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ABSTRACT
In this paper, we study the problem of minimizing the age of in-

formation when a source can transmit status updates over two

heterogeneous channels. Our work is motivated by recent devel-

opments in 5G mmWave technology, where transmissions may

occur over an unreliable but fast (e.g., mmWave) channel or a slow

reliable (e.g., sub-6GHz) channel. The unreliable channel is mod-

eled as a time-correlated Gilbert-Elliot channel, where information

can be transmitted at a high rate when the channel is in the “ON”

state. The reliable channel provides a deterministic but lower data

rate. The scheduling strategy determines the channel to be used

for transmission with the aim to minimize the time-average age

of information (AoI). The optimal scheduling problem is formu-

lated as a Markov Decision Process (MDP), which in our setting

poses some significant challenges because e.g., supermodularity

does not hold for part of the state space. We show that there exists

a multi-dimensional threshold-based scheduling policy that is opti-

mal for minimizing the age. A low-complexity bisection algorithm

is further devised to compute the optimal thresholds. Numerical

simulations are provided to compare different scheduling policies.
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1 INTRODUCTION
The timely update of the system state is of great significance in

cyber-physical systems such as vehicular networks, sensor net-

works, and UAV navigations. In these applications, newly generated

data is more desirable than outdated data. Age of information (AoI),

or simply age, was introduced as an end-to-end application-layer

metric to evaluate data freshness [1, 3–6, 8, 9, 12, 14–18, 20, 21,

24, 29, 35–40, 43]. The age at time 𝑡 is defined as Δ(𝑡) = 𝑡 − 𝑈𝑡 ,

where𝑈𝑡 is the generation time of the freshest packet that has been

received by time 𝑡 . The difference between age and classical metrics

like delay and throughput is evident even in elementary queuing

systems [18]. High throughput implies frequent status updates, but

tends to cause a higher queuing delay that worsens timeliness. On

the other hand, delay can be greatly reduced by decreasing the

update frequency, which, however, may increase the age because

the status is updated infrequently.

In future wireless networks, the sub-6GHz frequency spectrum

is insufficient for fulfilling the high throughput demand of emerg-

ing real-time applications such as VR/AR applications, where con-

tents must be delivered within 5-20 ms of latency, requiring a high

throughput of 400-600 Mbps [30]. To address this challenge, 5G

technology utilizes high-frequency millimeter wave (mmWave)

bands such as 28/38 GHz, which provide a much higher data rate

than sub-6GHz [31]. Recently, Verizon and Samsung demonstrated

that a throughput of nearly 4Gbps was achieved in their mmWave

demo system, using a 28GHz frequency band with 800MHz band-

width [32]. However, unlike sub-6GHz spectrum bands, mmWave

channels are highly unreliable due to blocking susceptibility, strong

atmospheric absorption, and low penetration. Real-world smart-

phone experiments have shown that even obstructions by hands

could significantly degrade the mmWave throughput [22]. One solu-

tion to mitigate this effect is to let sub-6GHz coexist with mmWave

to form two heterogeneous channels, so that the user equipment

can offload data to sub-6GHz when mmWave communications are

unfeasible [2, 26, 27, 33]. Some work has already been done based

https://doi.org/10.1145/3466772.3467040
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on mmWave/sub-6GHz heterogeneous networks [10, 13]. However,

how to improve information freshness in such hybrid networks has

remained largely unexplored.

In this study, we consider a hybrid status updating system where

a source can transmit the update packets over either an unreliable

but fast mmWave channel or a slow reliable sub-6GHz channel. Our

objective is to find a dynamic channel scheduling policy that mini-

mizes the long-term average expected age. The main contributions

of this paper are stated as follows:

• The optimal scheduling problem for minimizing the age over

heterogeneous channels is formulated as a Markov Decision

Process (MDP). The state transition of this MDP is compli-

cated for two reasons: (i) the two channels have different

data rates and packet transmission times, and (ii) the state of

the unreliable mmWave channel is correlated over time. We

prove that there exists a multi-dimensional threshold-based

scheduling policy that is optimal. This optimality result holds

for all possible values of the channel parameters. Supermod-

ularity [41] has been one of the tools used to prove this

result. Because of the complicated state transitions, the su-

permodular property only holds in a part of the state space,

which is a key difference from the scheduling problems con-

sidered earlier in, e.g., [1, 19, 23, 28, 35, 38, 42]. We have

developed additional techniques to show that the threshold-

based scheduling policy is optimal in the rest part of the

state space where supermodularity does not hold.

• Further, we show that the thresholds of the optimal schedul-

ing policy can be evaluated efficiently, by using closed-form

expressions or a low-complexity bisection search algorithm.

Compared with the algorithms for calculating the thresholds

and optimal scheduling policies in, e.g., [1, 19, 23, 28, 35, 38,

42], our solution algorithms have much lower computational

complexities.

• In the special case that the state of the unreliable mmWave

channel is independent and identically distributed (i.i.d.) over

time, the optimal scheduling policy is shown to possess an

even simpler form.

• Finally, numerical results show that the optimal policy can

reduce the age compared with several other policies.

2 RELATED WORKS
Age of information has become a popular research topic in recent

years, e.g., [1, 3–6, 8, 9, 12, 14–18, 20, 21, 24, 29, 35–40, 43]. A com-

prehensive survey of the area was recently provided in [43]. First,

there has been substantial work on age performance analysis in

queuing disciplines [4, 5, 8, 9, 15, 18]. Average age and peak age in

elementary queuing systems were analyzed in [9, 15, 18]. A similar

setting with Gilbert-Elliot sampler or Gilbert-Elliot server was con-

sidered in [8]. A Last-Generated, First-Served (LGFS) policy was

shown (near) optimal in general single source, multiple servers, and

multihop networks with arbitrary generation and arbitrary arrival

process [4, 5]. These results were extended to the multi-source

multi-server regime in [37]. Next, there has been a significant effort

in age-optimal sampling [3, 24, 35, 36, 38]. The optimal sampling

policy was provided for minimizing a monotonic age function in

[24, 35, 38]. Sampling and scheduling in multi-source systems were

analyzed where the optimal joint problem could be decoupled into

maximum age first (MAF) scheduling [37] and an optimal sam-

pling problem in [3]. Finally, age in wireless networks has been

substantially explored in [14, 16, 17, 20, 21, 29, 40]. Scheduling in a

broadcast network with random arrival was provided where whittle

index policy can achieve (near) age optimality [14]. Some other age-

optimal scheduling works for cellular networks were considered in

[16, 17, 21, 39, 40]. A class of age-optimal scheduling policies was

analyzed in the asymptotic regime when the number of sources and

channels both grow to infinity [29]. An ageminimizationmulti-path

routing strategy was introduced in [20].

However, the age-optimal problem via heterogeneous channels

has been largely unexplored yet. To the best of our knowledge, tech-

nical models similar to ours were reported in [1, 12]. Their study

assumed that the first channel is unreliable but consumes a lower

cost, and the second channel has a steady connection with the same

delay but consumes a higher cost. They derived the scheduling

policy for the trade-off between age performance and cost. Our

study is significantly different from theirs in two aspects: (i) The

study in [1, 12] shows the optimality of the threshold type policy

and efficiently solves the optimal threshold when the first channel

is i.i.d. [1], but our work allows a Markovian channel which is a

generalization of the i.i.d. case. (ii) In addition to allowing mmWave

to be unreliable, our study assumes that sub-6GHz has a larger delay

than mmWave since this assumption complies with the property of

dual mmWave/sub-6GHz channels in real applications. These two

differences between mmWave and sub-6GHz make the MDP for-

mulation more complex. Thus, most of the well-known techniques

that show a nice structure of the optimal policy or even solve the

optimal policy with low complexity (e.g., [1, 19, 23, 28, 35, 38, 42])

do not apply to our model.

