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Abstract

In this work, we study model heterogeneous federated learning (FL) for classifica-
tion problems where distributed clients have different model architectures. Unlike
existing works focusing on model heterogeneity, we neither require access to a
public dataset nor do we impose constraints on the model architecture of clients
and ensure that the clients’ models and data are private. We show a generalization
result, which provides fundamental insights into the role of the representations
in FL. Further, we propose a theoretically grounded algorithm, named Federated
Conditional Moment Alignment (Fed-CMA), which is able to align class condi-
tional distributions of each client in the feature space with provable convergence
guarantees. Through multiple numerical experiments, we show that Fed-CMA
outperforms other baselines on CIFAR-10, MNIST, EMNIST, FEMNIST in the
considered setting.

1 Introduction

In the paradigm of federated learning (FL), it is quite often that the client models have different archi-
tectures due to heterogeneity of computational hardware devices (such as GPU memory, smartphones).
In such cases, naive parameter aggregating as in federated averaging (FedAvg) McMahan et al. (2017)
or FedProx Li et al. (2020) might be no longer possible for achieving satisfactory generalization
performance as in the homogeneous case. Even though some knowledge distillation approaches use a
public dataset to address this issue, this type of datasets may not always be available and the role of
the public dataset on the generalization performance is not yet understood well. Also, which type of
architectures used in deep learning has a huge impact on the performance. The clients may consider
the architecture as a trade secret (often due to the amount of resources spent in designing it) and
may not be willing to share the model architecture because of the intellectual property concerns. We
term this as model privacy. This also implies that the users are free to choose any type of (agnostic)
model architecture without sharing it. In this work, we consider the data and model heterogeneous FL
scenario with facing the following possible additional constraints: (i) model privacy, (ii) no public
dataset and (iii) unrestricted model space. See Table 1 for a summary of relevant works. Note that,
while model heterogeneity refers to a more general case where the users can have different model
spaces such as random forests, decision trees and neural networks, we restrict our study to the use of
neural networks (since the only way to learn in the general case is with distillation techniques which
require a public dataset). Below, we provide a motivating example for this work.

(Motivating use case) Consider the following application where a product manufacturer works with
multiple original equipment manufacturers (OEMs) from different countries (due to regulatory
restrictions) for developing a new product line. The product manufacturer intends to improve the
diagnostics and prognostics which is often a supervised classification task. Since it is a new product
line, data is scarce at every OEM (no public dataset), thus requiring the OEMs to collaborate. The
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OEMs may differ in the type of sensors leading to data heterogeneity and cannot share the data due
to the data privacy constraint. They may also have the model heterogeneity issue due to various
distributed computing resources that restrict the type of model architectures they would deploy.
Moreover, in such scenarios, the OEMs should be able to choose the model architecture of their
choice and may not be willing to share the architecture.

Work MH MP PD RM C

Zhang et al. (2021) ✓✓✓ ✓✓✓ ✓✓✓ ××× ×××
Lin et al. (2020)
Cho et al. (2022) ✓✓✓ ××× ✓✓✓ ××× ×××
Diao et al. (2020) ✓✓✓ ××× ××× ✓✓✓ ×××
Yao et al. (2021)
Li et al. (2021) ✓✓✓ ××× ××× ✓✓✓ ✓✓✓

Litany et al. (2022) ✓✓✓ ✓✓✓ ××× ✓✓✓ ×××
Zhu et al. (2021) ✓✓✓ ✓✓✓ ××× ××× ×××

Ours ✓✓✓ ✓✓✓ ××× ××× ✓✓✓
Table 1: MH: Model Heterogeneity, MP: Model Privacy, PD: Public Datset, RM: Restricted Model space, C:
Convergence

In this paper, we propose a fundamentally different approach than the works in Table 1 to address
model heterogeneity with a new algorithm that is motivated from theoretical results in the domain
adaptation (DA) literature. In our case since the client models are heterogeneous, we separate the
client model architecture as a feature extractor that projects the input data into a latent space (common
for all clients) and a classifier that acts on the latent space. We summarize our contributions as
follows:

• A thorough theoretical generalization analysis is provided for model homogeneous and
model heterogeneous FL with highlighting the difficulty in the latter case. To the best of our
knowledge, this is the first theoretical generalization error bound for the model heterogeneous
FL setup, which justifies the advantage of participating in FL and the importance of aligning
the latent space distributions across the clients.

