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Abstract—Age of information, as a metric measuring the data
freshness, has drawn increasing attention due to its importance
in many data update applications. Most existing studies have
assumed that there is one single channel in the system. In this
work, we are motivated by the plethora of multi-channel systems
that are being developed, and investigate the following question:
how can one exploit multi-channel resources to improve the age
performance? We first derive a policy-independent lower bound
of the expected long-term average age in a multi-channel system.
The lower bound is jointly characterized by the external arrival
process and the channel statistics. Since direct analysis of age in
multi-channel systems is very difficult, we focus on the asymptotic
regime, when the number of users and number of channels both
go to infinity. In the many-channel asymptotic regime, we propose
a class of Maximum Weighted Matching policies that converge
to the lower bound near exponentially fast. In the many-user
asymptotic regime, we design a class of Randomized Maximum
Weighted Matching policies that achieve a constant competitive
ratio compared to the lower bound. Finally, we use simulations
to validate the aforementioned results.

Index Terms—Age of information, Multi-channel, Scheduling

I. INTRODUCTION

Age of information is a new performance metric that has

attracted significant recent attention [1–17]. This concept is

motivated by various data update applications that deal with

time-sensitive data, such as stock price, traffic information and

news updates. In such applications, the data with the latest

generation time is usually the most valuable one to users, and

thus, users want to keep their data as fresh as possible. Age of

information, defined as the the elapsed time of the last served

packet since it was generated, is a good measure of the data

freshness from the user side. In an age minimization problem,

the goal is to minimize the user’s age to keep data fresh.

Age of information and delay share the same feature that

measures the elapsed time of a packet since its generation.

However, they are fundamentally different in that delay is

defined for a certain packet whereas age of information
captures the data freshness from the user (flow) side. To see

this, consider an M/M/1 queue with low arrival rate and high

service rate [7]. The queue is often empty and the packet

delay is very low. However, high age of information is still

observed due to the long inter-arrival time. In general, good

delay performance does not necessarily guarantee good age

performance which requires that packets with low delay are

served regularly. Compared to the extensively-studied delay

metric, age of information is a new performance metric that

calls for new designs of scheduling policies to minimize age.

Multi-channel communications have become commonplace

in modern cellular systems, e.g., WiMax [18], 4G/LTE [19]

and 5G NR [20]. In these systems, the wide bandwidth at

the Base Station is divided into hundreds or thousands of

orthogonal sub-carriers (channels), which can be dynamically

allocated to serve users. The availability of multiple channels

introduces flexible user-channel allocation and thus, provides

diversity and multiplexing gain compared to the single-channel

system. In the literature [21–23], it has been shown that

near optimal delay performance can be achieved in a multi-

channel system. Given the close relationship between age of
information and delay, we can ask and answer the following

natural question in this paper: Can we exploit the flexibility
from multi-channel systems to improve the age performance?
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Fig. 1. A multi-user multi-channel information update system.

We focus on the age minimization problem over a multi-

channel system. An example network is shown in Fig. 1. The

Base Station keeps track of the most updated information

of each user’s interested flow (such as news or stock price

updates). Users are able to use a channel to download a packet

from the Base Station and update its information and age at the

user terminal. Due to channel fading, the channel conditions

are time-varying across both users and channels. A scheduling

policy decides the allocation of multi-channel resources to

serve the time-sensitive data flows. Now the following im-

portant question remains: How to design a scheduling policy
that achieves provably good age performance for a multi-
channel time-sensitive information update system with time-
varying channels?

In this paper, we answer this question by proposing two

classes of scheduling policies. The key contributions of this

paper are summarized as follows:

• We first derive a policy-independent lower bound of ex-

pected age in multi-channel systems. The lower bound is



jointly characterized by the arrival process of applications

and the channel statistics.

• In the many-channel asymptotic regime, we propose a

class of Maximum Weighted Matching (MWM) policies

that converge to the lower bound near exponentially.

• In the many-user asymptotic regime, we design a class

of Randomized Maximum Weighted Matching (RMWM)

policies that achieve a constant competitive ratio com-

pared to the lower bound.

To the best of our knowledge, this is the first work that de-

velops scheduling policies whose age performance is provably

near-optimal for time-varying multi-channel systems.

The rest of the paper is organized as follows. In Section II,

we summarize the results of related works. In Section III,

we introduce the system model and formulate the age mini-

mization problem. In Section IV, a fundamental lower bound

is derived with respect to inter-arrival and inter-service time.

