of information ∆t at current time
t is defined as

∆t = t− Ut. (2)

We plot the evolution of the age (2) in Fig. 2. Upon each
successful delivery time Di,Mi , the age decreases to Yi,Mi ,
the transmission delay of the newly generated packet. In other
times, the age increases linearly over time. In all, the age is
updated at the beginning of each epoch and keeps increasing
during the epoch. Suppose that Di,Mi

≤ t < Di+1,Mi+1
, then

the age is also defined as

∆t = t− Si,Mi
, if Di,Mi

≤ t < Di+1,Mi+1
. (3)

B. Remote Estimation and Kalman Filter

To simplify, we introduce some notations. For any multi-
dimensional vector O, we denote OT as the transpose of O.
We denote In×n, 0n×m as the n×n identity matrix and n×m
zero matrix, respectively. For a given n×n matrix N , we set
tr(N) as the trace of N , i.e., the summation of the diagonal
elements of N .

In this subsection, we assume that the destination is an
estimator, and the source process Ot is an n-dimensional

diffusion process that is defined as the solution to the following
stochastic differential equation:

dOt = −ΘOtdt+ ΣdWt, (4)

where Θ and Σ are n × n matrices, and Wt is the n-
dimensional Wiener process such that we have E[WtW

T
s ] =

In×n min{s, t} for all 0 ≤ t, s ≤ ∞. The process Ot
represents the behavior of many physical systems [22].

The key difference from previous works, e.g., [6], [10], [15],
[21] is that the estimator not only receives the accurate samples
OSi,j at time Si,j but also has an instant noisy observation
of the process Ot, called Bt, as is illustrated in Fig. 1. The
observation process Bt is an m-dimensional vector and is
modeled as

Bt = HOt + Vt, (5)

where H is an n × m matrix and Vt is a zero mean white
noise process such that for all 0 ≤ t, s ≤ ∞, we have

E[VtV
T
s ] =

{
R t = s;
0m×m t 6= s,

(6)

where R is an m×m positive definite matrix. We suppose that
Wt and Vt are uncorrelated such that we have E[WtV

T
s ] =

0n×m for all 0 ≤ t, s ≤ ∞.
The objective of the estimator is to provide an estimation

Ôt for minimum mean squared error (MMSE) E[||Ot− Ôt||2]
based on the causally received information. Compared with
[10], the MMSE in our study can be reduced due to the
additional observation process Bt. Using the strong Markov
property Ot [23, Eq. (4.3.27)] and the assumption that the
sampling times are independent of Ot, as is shown our
technical report [24], the MMSE estimator is determined by

Ôt = E
[
Ot|{Bτ}Si,Mi≤τ≤t, OSi,Mi

]
, t ∈ [Di,Mi

, Di+1,Mi+1
).

(7)
According to (7), we find that the MMSE estimator Ôt is
equal to that of the Kalman filter [22]. Therefore, in this
work, we use the Kalman filter as the estimator. At time t, the
Kalman filter utilizes both the exact sample OSi,Mi and noisy
observation Bt and provides the minimum mean squared error
(MMSE) estimation Ôt. Let Nt , E[(Ot − Ôt)(Ot − Ôt)T ]
be the covariance matrix of the estimation error Ot − Ôt. It
is easy to see that the MMSE E[||Ot − Ôt||2] of the Kalman
filter at time t is equal to tr(Nt).

The estimation process works as follows: Once a sample
is delivered to the Kalman filter at time Di,Mi , the Kalman
filter re-initiates itself with the initial condition Nt = 0n×n
when t = Si,Mi

and starts a new estimation session. Then,
during the time period [Di,Mi

, Di+1,Mi+1
), the Kalman filter

uses the observations Bt for t ≥ Si,Mi
over time to estimate

the process Ot.
In this multiple dimension case, we have the following

result:

Proposition 1. For t ∈ [Di,Mi , Di+1,Mi+1) and i =
0, 1, 2, . . ., the MMSE tr(Nt) of the process Ot is an increas-
ing function of the age ∆t, where ∆t = t− Si,Mi

.



Proof. See our technical report [24].

As a result of Proposition 1, when the sampling times
Si,j’s are independent of Ot, the MMSE is still an increasing
function of age ∆t. When Si,j’s are related to Ot, the MMSE
is not necessary a function of ∆t.

