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Abstract—We consider the problem of minimizing the age of information when a source can transmit status updates over two
heterogeneous channels. Our work is motivated by recent developments in 5G mmWave technology, where transmissions may occur
over an unreliable but fast (e.g., mmWave) channel or a slow reliable (e.g., sub-6GHz) channel. The unreliable channel is modeled as a
time-correlated Gilbert-Elliot channel at a high rate when the channel is in the “ON” state. The reliable channel provides a deterministic
but lower data rate. The scheduling strategy determines the channel to be used for transmission in each time slot, aiming to minimize
the time-average age of information (AoI). The optimal scheduling problem is formulated as a Markov Decision Process (MDP), which
is challenging to solve because super-modularity does not hold in a part of the state space. We address this challenge and show that a
multi-dimensional threshold-type scheduling policy is optimal for minimizing the age. By exploiting the structure of the MDP and
analyzing the discrete time Markov chains (DTMCs) of the threshold-type policy, we devise a low-complexity bisection algorithm to
compute the optimal thresholds. We compare different scheduling policies using numerical simulations.

Index Terms—Age of information, hybrid channels, scheduling, and mmWave communications.
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1 INTRODUCTION

T IMELY updates of the system state are of great sig-
nificance in cyber-physical systems, such as vehicular

networks, sensor networks, and UAV navigations. In these
systems, freshly generated data is more valuable than out-
dated data. Age of information (AoI), or simply age, was
introduced as an end-to-end application-layer metric to
measure information freshness [2]–[25]. The age at time t
is defined as ∆(t) = t−Ut, where Ut is the generation time
of the freshest packet that has been received by time t. The
difference between age and classical performance metrics
of wireless networks like delay and throughput is evident
even in elementary queuing systems [3]. High throughput
requires frequent status updates, which would cause a long
waiting time in the queue that worsens timeliness. On the
other hand, delay and waiting time can be greatly reduced
by decreasing the update frequency, which, however, may
increase the age because the status is updated infrequently.

In future wireless networks, sub-6GHz frequency spec-
trum is insufficient for fulfilling the high throughput de-
mand of emerging real-time applications such as VR/AR
applications, where contents must be delivered within 5-
20 ms of latency, requiring a high throughput of 400-
600 Mbps [26]. To address this challenge, 5G technology
utilizes high-frequency millimeter wave (mmWave) bands
such as 28/38 GHz, which provide a much higher data
rate than sub-6GHz [27]. Verizon and Samsung demon-
strated that a throughput of nearly 4Gbps was achieved
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in their mmWave demo system, using a 28GHz frequency
band with 800MHz bandwidth [28]. However, unlike sub-
6GHz spectrum bands, mmWave channels are highly un-
reliable due to blocking susceptibility, strong atmospheric
absorption, and low penetration. Real-world smartphone
experiments have shown that even obstructions by hands
could significantly degrade the mmWave throughput [29].
One solution to mitigate this effect is to let sub-6GHz
coexist with mmWave to form two heterogeneous channels,
so that the user equipment can offload data to sub-6GHz
when mmWave communications are unfeasible [30]–[33].
Some work has already been done based on mmWave/sub-
6GHz heterogeneous networks [34], [35]. However, how to
improve information freshness in such hybrid networks has
remained largely unexplored.

In this study, we consider a hybrid status updating sys-
tem where a source can transmit the update packets over an
unreliable but fast mmWave channel or a slow reliable sub-
6GHz channel. Our objective is to find a dynamic channel
scheduling policy that minimizes the long-term average
expected age. The main contributions of this paper are
stated as follows:

• The optimal scheduling problem for minimizing the
age over heterogeneous channels is formulated as a
Markov Decision Process (MDP). The state transition
of this MDP is complicated for two reasons: (i) the
two channels have different data rates and packet
transmission times, and (ii) the state of the unreliable
mmWave channel is correlated over time. We prove
that there exists a multi-dimensional threshold-type
scheduling policy that is optimal. This optimality
result holds for all possible values of the channel
parameters. One of the tools for proving this result
is super-modularity [36]. Because of the complicated
state transitions, super-modularity holds in a part
of the state space but not in the rest of the state
space. This is a key difference from the scheduling
problems considered earlier in prior studies, e.g.,
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[10], [22], [23], [37]–[40]. To conquer this challenge,
we develop additional techniques to show that the
optimal scheduling policy has a threshold-type struc-
ture over the entire state space, including the part of
state space where super-modularity does not hold.

• The state transition of the discrete time Markov
chain (DTMC) for the threshold-type scheduling pol-
icy is complicated. Nonetheless, we show that the
thresholds of the optimal scheduling policy can be
evaluated efficiently, by using closed-form expres-
sions or a low-complexity bisection search algorithm.
Compared with the algorithms for calculating the
thresholds and optimal scheduling policies in, e.g.,
[10], [22], [23], [37]–[40], our solution algorithms have
much lower computational complexities.

• In the special case that the state of the unreliable
mmWave channel is independent and identically
distributed (i.i.d.) over time, the optimal scheduling
policy is shown to possess a simpler and interest-
ing form. Finally, numerical results are provided to
validate our results by comparing with several other
policies.

2 RELATED WORKS

Age of information has become a popular research topic
in recent years, e.g., [2]–[25]. A comprehensive survey of
the area was recently provided in [2]. First, there has been
substantial work on age performance analysis in queuing
systems [3]–[8]. Average age and peak age in elementary
queuing systems were analyzed in [3]–[5]. A similar setting
was considered in [6] where the inter-arrival times or service
times follow a Gilbert-Elliot two-state Markov chain model.
A Last-Generated, First-Served (LGFS) policy was shown
(near) optimal in single-source, multi-server, and multihop
networks with arbitrary packet generation and arrival pro-
cess [7], [8]. These results were extended to multi-source
multi-server networks in [9].

Next, there has been a significant effort in age-optimal
sampling [10]–[12], [21], [22]. The optimal sampling policy
was provided for minimizing a monotonic age function in
[10], [21], [22]. Joint Sampling and scheduling in multi-
source systems were analyzed in [12] where the objective
problem could be decoupled into maximum age first (MAF)
scheduling [9] and an optimal sampling problem. Finally,
age in wireless networks has been substantially explored in
[13], [14], [16]–[20]. Scheduling in a broadcast network with
random arrivals was provided where Whittle index policy
can achieve (near) age optimality [13]. Some other age-
optimal scheduling for cellular networks were considered
in [14], [16]–[18], [25]. A class of age-optimal scheduling
policies was analyzed in the asymptotic regime when the
number of sources and channels both grow to infinity [19].
An age-optimal multi-path routing strategy was introduced
in [20].

Recently, there have been studies on integrating two
heterogeneous channels: mmWave and sub-6GHz [32]–[35],
[41]–[44]. In [33], a comprehensive tutorial is proposed,
where the user equipment should be equipped with the
low-band sub-6GHz and multiple mmWave links to combat
the high interruption rates of mmWave. In [32], the paper
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Figure 1. The system model for status updates in heterogeneous chan-
nels. The scheduler chooses mmWave (Channel 1) or sub-6GHz (Chan-
nel 2) for transmission over time.
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Figure 2. The Gilbert-Elliot ON -OFF Markov model for Channel 1.

designs integrated mmWave and sub-6GHz architectures to
achieve enhanced mobile (eMBB) services and ultra-reliable
low-latency communication (URLLC). The experimental re-
sults demonstrate that this new scheme can achieve higher
reliability compared to only using a single channel and
less handover failure rate compared to the conventional
handover scheme. In [42], the authors design the small-
sized antenna with a radio frequency PIN diode so that the
antenna can switch between 3.5 GHz and 28 GHz frequency
band. Multiple-input multiple-output (MIMO) is formed to
enhance the functionality.

In this paper, we assume that the source is equipped
with an antenna that can switch between the two frequency
bands. Therefore, a packet can be transmitted using only
one channel at a time, i.e., the two channels cannot be used
simultaneously. In the literature, both cases are considered:
(i) only using one channel at at time, e.g., in [42], [44], (ii)
using both channels simultaneously, e.g., in [32]. Typically,
if the source uses a single antenna (possibly with MIMO
to enhance the functionality) that can switch between the
two frequency bands, the first case holds. If the second case
holds, the transceiver needs multiple single-band antennas.
An example of designing such a band-switching antenna is
described in [42]. The antenna is composed of a microstrip
patch and a meandered structure that are connected with
a PIN diode with ON/OFF states. When the PIN diode
is in the ON state, it allows the current to flow from the
microstrip patch to the meandered structure to operate at
3.5GHz (sub-6GHz); when the PIN diode is in the OFF
state, it limits the radiating structure to only the microstrip
patch, resulting in resonance at 28GHz (mmWave). At any
time, only one frequency band can resonate on the antenna.
Compared to multiple antennas, one of the advantages of
such a single antenna is to reduce the transceiver size and
avoid electromagnetic interference. Similar to [42], another
example is provided in [44], where a low-pass filter replaces
the PIN diode to achieve frequency reconfigurations. Differ-
ent from the PIN diode, the low-pass filter is a microstrip,
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so the antenna can operate on up to three frequency bands
(2.8GHz, 28GHz and 38GHz). In this paper, our focus is on
the first case that only allows one frequency band at a time.

However, the age-optimal scheduling problem via het-
erogeneous channels has been largely unexplored yet. Tech-
nical results for similar models were reported in [23], [24].
In these studies, it is assumed that the first channel is unreli-
able but consumes a lower cost, and the second channel has
the same delay as the first channel, but depletes a higher
cost. Optimal scheduling policies were derived to achieve
the optimal trade-off between age performance and cost.
Our study is different from [23], [24] in two aspects: (i)
The study in [23], [24] show the optimality of a threshold-
type policy and efficiently computes the optimal threshold
when the first channel is i.i.d. [23], but our work allows
a Markovian channel which generalizes the i.i.d. channel
model in [23]. Since mmWave is highly unreliable, in a
discrete time system, the mmWave is modeled as an ON-
OFF unreliable channel. A typical way of modeling the ON-
OFF unreliable channel is to assume that it is i.i.d. However,
the channel state may not be i.i.d. In some situations, such as
vehicular network, a vehicle can transmit the sample with
good connectivity at a wide area, but with bad connectivity
when there is building blockage. In this case, the channel
state is positive correlated in general. Therefore, we use an
extended model: Markovian channel model, to represent the
mmWave channel. (ii) In addition, our study assumes that
the second sub-6GHz channel has a larger delay than the
first mmWave channel, which complies with the property
of dual mmWave/sub-6GHz channels in real applications.
These two differences between mmWave and sub-6GHz
make the MDP formulation more complex than those of
[23], [24]. Thus, the techniques in e.g., [10], [22], [23], [37]–
[40] that can show a nice structure of the optimal policy or
solve the optimal policy with low complexity do not apply
to our model.