• The proposed simple algorithm (Fed-CMA) can align the latent space conditional distribu-
tions and the classification weights across all clients in a federated way with convergence
guarantees for finding the first-order stationary points to general non-convex problems.

• Multiple detailed numerical experiments are performed under different FL settings over both
synthetic and real datasets. It can be observed that Fed-CMA outperforms the considered
baselines and achieves reduced communication complexity as compared to other model
heterogeneous FL algorithms.

2 Preliminaries

2.1 Model Heterogeneous Federated Learning

Consider a K-class classification task, T := ⟨D, c⟩, where D is the distribution on X ⊂ Rd

and c is the ground truth labeling function that maps X to Y := {1, · · · ,K}. We consider the
model heterogeneous FL problem with M workers where each worker has a individual task Ti :=
⟨Di, c⟩ ∀i ∈ [M ]. Each client owns Di := {xj , yj}Ni

j , such that xj ∼ Di, yj = c(xj). Let
pi ∈ [0, 1] such that, Ni = piN , where N =

∑M
i=1 Ni. Also, each client has a model wi in a

hypothesis class Wi⊂ Rdi (where di is the dimensionality of the model space Wi) and a function
fi : Wi × X → Y which is used to make a prediction on a given data point. We denote w(i,t)

as the weights at client i at time t. We simply write wi when time is clear from context and w
when worker and time are clear from context. Given a loss function l : Y × Y → R, we define
the loss function li : Wi × X × Y → R for each worker as li(wi, x, y) = l

(
fi(wi, x), y

)
. Given
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a finite dataset Di = {(xj , yj)}Ni
j=1, we define the population loss (true loss) Li and the empirical

loss L̂i (the subscript i refers to Di at the worker i) as Li(wi) = E(x,y)∼Di

[
li(wi, x, y)

]
and

L̂i(w, Di) = 1
Ni

∑Ni

j=1 li

(
w, xj , yj

)
. We simply use L̂i(w) when Di is clear from context. We

use the terms “loss”, error and risk interchangeably. The objective of model heterogeneous FL is to
simultaneously learn {w∗

i }Mi=1 such that

(w∗
1,w

∗
2, · · · ,w∗

M ) = arg min
{wi}M

i=1

M∑
i=1

αiLi(wi), (1)

where αi ≥ 0,
∑M

i=1 αi = 1. Popular choices for αi are 1
M or pi.

The challenge in solving (1) is because {wi}Mi=1 share different network architectures, meaning
that the existing algorithms on parameter aggregation (such as FedAvg, FedProx) cannot be used.
Under model heterogeneity, we only assume a common latent space (Z ⊆ Rde) for all workers.
In other words, each worker i has a model wi = (ui,vi) ∈ Wi where ui ∈ Ui, vi ∈ V . We
define the prediction function as fi(wi, x) := h

(
vi, gi(ui, x)

)
where gi(ui, ·) : X → Z projects

X to the latent space and h(vi, ·) : Z → Y makes the prediction. In general, dim(Ui) ≫ dim(V).
Typically, consider a neural network where ui corresponds to the weights of the feature extractor and
vi corresponds to the weights of the classification layer (see Fig 1). For example, Pillutla et al. (2022)
and Liang et al. (2020) consider a similar setup for personalizing the input representation learning
layers while sharing the classification layer with the server.

Server Aggregates  
 using   

 using 

Data

logits

Client 

feature 
extractor

features classification  
weights

Figure 1: Illustration of Fed-CMA .

2.2 Domain Adaptation

In DA, a classifier is trained on a sufficiently large source dataset (task) such that it is expected
to perform well on a target dataset (task) with few or no labeled data points. For the purpose
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of understanding the DA perspective and studying the generalization, we shall consider a binary
classification task. Let X ⊂ Rd and Y = [0, 1], which is construed as the probability of having
the label 0. Let us denote the random variables in X ,Y as X and Y respectively. We use the
terms “task”, “domain” and “client” interchangeably from hereon. Consider that the clients have
the same model class (or hypothesis) denoted by W and hence the same prediction function f :
W × X → Y . We define the disagreement between two models w,w′ ∈ W ⊆ {0, 1}X as
Li(w,w′) = Ex∈Di

[
|f(w, x)−f(w′, x)|

]
. Suppose that the target labeling functions {ci : X → Y}

are different for every client, then the error of a model w ∈ W on a client i is Li(w) := Li(w, ci).
The error of a model w on clients i, j can be related as Zhao et al. (2019)