Note that in one-dimensional case where n = m = 1, we
use scalars θ, σ, h, r, nt to replace the matrices Θ,Σ, H,R,Nt,
respectively. The Ornstein–Uhlenbeck (OU) process is defined
as a one-dimensional special case of diffusion process (4)
where θ > 0 [25]. Then, we have

Proposition 2. Suppose that n = m = 1. Then, for t ∈
[Di,Mi

, Di+1,Mi+1
) and i = 0, 1, 2, . . ., the MMSE nt of the

OU process Ot is given by

nt = n̄− 1

l +
(

1
n̄ − l

)
e2

√
θ2+σ2h2

r ∆t

, (8)

where ∆t = t− Si,Mi
and the constants n̄, l are defined as

n̄ =
−θr +

√
(θr)2 + σ2rh2

h2
, (9)

l =
h2

2
√

(θr)2 + σ2rh2
. (10)

Moreover, from (8), nt is a bounded and increasing function
of the age ∆t.

Proof. See our technical report [24].

In the special case, when the side observation has zero
knowledge of process Ot, i.e., h = 0 for t ≥ 0, then the
estimator Ôt is equal to that in [10]. Therefore, Proposi-
tion 2 reduces to [10, Lemma 4], i.e., the MMSE nt for
t ∈ [Di,Mi

, Di+1,Mi+1
) and i = 0, 1, 2, . . . is given by

nt =
σ2

2θ

(
1− e−2θ∆t

)
, (11)

moreover, nt for h = 0 is a bounded and increasing function
of age ∆t.

III. PROBLEM FORMULATION FOR GENERAL AGE
PENALTY

The function in Proposition 2 is not the only choice of non-
linear age functions. In this paper, to achieve data freshness in
various applications, we consider a general type of age penalty
function. The age penalty function p : [0,∞)→ R is assumed
to be non-decreasing and need not be continuous or convex.

We further assume that E
[ ∫ δ+∑Mi

j=1(Xi,j+Yi,j)

δ p(t)dt
]
< ∞

and E
[
p
(
δ +

∑Mi

j=1(Xi,j + Yi,j)
)
dt
]
<∞ for any given δ.

We list another two categories of applications for age
penalty functions. First, the age penalty functions describe
the dissatisfactions of the stale information updates in various
applications [4]: (i) the online learning in advertisement place-
ment and online web ranking, e.g, power function p(δ) = δa

for a > 0; (ii) Periodic Inspection and Monitoring, e.g.,
p(δ) = baδc. Second, some applications are shown to be

closely related to nonlinear age functions, such as auto-
correlation function of the source, remote estimation, and
information based data freshness metric [5].

We then define the sampling policies. We denote Hi,j as
the sample path of the history information previous to Ai,j ,
including sampling times, forward channel conditions, and
channels delays. We denote Π as the collection of sampling
policies {Si,j}i,j , or equivalently the waiting times {Zi,j}i,j ,
such that Si,j ≥ Ai,j for each (i, j), and Si,j(dsi,j |Hi,j) is
a Borel measurable stochastic kernel [26, Chapter 7] for any
possible Hi,j . Further, we assume that Ti = Si,1 − Si−1,1

is a regenerative process: there exists 0 ≤ k1 < k2... such
that the post-kj process {Tkj+i, i = 0, 1 · · · } has the same
distribution as the post-k1 process {Tk1+i, i = 0, 1 · · · } and is
independent of the pre-kj process {Ti, i = 1, 2, · · · , kj − 1};
in addition, E [kj+1 − kj ] < ∞, E [Sk1,1] < ∞ and 0 <
E
[
Skj+1,1 − Skj ,1

]
<∞, j = 1, 2, · · · 2

The authors in [15] have stated that: to reduce the estimation
error related to the Wiener process, it may be optimal to wait
on both the source and the destination before transmission.
However, in this paper, it is sufficient to only wait at the source
to minimize the age. To validate this statement, consider any
policy that waits on both the source and the destination. We
first remove the waiting time at the destination. The removed
waiting time is then added to the following waiting time at
the source. The replaced policy we propose has the same age
performance as the former one.

Our objective in this paper is to optimize the long term
average expected age penalty:

popt = inf
π∈Π

lim sup
T→∞

1

T
E

[∫ T

0

p(∆t)dt

]
. (12)

A. Additional Assumption and its Rationale

We provide the following assumption:

Assumption 1. (a) If α > 0, the backward delay Xi,j ∈ [0, x̄],
and the waiting time Zi,j ∈ [0, z̄] for all i, j, where z̄ satisfies3

p(z̄) ≥
E
[∫ Yi−1,Mi−1

+Xi,1+Y ′

Yi−1,Mi−1
p(t)dt

]
E [Xi,1 + Y ′]

, (13)

Y ′ , Yi,1 +

Mi∑
j=2

(Xi,j + Yi,j) . (14)

(b) There exists an increasing positive function v(δ) such
that the function G(δ) = E

[∫ δ+x̄+z̄+Yi,j
δ

|p(t)|dt
]

satisfies

2In this paper, we will optimize lim supT→∞(1/T )E
[∫ T

0 p(∆t)dt
]

.