In Section V, we propose a class of MWM policies whose

age performance converges to the lower bound in the many-

channel asymptotic regime. In Section VI, we design a class

of randomized RMWM policies which achieve a constant

competitive ratio compared to the lower bound in the many-

user asymptotics. We use numerical simulations to validate

our theoretical results in Section VII and make concluding

remarks in Section VIII.

II. RELATED WORK

Recently, the optimization of age performance for multiple

sources has become a hot topic, e.g., [1–17]. In [7], the authors

considered the problem of minimizing weighted expectation of

long term average age in broadcast networks with an unreliable

ON/OFF channel and periodic arrivals. Randomized policy,

Maximum Age First policy and Whittle’s index policy have

been shown to achieve a constant competitive ratio. Time-

sensitive information update system is considered in [3, 4]

where no queue is used or the buffer only stores the latest

information and any outdated packets will be discarded. An

MDP-based online scheduling algorithm and an index-based

online scheduling algorithm are proposed in [4] to minimize

the average age. Most of the existing works assume that there

is one single channel which is shared by all the users/sources.

It is not clear how to extend these results to the case when

multiple channels are available. The paper [12] considered

multi-server systems and proposed two near-optimal policies

following the maximum age first and last generated first served

disciplines. Nevertheless, in multi-channel wireless networks,

the channel conditions are time-varying across both channels

and users, which marks a fundamental difference from the

multi-server systems.

III. SYSTEM MODEL

We consider a time-sensitive information update system

which consists of one Base Station and n users. For ease of

presentation, we assume each user has one flow that takes new

data from one of the information sources1. Assume that time

1This assumption can be generalized to arbitrary number of flows per user.

is slotted, and all arrivals occur at the beginning of each time-

slot. New packets are generated from time to time and arrive

in the system based on the arrival process A(t). Since time is

slotted, the update data packets in each time-slot for the same

user flow is considered identical. Therefore, for each time-slot

t, there is at most one packet arrival for each user flow i, i.e.,

Ai(t) ≤ 1. We consider Bernoulli arrival processes for any

1 ≤ i ≤ n:

Ai(t) =

{
1, with probability pi,

0, with probability 1− pi.
(1)

The Base Station maintains a separate buffer Qi to store the

latest generated packet for each user i. Let Di(t) denote the

delay of the packet in Qi at the beginning of time-slot t, i.e.,

the time difference between the packet generation time2 and

current time t. Di(t) is updated by Ai(t) as follows:

Di(t) =

{
0, Ai(t) = 1,

Di(t− 1) + 1, otherwise.
(2)

Note that each buffer Qi cannot have more than one packet.

If there is a new arrival in time-slot t, i.e., Ai(t) = 1, then

any existing packet in Qi will be replaced by the new packet.

If there is no new arrival, the delay of the packet in the buffer

grows linearly with t3.

We consider the downlink phase of a single-cell OFDM

system. There are m = αn sub-carriers (linear number of

channels) that can be used to download new packets and

update information, where α � m/n denotes the ratio between

the number of channels and the number of users. As shown in

Fig. 2, each wireless channel between a user and a subcarrier

(channel) has unit capacity and varies from time to time due

to channel fading.

…

n users m channels

…

Fig. 2. Stochastic connectivity in wireless multi-channel systems. The
connectivity between user i and channel j is “ON” if they are connected
by a solid line, and “OFF” otherwise (connected by a dashed line).

In time-slot t, the user-channel connectivity is given by the

n×m binary matrix C(t), where Ci,j(t) = 1 means user i is

connected to channel j with rate 1 in time-slot t. We assume

the channel process is given by:

Ci,j(t) =

{
1, with probability q,

0, with probability 1− q.
(3)

2Assume packets arrive at the Base Station immediately after they are gen-
erated. The technique in this paper can also be applied when the propagation
delay before reaching the Base Station is not negligible.

3Packets will remain in the buffer until the next arrival comes in (replace-
ment), even if they are served.



for all 1 ≤ i ≤ n and 1 ≤ j ≤ m. We assume the scheduler

knows the perfect channel state information (CSI), i.e., binary

matrix C(t) is known to the Base Station in each time-slot t.
Let S(t) denote the decision matrix in time-slot t, where:

Si,j(t) =

{
1, channel j serves user i in time-slot t,

0, otherwise.
(4)

Due to the interference constraint, a single channel cannot

serve two or more users at the same time, i.e.,

n∑
i=1

Si,j(t) ≤ 1. (5)

for all 1 ≤ j ≤ m. Let S denote the set of all feasible decision

matrix S(t). For each feasible decision matrix S(t) ∈ S , define

Xi(t) to be the service indicator for user i in time-slot t:

Xi(t) =

m∑
j=1

Si,j(t)Ci,j(t). (6)

since there is at most one packet in buffer Qi in time-slot t,
we have

Xi(t) ≤ 1. (7)

Xi(t) is a binary variable and Xi(t) = 1 indicates that user i
is updated in time-slot t.
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Fig. 3. Age evolution for user i. For the example shown in the figure, we have
two arrivals A1 and A2 before the first service X1. Packet A1 is replaced by
A2 since A2 becomes the latest arrival. The age grows linearly before X1,
and drops to Di(X1)+ 1 = X1 −A2 +1 after serving packet A2. The age
again grows linearly until the next service X2, which happens in the same
time-slot as the third arrival A3, so the age reduces to 1 after X2.

Next, we introduce age of information from user’s perspec-

tive. In this information update system, age of information
measures the time difference between the current time and the

generation time of the packet from the last service (update).

Once a new packet p has been downloaded by user i, user i’s
age of information will be updated by the current packet delay

of p. If there is no such packet delivery, age of information
grows linearly in time. Consider the example shown in Fig. 3,

the age of user i between X1 + 1 and A3 − 1 is equal to the

packet delay of A2. Let Hi(t) denote the age of information
of user i at the beginning of time-slot t, it evolves as follows:

Hi(t+1) =

{
Di(t) + 1, if Xi(t) = 1, Di(t) < Hi(t),

Hi(t) + 1, otherwise.
(8)

Note that Hi(t+ 1) depends on the state in time-slot t. For a

given time-slot t, let X (t) = {A(t),C(t),D(t),H(t)} denote

the system state.

Define Ui(t) = 1{Di(t)<Hi(t)} to be the update indicator of

user i. Hi(t + 1) can be reduced only if Ui(t) = 1. Assume

the last service of user i before t happens in time-slot t0,

i.e., t0 = maxτ<t{τ |Xi(τ) = 1}. According to Equation (2),

Ui(t) = 1 if and only if there exists at least one packet arrival

of user i during time interval [t0 + 1, t] and the packet delay

Di(t) has been updated to a smaller number. If there is no such

arrival, then the age and packet delay are always the same as

they both continue to grow with the same rate of 1.

For each time-slot t, a scheduling policy π needs to deter-

mine a feasible decision matrix Sπ(t) ∈ S based on the system

state X (t). In this paper, we aim to minimize the expectation

of long-term average of the user’s age:

E[Jπ] = E

[
lim

T→∞
Jπ
T

]
= E

[
lim

T→∞
1

nT

n∑
i=1

T−1∑
t=0

Hπ
i (t)

]
. (9)

We use Π to denote the set of all feasible policies such that

the limit in (9) exists. Define J∗ to be the minimum value of

E[Jπ] for all π ∈ Π, i.e., J∗ = minπ∈Π E[Jπ].

IV. A FUNDAMENTAL LOWER BOUND

In this section, we derive a policy-independent lower bound

L ≤ E[Jπ] for any scheduling policy π ∈ Π. The lower bound

could be intuitively interpreted from two extreme cases. In the

case of less-frequent arrivals, the inter-arrival time could be the

dominating factor regardless of the channel condition. On the

other hand, in the case of bursty arrivals, the inter-service time

dominates since there is always a new arrival coming in. In

the next two subsections, we derive two lower bounds based

on inter-arrival and inter-service time respectively.

A. Inter-arrival Based Lower Bound

We consider the lower bound determined by the inter-arrival

time. Note that a service can happen only if a new packet

arrival has arrived. As a result, the age performance is closely

related to the inter-arrival time. If the arrivals are not frequent,

then the age performance of any scheduling policy will suffer

from the long inter-arrival time. We first consider a virtual-

perfect policy πvp that relies purely on the inter-arrival time.

Definition 1: πvp is a virtual-perfect policy if it is able to

instantly serve any new packet within its arrival time-slot.

Lemma 1: Let E[Jπvp

] denote the expectation of the long-

term average of the user’s age under virtual-perfect policy

πvp (assume full-connectivity virtual channels), then we have

E[Jπvp

] ≤ E[Jπ] for any feasible policy π ∈ Π.