Lj(w) ≤ Li(w) + dW∆W(Di,Dj) + min
{
Ex∈Di

[
|ci(x)− cj(x)|

]
,Ex∈Dj

[
|ci(x)− cj(x)|

]}
,

(2)

where dW∆W is used to measure the divergence between the two distributions Di,Dj Kifer et al.
(2004) (see the appendix for formal definitions). If the divergence is small, it is hard to discriminate
between the two data distributions. This shows that, if the labeling functions ci, cj are close, and
dW∆W is small, then a model trained on one client i (source) can perform well on another client j
(target). Let qi(X,Y ) denote the joint distribution of X,Y for client i. Suppose that the labeling
functions {ci} are the same for all the clients, then qi(Y |X) = qj(Y |X), but the marginals of
X are not equal. This is called the covariate shift assumption Johansson et al. (2019) which we
consider in this work. Under this assumption, the last term in (2) is zero and only dW∆W needs to
be small. However, given two tasks, the divergence between the distributions in X is fixed. This
motivated the learning of domain invariant representations such that the divergence of distributions
in the representation space (or latent space) is minimized. Broadly, these methods take the following
approaches. (i) Minimizing an integral probability metric (IPM): Along with the classification
loss on source data, the network is explicitly trained to minimize an IPM such as maximum mean
discrepancy (MMD Gretton et al. (2006)) Long et al. (2013); Tzeng et al. (2014); Long et al. (2015)
or a central moment discrepancy (CMD) Zellinger et al. (2017) between the source and target datasets
at the representation layer. (ii) Adversarial methods: Ganin et al. (2016); Bousmalis et al. (2016);
Tzeng et al. (2017) train the network by minimizing the label classification loss and maximizing a
domain classification loss.

Let Z ⊂ Rde be a latent space, g(u, ·) : X → Z be a representation function where u ∈ U and
Z be a random variable in Z . Given a task ⟨D, c⟩, u induces the distribution D̃(u) on Z and the
labeling function c̃u : Z → Y such that Ez∈D̃(u)

[
IB(z)

]
= Ex∈D

[
IB(g(u, x))

]
, where B ⊂ Z is a

measurable set, IB is an indicator function over B, and c̃u(z) := Ex∈D
[
c(x)|g(u,x) = z

]
, ∀z ∈ Z .

Let qi(Z, Y ) be the joint distribution at client i using a representation ui. Under this setup, the
induced labeling functions in the latent space may not be equal even when the labeling functions in the
input space are the same Zhao et al. (2019) and several works followed to address this shortcoming by
assuming a generalized label shift condition Tachet des Combes et al. (2020); Shui et al. (2021) where
qi(Z|Y ) = qj(Z|Y ). This motivates our conditional alignment technique to solve (1). In contrast
with DA (even the multi-source) setting, we have the following challenges: (i) restriction on data
sharing and model sharing, (ii) learning simultaneously for all clients. In classic multi-source
DA, the goal is to train a classifier on all sources so that it can generalize well on the target task. In
our Federated setting, every client simultaneously solves a multi-source DA problem viewing itself
as the target. On the other hand, each client has a labelled dataset unlike in unsupervised DA, where
the target has no labeled data and one might need to estimate label distribution ratios.

3 Generalization Result for Model Homogeneous and Heterogeneous FL

Next, we will first discuss the existing results for generalization in FL and highlight the limitations
of these results. Let us consider the case where all the client models are homogeneous, and the
client weights can be shared. The weighted data distribution is denoted as Dααα =

∑M
i=1 αiDi. Let

ααα = (α1, α2, · · · , αM ) be the domain weights for each user such that
∑M

j=1 αi = 1, and let j be
the target domain (which can be one of the clients). There are two types of existing generalization
results for FL in the literature where the final prediction (i) uses a weighted average of the client
model weights i.e., f

(∑
i αiwi, x

)
(Peng et al., 2019), (ii) uses an ensemble of the predictions on

the client models, i.e.,
∑

i αifi(wi, x) (Lin et al., 2020; Cho et al., 2022).
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Averaged model weights Following Section 2.1, the empirical loss is defined as L̂i(wi) :=
1
Ni

∑
(x,y)∈Di

|f(wi, x)− y| and the ααα empirical weighted loss as L̂ααα(w) =
∑M

i=1 αiL̂i(w). The
true weighted loss Lααα can be defined similarly by following Section 2.1. Theorem 2 of Peng et al.
(2019) shows a generalization bound for FL (when j is the target): with probability at least 1− δ,

Lj(wj) ≤ L̂ααα

( M∑
i=1

αiwi

)
+

M∑
i=1

αi

(1
2
dW∆W(Di,Dj)