3 SYSTEM MODEL AND PROBLEM
FORMULATION

3.1 System Models
Consider a single-hop network as illustrated in Fig. 1, where a

source sends status update packets to the destination. We assume

that time is slotted with slot index 𝑡 ∈ {0, 1, 2...}. The source can
generate a fresh status update packet at the beginning of each

time slot. The packets can be transmitted either over the mmWave

channel or over the sub-6GHz channel. The packet transmission

time of the mmWave channel is 1 time slot, whereas the packet

transmission time of the sub-6GHz channel is 𝑑 time slots (𝑑 ≥ 2)
1

because of its lower data rate.

The mmWave channel, called Channel 1, follows a two-state

Gilbert-Elliot model that is shown in Fig. 2. We say that Channel 1

is𝑂𝑁 in time slot 𝑡 , denoted by 𝑙1 (𝑡) = 1, if the packet is successfully

transmitted to the destination in time slot 𝑡 ; otherwise Channel 1 is

said to be 𝑂𝐹𝐹 , denoted by 𝑙1 (𝑡) = 0. If a packet is not successfully

transmitted, then it is dropped, and a new status update packet is

generated at the beginning of the next time slot. The self transition

probability of the 𝑂𝑁 state is 𝑞, and the self transition probability

of the 𝑂𝐹𝐹 state is 𝑝 , where 0 < 𝑞 < 1 and 0 < 𝑝 < 1. We assume

that the source has access to the state of Channel 1, but with one

1
If 𝑑 = 1, one can readily see that it is better to choose sub-6GHz than mmWave. Thus,

in this paper we study the nontrivial case of 𝑑 ≥ 2.
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Figure 1: The system model for status updates in heteroge-
neous channels. The scheduler chooses mmWave (Channel
1) or sub-6GHz (Channel 2) for transmission over time.
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Figure 2: The Gilbert-Elliot model for Channel 1.

time slot of feedback delay. That is, at the beginning of time slot 𝑡 ,

the source knows 𝑙1 (𝑡 − 1) perfectly.
The sub-6GHz channel, called Channel 2, has a steady connection.

As mentioned above, the packet transmission time of Channel 2 is

𝑑 time slots. Define 𝑙2 (𝑡) ∈ {0, 1, ..., 𝑑 − 1} as the state of Channel 2
in time slot 𝑡 , where 𝑙2 (𝑡) is the remaining transmission time of the

packet being sent over Channel 2 at the beginning of time slot 𝑡 ,

and 𝑙2 (𝑡) = 0 means that Channel 2 is currently idle and ready for

sending the next packet. In time slot 𝑡 , the source has immediate

knowledge about the state 𝑙2 (𝑡) of Channel 2. On the other hand,

because the packet transmission time of Channel 1 is 1 time slot,

Channel 1 is always ready for transmission at the beginning of each

time slot.

Following the application settings in [2, 10, 26, 27, 33], a packet

can be transmitted using only one channel at a time, i.e., the two

channels cannot be used simultaneously. The scheduler decides

which channel to be used to transmit a packet at each time slot.

We also assume that the scheduler can choose idle (neither chan-

nel) since it has been shown that channel idling could reduce the

average age in the system [3, 35, 38]. The scheduling decision at

the beginning of time slot 𝑡 is denoted by 𝑢 (𝑡) ∈ {1, 2, 𝑛𝑜𝑛𝑒}. The
action 𝑢 (𝑡) = 1 or 2 means that the source generates a packet

and assigns it to Channel 1 or Channel 2, respectively. The action

𝑢 (𝑡) = 𝑛𝑜𝑛𝑒 means that no new packet is assigned to any channel

at time slot 𝑡 . Hence, u(t) = 𝑛𝑜𝑛𝑒 can occur if (i) a packet is was as-

signed to Channel 2 earlier and has not completed its transmission,

i.e., 𝑙2 (𝑡) ∈ {1, 2, . . . , 𝑑 − 1} such that no packet can be assigned for

transmission, or (ii) 𝑙2 (𝑡) = 0, but both channels are kept idle on

purpose.

The age of information (AoI) Δ(𝑡) is the time difference between

the current time slot 𝑡 and the generation time of the freshest

delivered packet [18]. By this definition, when a packet is delivered,

the age drops to the transmission time of the delivered packet.

Specifically, if Channel 1 is selected in time slot 𝑡 and Channel 1

Table 1: Value of State Transition Probability

𝑃ss′ (𝑢) Action and State Transition

𝑝 𝑢 = 1, s = (𝛿, 0, 0), s′ = (𝛿 + 1, 0, 0)
𝑢 = 2, s = (𝛿, 0, 0), s′ = (𝛿 + 1, 0, 𝑑 − 1)
𝑢 = 𝑛𝑜𝑛𝑒, s = (𝛿, 0, 0), s′ = (𝛿 + 1, 0, 0)
𝑢 = 𝑛𝑜𝑛𝑒, s = (𝛿, 0,𝑚), s′ = (𝛿 + 1, 0,𝑚 − 1),𝑚 ≥ 2

𝑢 = 𝑛𝑜𝑛𝑒, s = (𝛿, 0, 1), s′ = (𝑑, 0, 0)
1 − 𝑝 𝑢 = 1, s = (𝛿, 0, 0), s′ = (1, 1, 0)

𝑢 = 2, s = (𝛿, 0, 0), s′ = (𝛿 + 1, 1, 𝑑 − 1)
𝑢 = 𝑛𝑜𝑛𝑒, s = (𝛿, 0, 0), s′ = (𝛿 + 1, 1, 0)
𝑢 = 𝑛𝑜𝑛𝑒, s = (𝛿, 0,𝑚), s′ = (𝛿 + 1, 1,𝑚 − 1),𝑚 ≥ 2

𝑢 = 𝑛𝑜𝑛𝑒, s = (𝛿, 0, 1), s′ = (𝑑, 1, 0)
𝑞 𝑢 = 1, s = (𝛿, 1, 0), s′ = (1, 1, 0)

𝑢 = 2, s = (𝛿, 1, 0), s′ = (𝛿 + 1, 1, 𝑑 − 1)
𝑢 = 𝑛𝑜𝑛𝑒, s = (𝛿, 1, 0), s′ = (𝛿 + 1, 1, 0)
𝑢 = 𝑛𝑜𝑛𝑒, s = (𝛿, 1,𝑚), s′ = (𝛿 + 1, 1,𝑚 − 1),𝑚 ≥ 2

𝑢 = 𝑛𝑜𝑛𝑒, s = (𝛿, 1, 1), s′ = (𝑑, 1, 0)
1 − 𝑞 𝑢 = 1, s = (𝛿, 1, 0), s′ = (𝛿 + 1, 0, 0)

𝑢 = 2, s = (𝛿, 1, 0), s′ = (𝛿 + 1, 0, 𝑑 − 1)
𝑢 = 𝑛𝑜𝑛𝑒, s = (𝛿, 1, 0), s′ = (𝛿 + 1, 0, 0)
𝑢 = 𝑛𝑜𝑛𝑒, s = (𝛿, 1,𝑚), s′ = (𝛿 + 1, 0,𝑚 − 1),𝑚 ≥ 2

𝑢 = 𝑛𝑜𝑛𝑒, s = (𝛿, 1, 1), s′ = (𝑑, 0, 0)
0 Otherwise

is 𝑂𝑁 , then the age drops to 1 at time slot 𝑡 + 1. If the remaining

service time of Channel 2 at time slot 𝑡 is 1, then age drops to 𝑑 at

time slot 𝑡 + 1. When there is no packet delivery at time slot 𝑡 , the

age increases by one time slot. Hence, the time-evolution of the age

is given by

Δ(𝑡 + 1) =


1 if 𝑢 (𝑡) = 1 and 𝑙1 (𝑡) = 1,

𝑑 if 𝑙2 (𝑡) = 1,

Δ(𝑡) + 1 Otherwise.