However, a nicer objective is optimizing limn→∞ E
[∫Dn,Mn

0 p(∆t)dt
]

/E
[
Dn,Mn

]
. If Ti is a regenerative process, then the two objective functions

are equal [27], [28]. If no conditions are applied, they are different.
3In this paper, we set the summation operator

∑b
j=a to be 0 if b < a for

any given integers a, b.



maxδ≥0 |G(δ)/v(δ)| <∞. In addition, there exists ρ ∈ (0, 1)
and positive integer m, such that

αm
E
[
v(δ +mx̄+mz̄ +

∑m
j=1 Yj)

]
v(δ)

≤ ρ (15)

holds for all δ ≥ 0, where Y1, · · · , Ym are an i.i.d. sequence
with the same distribution as Yi,j’s.

When the forward channel is reliable, i.e., α = 0, then
Assumption 1 is negligible by letting v(δ) = G(δ). Thus,
Assumption 1 restricts on the choices of age penalty p(·) when
α > 0. Note that the optimal sampling policy of the cases
α = 0 and Xi,j = 0 has been solved in [4], [5].

In the following corollary, we provide a list of age penalties
p(·) that Assumption 1 is satisfied for α > 0.

Corollary 1. For any one of the following conditions, Assump-
tion 1 holds:

(a) The penalty function p(·) is bounded, i.e., there exists a
constant p̄ such that p(δ) < p̄ for all δ ≥ 0.

(b) There exists n > 0 such that p(δ) = O(δn)4 and the
Yi,j’s have a finite n+ 1-momentum, i.e., E

[
Y n+1
i,j

]
<∞.

(c) There exists a > 0 and b < 1 such that
∫
p(δ)dδ =

O(eaδ
b

) and the Yi,j’s are bounded.

Proof. See our technical report [24].

In various fields of MDP, it is shown that the value function
of an optimal policy is the solution to the Bellman equation.
In this paper, we figure out a policy and its value function that
is indeed the solution to the Bellman equation. If the Bellman
equation has a unique solution, then our proposed policy is
optimal. Otherwise, we cannot guarantee the optimality of
our proposed policy. Assumption 1 arises from the contraction
mapping assumption [29], [30] that guarantees the uniqueness.
In other words, Assumption 1 serves as a sufficient condition
to the uniqueness of the Bellman equation (but may not be
necessary). Corollary 1 implies that there are a wide range of
age penalty functions that satisfy Assumption 1. For example,
the age penalty function derived in Proposition 2 satisfies
Assumption 1. Indeed, Assumption 1 holds as long as the age
penalty function grows slower than exponential only at some
points.

The inequality (13) guarantees that the optimal policy we
will provide in Section IV is feasible. There exists a constant
z̄ such that (13) holds; See our technical report [24] for the
proof of this statement. The high-level idea of this statement
is that the right hand side of (13) represents an average age
penalty among the finite expected length and is no more than
p(z̄) for some z̄. Note that the right hand side of (13) does
not depend on i since the Yi,j’s and the Xi,j’s are i.i.d and
mutually independent.

4We denote f(δ) = O(g(δ)) if there exists constants c and δ′ such that
|f(δ)| ≤ c|g(δ)| for all δ > δ′.

IV. OPTIMAL SAMPLING POLICY

In this section, we provide an optimal solution to (12):

Theorem 1. If p(·) is non-decreasing, the Yi,j’s, Xi,j’s are
i.i.d., mutually independent, and E[Yi,j ] <∞, and Assumption
1 follows, then the optimal solution to (12) for i = 1, 2, ... is
illustrated as follows:

Zi,1(β) = inf
z

{
z ≥ 0 :

EY ′
[
p(Yi−1,Mi−1

+Xi,1 + z + Y ′)
]
≥ β

}
, (16)

Zi,j(β) =0 j = 2, 3, ..., (17)

Y ′ = Yi,1 +
∑Mi

j=2(Xi,j + Yi,j), and β is the unique solution
to

E

[∫ Yi−1,Mi−1
+Xi,1+Zi,1(β)+Y ′

Yi−1,Mi−1

p(t)dt

]
− βE [Xi,1 + Zi,1(β) + Y ′] = 0. (18)

Moreover, β = popt is the optimal objective value of (12).