)
+O

( log 1
δ√

N

)
. (3)

Here, O(·) hides logarithmic terms and model class complexities that are constant. For the same model
class, if the target domain j only uses the data available locally, from standard results in generalization,
we know that the user’s generalization error can be bounded as Lj(wj) ≤ L̂j(wj) + O

(
log 1/δ√

Nj

)
with probability at least 1− δ. The benefit of joining FL can be see from the 1√

N
term in (3) since

N ≫ Nj when M is large. The L̂ααα(
∑

i αiwi) (empirical loss at all users) and dW∆W (captures
heterogeneity among users) terms must be smaller than L̂j(wj) for this benefit to be realizable. This
encourages the FL objective to solve argmin L̂ααα(w) by sharing the model weights.

However, this result has a major drawback. It only holds for model homogeneous FL, since the
result is with respect to the weighted model

∑
i=1 αiwi, which is clearly not possible in model

heterogeneous (or model private) FL.

Ensembled model predictions We slightly abuse the notation for this discussion by defining the
loss as follows: L̂i(fi) :=

1
Ni

∑
(x,y)∈Di

|fi(wi, x)− y|. The generalization result where the target
distribution is Dj can be summarized as follows (although there are subtle variations in Theorem 5.1
in Lin et al. (2020) and Theorem 1 in Cho et al. (2021)): with probability at least 1− δ,

Lj

( M∑
i=1

αifi

)
≤

M∑
i=1

αiL̂i(fi) +

M∑
i=1

αi

2
dW∆W(Di,Dj) +

M∑
i=1

O
(αi log

1
δ√

Ni

)
. (4)

Although this result holds for the model heterogeneous case, the result fails to capture the advantage
of performing FL for the following reasons. Firstly, the bound contains the term

∑M
i=1 O

(
1√
Ni

)
which is worse than O

(
1√
Nj

)
, while also containing the divergence terms dW∆W and the local loss

terms
∑

i ̸=j αiL̂i(fi). Therefore, the result does not show any improvement over local training. The
result also holds when the models are trained locally and the ensemble is used only during prediction.
This does not motivate the distillation loss (with communication during training) in Lin et al. (2020);
Cho et al. (2022). Even more importantly, the impact of the public dataset distribution (used for
distillation) is not captured in the result. Therefore, this bound is uninformative and fails to justify
the benefit of FL.

Also note that, the original results in Peng et al. (2019); Lin et al. (2020); Cho et al. (2022) include an
additional term λ which quantifies the best oracle loss. However, we observe that this λ term can be
avoided and thus the we omitted it from the generalization results in (3) and (4).

We shall now address the limitations mentioned above by (i) decoupling the representation layer
from the classification layer which allows us to study model heterogeneity in FL and (ii) using results
from multi-source domain adaptation which allows us to show 1√

N
dependence without assuming

a centralized dataset. While Theorem 1 of Zhu et al. (2021) follows (i), they still show a 1√
Ni

dependence and only consider the model homogeneous case.

3.1 Model Homogeneity

Let us first show the result for the model homogeneous case, where averaging the model weights is
optimal. Given a representation function u, denote the induced distribution of the ith client as D̃i(u)
and the induced labeling function as c̃u. The empirical risk of the ith client for the model (u,v)
is defined as L̂i,u(v, c̃u) :=

1
Ni

∑
x∈Di

|h(v, g(u, x)) − c̃u(g(u, x))| and the true risk Li,u(v, c̃u)
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is the expectation of L̂i,u(v, c̃u) taken with respect to the draw of Di. The domain weighted
empirical risk is defined similarly as L̂ααα(v) =

∑M
i=1 αiL̂i,u(v, c̃u) and the true weighted risk is

defined similarly as Lααα(v). We denote the mixture of the induced client distributions defined as
D̃ααα =

∑M
i=1 αiD̃i(u). Let the target distribution be given by Dj and the induced distribution is

D̃j(u). We now state the generalization bound.

Theorem 1 (Model Homogeneity). Given u, let v̂ = argminv∈V L̂ααα(v) and v∗
j =

argminv∈V Lj,u(v, c̃u). Then for any δ > 0, w.p. > 1− δ, we have

Lj,u(v̂)− Lj,u(v
∗
j ) ≤ 4

√√√√ M∑
i=1

α2
i

pi
O
(√ log 1

δ

2N

)
+B,

where B =
∑M

i=1 αidV∆V
(
D̃i(u), D̃j(u)

)
.