(1)

3.2 Problem Formulations
We use 𝜋 = {𝑢 (0), 𝑢 (1)...} to denote a scheduling policy. A sched-

uling policy is said to be admissible if (i) 𝑢 (𝑡) = 𝑛𝑜𝑛𝑒 whenever

𝑙2 (𝑡) ≥ 1 and (ii) 𝑢 (𝑡) is determined by the current and history

information that is available at the scheduler. Let Δ𝜋 (𝑡) denote the
AoI induced by policy 𝜋 . The expected time-average age of policy

𝜋 is

lim sup

𝑇→∞

1

𝑇

𝑇∑
𝑡=1

E[Δ𝜋 (𝑡)] .

Our objective in this paper is to solve the following optimal sched-

uling problem for minimizing the expected time-average age:

Δ̄opt = inf

𝜋 ∈Π
lim sup

𝑇→∞

1

𝑇

𝑇∑
𝑡=1

E[Δ𝜋 (𝑡)], (2)

where Π is the set of all admissible policies. Problem (2) can be

equivalently expressed as an average-cost MDP problem [7, 28],

which is illustrated below.

• Markov State: The system state in time slot 𝑡 is defined as

s(𝑡) = (Δ(𝑡), 𝑙1 (𝑡 − 1), 𝑙2 (𝑡)), (3)
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where Δ(𝑡) ∈ {1, 2, 3, ...} is the AoI in time slot 𝑡 , 𝑙1 (𝑡 − 1) ∈
{0, 1} is the 𝑂𝑁 −𝑂𝐹𝐹 state of Channel 1 in time slot 𝑡 − 1,

and 𝑙2 (𝑡) ∈ {0, 1, ..., 𝑑−1} is the remaining transmission time

of Channel 2 at the beginning of time slot 𝑡 . Let S denote the
state space which is countably infinite. The time-evolution

of Δ(𝑡) is determined by the state and action in time slot

𝑡 − 1.

• Action: As mentioned before, if Channel 2 is busy (i.e.,

𝑙2 (𝑡) > 0), the scheduler always chooses an idle action, i.e.,

𝑢 (𝑡) = 𝑛𝑜𝑛𝑒 . Otherwise, the action 𝑢 (𝑡) ∈ {1, 2, 𝑛𝑜𝑛𝑒}.
• Cost function: Suppose that a decision 𝑢 (𝑡) is applied at a

time slot 𝑡 , we encounter a cost 𝐶 (s(𝑡), 𝑢 (𝑡)) = Δ(𝑡).
• Transition probability:We use 𝑃ss′ (𝑢) to denote the tran-

sition probability from state s to s′ for action 𝑢. The value
of 𝑃ss′ (𝑢) is summarized in Table 1. See our technical report

[25] for the explanation of Table 1.

4 MAIN RESULTS
In this section, we show that there exists a threshold-type policy

that solves Problem (2). We then provide a low-complexity algo-

rithm to obtain the optimal policy and optimal average age.

4.1 Optimality of threshold-type policies
As mentioned in Section 3.2, the action space of the MDP allows

𝑢 (𝑡) = 𝑛𝑜𝑛𝑒 even if Channel 2 is idle, i.e., 𝑙2 (𝑡) = 0. In the following

lemma, we show that the action 𝑢 (𝑡) = 𝑛𝑜𝑛𝑒 can be abandoned

when 𝑙2 (𝑡) = 0. Define

Π′ = {𝜋 ∈ Π : 𝑢 (𝑡) ≠ 𝑛𝑜𝑛𝑒, if 𝑙2 (𝑡) = 0}. (4)

Lemma 1. For any 𝜋 ∈ Π, there exists a policy 𝜋 ′ ∈ Π′ that is no
worse than 𝜋 .

Proof. See our technical report [25]. □

By Lemma 1, the scheduler only needs to choose from the actions

𝑢 (𝑡) = 1 or 2 when 𝑙2 (𝑡) = 0. This lemma simplifies the MDP

problem.

Remark 1. In [3, 35, 38], the authors showed that in certain scenar-
ios, the zero wait policy (transmitting immediately after the previous
update has been received) might not be optimal. However, in our model,
the zero wait policy is indeed optimal. The reason is that in our model,
the minimum non-zero waiting time is one time slot which is the same
as the delay of Channel 1. If 𝑙2 (𝑡) = 0, it is better to choose Channel
1 than keeping both channels idle, because, by choosing Channel 1,
fresh packets could be delivered over Channel 1.

For the ease of description, we divide the possible values of chan-

nel parameters (𝑝, 𝑞, 𝑑) into four complementary regionsB1, . . . ,B4.

Definition 1. The regions B1, . . . ,B4 are defined as

B1 = {(𝑝, 𝑞, 𝑑) : 𝐹 (𝑝, 𝑞, 𝑑) ≤ 0, 𝐻 (𝑝, 𝑞, 𝑑) ≤ 0},
B2 = {(𝑝, 𝑞, 𝑑) : 𝐹 (𝑝, 𝑞, 𝑑) > 0,𝐺 (𝑝, 𝑞, 𝑑) ≤ 0},
B3 = {(𝑝, 𝑞, 𝑑) : 𝐹 (𝑝, 𝑞, 𝑑) > 0,𝐺 (𝑝, 𝑞, 𝑑) > 0},
B4 = {(𝑝, 𝑞, 𝑑) : 𝐹 (𝑝, 𝑞, 𝑑) ≤ 0, 𝐻 (𝑝, 𝑞, 𝑑) > 0},

(5)
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Figure 3: The Diagram of the regions B1, . . . ,B4 with an ex-
ample of 𝑑 = 10. In the diagram, each function 𝐹,𝐺, 𝐻 divides
thewhole plane ((𝑝, 𝑞) ∈ (0, 1)×(0, 1)) into two half-planes re-
spectively. Each region B1, . . . ,B4 is the intersection of some
two half-plane areas. Since we emphasize the differences of
the four regions, we provide the partial but enlarged dia-
gram.

where

𝐹 (𝑝, 𝑞, 𝑑) = 1

1 − 𝑝
− 𝑑,

𝐺 (𝑝, 𝑞, 𝑑) = 1 − 𝑑𝑞,

𝐻 (𝑝, 𝑞, 𝑑) = 1 − 𝑞

1 − 𝑝
+ 1 − 𝑑.

(6)

In this study, the regions B1 − B4 will serve as the sufficient

conditions for optimality of threshold type policy. Note that the

inequality 1/(1 − 𝑝) > 𝑑 also represents a comparison between the

channel delay 𝑑 and the average length of 𝑂𝐹𝐹 period given that

the last channel state is 𝑂𝐹𝐹 . Similarly, 1 − 𝑑𝑞 > 0 represents a

comparison between 𝑑 and the average length of𝑂𝐹𝐹 period given

that the last channel state is 𝑂𝑁 . Finally, (1 − 𝑞)/(1 − 𝑝) + 1 − 𝑑 >

0 represents a comparison between 𝑑 and the average delay of

Channel 1. These comparisons are the interpretations of all the

boundary functions 𝐹,𝐺, 𝐻 of the regions B1−B4. The four regions

B1, . . . ,B4 are depicted in Fig. 3, where 𝑑 = 10.