3 SYSTEM MODEL AND PROBLEM FORMULATION

3.1 System Models

Consider a single-hop network as illustrated in Fig. 1, where
a source sends status update packets to the destination. We
assume that time is slotted with slot index t ∈ {0, 1, 2...}.
The source can generate a fresh status update packet at the
beginning of each time slot. The packets can be transmitted
either over the mmWave channel or over the sub-6GHz
channel. The packet transmission time of the mmWave
channel is 1 time slot, whereas the packet transmission time
of the sub-6GHz channel is d time slots (d ≥ 2)1 because
of its lower data rate. The two channels have different
advantages, which is the key feature of our study.

The mmWave channel, called Channel 1, follows a two-
state Gilbert-Elliot model that is shown in Fig. 2. We say
that Channel 1 is ON in time slot t, denoted by l1(t) = 1,
if the source is connected to Channel 1 with rate 1 in time
slot t; otherwise Channel 1 is said to be OFF , denoted by
l1(t) = 0. If a packet is not successfully transmitted, then

1. If d = 1, one can readily see that it is better to choose sub-6GHz
than mmWave. Thus, in this paper we study the nontrivial case of d ≥
2.

it is dropped, and a new status update packet is generated
at the beginning of the next time slot. The self transition
probability of the ON state is q, and the self transition
probability of the OFF state is p, where 0 < q < 1 and
0 < p < 1. We assume that at the beginning of time slot t,
the source knows l1(t− 1) perfectly.

The sub-6GHz channel, called Channel 2, has a steady
connection. As mentioned above, the packet transmission
time of Channel 2 is d time slots. Define l2(t) ∈ {0, 1, ..., d−
1} as the state of Channel 2 in time slot t, where l2(t) is
the remaining transmission time of the packet being sent
over Channel 2 at the beginning of time slot t, and l2(t) = 0
means that Channel 2 is currently idle and ready for sending
the next packet. In time slot t, the source has immediate
knowledge about the state l2(t) of Channel 2. On the other
hand, because the packet transmission time of Channel 1 is
1 time slot, Channel 1 is always ready for transmission at
the beginning of each time slot.

As is illustrated in Section 2, a packet can be transmitted
using only one channel at a time, i.e., the two channels can-
not be used simultaneously. The scheduler decides which
channel to use for transmitting a packet at each time slot.
We also assume that the scheduler can choose idle (neither
channel) since it has been shown that channel idling could
reduce the average age in some systems [10], [12], [22].
Hence, the scheduling decision at the beginning of time
slot t can be denoted by u(t) ∈ {1, 2, none}. The action
u(t) = 1 or 2 means that the source generates a packet
and assigns it to Channel 1 or Channel 2, respectively. The
action u(t) = none means that no new packet is assigned
to any channel at time slot t. Hence, u(t) = none can occur
if (i) a packet was assigned to Channel 2 earlier and has
not completed its transmission, i.e., l2(t) ∈ {1, 2, . . . , d− 1}
such that no packet can be assigned for transmission, or (ii)
l2(t) = 0, but both channels are kept idle on purpose.

The age of information (AoI) ∆(t) is the time difference
between the current time slot t and the generation time of
the freshest delivered packet [3]. By this definition, when a
packet is delivered, the age drops to the transmission time
duration of the delivered packet. Specifically, if Channel 1
is selected in time slot t and Channel 1 is ON , then the age
drops to 1 at time slot t+ 1. If the remaining service time of
Channel 2 at time slot t is 1, then age drops to d at time slot
t+1. When there is no packet delivery at time slot t, the age
increases by one in each time slot. Hence, the time-evolution
of the age is given by

∆(t+ 1) =


1 if u(t) = 1 and l1(t) = 1,
d if l2(t) = 1,
∆(t) + 1 Otherwise.

(1)

3.2 Problem Formulations
We use π = {u(0), u(1)...} to denote a scheduling policy. A
scheduling policy is said to be admissible if (i) u(t) = none
whenever l2(t) ≥ 1 and (ii) u(t) is determined by the current
and history information that is available at the scheduler.
Let ∆π(t) denote the AoI induced by policy π. The expected
time-average age of policy π is

lim sup
T→∞

1

T

T∑
t=1

E[∆π(t)].
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Table I
Value of State Transition Probability

Pss′ (u) Action and State Transition
p u = 1, s = (δ, 0, 0), s′ = (δ + 1, 0, 0)

u = 2, s = (δ, 0, 0), s′ = (δ + 1, 0, d− 1)
u = none, s = (δ, 0, 0), s′ = (δ + 1, 0, 0)
u = none, s = (δ, 0, l2), s′ = (δ + 1, 0, l2 − 1), l2 ≥ 2
u = none, s = (δ, 0, 1), s′ = (d, 0, 0)

1− p u = 1, s = (δ, 0, 0), s′ = (1, 1, 0)
u = 2, s = (δ, 0, 0), s′ = (δ + 1, 1, d− 1)
u = none, s = (δ, 0, 0), s′ = (δ + 1, 1, 0)
u = none, s = (δ, 0, l2), s′ = (δ + 1, 1, l2 − 1), l2 ≥ 2
u = none, s = (δ, 0, 1), s′ = (d, 1, 0)

q u = 1, s = (δ, 1, 0), s′ = (1, 1, 0)
u = 2, s = (δ, 1, 0), s′ = (δ + 1, 1, d− 1)
u = none, s = (δ, 1, 0), s′ = (δ + 1, 1, 0)
u = none, s = (δ, 1, l2), s′ = (δ + 1, 1, l2 − 1), l2 ≥ 2
u = none, s = (δ, 1, 1), s′ = (d, 1, 0)

1− q u = 1, s = (δ, 1, 0), s′ = (δ + 1, 0, 0)
u = 2, s = (δ, 1, 0), s′ = (δ + 1, 0, d− 1)
u = none, s = (δ, 1, 0), s′ = (δ + 1, 0, 0)
u = none, s = (δ, 1, l2), s′ = (δ + 1, 0, l2 − 1), l2 ≥ 2
u = none, s = (δ, 1, 1), s′ = (d, 0, 0)

0 Otherwise

Our objective in this paper is to solve the following opti-
mal scheduling problem for minimizing the expected time-
average age:

∆̄opt = inf
π∈Π

lim sup
T→∞

1

T

T∑
t=1

E[∆π(t)], (2)

where Π is the set of all admissible policies. Problem (2)
can be equivalently expressed as an infinite time-horizon
average-cost MDP problem [38], [45], which is illustrated
below.

• Markov State: The system state in time slot t is
defined as

s(t) = (∆(t), l1(t− 1), l2(t)), (3)

where ∆(t) ∈ {1, 2, 3, ...} is the AoI in time slot t,
l1(t− 1) ∈ {0, 1} is the ON −OFF state of Channel
1 in time slot t − 1, and l2(t) ∈ {0, 1, ..., d − 1}
is the remaining transmission time of Channel 2 at
the beginning of time slot t. Let S denote the state
space which is countably infinite. The time-evolution
of ∆(t) is determined by the state and action in time
slot t− 1.

• Action: As mentioned before, if Channel 2 is busy
(i.e., l2(t) > 0), the scheduler always chooses an idle
action, i.e., u(t) = none. Otherwise, the action u(t) ∈
{1, 2, none}.

• Cost function: Suppose that a decision u(t) is
applied at a time slot t, we encounter a cost
C(s(t), u(t)) = ∆(t).

• Transition probability: We use Pss′(u) to denote the
transition probability from state s to s′ for action u.
The value of Pss′(u) is summarized in Table I.
We provide an explanation of the transition prob-
abilities Pss′(u) in Table I. Due to the Markovian
state transition properties of Channel 1, there are
four possible values of state transition probabilities:
p, 1− p, q and 1− q. For example, Pss′(u) = p if both

the current and previous states of Channel 1 is OFF .
Thus, there are two possible age state evolutions: if
the remaining time slot of Channel 2 is 1, the age δ
decreases to d; otherwise, the age δ increases by one
time slot. The transition probabilities of other cases,
i.e., Pss′(u) = 1 − p, q and 1 − q in Table I can be
explained in the similar way.

4 MAIN RESULTS

In this section, we show that there exists a threshold-type
policy that solves Problem (2). We then provide a low-
complexity algorithm to obtain the optimal policy and opti-
mal average age.

4.1 Optimality of Threshold-type Policies
As mentioned in Section 3.2, the action space of the MDP
allows u(t) = none even if Channel 2 is idle, i.e., l2(t) = 0.
In the following lemma, we show that the action u(t) =
none can be abandoned when l2(t) = 0. Define

Π′ = {π ∈ Π : u(t) 6= none, if l2(t) = 0}. (4)

Lemma 1. For any π ∈ Π, there exists a policy π′ ∈ Π′ that is
no worse than π.

Remark 1. In [10], [12], [22], it was shown that in certain
systems, the zero wait policy (transmitting immediately after the
previous update has been received) might not be optimal. However,
in our model, the zero wait policy is indeed optimal. The reason
is that in our model, the minimum non-zero waiting time is one
time slot which is the same as the delay of Channel 1. If l2(t) = 0,
it is better to choose Channel 1 than keeping both channels idle,
because, by choosing Channel 1, fresh packets could be delivered
over Channel 1.

The proof of Lemma 1 is provided in Appendix A of the
supplementary material. By Lemma 1, the scheduler only
needs to choose from the actions u(t) ∈ {1, 2} when l2(t) =
0. This lemma simplifies the MDP problem.