Proof. See Section V.

In Theorem 1, the case j = 1 in (16) implies that the
previous transmission is successful, and the system starts the
new epoch from i− 1 to i. Since the age drops to Yi−1,Mi−1

at the successful delivery time Di−1,Mi−1 , the current age
state at arrival time Ai,1 is Yi−1,Mi−1 + Xi,1. The case
j = 2, 3, ... in (17) implies that the previous transmission is
instead unsuccessful and the system stays within epoch i.

Theorem 1 provides an optimal policy with an interesting
structure. First, by (16), in each epoch, the optimal waiting
time for the first sample Zi,1(β) has a simple threshold type
structure on the current age Yi−1,Mi−1 + Xi,1. Since the
waiting times for j = 2, 3, ... are zero, Y ′ is the remaining
transmission delay needed for the next successful delivery.
Note that β is equal to the optimal objective value popt in
problem (12). Therefore, the waiting time Zi,1(β) in (16) is
chosen such that the expected age penalty upon delivery is no
smaller than popt. Second, by (17), the source sends the packet
as soon as it receives negative feedback, i.e., the previous
transmission is not successful. This is quite different from
most of the previous works assuming reliable channels, e.g.,
[4], [5], [8], [9], where for all samples, the source may wait
for some time before transmissions.

In addition, the root of β in (18) can be solved efficiently.
For simplicity, we set

f1(β) = E

[∫ Yi−1,Mi−1
+Xi,1+Zi,1(β)+Y ′

Yi−1,Mi−1

p(t)dt

]
, (19)

f2(β) = E [Xi,1 + Zi,1(β) + Y ′] . (20)

Then, the function f(β) , f1(β) − βf2(β) satisfies the
following mathematical property:

Lemma 1. (1) f(β) is concave, and strictly decreasing in
β ∈ [p, p̄] ∩ R, where p = p(0) and p̄ = limδ→∞ p(δ).



(2) There exists a unique root β ∈ [p, p̄] ∩ R such that
f(β) = 0.

Proof. See our technical report [24].

Algorithm 1: Bisection method for solving (18)

1 Given function f(β) = f1(β)− βf2(β). k1 close to p,
k2 close to p̄, k1 < k2, and tolerance ε small.

2 repeat
3 β = 1

2 (k1 + k2)
4 if f(β) < 0: k2 = β. else k1 = β
5 until k2 − k1 < ε
6 return β

As a result, we can use a low complexity algorithm such as
bisection search and fixed-point iterations to obtain the optimal
objective value popt. The bisection search approach to solving
popt is illustrated in Algorithm 1.

One common sampling policy is the zero-wait policy, which
samples the packet once it receives the feedback, i.e., Zi,j = 0
for all (i, j) [3]. The zero-wait policy maximizes the through-
put and minimizes the delay. However, by Theorem 1, the
zero-wait policy may be suboptimal on age. The following
result provides the necessary and sufficient condition when
the zero-wait policy is optimal. We get

Corollary 2. If p(·) is non-decreasing, the Yi,j’s, Xi,j’s are
i.i.d., mutually independent, and E[Yi,j ] <∞, and Assumption
1 follows, then the zero-wait policy is optimal if and only if

ess inf EY ′ [p(Y +X + Y ′)] ≥
E
[∫ Y+X+Y ′

Y
p(t)dt

]
E [X + Y ′]

, (21)

where Y ′ = Yi,1 +
∑Mi

j=2(Xi,j + Yi,j), Y = Yi−1,Mi−1
, X =

Xi,1 and we denote essinf E = inf {e : P(E ≤ e) > 0} for
any random variable E.

Proof. See our technical report [24].

When the channel delays are constant, we can get from
Corollary 2 that

Corollary 3. If p(·) is non-decreasing and satisfies Assump-
tion 1, and the Yi,j’s, Xi,j’s are constants, then the zero-wait
policy is the solution to problem (12).

Proof. See our technical report [24].

Theorem 1 is an extension to some key results in [5], [9].
When the forward channel is reliable, i.e., Mi = 1 for all
i or α = 0, Theorem 1 can be reduced to the result in [9].
Further, when Mi = 1, we extends [9] in two folds: (i) The
age penalty p(·) is allowed to be negative or discontinuous. (ii)
The channel delays Yi,1, Xi,1 have a finite expectation and do
not need to be bounded. Note that when Mi = 1, Assumption
1 is negligible. When Mi = 1, and there is no backward delay
(Xi,1 = 0), our result reduces to [5, Theorem 1].