Consider a stationary policy 𝜇 (𝛿, 𝑙1, 𝑙2). As mentioned in Lemma

1, when 𝑙2 = 0, the decision 𝜇 (𝛿, 𝑙1, 0) can be 1 (Channel 1) or

2 (Channel 2). Given the value of 𝑙1, 𝜇 (𝛿, 𝑙1, 0) is said to be non-
decreasing in the age 𝛿 , if

𝜇 (𝛿, 𝑙1, 0) =
{

1 if 𝛿 < 𝜆;

2 if 𝛿 ≥ 𝜆.
(7)

Conversely, 𝜇 (𝛿, 𝑙1, 0) is said to be non-increasing in the age 𝛿 , if

𝜇 (𝛿, 𝑙1, 0) =
{

2 if 𝛿 < 𝜆;

1 if 𝛿 ≥ 𝜆.
(8)

One can observe that scheduling policies in the form of (7) and (8)

are both with a threshold-type, where 𝜆 is the threshold on the age

𝛿 at which the value of 𝜇 (𝛿, 𝑙1, 0) changes.
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One optimal solution to Problem (2) is of a special threshold-type

structure, as stated in the following theorem:

Theorem 1. There exists an optimal solution 𝜇∗ (𝛿, 𝑙1, 0) to Prob-
lem (2), which satisfies the following properties:

(a) if (𝑝, 𝑞, 𝑑) ∈ B1, then 𝜇∗ (𝛿, 0, 0) is non-increasing in the age 𝛿
and 𝜇∗ (𝛿, 1, 0) is non-increasing in the age 𝛿 ;

(b) if (𝑝, 𝑞, 𝑑) ∈ B2, then 𝜇∗ (𝛿, 0, 0) is non-decreasing in the age 𝛿
and 𝜇∗ (𝛿, 1, 0) is non-increasing in the age 𝛿 ;

(c) if (𝑝, 𝑞, 𝑑) ∈ B3, then 𝜇∗ (𝛿, 0, 0) is non-decreasing in the age 𝛿
and 𝜇∗ (𝛿, 1, 0) is non-decreasing in the age 𝛿 ;

(d) if (𝑝, 𝑞, 𝑑) ∈ B4, then 𝜇∗ (𝛿, 0, 0) is non-increasing in the age 𝛿
and 𝜇∗ (𝛿, 1, 0) is non-decreasing in the age 𝛿 .

Proof. Please see Section 7.2 for the proof. □

As is shown in Theorem 1, for all possible parameters 𝑝, 𝑞, 𝑑

of the two channels, the optimal action 𝜇∗ (𝛿, 𝑙1, 0) of channel se-
lection is a monotonic function of the age 𝛿 . Whether 𝜇∗ (𝛿, 𝑙1, 0)
is non-decreasing or non-increasing in 𝛿 depends on the channel

parameters (𝑝, 𝑞, 𝑑) and the previous state 𝑙1 of Channel 1.

The study in [1] assumed that the first channel is unreliable

and consumes a lower cost, and the second channel has a steady

connection with the same delay but a higher cost. They studied the

scheduling policy for the trade-off between age performance and

cost. The optimal scheduling policy in Theorem 1 is quite different

from that in [1]: The study in [1] assumes the first channel to

be i.i.d., but our result allows a Markovian Channel 1, which is a

generalization of the i.i.d. case. The optimal scheduling policy in

[1] is non-decreasing in age since the first channel is inferior to

the second channel. However, the optimal policy in our study can

be non-decreasing or non-increasing since the two channels (i.e.,

Channel 1 and 2) have their own advantages. In conclusion, our

study allows for general channel parameters and applies to all types

of comparisons between Channel 1 and Channel 2, and our policy

can be non-increasing in some regions and non-decreasing in other

regions.

4.2 Insights Behind the Regions B1 − B4

The regions B1 −B4 were introduced in Theorem 1 for proving that

the action value function 𝑄 (s, 𝑢) is supermodular or submodular,
where s = (𝛿, 𝑙1, 0) denotes the state of the MDP and 𝑢 is the action.

For example, in the case of 𝑙1 = 0, if 1/(1 − 𝑝) > 𝑑 and 1/𝑞 ≤ 𝑑

(i.e., (𝑝, 𝑞, 𝑑) ∈ B2), Lemma 8 in our technical report showed that

𝑄 (𝛿, 0, 0, 𝑢) is submodular in (𝛿,𝑢) (in the discounted case). As a

result, the optimal action 𝜇∗ (𝛿, 0, 0) is increasing in 𝛿 .

However, in the case 𝑙1 = 1 of Theorem 1, there are additional

technical challenges: For example, if (𝑝, 𝑞, 𝑑) ∈ B2, we were un-

able to use 1/(1 − 𝑝) > 𝑑 and 1/𝑞 ≤ 𝑑 (where are provided in the

definition of B2) to prove that 𝑄 (𝛿, 1, 0, 𝑢) is super-modular or sub-

modular. A new method was developed in Lemma 9 in our Appen-

dices to conquer this challenge. Technically, super-/sub-modularity

is a sufficient but not necessary condition for the monotonicity

of 𝜇∗ (𝛿, 𝑙1, 0). In some part of the state space (𝑙1 = 0), we proved

super-/sub-modularity. In the rest part of the state space (𝑙1 = 1),

neither super-modularity nor sub-modularity may hold, but we

were able to show that the optimal decision 𝜇∗ (𝛿, 1, 0) does not

change with 𝛿 when 𝑙1 = 1. By this, we proved the monotonicity of

𝜇∗ (𝛿, 1, 0) for all cases, without requiring 𝑄 (s, 𝑢) to be supermodu-

lar or submodular over the entire state space.

Thus, one technical contribution of the paper is: we proved

that the optimal action 𝜇∗ (𝛿, 1, 0) is monotonic in 𝛿 even if super-

/sub-modularity does not hold. This is a key difference from prior

studies, e.g., [1, 19, 23, 28, 35, 38], where super-modularity (or sub-

modularity) holds for the entire state space.

4.3 Optimal Scheduling Policy
According to Theorem 1, 𝜇∗ (𝛿, 0, 0) and 𝜇∗ (𝛿, 1, 0) are both threshold-
type, so there are two thresholds. We use 𝜆∗

0
and 𝜆∗

1
to denote the

thresholds of 𝜇∗ (𝛿, 0, 0) and 𝜇∗ (𝛿, 1, 0), respectively.

Theorem 2. An optimal solution to (2) is presented below for the
2 regions B1,B2 of the channel parameters:

(a) If (𝑝, 𝑞, 𝑑) ∈ B1, then the optimal scheduling policy is

𝜇∗ (𝛿, 0, 0) = 1, 𝛿 ≥ 1; (9)

𝜇∗ (𝛿, 1, 0) = 1, 𝛿 ≥ 1. (10)

In this case, the optimal objective value of (2) is

Δ̄opt =
(1 − 𝑞) (2 − 𝑝) + (1 − 𝑝)2

(2 − 𝑞 − 𝑝) (1 − 𝑝) . (11)

(b) If (𝑝, 𝑞, 𝑑) ∈ B2, then the optimal scheduling policy is

𝜇∗ (𝛿, 0, 0) =
{

1 if 𝛿 < 𝜆∗
0
;

2 if 𝛿 ≥ 𝜆∗
0
,

(12)

𝜇∗ (𝛿, 1, 0) =
{

2 if 𝛿 < 𝜆∗
1
;

1 if 𝛿 ≥ 𝜆∗
1
,

(13)

where 𝜆∗
0
is unique, but 𝜆∗

1
may take multiple values, given by

𝜆∗
0
= 𝑠1 (𝛽1), 𝜆∗

1
= 1 if Δ̄opt = 𝛽1,

𝜆∗
0
= 𝑠2 (𝛽2), 𝜆∗

1
= 1 if Δ̄opt = 𝛽2,

𝜆∗
0
= 1, 𝜆∗

1
∈ {2, 3, . . . , 𝑑} if Δ̄opt = 𝑓0/𝑔0,

𝜆∗
0
= 1, 𝜆∗

1
∈ {𝑑 + 1, . . .} if Δ̄opt = (3/2)𝑑 − 1/2,

(14)

Δ̄opt is the optimal objective value of (2), determined by

Δ̄opt = min

{
𝛽1, 𝛽2,

𝑓0

𝑔0
,
3

2

𝑑 − 1

2

}
, (15)

𝑠1 (·), 𝑠2 (·), 𝛽1, and 𝛽2 are given in Definition 2 below, and

𝑓0 = 𝑞

𝑑∑
𝑖=1

𝑖 + (1 − 𝑞)
2𝑑∑

𝑖=𝑑+1
𝑖 +

(𝑏 ′𝑞 + 𝑏
1 − 𝑏

+ 1

) 2𝑑∑
𝑖=𝑑+1

𝑖, (16)