The parameters of the hybrid channels are (p, q, d),
where p, q are the self transition probabilities of Channel 1
and d is the transmission delay of Channel 2. For the ease of
presenting our main results, we divide the possible values
of channel parameters (p, q, d) into four complementary
regions B1, . . . ,B4.

Definition 1. The regions B1, . . . ,B4 are defined as

B1 = {(p, q, d) : F (p, q, d) ≤ 0, H(p, q, d) ≤ 0},
B2 = {(p, q, d) : F (p, q, d) > 0, G(p, q, d) ≤ 0},
B3 = {(p, q, d) : F (p, q, d) > 0, G(p, q, d) > 0},
B4 = {(p, q, d) : F (p, q, d) ≤ 0, H(p, q, d) > 0},

(5)

where

F (p, q, d) =
1

1− p
− d,

G(p, q, d) = 1− dq,

H(p, q, d) =
1− q
1− p

+ 1− d.

(6)

Note that the inequality 1/(1 − p) > d also represents
a comparison between the channel delay d and the average
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Figure 3. The Diagram of the regions B1, . . . ,B4 with an example of
d = 10. In the diagram, each function F,G,H divides the whole plane
((p, q) ∈ (0, 1) × (0, 1)) into two half-planes respectively. Each region
B1, . . . ,B4 is the intersection of some two half-plane areas. Since we
emphasize the differences of the four regions, we provide the partial but
enlarged diagram.

waiting time for an ON channel state given that the last
channel state is OFF . Similarly, 1 − dq > 0 represents a
comparison between d and the average waiting time for an
ON channel state given that the last channel state is ON .
Finally, (1 − q)/(1 − p) + 1 > d represents a comparison
between d and the average waiting time of Channel 1 under
steady-state distribution of the Gilbert-Elliot model. These
comparisons interpret all the boundary functions F,G,H of
the regions B1−B4. The four regions B1, . . . ,B4 are depicted
in Fig. 3, for the case that d = 10.

Consider a stationary policy µ(δ, l1, l2). As mentioned
in Lemma 1, when l2 = 0, the decision µ(δ, l1, 0) can be 1
(Channel 1) or 2 (Channel 2). Given the value of l1, µ(δ, l1, 0)
is said to be non-decreasing in the age δ, if

µ(δ, l1, 0) =

{
1 if δ < λ;
2 if δ ≥ λ. (7)

Conversely, µ(δ, l1, 0) is said to be non-increasing in the age δ,
if

µ(δ, l1, 0) =

{
2 if δ < λ;
1 if δ ≥ λ. (8)

One can observe that scheduling policies in the form of
(7) and (8) are both with a threshold-type, where λ is the
threshold on the age δ at which the value of µ(δ, l1, 0)
changes.

One optimal solution to Problem (2) is of a special
threshold-type structure, as stated in the following theorem:

Theorem 1. There exists an optimal solution µ∗(δ, l1, 0) to
Problem (2), which satisfies the following properties:

(a) if (p, q, d) ∈ B1, then µ∗(δ, 0, 0) is non-increasing in the
age δ and µ∗(δ, 1, 0) is non-increasing in the age δ;

(b) if (p, q, d) ∈ B2, then µ∗(δ, 0, 0) is non-decreasing in the
age δ and µ∗(δ, 1, 0) is non-increasing in the age δ;

(c) if (p, q, d) ∈ B3, then µ∗(δ, 0, 0) is non-decreasing in the
age δ and µ∗(δ, 1, 0) is non-decreasing in the age δ;

(d) if (p, q, d) ∈ B4, then µ∗(δ, 0, 0) is non-increasing in the
age δ and µ∗(δ, 1, 0) is non-decreasing in the age δ.

Proof. See Section 6.2 for the proof.

As is shown in Theorem 1, for all possible parameters
(p, q, d) of the two channels, the optimal action µ∗(δ, l1, 0)
of channel selection is a monotonic function of the age δ.
Whether µ∗(δ, l1, 0) is non-decreasing or non-increasing in
δ depends on the region of the channel parameters (p, q, d)
and the previous state l1 of Channel 1.

The study in [23] assumed that the first channel is unre-
liable and consumes a lower cost, and the second channel
the same delay as the first channel but a higher cost. They
studied the scheduling policy for optimizing the trade-off
between age and cost. The optimal scheduling policy in
Theorem 1 is quite different from that in [23]: The study
in [23] assumes the first channel to be i.i.d., but our result
allows a Markovian Channel 1, which is a generalization of
the i.i.d. case. Observe that in [23], the first channel is no
better than the second channel with regard to delay and
reliability. However, in our study, the two channels (i.e.,
Channel 1 and 2) have their own advantages in delay and
reliability. Therefore, the optimal solution in our study is
non-decreasing in age for some values of (p, q, d) and non-
increasing in age for the remaining values of (p, q, d). In
conclusion, our study allows for general channel param-
eters (p, q, d) and our optimal decision µ∗(δ, l1, 0) is non-
increasing in age or non-decreasing in age depending on
the choices of channel parameters.

4.1.1 Insights Behind the Regions B1 − B4

The regions B1−B4 were introduced in Theorem 1 for prov-
ing that the action value function Q(s, u) is super-modular
or sub-modular, where s = (δ, l1, 0) denotes the state of the
MDP and u is the action. For example, in the case of l1 = 0,
if 1/(1 − p) > d and 1/q ≤ d (i.e., (p, q, d) ∈ B2), Lemma
9 in Section 6.2 showed that Q(δ, 0, 0, u) is sub-modular in
(δ, u) (in the discounted case). As a result, the optimal action
µ∗(δ, 0, 0) is increasing in δ.

However, in the case l1 = 1 of Theorem 1, there are ad-
ditional technical challenges: For example, if (p, q, d) ∈ B2,
Q(δ, 1, 0, u) is neither super-modular nor sub-modular. A
new method was developed in Lemma 10 in Section 6.2 to
conquer this challenge. Technically, super-/sub-modularity
is a sufficient but not necessary condition for the mono-
tonicity of µ∗(δ, l1, 0). When neither super-modularity nor
sub-modularity holds, we are able to show that the optimal
decision µ∗(δ, l1, 0) does not change with δ. By this, we
proved the monotonicity of µ∗(δ, l1, 0) for all values of δ
and l1, without requiring Q(s, u) to be super-modular or
sub-modular over the entire state space s ∈ S.

The following is one of the key technical contributions
of the paper: we proved that the optimal action µ∗(δ, l1, 0)
is monotonic in δ even if super-/sub-modularity does not
hold. This is a key difference from prior studies, e.g.,
[10], [22], [23], [37]–[39], where super-modularity (or sub-
modularity) holds for the entire state space.

4.2 Optimal Scheduling Policy
In Theorem 1, we have characterized the threshold structure
for an optimal policy in region B1, . . . ,B4. A threshold-type
policy is fully identified by its thresholds λ0, λ1, where λ0

is the threshold given that the previous state of Channel 1
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Algorithm 1: Bisection method for solving (21)

1 Given function hi. l = 0, l′ sufficiently large,
tolerance ε small. The value i ∈ {1, 2, 3, 4}.

2 repeat
3 β = 1

2 (l + l′)
4 if hi(β) < 0: l′ = β. else l = β
5 until l′ − l < ε
6 return βi = β

is OFF (i.e., l1 = 0) and λ1 is the threshold given that the
previous state of Channel 1 is ON (i.e., l1 = 1). Thus, for a
given region Bi (i = 1, . . . , 4), the MDP problem (2) reduces
to

∆̄opt = min
λ0∈N+,λ1∈N+

∆̄i(λ0, λ1), (9)

where ∆̄i(λ0, λ1) is the long term average cost of the
threshold-type policy such that: (1) the threshold (mono-
tone) structure is determined by Theorem 1 and Bi; (2)
the thresholds are λ0, λ1. Note that a threshold type policy
is stationary and thus can be modeled as a discrete-time
Markov chain (DTMC). Then, (9) can be solved by deriving
the steady-state distribution of the DTMC.

We use λ∗0 and λ∗1 to denote the thresholds of µ∗(δ, 0, 0)
and µ∗(δ, 1, 0), respectively. In this section, we provide the
optimal scheduling policy and the thresholds.

4.2.1 Optimal Scheduling Policy for (p, q, d) ∈ B1

Theorem 2. If (p, q, d) ∈ B1, then an optimal scheduling policy
is

µ∗(δ, 0, 0) = 1, δ ≥ 1; (10)
µ∗(δ, 1, 0) = 1, δ ≥ 1. (11)

In this case, the optimal objective value of (2) is

∆̄opt =
(1− q)(2− p) + (1− p)2

(2− q − p)(1− p)
. (12)

We provide an insight to Theorem 2: As will be shown
by Lemma 11 and Lemma 12 in Section 6.3, if (p, q, d) ∈ B1,
then µ∗(1, 0, 0) = 1 and µ∗(1, 1, 0) = 1. According to
Theorem 1 (a), if (p, q, d) ∈ B1, µ∗(δ, 0, 0) and µ∗(δ, 1, 0)
are both non-increasing in δ. Thus, µ∗(δ, 0, 0) = 1 and
µ∗(δ, 1, 0) = 1 for all δ ≥ 1. That is, the optimal scheduler
always chooses Channel 1. The DTMC for a policy always
choosing Channel 1 is easy to analyze, so we omit the
derivation steps and provide

∆̄opt = ∆̄1(1, 1) =
(1− q)(2− p) + (1− p)2

(2− q − p)(1− p)
. (13)

This resucolorblackctly implies Theorem 2. Therefore, The-
orem 2 provides a much stronger result than Theorem 1(a).

4.2.2 Optimal Scheduling Policy for (p, q, d) ∈ B2

While the result of case (p, q, d) ∈ B1 is easy to describe, the
result of case (p, q, d) ∈ B2 is not. As shown by Theorem 3,
the optimal decision µ∗(δ, l1, 0) is not constant in age δ.