Let αi = pi, then the generalization error decays as O
(√

1/N
)
. Therefore, the dependence on the

number of data points shows that the client attains better generalization error by participating in the
FL setup provided the divergence term is small. Note that, as compared to (3), we have divergence
between the induced distributions dV∆V(D̃i(u), D̃j(u)) as compared to dW∆W(Di,Dj) which is
fixed for the given client datasets. The divergence term in Theorem 1 can be minimized by learning
invariant feature representations u which is the topic of interest in domain invariant representation
learning Long et al. (2015); Zhao et al. (2019).

3.2 Model Heterogeneity

For the model heterogeneous case (since there is no global model), let ui be the representation layer
weights of the ith user. We then define the induced distributions D̃i(ui), labeling functions c̃ui

,
empirical risk L̂i,ui

(vi, c̃ui
) with respect to ui for every client. The weighted empirical risk is then

L̂ααα(v) =
∑M

i=1 αiL̂i,ui(v, c̃ui) . A major difference is that, the induced labeling functions c̃ui are
different for every client whereas in Theorem 1, it is the same for all clients due to shared u. Let the
target distribution be given by Dj and the corresponding representation be uj that induces D̃j(uj)
and c̃uj . We now state the generalization bound as follows.

Theorem 2 (Model Heterogeneity). Let v̂ = argminv∈V L̂ααα(h) and v∗
j =

argminv∈V Lj,uj
(v, c̃uj

) be the minimizer of the true target risk. Then for any δ > 0, w.p.
> 1− δ, we have

Lj,uj
(v̂)− Lj,uj

(v∗
j ) ≤ 4

√√√√ M∑
i=1

α2
i

pi
O
(√ log 1

δ

N

)
+ 2A+B,

where A =
∑M

i=1 αi min
{
Ez∈D̃i(ui)

[
|c̃ui

(z) − c̃uj
(z)|

]
, Ez∈D̃j(uj)(z)

[
|c̃ui

(z) − c̃uj
(z)|

]}
and

B =
∑M

i=1 αidV∆V(D̃i(ui), D̃j(uj)).

The bound is similar to that of Theorem 1 with two key differences: (i) the addition of term A and (ii)
the divergence in B is computed between the induced distributions on private representations ui of
the clients. These two differences are inherently due to the presence of model heterogeneity. The
term A determines the closeness of c̃uj with every other c̃ui . Observe that in the model homogeneous
case where u is shared among the clients, A = 0 since all the induced labeling functions are equal
to c̃u. Similarly, as compared to the model homogeneous case, B here is measured between the
D̃i(ui) and D̃j(uj) for ui ̸= uj leading to a higher divergence. Due to these differences, achieving
good generalization in model heterogeneous FL is more challenging than in model homogeneous FL.
Observe that, in Theorem 1 and 2, the error measured is dependent on the representations since v̂,v∗

j
are dependent on the representations. Showing the result without fixing the representations is more
challenging and we leave this as future work.

While FL research primarily focuses on improving the convergence rate by addressing issues such
as variance reduction or client-drift Karimireddy et al. (2020), the role of the feature extractors
in reducing the degree of heterogeneity in the latent space receives rare attention. To the best of
our knowledge, our work is the first to show generalization bounds for FL, which provide these
fundamental insights and highlight the benefits of participating in FL.
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Algorithm 1 Fed-CMA

1: At Server:
2: for t = 1, · · · , T do
3: Collect mean embeddings {ek(i,t)}

K
k=1 and classification layer weights v(i,t) for all i ∈ [M ]

4: Update ē and v̄ using (7)
5: Broadcast {ek(t)}

K
k=1 and v̄(t) to the workers.

6: end for
7: At Worker i:
8: for t = 1, · · · , T do
9: Receive {ek(t)}

K
k=1 and v̄(t) from the server.

10: Pick random minibatch ξ(t) from Di and compute ∇Φ̂i.
11: Update w(i,t) according to (6)
12: Compute {ek(i,t)}

K
k=1 using eki = 1

bki

∑
x∈Bk

i
gi(u(i,t), x) for k ∈ [K].

13: Share with server: mean embeddings {ek(i,t)}
K
k=1 and classification layer weights v(i,t).

14: end for

4 Conditional Moment Alignment
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Figure 2: Illustration of conditional alignment

We recall the example from Zhao et al. (2019) (Fig 1) which shows that marginal alignment of
distributions is insufficient when the labeling functions are different. The goal of representation
learning should therefore be to simultaneously reduce the terms A and B. Towards this, we propose
conditional alignment of distributions in the latent space which aims to learn representation weights
{ui} such that the induced labeling functions are closer and the latent space distributions are closer
(see Fig 2 for an illustration).