𝑔0 =
𝑏 ′𝑞 + 𝑏
1 − 𝑏

𝑑 + 𝑑 + 1, (17)[
𝑏 ′

𝑏

]
=

[
𝑞 1 − 𝑞

1 − 𝑝 𝑝

]𝑑 [
0

1

]
. (18)

Proof. Please see Section 7.3 for the details. □

The results for the regions B3 and B4 are of similar forms and

are relegated to our technical report [25]. The result of Theorem

2(a) is simple: if (𝑝, 𝑞, 𝑑) ∈ B1, the optimal policy always chooses

Channel 1. However, Theorem 2(b) contains a number of cases. For

each case, the optimal thresholds 𝜆∗
0
and 𝜆∗

1
can be either expressed

in closed-form, or computed by using a low-complexity bisection

search method to compute the root of (19) given in below.
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Algorithm 1: Bisection method for solving (19)

Given function ℎ𝑖 . 𝑙 = 0, 𝑙 ′ sufficiently large, tolerance 𝜖

small. The value 𝑖 ∈ {1, 2}.
repeat

𝛽 = 1

2
(𝑙 + 𝑙 ′)

if ℎ𝑖 (𝛽) < 0: 𝑙 ′ = 𝛽 . else 𝑙 = 𝛽

until 𝑙 ′ − 𝑙 < 𝜖

return 𝛽𝑖 = 𝛽

Definition 2. The values 𝛽1, 𝛽2 used in Theorem 2(b) are the root
of

𝑓𝑖
(
𝑠𝑖 (𝛽𝑖 )

)
− 𝛽𝑖𝑔𝑖

(
𝑠𝑖 (𝛽𝑖 )

)
= 0, 𝑖 ∈ {1, 2}, (19)

where

𝑠1 (𝛽1) = max

{⌈
−𝑘1 (𝛽1)

1 − 𝑑 (1 − 𝑝)

⌉
, 𝑑

}
, (20)

𝑠2 (𝛽2) = max

{
min

{⌈
−𝑘2 (𝛽2)

1 − 𝑑 (1 − 𝑝)

⌉
, 𝑑

}
, 1

}
, (21)

𝑘𝑖 (𝛽𝑖 ) = 𝑙𝑖 − 𝛽𝑖𝑜𝑖 , 𝑖 ∈ {1, 2}, (22)

and ⌈𝑥⌉ is the smallest integer that is greater or equal to 𝑥 . For the
ease of presentation, 8 closed-form expressions of 𝑓𝑖 (·), 𝑔𝑖 (·), 𝑙𝑖 , and
𝑜𝑖 for 𝑖 = 1, 2 are relegated to our technical report [25].

For notational simplicity, we define

ℎ𝑖 (𝛽) = 𝑓𝑖 (𝑠𝑖 (𝛽)) − 𝛽𝑔𝑖 (𝑠𝑖 (𝛽)), 𝑖 ∈ {1, 2}. (23)

The functions ℎ1 (𝛽), ℎ2 (𝛽) have the following nice property:

Lemma 2. For all 𝑖 ∈ {1, 2}, the function ℎ𝑖 (𝛽) satisfies the follow-
ing properties:

(1) ℎ𝑖 (𝛽) is continuous, concave, and strictly decreasing on 𝛽 ;
(2) ℎ𝑖 (0) > 0 and lim𝛽→∞ ℎ𝑖 (𝛽) = −∞.

Proof. See our technical report [25]. □

Lemma 2 implies that (19) has a unique root on [0,∞). Therefore,
we can use a low-complexity bisection method to compute 𝛽1, 𝛽2,

as illustrated in Algorithm 1.

Note that the structure of Lemma 2 is motivated by Lemma 2 in

[24] and Lemma 2 in [36]. In [24] and [36], since the channel is error

free, the age state at the end of each transmission is independent

with history information. Thus, Lemma 2 in [24] and Lemma 2 in

[36] are related with a per-sample (single transmission) control.

However, our study does not have such a property and thus Lemma

2 arises from solving the long term average cost of the threshold

type policy.

The advantage of Theorem 2 is that the solution is easy to im-

plement. In Theorem 2(a), we showed that the optimal policy is a

constant policy that always chooses Channel 1. In Theorem 2(b),

Δ̄opt is expressed as the minimization of only a few precomputed

values, and the optimal policy (or the thresholds) are then provided

based on which value that Δ̄opt is equal to.

Since we can use a low complexity algorithm such as bisection

method to obtain 𝛽1, 𝛽2 in Theorem 2(b), Theorem 2 provides a

solution that has much lower complexity than the state-of-the-art

solution such as value iteration or Monte Carlo simulation.

4.4 Insights behind Theorem 2
In Theorem 1, we have successfully characterized the threshold

structure for an optimal policy in region B1, . . . ,B4. A threshold

type policy is fully identified by its thresholds 𝜆0, 𝜆1, where 𝜆0 is

the threshold given that previous state of Channel 1 is 𝑂𝐹𝐹 (i.e.,

𝑙1 = 0) and 𝜆1 is the threshold given that previous state of Channel

1 is 𝑂𝑁 (i.e., 𝑙1 = 1). Thus, for a given region B𝑖 (𝑖 = 1, . . . , 4), the
MDP problem (2) reduces to

Δ̄opt = min

𝜆0∈N+,𝜆1∈N+
Δ̄𝑖 (𝜆0, 𝜆1), (24)

where Δ̄𝑖 (𝜆0, 𝜆1) is the long term average cost of the threshold

type policy such that: (1) the threshold (monotone) structure is

determined by Theorem 1 and B𝑖 ; (2) the thresholds are 𝜆0, 𝜆1. Note
that a threshold type policy is stationary and thus can be modeled

as a discrete time Markov chain (DTMC). Then, Δ̄𝑖 (𝜆0, 𝜆1) can be

solved by deriving the stationary distribution of the DTMC.

From Lemma 10 and Lemma 11 in Section 7.3, if (𝑝, 𝑞, 𝑑) ∈ B1,

then 𝜇∗ (1, 0, 0) = 1 and 𝜇∗ (1, 1, 0) = 1. According to Theorem

1 (a), if (𝑝, 𝑞, 𝑑) ∈ B1, then the optimal policy 𝜇∗ (𝛿, 0, 0) is non-
increasing and 𝜇∗ (𝛿, 1, 0) is non-increasing. Thus, 𝜇∗ (𝛿, 0, 0) = 1

and 𝜇∗ (𝛿, 1, 0) = 1 for all 𝛿 . That is, the optimal policy is always

choosing Channel 1. Since the DTMC for always choosing Channel

1 is easy to analyze, we omit the derivation steps and get

Δ̄opt = Δ̄1 (1, 1) =
(1 − 𝑞) (2 − 𝑝) + (1 − 𝑝)2

(2 − 𝑞 − 𝑝) (1 − 𝑝) . (25)

This result directly implies Theorem 2(a).

While the result of case (𝑝, 𝑞, 𝑑) ∈ B1 seems easy to describe, the

result of the case (𝑝, 𝑞, 𝑑) ∈ B2 is not, because the optimal policy is

no longer constant in 𝛿 . We now provide the sketch of the proof

idea when (𝑝, 𝑞, 𝑑) ∈ B2.

First, by deriving the stationary distributions of some DTMCs

with different thresholds, we have found that

Δ̄2 (𝜆0, 1) =
{

𝑓1 (𝜆0)/𝑔1 (𝜆0) 𝜆0 ∈ {𝑑 + 1, . . .},
𝑓2 (𝜆0)/𝑔2 (𝜆0) 𝜆0 ∈ {2, . . . 𝑑}, (26)

Δ̄2 (1, 𝜆1) =
{

(3/2)𝑑 − 1/2 𝜆1 ∈ {𝑑 + 1, . . .},
𝑓0/𝑔0 𝜆1 ∈ {1, . . . 𝑑}. (27)

Note that (24) is a two-dimensional optimization problem in

(𝜆0, 𝜆1). However, (24) can be reduced to a couple of one-dimensional

optimization problem in 𝜆0. The reason is that the threshold type

policies with different 𝜆1 may have the same DTMC; see (27) for

an example.