The study in [7, Theorem 2] proves the optimality of the
zero-wait policy among the deterministic policies under unreli-
able forward channel. This result corresponds to Corollary 3, a
special case of Theorem 1. Our paper extends [7] in two folds:
(i) We allow the policy space Π to be randomized. Among
randomized policies, due to the disturbances on the previous
sampling times, the current sampling time is dependent on the
previous ones, which is different from [7]. (ii) We consider
random two-way delays, which extends the constant one-way
delay in [7].

V. PROOF OF THE MAIN RESULT

In this section, we provide the proof of Theorem 1. In
Section V-A, we first show that the long term average problem
is equivalent to a per-epoch problem. In Section V-B, we solve
the per-epoch problem. In Section V-C, we summarize our
technical contribution compared with related works. Due to
the space limit, the detailed proof of this section is relegated
to our technical report [24].

A. Reformulation of Problem (12)
In this subsection, we decompose the original problem to a

per-epoch problem. The idea is motivated by recent studies that
reformulate the average problem into a per-sample problem
[4]–[6], [9], [10].

Recall that the age decreases to Yi−1,Mi−1 at time
Di−1,Mi−1

. Note that Yi−1,Mi−1
is independent of the history

information. Thus, the age evolution at the ith epoch is inde-
pendent of the sampling decisions from the previous epochs
0, 1, 2, ..., i − 1. Therefore, to minimize the average cost at
each epoch separately is sufficient to minimize the average
cost of long term multiple epochs.

Thus, for any epoch i, the original problem (12) satisfies

popt = inf
π∈Πi

E
[∫ Yi−1,Mi−1

+
∑Mi
j=1(Xi,j+Zi,j+Yi,j)

Yi−1,Mi−1
p(t)dt

]
E
[∑Mi

j=1(Xi,j + Zi,j + Yi,j)
] ,

(22)

where we define the policy space Πi as the collection of
sampling decisions (Zi,1, Zi,2, ...) at epoch i such that the
stochastic kernel

Zi,j(dzi,j |yi−1,Mi−1 , xi,1, zi,1, yi,1, . . . , zi,j−1, yi,j−1, xi,j)

is Borel measurable. The difference between Πi and Π is that
the sampling decisions in Πi do not depend on the history
information from previous epochs (except Yi−1,Mi−1 ). Hence,
it is easy to find that Πi ⊂ Π.

Using Dinkelbach’s method [31], we can get

Lemma 2. An optimal solution to (22) satisfies

inf
π∈Πi

E

[∫ Yi−1,Mi−1
+
∑Mi
j=1(Xi,j+Zi,j+Yi,j)

Yi−1,Mi−1

p(t)dt

− popt

Mi∑
j=1

(Xi,j + Zi,j + Yi,j)
∣∣∣ Yi−1,Mi−1

, Xi,1

]
.

(23)



Thus, for any epoch i, we will solve Zi,1, Zi,2, ... according
to (23).

B. Solution to Per-epoch Problem
We will solve problem (23) given that Yi−1,Mi−1

= δ and
Xi,1 = x. Since the epoch number i does not affect problem
(23), in this subsection, we will remove the subscription i from
Mi, Xi,j , Yi,j , Zi,j and replace them by M,Xj , Yj , Zj for the
ease of descriptions.

Different from [4]–[6], [10], the per-epoch problem (23) is
an MDP and cannot be reduced to the per-sample problem
in the sense that the age is not refreshed under failed trans-
missions. According to (23), we define the value function Jπ
under a policy π ∈ Πi with an initial age state δ ≥ 0 (at
delivery time) and backward delay x ≥ 0:

Jπ(δ, x) =E

[∫ δ+
∑M
j=1(Xj+Zj+Yj)

δ

p(t)dt

− popt

M∑
j=1

(Xj + Zj + Yj)
∣∣∣ X1 = x

]
(24)

=E

 M∑
j=1

g(∆j , Xj , Zj)
∣∣∣ ∆1 = δ,X1 = x

 , (25)

where the instant cost function g(δ, x, z) with state (δ, x) and
action z is defined as

g(δ, x, z) = EY

[∫ δ+x+z+Y

δ

p(t)dt− popt(x+ z + Y )