Proof: We use a per-user sample path dominance argu-

ment to prove Lemma 1. Due to the space limit, we provide a

proof sketch using Fig. 4. Assume system S1 is using virtual-

perfect policy and S2 is using an arbitrary policy. In addition,

assume in system S2, user i has received NT
i services before

T . We can divide the timeline [0, T − 1] into NT
i + 1 inter-

service intervals based on the service timestamps. For instance,

in Fig. 4, we have intervals [0, X1], [X1 + 1, X2], · · · , [X4 +
1, T −1]. We then show that for each interval, the starting age

is the same for both systems, while the growing rate in system
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Fig. 4. The age comparison of a certain user between the virtual-perfect
policy πvp (system S1) and an arbitrary policy π (system S2). Within each
inter-service interval [Xi+1, Xi+1] of policy π, the age under policy πvp is
always smaller than or equal to that under policy π. The starting age for each
interval is the same (green markers) for two policies, and the growing rate
under policy vvp is smaller than or equal to the growing rate under policy π.

1 (at most linear, may have services in between) is no more

than that in system 2 (linear between consecutive services).

Remark 1: Since the channels are not always perfect, πvp is

usually not feasible. However, it is still an important baseline

policy to derive the lower bound based on inter-arrival.

Lemma 2: There exists a lower bound LA such that LA ≤
J∗, where

LA =
1

2n

n∑
i=1

2− pi
pi

+
1

2
. (10)

Proof: From Lemma 1 we know E[Jπvp

] ≤ E[Jπ] for

any feasible policy π ∈ Π. Hence, there must exist a lower

bound for the optimal value J∗. Next, we focus on deriving a

lower bound for E[Jπvp

].
Consider the stochastic process X̃ (t) under policy πvp and a

finite horizon T , where X̃ (t) = {A(t), C̃(t),D(t),H(t)}. To

make sure channels are always perfect, we use the following

channel process C̃(t):

C̃i,j(t) = 1, ∀i, j, t. (11)

Let Ai
T be the total number of arrivals from time-slot 0

to time-slot T − 1 for user i. In this case, a service event

happens immediately after each arrival event, thus, we do not

differentiate these two events within this proof. Let Ii(τ) be

the number of time-slots between (τ − 1)th and τ th service

(arrival) event to user i (0th service happens right before time-

slot 0). Let Ri denote the number of remaining time-slots after

the last service (arrival) event before T . We have the following

equation for any user i ∈ {1, 2, · · · , n}:

T =

Ai
T∑

τ=1

Ii(τ) +Ri. (12)

Note that the inter-service time {Ii(i)}A
i
T

τ=1 is a series of

i.i.d. random variables and the arrival (service) process A(t)

is a renewal process. Similar to the proof of Theorem 6 in [7],

we have with probability one,

Jπvp

T ≥ 1

2n

n∑
i=1

1

T

Ai
T∑

τ=1

I2i (τ) +
1

2
. (13)

and with probability one,

Jπvp

T ≥ 1

2n

n∑
i=1

E[I2i (1)]

E[Ii(1)]
+

1

2
. (14)

Furthermore, from (1) we know Ii(1) is geometric dis-

tributed with support {1, 2, · · · }, (14) can be rewritten as:

Jπvp ≥ 1

2n

n∑
i=1

2− pi
pi

+
1

2
w.p.1. (15)

Taking the expectation of (15), we have E[Jπvp

] ≥
1
2n

∑n
i=1

2−pi

pi
+ 1

2 = LA. LA is a lower bound for the optimal

value J∗ based on the inter-arrival time.

B. Inter-service Based Lower Bound
We consider the lower bound determined by the inter-

service time. This lower bound is non-trivial especially when

the number of users is greater than the number of channels, i.e.,

n > m. In this case, it is not possible to find a perfect matching

that covers all users regardless of the channel condition. A

scheduling policy has to select a subset of users to serve,

hence, the inter-service time is not negligible when the number

of users becomes large. Even when arrivals are very frequent

(pi → 1), the age performance is still bounded by the inter-

service time due to user-selection, especially when α = m/n
becomes small. We have the following lemma:

Lemma 3: There exists a lower bound LS such that LS ≤
J∗, where

LS =
1

2α
+

1

2
. (16)

Proof: Consider an arbitrary policy π and a sample path

ω ∈ Ω, assume user i has NT
i services before T . For each user

i, let Ii(τ) be the inter-service time between (τ −1)th service

and τ th service. We use Ri = T −∑NT
i

τ=1 Ii(τ) to denote the

remaining time before T . The age evolves as 1, 2, · · · , within

each inter-service interval and we can bound the objective

function as follows:

Jπ(ω) ≥ lim
T→∞

1

nT

n∑
i=1

NT
i∑

τ=1

Ii(τ) (Ii(τ) + 1)

2
+

Ri(Ri + 1)

2

≥ lim
T→∞

1

2nT

n∑
i=1

⎡
⎣NT

i∑
τ=1

I2i (τ) +R2
i

⎤
⎦+

1

2
. (17)