Then, the optimal average age Δ̄opt satisfies
2

Δ̄opt = min

{
𝛽 ′
1
, 𝛽 ′

2
,
𝑓0

𝑔0
,
3

2

𝑑 − 1

2

}
, (28)

where 𝛽 ′
1
, 𝛽 ′

2
are defined as the solution to two one-dimensional

problems:

𝛽 ′
1
= min

𝜆0∈{𝑑+1,...}
𝑓1 (𝜆0)
𝑔1 (𝜆0)

, (29)

𝛽 ′
2
= min

𝜆0∈{1,...𝑑 }
𝑓2 (𝜆0)
𝑔2 (𝜆0)

. (30)

2
Note that (26), (27) do not cover all of the values set of 𝜆1, 𝜆0 . However, only consid-

ering the 4 types of DTMC described in (26), (27) is sufficient to solve (24) for 𝑖 = 2.

The proof of this statement is relegated to our technical report [25].



Minimizing Age of Information via Scheduling over Heterogeneous Channels MobiHoc ’21, July 26–29, 2021, Shanghai, China

0.9 0.92 0.94 0.96 0.98 1p
0

20

40

60

80

100

120

140

T
h
re

s
h
o
ld

d=10

d=20

d=50

Figure 4: Thresholds of the optimal scheduling policy for
i.i.d. mmWave channel state, where the packet transmission
time of the sub-6GHz channel is 𝑑 = 10, 20, 50.

Since 𝑓𝑖 (𝜆0) and 𝑔𝑖 (𝜆0) have a complicated structure, optimizing

𝑓𝑖 (𝜆0)/𝑔𝑖 (𝜆0) in (29) and (30) is challenging. However, using Dinkel-
bach’s method [11], we can change the problem into a two-layer

problem. One of our technical contributions is that the inner-layer

problem is shown to be unimodal, thus we can derive an exact solu-

tion. Thus, we only need a bisection algorithm for the outer-layer,

i.e., solving the roots of the equations ℎ1 (𝛽) = 0, ℎ2 (𝛽) = 0 in (19).

We have

𝛽 ′𝑖 = 𝛽𝑖 , 𝑖 ∈ {1, 2}. (31)

The studies in [24, 35, 36] also derive an exact solution to their

inner-layer problem. However, their technique is using optimal

stopping rules [24, 36] or stochastic convex optimization [35], which

is different with our study.

Thus, Theorem 2(b) is solved by (26) − (31).

4.5 Optimal Scheduling policy for i.i.d.
Channel

We finally consider a special case in which Channel 1 is i.i.d., i.e.,

𝑝 + 𝑞 = 1. In i.i.d. case, Theorem 2 reduces to the following:

Corollary 1. Suppose 𝑝 + 𝑞 = 1, i.e., Channel 1 is i.i.d., then
(a) If 1 − 𝑝 ≥ 1/𝑑 , then the optimal policy is always choosing

Channel 1. In this case, the optimal objective value of (2) is Δ̄opt =

1/(1 − 𝑝).
(b) If 1 − 𝑝 < 1/𝑑 , then the optimal policy is non-decreasing in

age and the optimal thresholds 𝜆∗
0
= 𝜆∗

1
. The threshold 𝜆∗

0
may take

multiple values, given by{
𝜆∗
0
∈ {1, 2, . . . , 𝑑} if Δ̄opt = (3/2)𝑑 − 1/2,

𝜆∗
0
= 𝑠1 (𝛽1) if Δ̄opt = 𝛽1,

(32)

Δ̄opt is the optimal objective value of (2), determined by

Δ̄opt = min

{
𝛽1,

3

2

𝑑 − 1

2

}
. (33)

Proof. See our technical report [25]. □

If Channel 1 is i.i.d., then the state information of Channel 1 in

the previous time slot should not affect the scheduling decision

in the current time slot. Thus, we have only one threshold, i.e.,

𝜆∗
0
= 𝜆∗

1
.
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Figure 5: Time-average expected age vs. the parameter 𝑞 of
the mmWave channel, where 𝑑 = 20 and 𝑝 = 0.966.
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Figure 6: Time-average expected age vs. the parameter 𝑞 of
the mmWave channel, where 𝑑 = 20 and 𝑝 = 0.972.
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Figure 7: Time-average expected age penalty vs. the parame-
ter 𝑞 of the mmWave channel, where 𝑝 = 0.9, 𝑑 = 20, and the
age penalty function is 𝑓 (Δ) = ( 1

𝑝−0.003 )
Δ.

Corollary 1(a) suggests that if the transmission rate of Channel

1 is larger than the rate of Channel 2 (which is 1/𝑑), then the age-

optimal policy always chooses Channel 1. Corollary 1(b) implies

that if the transmission rate of Channel 1 is smaller than the rate of

Channel 2, then the age-optimal policy is non-decreasing threshold-

type on age.
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5 NUMERICAL RESULTS
According to Corollary 1, 𝜆∗

0
is the optimal threshold in i.i.d. chan-

nel. We provide 𝜆∗
0
with the change of 𝑝 for 𝑑 = 10, 20, 50 respec-

tively. From Fig. 4, the optimal threshold diverges to boundary

𝑝∗ = 0.9, 0.95, 0.98 respectively. As 𝑝 enlarges, the mmWave chan-

nel has worse connectivity, thus the thresholds goes down and

converges to always choosing the sub-6GHz channel.

Then we compare our optimal scheduling policy (called Age-
optimal) with three other policies, including (i) always choosing

the mmWave channel (called mmWave), (ii) always choosing the
sub-6GHz channel (called sub-6GHz), and (iii) randomly choosing

the mmWave and sub-6GHz channels with equal probability (called

Random). We provide the performance of these policies for different

𝑞 in Fig. 5 and Fig. 6. Our optimal policy outperforms other policies.

If the two channels have a similar age performance, the benefit

of the optimal policy enlarges as the mmWave channel becomes

positively correlated (𝑞 is larger). If the two channels have a large

age performance disparity, the optimal policy is close to always

choosing a single channel, and thus the benefit is obviously low.

Although our theoretical results consider linear age, we also provide

numerical results when the cost function is nonlinear on age by

using value iteration [28]. For exponential age in Fig. 7, the gain is

significantly large for all 𝑞: other policies have more than 2 times

of average cost than the optimal policy. The numerical simulation

indicates the importance of exploring optimal policy for nonlinear

age cost function, which is our future research direction.

6 CONCLUSION
In this paper, we have studied age-optimal transmission scheduling

for hybrid mmWave/sub-6GHz channels. For all possibly values

of the channel parameters and the ON-OFF state of the mmWave

channel, the optimal scheduling policy have been proven to be

of a threshold-type on the age. Low complexity algorithms have

been developed for finding the optimal scheduling policy. Finally,

our numerical results show that the optimal policy can reduce age

compared with other policies.
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7 APPENDICES
In this section we prove our main results: Theorem 1 (Section 7.2)

and Theorem 2 (Section 7.3). In Section 7.1, we describe a discounted

problem that helps to solve average problem (2). In Section 7.2, we

introduce Proposition 1 which plays an important role in proving

Theorem 1. Section 7.3 provides the proof of Theorem 2.

7.1 Preliminaries
To solve Problem (2), we introduce a discounted problem below.

The objective is to solve the discounted sum of expected cost given

an initial state s:

𝐽𝛼 (s) = inf

𝜋 ∈Π′
lim

𝑇→∞

𝑇∑
𝑡=0

E[𝛼𝑡Δ𝜋 (𝑡) |s(0) = s], (34)

where 𝛼 ∈ (0, 1) is the discount factor. We call 𝐽𝛼 (s) the value
function given the initial state s. Recall that we use s= (𝛿, 𝑙1, 𝑙2) to
denote the system state, where 𝛿 is the age value and 𝑙1, 𝑙2 are the

state of Channel 1 and Channel 2. From Lemma 1, we only need to

consider 𝜋 ∈ Π′
instead of 𝜋 ∈ Π.