]
,

(26)

where Y has the same delay distribution with the Yj’s and the
age state evolution is described as

∆j+1 = ∆j +Xj + Zj + Yj , j = 1, 2, ...M − 1, (27)

with initial age state ∆1 = δ and initial backward delay x.
Also, the policy π ∈ Πi has a Borel measurable stochastic
kernel Zj(dzj |δ1, x1, z1, . . . , δj , xj). Thus, Jπ(δ, x) is Borel
measurable and problem (23) is equivalent to a shortest path
MDP problem. Solving (23) is equivalent to solving

J(δ, x) = inf
π∈Πi

Jπ(δ, x). (28)

Besides, our shortest path problem (25) is equivalent to a
discounted problem:

Jπ(δ, x) =

∞∑
j=1

αj−1E
[
g(∆j , Xj , Zj)

∣∣∣ ∆1 = δ,X1 = x
]
.

(29)

Note that (29) is motivated by [32, Chapter 5] that illustrates
the discounted problem is equivalent to a special case of
shortest path problem.

Recall that uncountable infimum of Borel measurable func-
tions is not necessary Borel measurable. Problem (23) has
an uncountable state space. Thus, the optimal value function
J(δ, x) defined in (28) may not be Borel measurable5. One of

5see [26], [29] for counterexamples. In discrete time case where the system
time is slotted, we do not have this challenge.

the methods to overcome this challenge is to enlarge the policy
spaces. We define a collection of policies Π′i such that the
stochastic kernel Zj(dZj |δ1, x1, z1, . . . , δj , xj) is universally
measurable [26]. Note that every Borel measurable stochastic
kernel is a universally measurable stochastic kernel, so we
have Πi ⊂ Π′i.

Note that if π ∈ Π′i, we denote Jπ(δ, x) as the discounted
cost of π given in (29). For all given age state δ and delay x,
we define

J ′(δ, x) = inf
π∈Π′i

Jπ(δ, x). (30)

When α = 0, problem (23) (equivalently, (28)) or the
extended problem (30) becomes a single sample problem
and there is no bound restriction to the instant cost function
g(δ, x, z). However, in the unreliable transmission case where
α > 0, problem (23) contains multiple samples. In the
case of multiple samples, most of the literatures of dynamic
programming e.g., [26], [29], [30], [32]–[36] require that the
instant cost function g(δ, x, z) is bounded from below. Here,
we have

Lemma 3. There exists a value λ such that g(δ, x, z) ≥ −λ
and Jπ(δ, x) ≥ −λ/(1 − α) for all (δ, x, z) and any policy
π ∈ Π′i.

By Lemma 3 and [26, Corollary 9.4.1], J ′(δ, x) is lower
semianalytic [26]. Note that any real-valued Borel measurable
function is lower semianalytic. This allows us to consider
the Bellman operator based on a general lower semianalytic
function u(δ, x). For any deterministic and stationary policy
π ∈ Πi, we define an operator Tπ on the function u with
action z ≥ 0:

Tπu(δ, x)

=g(δ, x, π(δ, x)) + αEY,X [u(δ + x+ π(δ, x) + Y,X)] ,
(31)

where Y and X have the same distribution as the i.i.d. forward
delay and backward delay, respectively. We also define the
Bellman operator T on the function u:

Tu(δ, x) = inf
z≥0

g(δ, x, z) + αEY,X [u(δ + x+ z + Y,X)] .

(32)
Note that if the function u(δ, x) is Borel measurable,

Tu(δ, x) is not necessary Borel measurable in the sense that
uncountable infimum of Borel measurable functions is not
necessary Borel measurable. However, if we extend u(δ, x) to
be lower semianalytic, then Tu(δ, x) is also lower semianalytic
[26, Chapter 7]. Thus, both Tπ and T are well-defined. Note
that the expectation on a lower semianalytic function has the
same definition with the expectation on a Borel measurable
function.

We denote u1 = u2 if u1(δ, x) = u2(δ, x) for all δ, x ∈
[0,∞). Using the notation Tπ and T , the discounted problem
(29) along with (30) has the following properties [26, Chapter
9.4]:



Lemma 4. If p(·) is non-decreasing, the Yj’s, Xj’s are i.i.d.,
mutually independent, E[Yj ] <∞, and E[Xj ] <∞, then the
optimal value function J ′(δ, x) defined in (30) satisfies the
Bellman equation:

J ′ = TJ ′, (33)

i.e., the optimal value function J ′ is a fixed point of T .