Although the ideal solution is to align the conditional distributions, it is impractical in the distributed
setting. Therefore, we approximate it by aligning only the first order moments of the class conditional
mean embeddings of each client and maintain a global variable that tracks the weighted average of
the individual mean embeddings. Let pki denote the fraction of data points of label k available at
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client i out of all data points of label k at all clients. At the beginning of the training, each client
i samples a fixed i.i.d minibatch Bk

i ∼ Di for each kth label in the dataset Di with bki points. The
size of bki can be much smaller than the size of the original dataset Ni. This minibatch is used
throughout the training. The class conditional mean embedding vector eki ∈ Rde

is computed as
eki = 1

bki

∑
x∈Bk

i
gi(ui, x). We abuse the notation slightly, by using eki (u) when the parameter u is of

interest. These vectors are the class conditional empirical means of each class available at each client.

We maintain a global variable e = {ek}Kk=1 that stores a weighted average of the means of all the
clients. This global variable is used to achieve consensus among the clients and align the client
distributions in the latent space. Similarly, we maintain a global variable v̄ for the classification layer
weights. The population local loss at worker i is

Φi(wi, v̄, e) = Li(wi) +
λ1

2
pi

∥∥∥vi − v̄
∥∥∥2
2
+

λ2

2

K∑
k=1

pki
bki

∑
x∈Bk

i

∥∥∥gi(ui, x)− ek
∥∥∥2
2
. (5)

Let w(i,t) := (u(i,t),v(i,t)) be the parameters at ith worker and η(t) be the learning rate at time t.
We define et = {ek(t)}

K
k=1 and v̄(t). Note that we use (t) to highlight that the subscript refers to the

time. In Fed-CMA, we perform the following updates on w(i,t), v̄(t), e(t) simultaneously,

w(i,t+1) = w(i,t) − η(t)∇wi
Φ̂i(w(i,t), v̄(t), e(t)); (6){

v̄(t+1) = v̄(t)(1− λ1η(t)) + λ1η(t)
∑M

i=1 piv(i,t);

ek(t+1) = ek(t)(1− λ2η(t)) + λ2η(t)
∑M

i=1 p
k
i e

k
i

(
u(i,t)

)
;

(7)

where the empirical gradient Φ̂i is computed using a minibatch ξi that is drawn i.i.d. from Di,
0 < λ1η(t) ≤ 1 and 0 < λ2η(t) ≤ 1. A detailed implementation of Fed-CMA is shown in
Algorithm 1.

5 Convergence Results

Let a denote the concatenation of ({wi}Mi=1, v̄, e), where all {wi}Mi=1, v̄, e are vectorized so that we
have a ∈ RMdi+2(de+1)K . Then, we can write the global objective as

argmin
a

Φ(a) := arg min
{wi}M

i=1,v̄,ē

M∑
i=1

Φ(wi, v̄, e). (8)

Unless otherwise specified, ∥·∥ is ∥·∥2 for vectors and ∥·∥F for matrices. Next, we make the following
assumptions on the loss functions and embedding maps.
Assumption 1. The local loss functions {Li(wi)}Ni=1 are βl Lipschitz continuous, and βs smooth
in wi. Note that ∥wi∥2 = ∥ui,vi∥2 = ∥ui∥ + ∥vi∥. The loss functions Li are lower bounded
uniformly by a scalar Linf .
Assumption 2. The function gi(ui, x) is βe Lipschitz continuous and βg smooth ∀i ∈ [M ] with
respect to ui. Moreover, we assume that gi(ui, x) ∈ [0, 1]de ,∀i.
Assumption 3. The empirical gradient is an unbiased gradient of the population loss i.e.,
E[∇aΦ̂({wi}Mi=1, v̄, e)] = ∇aΦ({wi}Mi=1, v̄, e). The variance of the stochastic gradient is bounded,

i.e., E
[∥∥∥∇aΦ̂({wi}Mi=1, v̄, e)−∇aΦ({wi}Mi=1, v̄, e)

∥∥∥2] ≤ G1

∥∥∥∇aΦ({wi}Mi=1, v̄, e)
∥∥∥2 +G2

2.