The value function 𝐽𝛼 (s) satisfies a following property:

Lemma 3. For any given 𝛼 and s, 𝐽𝛼 (s) < ∞.

Proof. See our technical report [25]. □

A policy 𝜋 is deterministic stationary if 𝜋 (𝑡) = 𝑍 (s(𝑡)) at any
time 𝑡 , where 𝑍 : S → Π′

is a deterministic function. According to

[34], and Lemma 3, there is a direct result for Problem (34):

Lemma 4. (a) The value function 𝐽𝛼 (s) satisfies the Bellman equa-
tion

𝑄𝛼 (s, 𝑢) ≜ 𝛿 + 𝛼
∑
s′∈S

𝑃ss′ (𝑢) 𝐽𝛼 (s′),

𝐽𝛼 (s) = min

𝑢∈Π′
𝑄𝛼 (s, 𝑢) .

(35)

(b) There exists a deterministic stationary policy 𝜇𝛼,∗ that satisfies
Bellman equation (35). The policy 𝜇𝛼,∗ solves Problem (34) for all
initial state s.

(c) Assume that 𝐽𝛼
0
(s) = 0 for all s. For 𝑛 ≥ 1, 𝐽𝛼𝑛 is defined as

𝑄𝛼
𝑛 (s, 𝑢) ≜ 𝛿 + 𝛼

∑
s′∈S

𝑃ss′ (𝑢) 𝐽𝛼𝑛−1 (s
′),

𝐽𝛼𝑛 (s) = min

𝑢∈Π′
𝑄𝛼
𝑛 (s, 𝑢),

(36)

then lim𝑛→∞ 𝐽𝛼𝑛 (s) = 𝐽𝛼 (s) for every s.

Also, since the cost function is linearly increasing in age, utilizing

Lemma 4(c), we also have

Lemma 5. For all given 𝑙1 and 𝑙2, 𝐽𝛼 (𝛿, 𝑙1, 𝑙2) is increasing in 𝛿 .

Proof. See our technical report [25]. □

Since Problem (34) satisfies the properties in Lemma 4, utilizing

Lemma 4 and Lemma 5, the following Lemma gives the connection

between Problem (2) and Problem (34).

Lemma 6. (a) There exists a stationary deterministic policy that is
optimal for Problem (2).

(b) There exists a value 𝐽 ∗ for all initial state s such that

lim

𝛼→1
−
(1 − 𝛼) 𝐽𝛼 (s) = 𝐽 ∗ .

Moreover, 𝐽 ∗ is the optimal average cost for Problem (2).
(c) For any sequence (𝛼𝑛)𝑛 of discount factors that converges to 1,

there exists a subsequence (𝛽𝑛)𝑛 such that lim𝑛→∞ 𝜇𝛽𝑛,∗ = 𝜇∗. Also,
𝜇∗ is the optimal policy for Problem 2.

Proof. See our technical report [25]. □

Lemma 6 provides the fact that: We can solve Problem (34) to

achieve Problem (2). The reason is that the optimal policy of Prob-

lem (34) converges to the optimal policy of Problem (2) in a limiting

scenario (as 𝛼 → 1).

7.2 Proof of Theorem 1
We begin with providing an optimal structural result of discounted

policy 𝜇𝛼,∗. Then, we achieve the average optimal policy 𝜇∗ by

letting 𝛼 → 1.

Definition 3. For any discount factor 𝛼 ∈ (0, 1), the channel
parameters 𝑝, 𝑞 ∈ (0, 1) and 𝑑 ∈ {2, 3, ...}, we define

B1 (𝛼) = {(𝑝, 𝑞, 𝑑) : 𝐹 (𝑝, 𝑞, 𝑑, 𝛼) ≤ 0, 𝐻 (𝑝, 𝑞, 𝑑, 𝛼) ≤ 0},
B2 (𝛼) = {(𝑝, 𝑞, 𝑑) : 𝐹 (𝑝, 𝑞, 𝑑, 𝛼) > 0,𝐺 (𝑝, 𝑞, 𝑑, 𝛼) ≤ 0},
B3 (𝛼) = {(𝑝, 𝑞, 𝑑) : 𝐹 (𝑝, 𝑞, 𝑑, 𝛼) > 0,𝐺 (𝑝, 𝑞, 𝑑, 𝛼) > 0},
B4 (𝛼) = {(𝑝, 𝑞, 𝑑) : 𝐹 (𝑝, 𝑞, 𝑑, 𝛼) ≤ 0, 𝐻 (𝑝, 𝑞, 𝑑, 𝛼) > 0},

(37)

where functions 𝐹 (·),𝐺 (·), 𝐻 (·) : Θ × (0, 1) → R are defined as:

𝐹 (𝑝, 𝑞, 𝑑, 𝛼) =
∞∑
𝑖=0

(𝛼𝑝)𝑖 −
𝑑−1∑
𝑖=0

𝛼𝑖 ,

𝐺 (𝑝, 𝑞, 𝑑, 𝛼) = 1 + 𝛼 (1 − 𝑞)
𝑑−1∑
𝑖=0

𝛼𝑖 −
𝑑−1∑
𝑖=0

𝛼𝑖 ,

𝐻 (𝑝, 𝑞, 𝑑, 𝛼) = 1 + 𝛼 (1 − 𝑞)
∞∑
𝑖=0

(𝛼𝑝)𝑖 −
𝑑−1∑
𝑖=0

𝛼𝑖 .

(38)
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Observe that all four regionsB𝑖 (𝛼) converge toB𝑖 as the discount
factor 𝛼 → 1, where the regions B𝑖 are described in Definition 6.

The optimal structural result of Problem (34) with a discount

factor𝛼 is provided in the following proposition (Note that Theorem

1 can be immediately shown from Proposition 1, Lemma 6 and the

convergence of the regions B𝑖 (𝛼) to B𝑖 (for 𝑖 = 1, 2, 3, 4) as 𝛼 → 1):

Proposition 1. There exists a threshold type policy 𝜇𝛼,∗ (𝛿, 𝑙1, 0)
on age 𝛿 that is the solution to Problem (34) such that:

(a) If 𝑙1 = 0 and (𝑝, 𝑞, 𝑑) ∈ B1 (𝛼) ∪ B4 (𝛼), then 𝜇𝛼,∗ (𝛿, 𝑙1, 0) is
non-increasing in the age 𝛿 .

(b) If 𝑙1 = 0 and (𝑝, 𝑞, 𝑑) ∈ B2 (𝛼) ∪ B3 (𝛼), then 𝜇𝛼,∗ (𝛿, 𝑙1, 0) is
non-decreasing in the age 𝛿 .

(c) If 𝑙1 = 1 and (𝑝, 𝑞, 𝑑) ∈ B1 (𝛼) ∪ B2 (𝛼), then 𝜇𝛼,∗ (𝛿, 𝑙1, 0) is
non-increasing in the age 𝛿 .

(d) If 𝑙1 = 1 and (𝑝, 𝑞, 𝑑) ∈ B3 (𝛼) ∪ B4 (𝛼), then 𝜇𝛼,∗ (𝛿, 𝑙1, 0) is
non-decreasing in the age 𝛿 .