To derive an optimal policy, we first provide a measurable,
stationary and deterministic policy called µ and then show that
µ is the solution to problem (23).

Definition 1. The stationary and deterministic policy µ(δ, x)
satisfies

µ(δ, x) = max{b− δ − x, 0}, (34)

b = inf
c

c ≥ 0 : E

p(c+ Y1 +

M∑
j=2

(Xj + Yj))

 ≥ popt

 .

(35)

Equation (34) implies that µ ∈ Πi. Upon delivery of the first
sample, age increases to ∆2 = δ+ x+ µ(δ, x) + Y1, which is
larger than max{δ+x, b}. Then, the waiting time for the 2nd
sample is µ(∆2, X2) = 0. Thus, the waiting time at stage 2,...
is 0 under µ. As a result, the policy µ is equivalent to (16)
and (17) in Theorem 1. It remains to show that µ is indeed
optimal to problem (23).

Recall that we denote Jµ(δ, x) to be the value function
with initial state δ, x under the policy µ. Then, we have the
following key result:

Lemma 5. If p(·) is non-decreasing, the Yj’s, Xj’s are i.i.d.,
mutually independent, E[Yj ] <∞, and E[Xj ] <∞, then the
value function Jµ(δ, x) satisfies

Jµ = TJµ. (36)

Lemma 5 tells that Jµ is a fixed point of T . From Lemma
4 (a), J ′ is also a fixed point of T . To show that J ′ = Jµ, it
remains to show that the fixed point of T is unique. If the age
penalty p(·) is bounded, Jµ(δ, x) is bounded. Then, according
to the contraction mapping theorem, the bellman equation (33)
has a unique bounded solution [28], [29], [36], i.e., Jµ = J ′.
Note that there may be unbounded solutions to (33) [34], [35].
If p(·) is unbounded, we need sup-norm weighted contraction
mapping assumption (Assumption 1 in our paper) to show that
Jµ = J ′.

Let us denote Λ = [0,∞)× [0, x̄], where x̄ is the bound of
Xj in Assumption 1. The increasing function v(δ) : [0,∞)→
R+ is called the weighted function with v(0) > 0. Let B(Λ)
denote the set of all lower semianalytic functions u : Λ→ R
such that u(δ, x)/v(δ) is bounded in (δ, x). Note that any real-
valued Borel measurable function is lower semianalytic. From
[29, p. 47], [26, Lemma 7.30.2], B(Λ) is complete under its
norm. We have the following lemma:

Lemma 6. If p(·) is non-decreasing, the Yj’s, Xj’s are i.i.d.,
mutually independent, and E[Yj ] < ∞, and Assumption 1
follows, then for all π ∈ Πi, Jπ ∈ B(Λ).

Under Assumption 1, the waiting time z ∈ [0, z̄]. Hence,
we will replace infz≥0 by infz∈[0,z̄] for the definition of T in
(32). If a function u is lower semianalytic, then the function
Tu is also lower semianalytic.

We have the following result:

Lemma 7. If p(·) is non-decreasing, the Yj’s, Xj’s are i.i.d.,
mutually independent, and E[Yj ] < ∞, and Assumption 1
follows, the following conditions hold:

(a) For any lower semianalytic function u : Λ→ R, if u ∈
B(Λ), then Tπu ∈ B(Λ) for all deterministic and stationary
policy π ∈ Πi, and Tu ∈ B(Λ).

(b) T has an m-stage contraction mapping with modulus ρ,
i.e., for all u1, u2 ∈ B(Λ),

‖Tmu1 − Tmu2‖ ≤ ρ‖u1 − u2‖, (37)

where ρ < 1 as stated in Assumption 1, and the weighted
sup-norm ‖ · ‖ is defined as:

‖u‖ = max
(δ,x)∈Λ

|u(δ, x)|
v(δ)

. (38)

(c) There exists a unique function u ∈ B(Λ) such that Tu = u.

From Lemma 6, Jµ ∈ B(Λ). From Lemma 7(c), Lemma 5
and Jµ ∈ B(Λ), Jµ is the unique solution to Tu = u. From
Lemma 4, Jµ = J ′ and µ is then the optimal policy in Π′i.

Finally, since µ ∈ Πi and Πi ⊂ Π′i, µ is also the optimal
policy in Πi and then J = Jµ. Thus, µ is the solution to
problem (23). Using the proof of Lemma 2, the expectation
of Yi−1,Mi−1

, Xi,1 in (23) (while applying µ) equals 0. This
immediately gets (18). Note that the definition of µ is the same
as (16) and (17). Thus, we complete the proof of Theorem 1.