Assumption 1 is commonly used in analyzing the convergence behavior of stochastic gradient descent
(SGD) for general non-convex problems. Assumption 2 implies that the output of gi(ui, x) is bounded
and this is easily satisfied in deep neural networks where the activation function is a sigmoid function.
While the boundedness of the activation function is not necessary, it makes some parts of the proof
simpler. The more general ReLU activation can be used by making some changes to the loss function
(more details are provided in the supplementary material). Assumption 3 follows from assuming that
the local dataset at each client i is drawn i.i.d from Di. For simplicity, we consider only one local
update (6) before computing the global update (7). We now state the convergence theorem.
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Theorem 3. Let Assumptions 1, 2, and 3 hold and run the algorithm with T timesteps. If we chose
a constant learning rate η =

√
2C1

TC0G2
2

that satisfies 0 < η ≤ min
{

1
λ1
, 1
λ2
, 1
C0(G1+1)

}
, where

E[Φ(a(1))]− E[Φ(a(T ))] ≤ E[Φ(a(1))]− Φ∗ ≤ C1, and C0 is a problem specific constant, then we

have mint:1,··· ,T E
[
∥∇aΦ(a(t)∥2

]
≤

√
2C1C0G2

2

T .

The proof of the result is provided in the supplementary material. The result shows that, while
following the updates in (6) and (7) to solve (8), Fed-CMA can find the first-order stationary point
in O(1/

√
T ) updates (which matches the convergence rate of traditional SGD in FL for solving

non-convex objectives). Note that, among the model heterogeneous FL works in Table 1, only Yao
et al. (2021); Li et al. (2021) show the convergence of their proposed algorithms.

6 Numerical Simulations

(a) Worker 0 (b) Worker 1

(c) Worker 2 (d) Worker 3

Figure 4: Local input space decision boundaries

(a) Worker 0 (b) Worker 1

(c) Worker 2 (d) Worker 3

Figure 5: Local latent space decision boundaries

(a) Worker 0 (b) Worker 1

(c) Worker 2 (d) Worker 3

Figure 7: FedCMA input space decision boundaries

(a) Worker 0 (b) Worker 1

(c) Worker 2 (d) Worker 3

Figure 8: FedCMA latent space decision boundaries

We first evaluate Fed-CMA on a synthetic dataset to illustrate the conditional alignment in the latent
space. We then compare Fed-CMA against other FL algorithms in the model heterogeneity setting on
various image datasets.

Synthetic dataset We solve a 4-class classification problem, where we generate a synthetic dataset
in R2 from a mixture of four Gaussian distributions and distribute them in a non-i.i.d. way among 4
clients (see Fig 4, 7). We use Linear(2,2) → Linear(2,2) → Linear(2,4) at every client for
simplicity. After training, we plot the decision boundaries in the original and latent spaces (both R2).
We see that the distributions and decision boundaries in the latent space are aligned for Fed-CMA (see
Fig 8) resulting in much better decision boundary in the original space, even for workers with scarce
data (see Fig 7). We empirically approximate dV∆V by training a classifier to discriminate between
the latent space data of the four clients (motivated from Ben-David et al. (2010), see supplementary
material for more details). As we observe from Fig 9a, as the training progresses the accuracy of
the discriminator reaches that of a random classifier which means the latent space data among the
workers are more aligned and it gets difficult to tell from which client the data came from.
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Figure 9: Discriminator classification accuracy (smaller the better)

MNIST datasets We perform evaluation on MNIST, EMNIST and FEMNIST Caldas et al. (2018)
datasets. For MNIST and EMNIST, we consider M = 20 clients and to simulate data heterogeneity,
we follow Hsu et al. (2019) where a Dirichlet distribution DirM (α) is used to partition among the M
clients. For smaller values of α, the data is more heterogeneous and for larger values of α the data is
more homogeneous across the clients. For the MNIST and EMNIST datasets, we consider full client
availability. In the FEMNIST experiment, we consider around 25% of the FEMNIST dataset and
contains 923 clients with 50% client participation at each round.

Note that it is hard to compare the performance of Fed-CMA with earlier works such as Fed-ET Cho
et al. (2022), FedDF Lin et al. (2020) and KT-pFL Zhang et al. (2021) since they utilize additional
information in the form of a public dataset that is used for knowledge distillation. Moreover, these
works may involve sharing the parameters with the server. Therefore, we do not provide a comparison
with these works. While the main results of FedGen Zhu et al. (2021) require sharing all the model
weights with the server, FedGen also accommodates limited parameter sharing (such as sharing
only the classification layer weights vi). Therefore, in this section, we compare Fed-CMA with
FedGen under the limited parameter setting. Additionally, we also provide a comparison against
local training and against FedAvg which simply shares the final layer weights (called FedAvgSim in
Pillutla et al. (2022)). We use the same network and setup used in Zhu et al. (2021) using the official
implementation1 and allowed multiple local client updates between communication rounds.