Since Channel 1 and Channel 2 have different delays, we are not

able to show that the optimal policy is threshold type by directly

observing the Bellman equation like [1]. Thus, we will use the

concept of supermodularity [41, Theorem 2.8.2]. The domain of age

set and decision set in the Q-function is {1, 2, ...} × {1, 2}, which
is a lattice. Given a positive 𝑠 , the subset {𝑠, 𝑠 + 1, ...} × {1, 2} is a
sublattice of {1, 2, ...} × {1, 2}. Thus, if the following holds for all

𝛿 > 𝑠:

𝑄𝛼 (𝛿, 𝑙1, 0, 1) −𝑄𝛼 (𝛿 − 1, 𝑙1, 0, 1)
≤𝑄𝛼 (𝛿, 𝑙1, 0, 2) −𝑄𝛼 (𝛿 − 1, 𝑙1, 0, 2),

(39)

then the Q-function 𝑄𝛼 (𝛿, 𝑙1, 0, 𝑢) is supermodular in (𝛿,𝑢) for
𝛿 > 𝑠 , which means the optimal decision

𝜇𝛼,∗ (𝛿, 𝑙1, 0) = argmin𝑢𝑄
𝛼 (𝛿, 𝑙1, 0, 𝑢) (40)

is non-increasing in 𝛿 for 𝛿 ≥ 𝑠 . If the inequality of (39) is inversed,

then we call 𝑄𝛼 (𝛿, 𝑙1, 0) is submodular in (𝛿,𝑢) for 𝛿 > 𝑠 , and

𝜇𝛼,∗ (𝛿, 𝑙1, 0) is non-decreasing in 𝛿 for 𝛿 ≥ 𝑠 .

For ease of notations, we give Definition 4:

Definition 4. Given 𝑙1 ∈ {0, 1}, 𝑢 ∈ {1, 2},
𝐿𝛼 (𝛿, 𝑙1, 𝑢) ≜ 𝑄𝛼 (𝛿, 𝑙1, 0, 𝑢) −𝑄𝛼 (𝛿 − 1, 𝑙1, 0, 𝑢). (41)

Note that 𝐿𝛼 (𝛿, 𝑙1, 1) is the left hand side of (39), and 𝐿𝛼 (𝛿, 𝑙1, 2)
is the right hand side of (39).

However, because of the mismatch of delays in our problem,

most of the well-known techniques to show supermodularity (e.g.,

[28],[23],[19] etc) do not apply in our setting. Thus, we need a

new approach to show the supermodularity. Our key idea is as

follows: First, we show that 𝐿𝛼 (𝛿, 𝑙1, 2) is a constant (see Lemma

7 below), then we compare 𝐿𝛼 (𝛿, 𝑙1, 1) with the constant to check

supermodularity and get Lemma 8 and Lemma 9 below. The proof

of comparing 𝐿𝛼 (𝛿, 𝑙1, 1) with the constant is relegated to the proofs
of Lemma 8 and Lemma 9 in our technical report [25].

Suppose that𝑚 ≜
∑𝑑−1
𝑖=0 𝛼𝑖 , and we have:

Lemma 7. For all 𝛿 ≥ 2 and 𝑙1 ∈ {0, 1}, 𝐿𝛼 (𝛿, 𝑙1, 2) =𝑚.

Proof. See our technical report [25]. □

Also, we have

Lemma 8. (a) If 𝑙1 = 0 and (𝑝, 𝑞, 𝑑) ∈ B1 (𝛼) ∪ B4 (𝛼), then
𝑄𝛼 (𝛿, 𝑙1, 0, 𝑢) is supermodular in (𝛿,𝑢) for 𝛿 ≥ 2.

(b) If 𝑙1 = 0 and (𝑝, 𝑞, 𝑑) ∈ B2 (𝛼) ∪ B3 (𝛼), then 𝑄𝛼 (𝛿, 𝑙1, 0, 𝑢) is
submodular in (𝛿,𝑢) for 𝛿 ≥ 2.

Proof. See our technical report [25]. □

Lemma 8(a) implies that 𝜇𝛼,∗ (𝛿, 0, 0) is non-increasing in 𝛿 if

(𝑝, 𝑞, 𝑑) ∈ B1 (𝛼) ∪ B4 (𝛼). Lemma 8(b) implies that 𝜇𝛼,∗ (𝛿, 0, 0) is
non-increasing in 𝛿 if (𝑝, 𝑞, 𝑑) ∈ B1 (𝛼) ∪ B4 (𝛼). Thus, Proposition
1(a),(b) hold.

Lemma 8 gives the result when the state of Channel 1 is 0. We

then need to solve when the state of Channel 1 is 1. Different

from 𝑄𝛼 (𝛿, 0, 0, 𝑢), the Q-function 𝑄𝛼 (𝛿, 1, 0, 𝑢) does not satisfy
supermodular (or submodular) in (𝛿,𝑢) for all the age value. Thus,

we give a weakened condition: we can find out a value 𝑠 , such that

the Q-function 𝑄𝛼 (𝛿, 1, 0, 𝑢) is supermodular (or submodular) for a

partial set 𝑠, 𝑠 +1, ... and 𝜇𝛼,∗ (𝛿, 1, 0) is a constant on the set 1, 2, ..., 𝑠 .

Then, 𝜇𝛼,∗ (𝛿, 1, 0) is non-increasing (or non-decreasing).
Thus, to solve Proposition 1(c),(d), we provide the following

lemma:

Lemma 9. (a) If 𝑙1 = 1 and (𝑝, 𝑞, 𝑑) ∈ B1 (𝛼) ∪ B2 (𝛼), then there
exists a positive integer 𝑠 , such that 𝑄𝛼 (𝛿, 𝑙1, 0, 𝑢) is supermodular
in (𝛿,𝑢) for 𝛿 > 𝑠 , and 𝜇𝛼,∗ (𝛿, 𝑙1, 0) is always 1 or always 2 for all
𝛿 ≤ 𝑠 .

(b) If 𝑙1 = 1 and (𝑝, 𝑞, 𝑑) ∈ B3 (𝛼) ∪ B4 (𝛼), then there exists a
positive integer 𝑠 , such that 𝑄𝛼 (𝛿, 𝑙1, 0, 𝑢) is submodular in (𝛿,𝑢) for
𝛿 > 𝑠 , and 𝜇𝛼,∗ (𝛿, 𝑙1, 0) is always 1 or always 2 for all 𝛿 ≤ 𝑠 .

Proof. See our technical report [25]. □

Lemma 9(a) implies that 𝜇𝛼,∗ (𝛿, 1, 0) is non-increasing for 𝛿 ≥ 𝑠

and is constant for for 𝛿 ≤ 𝑠 . Thus, 𝜇𝛼,∗ (𝛿, 1, 0) is non-increasing in
𝛿 . Similarly, Lemma 9 (b) implies that 𝜇𝛼,∗ (𝛿, 1, 0) is non-decreasing
for 𝛿 > 0. Thus, we have shown Proposition 1(c),(d).

Overall, Lemma 7 and Lemma 8 shows Proposition 1(a),(b). Lemma

7 and Lemma 9 shows Proposition 1(c),(d). Thus we have completed

the proof of Proposition 1.

Finally, Proposition 1, Lemma 6 and the convergence of B1 (𝛼), ...
B4 (𝛼) to B1, ...,B4 show Theorem 1.

7.3 Proof of Theorem 2
For (𝑝, 𝑞, 𝑑) ∈ B1, we firstly prove that 𝜇∗ (𝛿, 0, 0) = 1 and then

show 𝜇∗ (𝛿, 1, 0) = 1.

Lemma 10. If (𝑝, 𝑞, 𝑑) ∈ B1 ∪ B4, then the optimal decisions at
states (𝛿, 0, 0) for all 𝛿 are 1.

Proof. See our technical report [25]. □

On the other hand, when 𝑙1 = 1, we have the following:

Lemma 11. If (𝑝, 𝑞, 𝑑) ∈ B1, then the optimal decision 𝜇∗ (1, 1, 0) =
1.

Proof. See our technical report [25]. □

Theorem 2(a) follows directly from Lemma 10 and Lemma 11.

Due to the space limit, the proof of Theorem 2(b) when (𝑝, 𝑞, 𝑑) ∈ B2

is relegated to our technical report [25].
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