C. Discussion

Most of the existing studies on AoI sampling assume that
the transmission channel is error-free, i.e., Mi = 1 for all i,
e.g., [2], [4]–[6], [9], [10], [15]. Due to the renewal property,
their original problems are reduced to a single sample problem.
Similarly, our result is equivalent to a single epoch problem
illustrated in (23). If Mi = 1, problem (23) reduces to a single
sample problem, where there is only one decision Zi,1 and is
solved using convex optimization. However, when Mi 6= 1,
problem (23) is an MDP that contains multiple samples. This
MDP cannot be solved by convex optimization (e.g., [2], [4],
[5], [9]) or optimal stopping rules (e.g., [6], [10], [15]) and
leads to the curse of dimensionality.

Therefore, one of our technical contributions is to accurately
solve the MDP in (23). We summarize the high-level idea of
solving (23): First, in Lemma 4, we show the optimal policy
among the extended policy space Π′i with universally mea-
surable stochastic kernel [26] satisfies the Bellman equation.
Then, in Lemma 5, we provide an exact value function that is
the solution to (23). Finally, under Assumption 1, Lemma 7
guarantees the uniqueness of the Bellman equation.

Finally, although we focus on continuous system time in
this paper, our results can be easily reduced to the discrete
time case by removing the content of measure theory.
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Figure 3: Average AoI versus the parameter σ1 of the forward
channel, where σ2 = 1.5 and α = 0.8.
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Figure 4: Average AoI versus the parameter σ2 of the back-
ward channel, where σ1 = 1.5 and α = 0.8.

VI. NUMERICAL RESULTS

In this section, we compare our optimal sampling policy
with the following sampling policies:

1. Zero-wait: Let Zi,j = 0, i.e., the source transmits a
sample once it receives the feedback.

2. One-way (1-way): It falsely assumes that the backward
delay Xi,j = 0 despite that Xi,j may not be zero.

3. Two-way Error-free (2-wayEF) [9]: It assumes that the
forward channel’s probability of failure α = 0 despite that α
may not be zero.

4. One-way Error-free (1-wayEF) [5]: It assumes that
Xi,j = 0 and α = 0.

In this section, we consider linear age penalty p(δ) = 2δ
and lognormal distributions on both forward and backward
delay with scale parameters σ1, σ2, respectively. Note that the
lognormal random variable with scale parameter σ is expressed
as eσR, where R is the standard normal random variable. The
numerical results below show that our proposed policy always
achieves the lowest average age.

Fig. 3 and Fig. 4 illustrate the relation between age and
σ1, σ2, respectively. In Fig. 3, we plot the evolution of average
age in σ1 given that σ2 = 1.5 and α = 0.8. As σ1 increases,
the lognormal distribution of the forward channel becomes
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Figure 5: Average AoI versus 1/(1−α), where σ1 = 1.5 and
σ2 = 2.3.

more heavy tailed. We observe that Zero-wait policy evolves
much quicker than other policies in σ1. In addition, 2-wayEF
and 1-wayEF policies grow faster than the optimal policy in
σ1. In Fig. 4, we fix σ1 = 1.5 and plot the average age of
the listed policies in σ2. Unlike Fig. 3, 1-way and 1-wayEF
policies perform poorly, since they fails to take highly random
backward delay into account.

Fig. 5 depicts the evolution of average age in 1/(1 − α),
where (σ1, σ2) = (1.5, 2.3), respectively. Note that 1/(1−α)
is the average number of samples attempted for a successful
transmission. In Fig. 5, when 1/(1−α) increases, the gap be-
tween 2-wayEF policy and our optimal policy increases. Also,
1-way and 1-wayEF fails to improve the age performance.

In summary, when either one of the channels is highly
random, (i) Zero-wait policy is far from optimal, (ii) the age
performance of 1-wayEF or 2-wayEF policy gets worse if the
forward channel is more unreliable, (iii) 1-way and 1-wayEF
polices are far from optimal if the backward channel is highly
random.

VII. CONCLUSION

In this paper, we design a sampling policy to optimize data
freshness, where the source generates the samples and sends
to the remote destination via a fading forward channel, and the
acknowledgements are sent back via a backward channel. We
overcome the curse of dimensionality that arises from the time-
varying forward channel conditions and the randomness of the
channel delays in both directions. We reveal that the optimal
sampling policy has a simple threshold based structure, and
the optimal threshold is equal to the objective value of our
problem and is computed efficiently.
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