Theorem 3. If (p, q, d) ∈ B2, then an optimal scheduling policy
is given by:

µ∗(δ, 0, 0) =

{
1 if δ < λ∗0;
2 if δ ≥ λ∗0,

(14)

µ∗(δ, 1, 0) =

{
2 if δ < λ∗1;
1 if δ ≥ λ∗1,

(15)

where λ∗0 is unique, but λ∗1 may take multiple values, given by
λ∗0 = s1(β1), λ∗1 = 1 if ∆̄opt = β1,
λ∗0 = s2(β2), λ∗1 = 1 if ∆̄opt = β2,
λ∗0 = 1, λ∗1 ∈ {2, 3, . . . , d} if ∆̄opt = f0/g0,
λ∗0 = 1, λ∗1 ∈ {d+ 1, . . .} if ∆̄opt = (3/2)d− 1/2,

(16)
∆̄opt is the optimal objective value of (2), determined by

∆̄opt = min
{
β1, β2,

f0

g0
,

3

2
d− 1

2

}
, (17)

s1(·), s2(·), β1, and β2 are given in Definition 2 below,

f0 = q
d∑
i=1

i+ (1− q)
2d∑

i=d+1

i+
b′dq + 1

1− bd

2d−1∑
i=d

i+ d, (18)

g0 =
b′dq + 1

1− bd
d+ d+ 1, (19)[

b′d
bd

]
=

[
q 1− q

1− p p

]d [
0
1

]
. (20)

Proof. See Section 6.3.

In order to prove Theorem 3, we have conducted steady-
state analysis of four DTMCs, each of which corresponds to
one case in (16). These four DTMCs have diverse state trans-
mission matrices and have to be analyzed separately. For
each case, the optimal thresholds λ∗0, λ

∗
1 are either constants

or can be computed by using a low-complexity bisection
search method to compute the root of (21) given in below.

Definition 2. The value of βi is the root of

fi
(
si(βi)

)
− βigi

(
si(βi)

)
= 0, i ∈ {1, 2, 3, 4}, (21)

where

si(βi) = max

{⌈ −ki(βi)
1− d(1− p)

⌉
, d

}
, i ∈ {1, 3, 4},

s2(β2) = max

{
min

{⌈ −k2(β2)

1− d(1− p)

⌉
, d

}
, 2

}
, (22)

ki(βi) = l′i − βioi, (23)

and dxe is the smallest integer that is greater or equal to x.
For the ease of presentation, 16 closed-form expressions of fi(·),
gi(·), l′i, and oi for i = 1, . . . , 4 are provided in Table III of our
supplementary material.

Note that β3 and β4 in Definition 2 will be used in later
subsection where (p, q, d) ∈ B3. For notational simplicity,
we define

hi(β) = fi(si(β))− βgi(si(β)), i ∈ {1, 2, 3, 4}. (24)

The function hi(β) has the following nice property:

Lemma 2. For all i ∈ {1, 2, 3, 4}, the function hi(β) satisfies
the following properties:
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(1) hi(β) is continuous, concave, and strictly decreasing on
β;

(2) hi(0) > 0 and limβ→∞ hi(β) = −∞.

Proof. See Appendix B of our supplementary material.

Lemma 2 implies that (21) has a unique root on [0,∞).
Therefore, we can use a low-complexity bisection method to
compute β1, . . . , β4 as illustrated in Algorithm 1.

Lemma 2 is motivated by Lemma 2 in [11] and Lemma
2 in [21]. In [11] and [21], since the channel is error free,
the age state at the end of each transmission is indepen-
dent from history information. Thus, Lemma 2 in [11]
and Lemma 2 in [21] are related to a per-sample (single
transmission) control. However, our study does not have
such a property and Lemma 2 arises from solving (9) for
optimizing the thresholds λ∗0 and λ∗1.

The advantage of Theorem 2, Theorem 3 is that the
solution is easy to implement. In Theorem 2, we showed
that the optimal policy is a constant policy that always
chooses Channel 1. In Theorem 3, ∆̄opt is expressed as the
minimization of only a few precomputed values, and the
optimal threshold-type policy are then obtained based on
the value of ∆̄opt.

Since we can use a low complexity algorithm such as
bisection method to obtain β1, β2 in Theorem 3, Theorem
3 provides a solution that has much lower complexity than
other solutions for MDPs such as relative value iteration and
policy iteration.

We now provide the sketch of the proof when (p, q, d) ∈
B2:

First, by computing the steady-state distributions of
some DTMCs with different thresholds, we have obtained
the average age performance for four cases, given by

∆̄2(λ0, 1) =

{
f1(λ0)/g1(λ0) λ0 ∈ {d+ 1, . . .},
f2(λ0)/g2(λ0) λ0 ∈ {2, . . . d},

(25)

∆̄2(1, λ1) =

{
(3/2)d− 1/2 λ1 ∈ {d+ 1, . . .},
f0/g0 λ1 ∈ {1, . . . d}.

(26)

Note that each one of the four expressions in (25) and (26)
corresponds to each one of the four cases in (16), respec-
tively. One of our technical contributions is that only study-
ing the steady-state analysis of the four types of DTMCs in
(25) is sufficient to solve (9). The proof of this statement and
the detailed expressions of the DTMC structure of the four
cases in (25) and (26) are relegated to Section 6.32. Therefore,
the optimal average age ∆̄opt chooses the smallest value of
the four cases from (25) and (26),

∆̄opt = min
{
β′1, β

′
2,
f0

g0
,

3

2
− 1

2

}
, (27)

where β′1, β
′
2 are defined as follows:

β′i = min
λ0∈{d+1,...}

fi(λ0)

gi(λ0)
, i ∈ {1, 3, 4}, (28)

β′2 = min
λ0∈{2,...d}

f2(λ0)

g2(λ0)
. (29)

2. Although (9) is a two-dimensional optimization problem in
(λ0, λ1), (9) has been simplified as (25), which is a one-dimensional
optimization problem.

Note that β′3 and β′4 in (28) and (29) will be mentioned in
the next subsection where (p, q, d) ∈ B3. Finally, in Section
6.3, we show that

β′i = βi, i ∈ {1, 2, 3, 4}. (30)

Thus, Theorem 3 is solved by (25) − (30).
Finally, we provide a conjecture. Recall that by Theo-

rem 3, the optimal decision µ∗(δ, 1, 0) in region B2 chooses
Channel 2 if the age δ is lower than a finite threshold and
chooses Channel 1 if δ is larger than the threshold. Here,
we conjecture that µ∗(δ, 1, 0) = 1 for all δ ≥ 1 in parameter
region B2, which is a special case of Theorem 3 (by letting
the threshold be 0). By enumerating over the possible values
of the parameters p, q, d, we have the following empirical
observation:

Conjecture 1. If (p, q, d) ∈ B2, then we have the following
condition:

min{f0

g0
,

3

2
d− 1

2
} > ∆̄opt. (31)

This conjecture comes from a large number of numerical
experiments that we have run. Proving this conjecture is an
open problem. We leave this proof to our future work. By
Theorem 3, f0/g0 and 3/2d − 1/2 are the expected average
age value of the only two cases in which µ∗(1, 1, 0) = 2.
Therefore, Conjecture 1 implies that µ(1, 1, 0) = 2 is sub-
optimal and the optimal policy is µ∗(1, 1, 0) = 1. When
(p, q, d) ∈ B2, µ∗(δ, 1, 0) is non-increasing in δ ≥ 1. This
and Conjecture 1 suggest that µ∗(δ, 1, 0) = 1 for all δ ≥ 1. In
conclusion, Conjecture 1 and Theorem 3 together suggests
the following result:

Conjecture 2. If (p, q, d) ∈ B2, then the optimal scheduling
policy is given by

µ∗(δ, 0, 0) =

{
1 if δ < λ∗0;
2 if δ ≥ λ∗0,

(32)

µ∗(δ, 1, 0) = 1, δ ≥ 1, (33)

where λ∗0 is given by{
λ∗0 = s1(β1), if ∆̄opt = β1,
λ∗0 = s2(β2), if ∆̄opt = β2,

(34)

∆̄opt is the optimal objective value of (2), determined by

∆̄opt = min
{
β1, β2

}
. (35)

Conjecture 2 provides an important message: the optimal
policy in region B2 is overall non-decreasing in age δ.
This message will also be validated by the simulation in
Section 5.

4.2.3 Optimal Scheduling Policy for (p, q, d) ∈ B3

According to Theorem 1, the optimal decision µ∗(δ, l1, 0) is
non-decreasing in age δ. Similar to the case (p, q, d) ∈ B2 in
Theorem 3, the optimal solution µ∗(δ, l1, 0) is not constant.
Therefore, we need to solve the optimal thresholds λ∗0 and
λ∗1 by deriving the steady-state distribution of the DTMC.
The final result is presented as follows:
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Theorem 4. If (p, q, d) ∈ B3, then an optimal scheduling policy
is given by

µ∗(δ, 0, 0) =

{
1 if δ < λ∗0;
2 if δ ≥ λ∗0,

(36)

µ∗(δ, 1, 0) =

{
1 if δ < λ∗1;
2 if δ ≥ λ∗1,

(37)

where λ∗0 is unique, but λ∗1 may take multiple values, given by
λ∗0 = s1(β1), λ∗1 ∈ {d+ 1, . . .} if ∆̄opt = β1,
λ∗0 = s2(β2), λ∗1 ∈ {d+ 1, . . .} if ∆̄opt = β2,
λ∗0 = s3(β3), λ∗1 ∈ {2, . . . , d} if ∆̄opt = β3,
λ∗0 = s4(β4), λ∗1 ∈ {2, . . . , d} if ∆̄opt = β4,
λ∗0 = 1, λ∗1 ∈ {1, 2, . . . , d}, if ∆̄opt = (3/2)d− 1/2,

(38)
∆̄opt is the optimal objective value of (2), determined by

∆̄opt = min
{
β1, β2, β3, β4,

3

2
d− 1

2

}
, (39)

s1(·), . . . , s4(·) and β1, . . . , β4 are given in Definition 2.

Proof. See Section 6.3.

From Theorem 4 and Lemma 2, the optimal thresholds
λ∗0, λ

∗
1 can be either expressed by constants or computed

with low complexity. To show Theorem 4, we have analyzed
five different DTMCs. Each of the DTMC corresponds to
one case in (38). As is explained in Section 6.3, the solution
to each case in (38) is closed-form or related with a one-
dimensional optimization problem. Different from Theorem
3 which needs to compute β1 and β2 in (16), Theorem 4
needs to compute β1, . . . , β4 in (38). By Definition 2 and
Lemma 2, β1, . . . , β4 can be solved by using low complexity
bisection search algorithm (Algorithm 1). Therefore, despite
Theorem 4 containing a number of cases, the optimal thresh-
olds described in (38) can be efficiently solved.