From the results in Table 2, we observe that Fed-CMA outperforms all the baselines in the limited
parameter setting. The improvement offered by Fed-CMA over the other baselines is much higher
in the high data heterogeneity (small α) setting and the improvements diminish as α increases.
This shows that in more practical settings, Fed-CMA can provide much needed gains to justify
participating in the FL setup. We provide detailed experimental setup and ablations (marginal
alignment vs conditional alignment, advantage of sharing mean embeddings) in the supplementary
material.

dataset α Local FedAvg FedGen FedCMA

MNIST

0.02 76.28 (0.39) 76.14 (0.48) 75.95 (0.06) 79.22 (0.74)
0.03 59.89 (0.26) 59.82 (0.23) 60.08 (0.61) 64.03 (0.26)
0.05 61.36 (0.71) 61.26 (0.70) 60.82 (0.50) 62.57 (0.39)
0.10 62.27 (0.48) 62.26 (0.35) 62.84 (0.07) 63.94 (0.42)

EMNIST

0.02 50.2 (0.10) 49.77 (0.11) 49.93 (0.06) 51.0 (0.29)
0.03 47.95 (0.33) 47.46 (0.24) 47.5 (0.32) 49.26 (0.15)
0.05 52.73 (0.35) 52.2 (0.36) 52.48 (0.33) 53.96 (0.48)
0.10 47.31 (0.35) 46.84 (0.29) 46.35 (0.34) 46.5 (0.32)

FEMNIST - 62.49 (0.64) 63.50 (0.79) - 64.50 (1.2)
Table 2: Comparison on MNIST, EMNIST and FEMNIST datasets with data heterogeneity and limited parameter
sharing

1https://github.com/zhuangdizhu/FedGen
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Workers pFedHN pFedHN-PC FedCMA

10 88.34 89.05 91.36
50 83.62 83.62 84.24

100 82.73 80.81 80.92

Table 3: Comparison on CIFAR10 with data heterogeneity and limited parameter sharing
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Figure 10: Comparison of communication performed during training for CIFAR10 (x-axis) vs accuracy (y-axis)

CIFAR-10 dataset We also compare our work against the personalized FL algorithms pFedHN,
pFedHN-PC in Shamsian et al. (2021) for the CIFAR-10 dataset. We use the same non-i.i.d. data split,
networks and setup used in the official implementation of Shamsian et al. (2021)2. The comparison is
provided in Table 3 and we observe that Fed-CMA outperforms the compared algorithms in two out
of the three cases. Additionally, we also provide a comparison of the communication cost (in terms of
number of parameters) for the three algorithms in Fig 10. We observe that Fed-CMA achieves similar
accuracy as the other two algorithms despite requiring an order of communication lesser. Note that,
the communication complexity of Fed-CMA at each round is O(K ×M × de) irrespective of the
dimension of the feature extractor weights. We also empirically approximate dV∆V by training a
domain discriminator in the latent space and conclude from Fig 9b that the reduced accuracy of the
domain discriminator is due to a better alignment in the latent space for Fed-CMA (which improves
the generalization performance). Observe that for local training, the domain discriminator has 100%
accuracy, implying that there is zero alignment of latent space distributions.

7 Conclusion and Future Work
In this work, we focused on the model heterogeneous FL setup without assuming a public dataset,
without imposing restrictions on the choice of the model architectures and keeping the model
architectures private. We proposed Fed-CMA based on conditional distribution alignment in the latent
space in a federated way. We prove the convergence and generalization properties of the algorithm
with emphasis on the role of the learned representations. These insights are helpful in designing
better FL algorithms and the proposed algorithm can be used along with existing FL algorithms in
the weight sharing setup, and/or use an adversarial loss to improve the performance.

Our current convergence analysis covers the case where each client performs only one local update
and all clients participate in the training at every step. The impact of local communication steps on
the convergence rate can be considered as future work, since this issue has deviated from the main
topic (i.e., improved generalization) of this paper. Moreover, our work opens up several intriguing
questions: (i) What level of model heterogeneity can be tolerated to achieve a reasonable improvement
in the FL setup?, (ii) What is the role of the latent space in tolerating this model heterogeneity?
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