4.2.4 Optimal Scheduling Policy for (p, q, d) ∈ B4

From Theorem 1, µ∗(δ, 0, 0) is non-increasing in age δ and
µ∗(δ, 1, 0) is non-decreasing in δ. The result of (p, q, d) ∈ B4

is similar to that of Theorem 2.

Theorem 5. If (p, q, d) ∈ B4, then an optimal scheduling policy
is

µ∗(δ, 0, 0) = 1, δ ≥ 1, (40)

µ∗(δ, 1, 0) =

{
1, δ ≥ 1 if ∆̄opt = ∆̄;
2, δ ≥ 1 if ∆̄opt = f ′0/g

′
0,

(41)

where ∆̄opt is the optimal objective value of (2), determined by

∆̄opt = min
{

∆̄,
f ′0
g′0

}
, (42)

the constants ∆̄, f ′0, g
′
0 are given by

∆̄ =
(1− q)(2− p) + (1− p)2

(2− q − p)(1− p)
, (43)

f ′0 =
d∑
i=1

i+
1− b′d
b′d

×
2d−1∑
i=d

i+
∞∑
i=d

ipi−d, (44)

g′0 =
d

b′d
+ 1/(1− p). (45)

Proof. See Section 6.3.

Table II
Channel selection by the optimal scheduling policy µ∗(δ, l1, 0)

B1
l1 = 0 Choose mmWave Channel
l1 = 1 Choose mmWave Channel

B2

l1 = 0
Choose mmWave for low AoI δ,
choose sub-6GHz for high AoI δ

l1 = 1

Choose sub-6GHz for low AoI δ,
choose mmWave for high AoI δ.
Conjecture 2: Always choose mmWave

B3

l1 = 0
Choose mmWave for low AoI δ,
choose sub-6GHz for high AoI δ

l1 = 1
Choose mmWave for low AoI δ,
choose sub-6GHz for high AoI δ

B4

l1 = 0 Choose mmWave channel

l1 = 1
Choose mmWave channel if ∆̄ ≤ f ′0/g′0,
choose sub-6GHz channel if ∆̄ > f ′0/g

′
0

As is illustrated in Theorem 5, the proposed optimal
decision µ∗(δ, 0, 0) for (p, q, d) ∈ B4 is constant in age δ,
depending on whether ∆̄opt = ∆̄ or ∆̄opt = f ′0/g

′
0 from

(42). The value ∆̄ is the expected age of the steady-state
DTMC that always chooses Channel 1. The value f ′0/g

′
0 is

the expected age of the steady-state DTMC that chooses
Channel 1 if l1 = 0 and chooses Channel 2 if l1 = 1. If
∆̄opt = ∆̄, then it is optimal to always choose Channel
1; if ∆̄opt = f ′0/g

′
0, then we will select Channel 1 when

l1 = 0 and Channel 2 when l1 = 1. Recall that in Theorem 1,
µ∗(δ, 0, 0) is non-increasing in δ. Further, in Theorem 5, we
have shown that µ∗(δ, 0, 0) is a constant, thus implying that
µ∗(δ, l1, 0) is overall non-decreasing in δ.

We briefly summarize the results for Theorems 2—5: An
optimal solution to (2) is presented for the 4 complementary
regions B1, . . . ,B4 of the channel parameters (p, q, d). If
(p, q, d) ∈ B1∪B4, the solution is constant in age (Theorem 2
and Theorem 5). Otherwise, for (p, q, d) ∈ B2 ∪ B3, there
exists an optimal scheduling policy that has a threshold
structure depending on the current age value ∆(t) and the
previous state of Channel 1 (Theorem 3 and Theorem 4). The
optimal thresholds can be computed efficiently. In region
B2, by Theorem 3, the optimal scheduling policy may be
non-increasing in age, i.e., when the state of Channel 1 at
previous time slot is OFF , it chooses channel 2 when the
age of current time ∆(t) is smaller than a finite threshold
and chooses Channel 1 when ∆(t) is larger than the thresh-
old. However, Conjecture 2 claims that, in this case, the
optimal policy should always chooses Channel 1 (by letting
the threshold be 0). Therefore, combining Theorems 2—5
and Conjecture 2, the optimal scheduling policy µ∗(δ, l1, 0)
should be non-decreasing in the age δ for any values of
l1, p, q, d. To be specific, it either always chooses Channel 1,
always chooses Channel 2, or chooses Channel 1 when ∆(t)
is small and chooses Channel 2 when ∆(t) is large, which
will also be validated in simulation (Section 5). To conclude,
we provide Table II for illustrating the channel selection by
the optimal scheduling policy in each region B1 − B4.

4.3 Optimal Scheduling policy for i.i.d. Channel
We finally consider a special case in which Channel 1 is
i.i.d., i.e., p+ q = 1. First, according to the following lemma,
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if p+q = 1, the 4 regions B1, . . . ,B4 will reduce to 2 regions
B1,B3.

Lemma 3. If p + q = 1, then (p, q, d) ∈ B1 or (p, q, d) ∈ B3.
Moreover,

B1 =

{
(p, q, d) :

1

1− p
≤ d

}
, (46)

B3 =

{
(p, q, d) :

1

1− p
> d

}
. (47)

Proof. By (6) and 1 − q = p, we have: (i) F (p, q, d) =

H(p, q, d), and (ii) F (p, q, d) > 0 is equivalent to
G(p, q, d) > 0. From the two above results and the definition
of B1, . . . ,B4 in (5), we directly get (46) and (47). Moreover,
the definitions of (46) and (47) imply that (p, q, d) ∈ B1 or
(p, q, d) ∈ B3.

From Theorem 2, if (p, q, d) ∈ B1, then the optimal policy
is always choosing Channel 1. From Theorem 4, if (p, q, d) ∈
B3, then the optimal policy chooses one of the five cases that
are depicted in (38). However, we can reduce the five cases
to two cases: If Channel 1 is i.i.d., then the state information
of Channel 1 is not useful. Thus, λ∗0 = λ∗1. Note that from
Definition 2, we have s2(β) ≤ d and si(β) ≥ d + 1 for
i ∈ {1, 3, 4}. Thus, only the first case and the last case in
(38) can possibly appear for i.i.d. channel.

So in i.i.d. case, Theorem 2 and Theorem 4 reduce to the
following:

Corollary 1. Suppose that p + q = 1, i.e., Channel 1 is i.i.d.,
then

(a) If 1− p ≥ 1/d, then the optimal policy is always choosing
Channel 1. In this case, the optimal objective value of (2) is ∆̄opt =

1/(1− p).
(b) If 1− p < 1/d, then the optimal policy is non-decreasing

in age and the optimal thresholds λ∗0 = λ∗1. The threshold λ∗0 may
take multiple values, given by{

λ∗0 = s1(β1) if ∆̄opt = β1,

λ∗0 ∈ {1, 2, . . . , d} if ∆̄opt = (3/2)d− 1/2,
(48)

∆̄opt is the optimal objective value of (2), determined by

∆̄opt = min
{
β1,

3

2
d− 1

2

}
. (49)

Corollary 1(a) suggests that if the transmission rate of
Channel 1 is larger than the rate of Channel 2 (which is
1/d), then the age-optimal policy always chooses Channel
1. Corollary 1(b) implies that if the transmission rate of
Channel 1 is smaller than the rate of Channel 2, then the
age-optimal policy is non-decreasing threshold-type on age.

5 NUMERICAL RESULTS

In this section, we first illustrate the channel selected by the
optimal scheduling policy in Fig. 4 and Fig. 5. Recall that
by Theorem 2, the optimal decision is to choose mmWave in
region B1. In the simulation, we further observe that choos-
ing mmWave is still optimal in region B4. Therefore, we
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Figure 4. Optimal channel selection given the channel state of mmWave
at the previous time slot, where d = 5, q = 0.9
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Figure 5. Optimal channel selection given the channel state of mmWave
at the previous time slot, where d = 5, q = 0.1.

only provide the results for B2 (in Fig. 4) and B3 (in Fig. 5),
respectively. In these figures, it is easy to observe that: (i) in
B2, µ∗(δ, 1, 0) = 1, and µ∗(δ, 0, 0) is non-decreasing in age,
(ii) in B3, both µ∗(δ, 1, 0) and µ∗(δ, 0, 0) are non-decreasing
in age. These comply with our main results Theorems 2—
5. Note that in Fig. 4, µ∗(δ, 1, 0) = 1, which validates
Conjecture 2. In addition, we explore a more general system
model where the packet arrival follows Bernoulli process
with probability 0.5. We use value iteration to simulate the
new optimal policy. Fig 6 describes the optimal scheduling
policy of such a system model. The optimal policy is still
threshold based. Note that when p < 0.8, the considered
region is B1. For the case of periodic arrival process, in
B1, the optimal policy is choosing mmWave. However, for
the case of Bernoulli arrival process, Fig 6 implies that the
optimal policy is choosing mmWave when the age is small,
and choosing sub-6GHz when the age is large.

We then simulate the optimal thresholds under the two
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Figure 6. Optimal channel selection given the channel state of mmWave
at the previous time slot with d = 5, q = 0.3, where the packet arrival
follows Bernoulli process with probability 0.5.
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Figure 7. Threshold λ∗0 of the optimal scheduling policy for i.i.d. mmWave
channel state, where the packet transmission time of the sub-6GHz
channel is d = 5, 10, 20. The considered regions are B1 and B3 with
boundary p = 1 − 1/d. In B1, the optimal decision is mmWave. In B3,
the optimal decision is non-decreasing in age.
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Figure 8. Threshold λ∗0 of the optimal scheduling policy, where the
parameter q = 0.8 and the packet transmission time of the sub-6GHz
channel is d = 5, 10, 20. The considered regions are B1 and B2 with
boundary q = 1/d. In B1, the optimal decision µ∗(δ, l1, 0) = 1. In B2,
µ∗(δ, 1, 0) = 1, and µ∗(δ, 0, 0) is non-decreasing in age.
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Figure 9. Time-average expected age vs. the parameter q of the
mmWave channel, where d = 20 and p = 0.966. The considered
regions are B2 and B3 with boundary q = 1/d. In B2, µ∗(δ, 1, 0) = 1,
and µ∗(δ, 0, 0) is non-decreasing in age. In B3, both µ∗(δ, 1, 0) and
µ∗(δ, 0, 0) are non-decreasing in age.
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Figure 10. Time-average expected age vs. the parameter q of the
mmWave channel, where d = 20 and p = 0.972. The considered
regions are B2 and B3 with boundary q = 1/d. In B2, µ∗(δ, 1, 0) = 1,
and µ∗(δ, 0, 0) is non-decreasing in age. In B3, both µ∗(δ, 1, 0) and
µ∗(δ, 0, 0) are non-decreasing in age.
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Figure 11. Time-average expected age vs. the parameter p of the
mmWave channel, where d = 5 and q = 0.1. The considered regions
are B1, B4, and B2 with boundary p = 1 − 1/d. In B1, the optimal
decision µ∗(δ, l1, 0) = 1. In B3, both µ∗(δ, 1, 0) and µ∗(δ, 0, 0) are non-
decreasing in age.
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Figure 12. Time-average expected age vs. the parameter p of the
mmWave channel, where d = 5 and q = 0.5. The considered regions
are B1 and B2 with boundary p = 1 − 1/d. In B1, the optimal decision
µ∗(δ, l1, 0) = 1. In B2, µ∗(δ, 1, 0) = 1, and µ∗(δ, 0, 0) is non-decreasing
in age.

parameters of the markovian mmWave channel p, q and
the transmission delay of the sub-6GHz channel d. We
first study a special case with i.i.d. mmWave channel. We
provide the optimal threshold λ∗0 with the change of p for
d = 5, 10, 20, respectively, where λ∗0 is the optimal threshold
in i.i.d. channel described in Corollary 1. From Fig. 7, the
optimal threshold diverges to infinity when p is approaching
p∗ = 0.8, 0.9, 0.95, respectively. Note that p∗ = 0.8, 0.9, 0.95
is the boundary between B1 and B3 for d = 5, 10, 20,
respectively. As p enlarges, the mmWave channel has worse
connectivity, thus the threshold goes down and the opti-
mal solution converges to always choosing the sub-6GHz
channel. For non i.i.d. case, we then provide the optimal
thresholds with q = 0.5. When q = 0.5, the mmWave
channel gets positively correlated and the covered regions
are B1 and B2. In region B1 and B2, we have observed
that µ∗(δ, 1, 0) = 1 for all δ ≥ 1 (λ∗1 = 1), so we only
list the optimal threshold λ∗0. From Fig. 8, we observe that
the evolution of the optimal threshold is similar to that of
i.i.d. channel case (Fig. 7). The optimal threshold is smaller
than that of i.i.d. channel, but the difference vanishes as d
enlarges.

Further, we compare our optimal scheduling policy
(called Age-optimal) with three other policies, including (i)
always choosing the mmWave channel (called mmWave), (ii)
always choosing the sub-6GHz channel (called sub-6GHz),
and (iii) randomly choosing the mmWave and sub-6GHz
channels with equal probability (called Random). We first
provide the performance of these policies and their optimal
decisions for different q in Fig. 9 and Fig 10. We observe that
our optimal policy outperforms other policies. If the two
channels have a similar age performance, we can observe
the benefit of the optimal policy, and the benefit enlarges
as the mmWave channel becomes positively correlated (q is
larger). If the two channels have a large age performance
disparity, the optimal policy is close to always choosing
a single channel, and thus the benefit is obviously low.
Further, we compare the optimal policy with the other three
policies for different p and list the structure of optimal deci-
sions in Fig. 11 and Fig. 12. In Fig. 11, the parameters (p, q, d)
range in regions B1, B4, and B3. In Fig. 12, the parameters
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Figure 13. Time-average expected age penalty vs. the parameter q of
the mmWave channel, where p = 0.9, d = 20, and the age penalty
function is f(∆) = ( 1

p−0.003
)∆.

(p, q, d) range in regions B1 and B2. As p increases, mmWave
channel has worse connectivity and gets outperformed by
sub-6GHz channel. From Fig. 11 and Fig. 12, our optimal
policy is close to mmWave when p is lower, and close to
sub-6GHz when p is larger.

Finally, although our theoretical results consider linear
age, we also provide numerical results when the cost func-
tion is nonlinear on age by using value iteration [38]. For
exponential age in Fig. 13, the gain is significantly larger:
for all values of q, the other policies have more than 2
times of average cost than the optimal policy. The numerical
simulation for nonlinear age penalty function indicates the
importance of exploring optimal policy for nonlinear age
cost function, which is our future research direction.

6 PROOFS OF MAIN RESULTS

In this section, we prove our main results: Theorem 1 (Sec-
tion 6.2) and Theorems 2—5 (Section 6.3). In Section 6.1, we
describe a discounted problem that helps to solve average
problem (2). In Section 6.2, we introduce Proposition 1
which plays an important role in proving Theorem 1. Sec-
tion 6.3 provides the proofs of Theorems 2—5.

6.1 Preliminaries

To solve Problem (2), we introduce a discounted problem
below. The objective is to solve the discounted sum of
expected cost given an initial state s:

Jα(s) = inf
π∈Π′

lim
T→∞

T∑
t=0

E[αt∆π(t)|s(0) = s], (50)

where α ∈ (0, 1) is the discount factor. We call Jα(s) the
value function given the initial state s. Recall that we use
s= (δ, l1, l2) to denote the system state, where δ is the age
value and l1, l2 are the state of Channel 1 and Channel 2.
From Lemma 1, we only need to consider π ∈ Π′ instead of
π ∈ Π.

The value function Jα(s) satisfies a following property:

Lemma 4. For any given α and s, Jα(s) <∞.

Proof. See Appendix C in our supplementary material.
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A policy π is deterministic stationary if π(t) = Z(s(t))
at any time t, where Z : S→ Π′ is a deterministic function.
According to [46], and Lemma 4, there is a direct result for
Problem (50):

Lemma 5. (a) The value function Jα(s) satisfies the Bellman
equation

Qα(s, u) , δ + α
∑
s′∈S

Pss′(u)Jα(s′),

Jα(s) = min
u∈Π′

Qα(s, u).
(51)

(b) There exists a deterministic stationary policy µα,∗ that
satisfies Bellman equation (51). The policy µα,∗ solves Problem
(50) for all initial state s.

(c) Assume that Jα0 (s) = 0 for all s. For n ≥ 1, Jαn is defined
as

Qαn(s, u) , δ + α
∑
s′∈S

Pss′(u)Jαn−1(s′),

Jαn (s) = min
u∈Π′

Qαn(s, u),
(52)

then limn→∞ Jαn (s) = Jα(s) for every s.

Also, since the cost function is linearly increasing in age,
utilizing Lemma 5(c), we also have

Lemma 6. For all given l1 and l2, Jα(δ, l1, l2) is increasing in
δ.

Proof. See Appendix D in our supplementary material.

Since Problem (50) satisfies the properties in Lemma 5,
utilizing Lemma 5 and Lemma 6, the following Lemma
gives the connection between Problem (2) and Problem (50).

Lemma 7. (a) There exists a stationary deterministic policy that
is optimal for Problem (2).

(b) There exists a value J∗ for all initial state s such that

lim
α→1−

(1− α)Jα(s) = J∗.

Moreover, J∗ is the optimal average cost for Problem (2).
(c) For any sequence (αn)n of discount factors that converges

to 1, there exists a subsequence (βn)n such that limn→∞ µβn,∗ =

µ∗. Also, µ∗ is the optimal policy for Problem 2.

Proof. See Appendix E in our supplementary material.

Lemma 7 provides the fact that: We can solve Problem
(50) to achieve Problem (2). The reason is that the optimal
policy of Problem (50) converges to the optimal policy of
Problem (2) in a limiting scenario (as α→ 1).

6.2 Proof of Theorem 1

We begin with providing an optimal structural result of dis-
counted policy µα,∗. Then, we achieve the average optimal
policy µ∗ by letting α→ 1.

Definition 3. For any discount factor α ∈ (0, 1), the channel
parameters p, q ∈ (0, 1) and d ∈ {2, 3, ...}, we define

B1(α) = {(p, q, d) : F (p, q, d, α) ≤ 0, H(p, q, d, α) ≤ 0},
B2(α) = {(p, q, d) : F (p, q, d, α) > 0, G(p, q, d, α) ≤ 0},
B3(α) = {(p, q, d) : F (p, q, d, α) > 0, G(p, q, d, α) > 0},
B4(α) = {(p, q, d) : F (p, q, d, α) ≤ 0, H(p, q, d, α) > 0},

(53)

where functions F (·), G(·), H(·) : Θ × (0, 1) → R are defined
as:

F (p, q, d, α) =
∞∑
i=0

(αp)i −
d−1∑
i=0

αi,

G(p, q, d, α) = 1 + α(1− q)
d−1∑
i=0

αi −
d−1∑
i=0

αi,

H(p, q, d, α) = 1 + α(1− q)
∞∑
i=0

(αp)i −
d−1∑
i=0

αi.

(54)

Observe that all four regions Bi(α) converge to Bi as the
discount factor α → 1, where the regions Bi are described
in Definition 6.

The optimal structural result of Problem (50) with a
discount factor α is provided in the following proposition:

Proposition 1. There exists a threshold type policy µα,∗(δ, l1, 0)

on age δ that is the solution to Problem (50) such that:
(a) If l1 = 0 and (p, q, d) ∈ B1(α) ∪ B4(α), then

µα,∗(δ, l1, 0) is non-increasing in the age δ.
(b) If l1 = 0 and (p, q, d) ∈ B2(α) ∪ B3(α), then

µα,∗(δ, l1, 0) is non-decreasing in the age δ.
(c) If l1 = 1 and (p, q, d) ∈ B1(α) ∪ B2(α), then

µα,∗(δ, l1, 0) is non-increasing in the age δ.
(d) If l1 = 1 and (p, q, d) ∈ B3(α) ∪ B4(α), then

µα,∗(δ, l1, 0) is non-decreasing in the age δ.

Note that Theorem 1 can be immediately shown from
Proposition 1, Lemma 7 and the convergence of the regions
Bi(α) to Bi (for i = 1, 2, 3, 4) as α→ 1. The rest of Section 6.2
provides the proof for Proposition 1.

Since Channel 1 and Channel 2 have different delays, we
are not able to show that the optimal policy is threshold type
by directly observing the Bellman equation like [23]. Thus,
we will use the concept of super-modularity [36, Theorem
2.8.2]. The domain of age set and decision set in the Q-
function is {1, 2, ...} × {1, 2}, which is a lattice. Given a
positive s, the subset {s, s + 1, ...} × {1, 2} is a sublattice of
{1, 2, ...} × {1, 2}. Thus, if the following holds for all δ > s:

Qα(δ, l1, 0, 1)−Qα(δ − 1, l1, 0, 1)

≤Qα(δ, l1, 0, 2)−Qα(δ − 1, l1, 0, 2),
(55)

then the Q-function Qα(δ, l1, 0, u) is super-modular in (δ, u)
for δ > s, which means the optimal decision

µα,∗(δ, l1, 0) = argminu∈{1,2}Q
α(δ, l1, 0, u) (56)

is non-increasing in δ for δ ≥ s. If the inequality of (55) is
inversed, then we call Qα(δ, l1, 0) is sub-modular in (δ, u)
for δ > s, and µα,∗(δ, l1, 0) is non-decreasing in δ for δ ≥ s.
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For ease of notations, we give Definition 4:

Definition 4. Given l1 ∈ {0, 1}, u ∈ {1, 2},

Lα(δ, l1, u) , Qα(δ, l1, 0, u)−Qα(δ − 1, l1, 0, u). (57)

Note that Lα(δ, l1, 1) is the left hand side of (55), and
Lα(δ, l1, 2) is the right hand side of (55).

Our high-level idea to show Proposition 1 is as follows:
First, we show that Lα(δ, l1, 2) is a constant (see Lemma
8 below), then we compare Lα(δ, l1, 1) with the constant
to check super-modularity (see the proofs of Lemma 9 and
Lemma 10 below).

Suppose that m ,
∑d−1
i=0 α

i, and we have:

Lemma 8. For all δ ≥ 2 and l1 ∈ {0, 1}, Lα(δ, l1, 2) = m.

Proof. See Appendix F in our supplementary material.

Also, we have

Lemma 9. (a) If l1 = 0 and (p, q, d) ∈ B1(α) ∪ B4(α), then
Qα(δ, l1, 0, u) is super-modular in (δ, u) for δ ≥ 2.

(b) If l1 = 0 and (p, q, d) ∈ B2(α) ∪ B3(α), then
Qα(δ, l1, 0, u) is sub-modular in (δ, u) for δ ≥ 2.

Proof. See Appendix H in our supplementary material.

Lemma 9(a) implies that µα,∗(δ, 0, 0) is non-increasing
in δ if (p, q, d) ∈ B1(α) ∪ B4(α). Lemma 9(b) implies that
µα,∗(δ, 0, 0) is non-decreasing in δ if (p, q, d) ∈ B2(α) ∪
B3(α). Thus, Proposition 1(a),(b) hold.

Lemma 9 gives the result when the previous state of
Channel 1 is 0. We then need to solve when the previous
state of Channel 1 is 1. Different from Qα(δ, 0, 0, u), the Q-
function Qα(δ, 1, 0, u) does not satisfy super-modular (or
sub-modular) in (δ, u) for all the age value δ. Thus, we give a
weakened condition: we can find out a value s, such that the
Q-function Qα(δ, 1, 0, u) is super-modular (or sub-modular)
for a partial age set s, s + 1, ... and µα,∗(δ, 1, 0) is a constant
on the set 1, 2, ..., s. Then, µα,∗(δ, 1, 0) is still non-increasing
(or non-decreasing). Note that super-/sub-modularity is the
sufficient but not necessary condition to the monotonicity of
µα,∗(δ, l1, 0) in δ.

Thus, to solve Proposition 1(c),(d), we provide the fol-
lowing lemma:

Lemma 10. (a) If l1 = 1 and (p, q, d) ∈ B1(α) ∪ B2(α), then
there exists a positive integer s, such that Qα(δ, l1, 0, u) is super-
modular in (δ, u) for δ > s, and µα,∗(δ, l1, 0) is always 1 or
always 2 for all δ ≤ s.

(b) If l1 = 1 and (p, q, d) ∈ B3(α)∪B4(α), then there exists
a positive integer s, such that Qα(δ, l1, 0, u) is sub-modular in
(δ, u) for δ > s, and µα,∗(δ, l1, 0) is always 1 or always 2 for all
δ ≤ s.

Proof. See Appendix J in our supplementary material.

Lemma 10(a) implies that µα,∗(δ, 1, 0) is non-increasing
for δ ≥ s and is constant for for δ ≤ s. Thus, µα,∗(δ, 1, 0)
is non-increasing in δ. Similarly, Lemma 10(b) implies that
µα,∗(δ, 1, 0) is non-decreasing for δ > 0. Thus, we have

shown Proposition 1(c),(d). Showing the threshold structure
of µα,∗(δ, l1, 0) even if super-modularity does not hold is
one of the key technical contributions in this paper.

Overall, Lemma 8 and Lemma 9 shows Proposition
1(a),(b). Lemma 8 and Lemma 10 shows Proposition 1(c),(d).
Thus we have completed the proof of Proposition 1.

To summarize Section 6.2, Proposition 1, Lemma 7 and
the convergence of B1(α), . . . ,B4(α) to B1, . . . ,B4 show
Theorem 1.

6.3 Proofs of Theorems 2—5
In this section, we prove Theorems 2—5 with (p, q, d) ∈
B1—(p, q, d) ∈ B4, respectively for efficiently deriving an
optimal threshold-type solution.

6.3.1 Proof of Theorem 2
For (p, q, d) ∈ B1, we firstly prove that µ∗(δ, 0, 0) = 1 and
then show that µ∗(δ, 1, 0) = 1.

Lemma 11. If (p, q, d) ∈ B1 ∪ B4, then the optimal decisions at
states (δ, 0, 0) for all δ are 1.

Proof. See Appendix M in our supplementary material.

In addition, when l1 = 1, we have the following:

Lemma 12. If (p, q, d) ∈ B1, then the optimal decisions at states
(δ, 1, 0) for all δ are 1.

Proof. See Appendix O in our supplementary material.

Since µ∗(δ, 1, 0) is non-increasing in the region B1 by
Theorem 1, Lemma 12 implies that µ∗(δ, 1, 0) = 1 for all
δ. Besides, Lemma 11 implies that µ∗(δ, 0, 0) = 1 for all
δ. Thus, Theorem 2 follows directly from Lemma 11 and
Lemma 12. The optimal policy for (p, q, d) ∈ B1 is always
choosing Channel 1.

6.3.2 Proof of Theorem 3
In (9), we have stated that the MDP problem (2) is reduced
to deriving the steady-state distributions of the DTMCs.
Note that Channel 1 is Markovian (l1 = 0 or 1). When
l1 = 1, we observe that only the states (1, 1, 0) and (d, 1, 0)
can be reached with positive probability for any policy
in Π′. As a result, (9) can be reduced to a number of
the steady-state distributions of the DTMCs with different
actions at (1, 1, 0) and (d, 1, 0). In addition, we observe
that the state transition matrices of the DTMCs in (9) are
significantly different depending on the action at (d, 0, 0).
Thus, we conclude that there are at most 23 different steady-
state distributions of DTMCs based on the actions at three
system states: (1, 1, 0), (d, 1, 0) with l1 = 1 and (d, 0, 0)
with l1 = 0. Despite that there are totally 23 cases to
enumerate, we manage to reduce to only 4 cases as in (27)
(for (p, q, d) ∈ B2). The reason is that the remaining cases are
impossible to occur due to the two following restrictions:
(1) the monotonicity is known by Theorem 1, and (2) the
following lemma:

Lemma 13. If Channel 1 is positive-correlated, i.e., p + q ≥ 1,
and µ∗(δ, 0, 0) = 1, then µ∗(δ, 1, 0) = 1. Conversely, if Channel
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1 is negative-correlated, i.e. p+ q ≤ 1, and µ∗(δ, 0, 0) = 2, then
µ∗(δ, 1, 0) = 2.

Proof. See Appendix K in our supplementary material.

Since our optimal policy is of threshold-type, the ac-
tion at (d, 0, 0) is equivalent to whether the threshold of
µ∗(δ, 0, 0) is larger or smaller than d. Thus, we use s to
denote the possible threshold of µ∗(δ, 0, 0).

For (p, q, d) ∈ B2, µ∗(δ, 1, 0) is non-increasing, and
µ∗(δ, 0, 0) is non-decreasing. Note that (p, q, d) ∈ B2 implies
p + q ≥ 1. According to Lemma 13, if µ∗(1, 1, 0) = 2, then
µ∗(1, 0, 0) = 2, hence µ∗(δ, 0, 0) = 2 for all δ. Thus, there are
two possible types of DTMCs regarding µ∗(d, 1, 0) = 1 or
µ∗(d, 1, 0) = 2. If µ∗(1, 1, 0) = 1, then µ∗(δ, 1, 0) = 1 for all
δ, there are thus two possible types of DTMCs regarding the
threshold s > d or s ≤ d. Thus, for (p, q, d) ∈ B2, there are
four possible ways to represent the DTMC diagram of the
threshold policy based on the value of the threshold s and
the actions at states (d, l1, 0) and (1, 1, 0) (see Appendix P in
our supplementary material for the corresponding DTMCs
and derivations):

• The threshold s > d and µ∗(1, 1, 0) = µ∗(d, 1, 0) = 1
(λ∗1 = 1). Note that we have mentioned ∆̄2(λ0, λ1)
as the average age of the DTMC with thresholds
(λ0, λ1) when (p, q, d) ∈ B2. Then, the average
age is derived as ∆̄2(s, 1) = f1(s)/g1(s), which
is shown in Appendix P.1 in our supplementary
material. The functions f1(s), g1(s) are described in
Table III of our supplementary material. As is shown
later, β1 described in Definition 2 is the minimum of
f1(s)/g1(s).

• The threshold s ≤ d and µ∗(1, 1, 0) = µ∗(d, 1, 0) = 1
(λ∗1 = 1). Then the average age is ∆̄2(s, 1) =
f2(s)/g2(s), which is shown in Appendix P.2 in our
supplementary material. The functions f2(s), g2(s)
are described in Table III in our supplementary ma-
terial. As is shown later, β2 described in Definition 2
is the minimum of f2(s)/g2(s).

• The threshold s = 1, µ∗(1, 1, 0) = 2 and µ∗(d, 1, 0) =
1 (λ∗1 ∈ {2, 3, ..., d}). The average age is the constant
f0/g0, which is shown in Appendix P.3 in our sup-
plementary material. Note that f0/g0 is described in
(20). Theorem 3.

• The threshold s = 1 and µ∗(1, 1, 0) = µ∗(d, 1, 0) =
2 (λ∗1 ∈ {d + 1, d + 2, ...}). This policy means that
we always choose Channel 2. So the average age is
(3/2)d− 1/2.

The listed statements illustrated above directly provides the
following property:

Proposition 2. If (p, q, d) ∈ B2, then the optimal scheduling
policy is

µ∗(δ, 0, 0) =

{
1 if δ < λ∗0;

2 if δ ≥ λ∗0,
(58)

µ∗(δ, 1, 0) =

{
2 if δ < λ∗1;

1 if δ ≥ λ∗1,
(59)

where λ∗0 and λ∗1 are given by

λ∗0 = argmin
s∈{d+1,...}

f1(s)/g1(s), λ∗1 = 1 if ∆̄opt = β′1,

λ∗0 = argmin
s∈{1,...,d}

f2(s)/g2(s), λ∗1 = 1 if ∆̄opt = β′2,

λ∗0 = 1, λ∗1 ∈ {2, 3, . . . , d} if ∆̄opt = f0/g0,

λ∗0 = 1, λ∗1 ∈ {d+ 1, . . .} if ∆̄opt = (3/2)d− 1/2,
(60)

∆̄opt is the optimal objective value of (2), determined by

∆̄opt = min
{
β′1, β

′
2,
f0

g0
,

3

2
d− 1

2

}
, (61)

f0, g0 are given by Theorem 3, and β′1, β′2 are given in (28), (29),
respectively.

By using Dinkelbach’s method [47], we can change the
minimization problem (28), (29) into a two-layer problem.
The inner-layer problem is shown to be unimodal and we
derive an exact solution. Thus, we only need a bisection
algorithm for the outer-layer, i.e., solving the roots of the
equations h1(β) = 0, h2(β) = 0 in (21). To show this, we
introduce the following lemma:

Lemma 14. Suppose that i ∈ {1, 2, 3, 4}. Define

h′i(c) = min
s∈{d+1,...}

fi(s)− cgi(s), i ∈ {1, 3, 4}, (62)

h′2(c) = min
s∈{2,...d}

f2(s)− cg2(s), (63)

then for all i ∈ {1, 2, 3, 4}, h′i(c) S 0 if and only if c T β′i.

Proof. See Appendix Q in our supplementary material.

The solution to h′i(c) in Lemma 14 is shown in the
following lemma:

Lemma 15. Suppose that i ∈ {1, 2, 3, 4}. If (p, q, d) ∈ B2∪B3,
then the threshold si(c) defined in (22) is the solution to (62) and
(63), i.e., hi(c) = h′i(c).

Proof. See Appendix R in our supplementary material.

Therefore, we can immediately conclude that for all i ∈
{1, 2, 3, 4}:

β′i = βi, (64)

where β′i is defined in (28), (29) and βi is derived in Defini-
tion 2 with low complexity algorithm. In addition,

si(βi) = argmin
s∈{d+1,...}

fi(s)/gi(s), i ∈ {1, 3, 4}, (65)

s2(β2) = argmin
s∈{2,...,d}

f2(s)/g2(s). (66)

The studies in [10], [11], [21] also derive an exact solution
to their inner-layer problem. However, their technique is
using optimal stopping rules [11], [21] or stochastic convex
optimization [10], which is different from our study. In
conclusion, (64) and Proposition 2 shows Theorem 3.
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6.3.3 Proof of Theorem 4
When (p, q, d) ∈ B3 , µ∗(δ, 0, 0) and µ∗(δ, 1, 0) are non-
decreasing. Then, the two cases are removed: µ∗(δ, 0, 0) = 2,
µ∗(δ, 1, 0) = 1, s ≤ d or s > d. Since (p, q, d) ∈ B3 does not
imply p + q ≤ 1 or p + q ≥ 1, we will enumerate all of the
five possible ways to represent the DTMCs of the threshold
policy based on the value of the threshold s and the optimal
decision at states (d, 1, 0) and (1, 1, 0) (see Appendix P in
our supplementary material for the corresponding DTMCs):

• The threshold s > d and µ∗(1, 1, 0) = µ∗(d, 1, 0) = 1
(λ∗1 ∈ {d + 1, d + 2, ...}). The average age is derived
as f1(s)/g1(s).

• The threshold s > d, µ∗(1, 1, 0) = 1 and µ∗(d, 1, 0) =
2 (λ∗1 ∈ {2, ..., d}). Then, the average age is
f3(s)/g3(s), which is shown in Appendix P.4 in our
supplementary material.

• The threshold s > d and µ∗(1, 1, 0) = µ∗(d, 1, 0) = 2
(λ∗1 ∈ {2, ..., d}) with average age f4(s)/g4(s), which
is shown in Appendix P.5 in our supplementary
material.

• The threshold s ≤ d and µ∗(1, 1, 0) = µ∗(d, 1, 0) = 1
(λ∗1 ∈ {d+1, d+2, ...}), with average age f2(s)/g2(s).

• The threshold s ≤ d and µ∗(d, 1, 0) = 2. Then, re-
gardless of µ∗(1, 1, 0) (λ∗1 ∈ {1, 2, ..., d}), the DTMC
corresponds to always choosing 2, with average age
(3/2)d− 1/2.

Then, we directly have the following result:

Proposition 3. If (p, q, d) ∈ B3, then the optimal scheduling
policy is

µ∗(δ, 0, 0) =

{
1 if δ < λ∗0;

2 if δ ≥ λ∗0,
(67)

µ∗(δ, 1, 0) =

{
1 if δ < λ∗1;

2 if δ ≥ λ∗1,
(68)

where λ∗0 and λ∗1 are given by

λ∗0 = argmin
s∈{d+1,...}

f1(s)/g1(s), λ∗1 ∈ {d+ 1, . . .} if ∆̄opt = β′1,

λ∗0 = argmin
s∈{2,...,d}

f2(s)/g2(s), λ∗1 ∈ {d+ 1, . . .} if ∆̄opt = β′2,

λ∗0 = argmin
s∈{d+1,...}

f3(s)/g3(s), λ∗1 ∈ {2, . . . , d} if ∆̄opt = β′3,

λ∗0 = argmin
s∈{d+1,...}

f4(s)/g4(s), λ∗1 ∈ {2, . . . , d} if ∆̄opt = β′4,

λ∗0 = 1, λ∗1 ∈ {1, 2, . . . , d} if ∆̄opt = (3/2)d− 1/2,
(69)

∆̄opt is the optimal objective value of (2), determined by

∆̄opt = min
{
β′1, β

′
2, β
′
3, β
′
4,

3

2
d− 1

2

}
. (70)

According to (64), (65) and (66), Theorem 4 is shown
directly from Proposition 3.

6.3.4 Proof of Theorem 5
For (p, q, d) ∈ B4, µ∗(δ, 1, 0) is non-decreasing in δ from
Theorem 1. Also, µ∗(δ, 0, 0) = 1 by Lemma 11.

If µ∗(1, 1, 0) = 1, the policy becomes always choosing
Channel 1 (since (d, 1, 0) is not reached at any time slot with

probability 1). If µ∗(1, 1, 0) = 2, then µ∗(δ, 1, 0) = 2 for all
δ. Thus, the solution to the optimal threshold-type policy
when (p, q, d) ∈ B4 may contain two possible steady-state
DTMCs which directly gives Theorem 5:

• The optimal decision µ∗(δ, 0, 0) = 1 for all δ ≥ 1
and µ∗(1, 1, 0) = 1. Then, the optimal policy is al-
ways choosing Channel 1. The average age of always
choosing Channel 1 is ((1−q)(2−p)+(1−p)2)/((2−
q − p)(1− p)) as in (12).

• The optimal decision µ∗(δ, 0, 0) = 1 and µ∗(δ, 1, 0) =
2 for all δ ≥ 1. See Appendix P.6 in our supplemen-
tary material for the corresponding DTMC. The av-
erage age by analyzing the steady-state distribution
of this DTMC is f ′0/g

′
0 which is shown in Appendix

P.6 in our supplementary material.

Therefore, the two listed items above directly prove
Theorem 5.

From our analysis in Section 6.3, we have the following
conclusion for the proof of Theorems 2-5: (i) If (p, q, d) ∈ B1,
the optimal decision is always choosing Channel 1; (ii) If
(p, q, d) ∈ B2, B3 or B4, there are a couple of possible cases
(4 cases for (p, q, d) ∈ B2, 5 cases for (p, q, d) ∈ B3 and 2
cases for (p, q, d) ∈ B4, respectively). Each case corresponds
to analyzing the steady-state distribution of a single DTMC
or a collection of DTMCs over the threshold s; in the latter
case, the optimal threshold can be computed efficiently
using bisection search. The optimal objective value in (2)
is the minimum of the derived ages in each cases and the
optimal thresholds are determined by the case that achieves
the minimum.

7 CONCLUSION

In this paper, we have studied age-optimal transmission
scheduling for hybrid mmWave/sub-6GHz channels. For all
possibly values of the channel parameters and the ON-OFF
state of the mmWave channel, the optimal scheduling policy
have been proven to be of threshold-type on the age. Low
complexity algorithms have been developed for finding the
optimal scheduling policy. Finally, our numerical results
show that the optimal policy can reduce age compared with
other policies.
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