The set of intervals {Ii(1), Ii(2), · · · , Ii(NT
i ), Ri} is a parti-

tion of interval [0, T−1]. Applying Cauchy-Schwarz inequality

to (17), we have for all sample path ω ∈ Ω

Jπ(ω) ≥ lim
T→∞

T

2n

n∑
i=1

1

NT
i

+
1

2
. (18)



Note that there are at most m services in each time-slot, we

have
∑n

i=1 N
T
i ≤ mT . Applying Cauchy-Schwarz inequality

again to (18), we have for all ω ∈ Ω:

Jπ(ω) ≥ n

2m
+

1

2
. (19)

Therefore, we have

E [Jπ] ≥ 1

2α
+

1

2
. (20)

for any feasible policy π ∈ Π, and the result holds.

Finally, combining the inter-arrival based lower bound LA

and the inter-service based lower bound LS leads to a lower

bound of age which is jointly characterized by the external

arrival process and the channel statistics.

Theorem 1: There exists a lower bound L such that L ≤ J∗,

where L is given by:

L = max

{
1

2n

n∑
i=1

2− pi
pi

,
1

2α

}
+

1

2
. (21)

Proof: Applying Lemma 2, Lemma 3 and taking L =
max {LA, LS}, the result follows.

Theorem 1 provides a benchmark for evaluating the age

performance of scheduling policies. Next, we consider two

asymptotic regimes and propose scheduling policies that

achieve near-optimal age performance.

V. MANY-CHANNEL ASYMPTOTIC REGIME

In this regime, we assume that the number of channels m is

greater than or equal to the number of users n and fix α ≥ 1.

The inter-service based bound becomes trivial as LA ≥ LS

and L = LA ≤ J∗.

A. Scheduling Policies

In this section, we propose two kinds of scheduling policies

that achieve close to optimal objective function J∗ in the

many-channel asymptotic regime, i.e, the performance gap

Jπ − J∗ vanishes when α ≥ 1 and n → ∞.

Consider a random bipartite graph G[X ∪Y,E] where X is

the user set and Y is the channel set. There is an edge (i, j)
connecting user i and channel j if and only if Ci,j(t) = 1. A

matching M is a set of edges such that no two edges share

an endpoint. Based on constraints (5) and (7), the scheduling

problem boils down to find a matching M in each time-slot.

The corresponding decision matrix S(t) is determined by

Si,j(t) = 1{(i,j)∈M}. (22)

In this section, we use bipartite graph G to model the user-

channel connectivity and develop matching policies.

PM (Perfect Matching) Policy. If G has a perfect matching

M (every user vertex x is incident to exactly one edge (x, y) ∈
M), then for any edge (i, j) ∈ M, set Si,j(t) = 1. Otherwise,

set Xi(t) = 0 for all user i. In other words, the PM policy

updates any user i who has the desire to update (Ui(t) = 1) if

there exists a perfect matching. Otherwise, no packet is served

even though some users can still get service.

This policy is sub-optimal when the number of channels is

small, since some channel resources may be wasted due to

its lazy behavior. However, as we will soon see, this policy

achieves close-to-optimal age performance when the number

of channels becomes large.

In the following lemma, we show that in each time-slot,

with high probability (close to 1) that the random bipartite

graph G has a perfect matching.

Lemma 4: In each time-slot t, assume bipartite graph G[X∪
Y,E] is generated by the binary matrix C(t). There exists a

constant N1 > 0, such that the probability that G has a perfect

matching is lower bounded by:

P (G has a PM) ≥ 1− 3ne−C1n. (23)

where constant C1 = log1/(1−q) for all n > N1.

Proof: The result follows from Lemma 1 in [24].

As n → ∞, it is highly possible that G has a perfect match-

ing in every time-slot. In other words, with high probability,

each user is offered the transmission opportunity. In this case,

the PM policy approximates the virtual-perfect policy in the

asymptotic regime. As we know E[Jπvp

] ≤ E[Jπ] for any

π ∈ Π, one can expect that the PM policy achieves near-

optimal age performance in the asymptotic regime.

Theorem 2: Consider a many-channel information update

system described by X (t). Let JπPM

denote the expectation of

the long-term average of user’s age under PM policy, the gap

between E[JπPM

] and J∗ can be bounded by

E[JπPM

]− J∗ < 6ne−C1n. (24)

for all n > M .

Proof: Please refer to Section V-B.

Remark 2: Although the PM policy achieves near-optimal

age performance in the many-channel asymptotic regime, i.e.,

α ≥ 1 and n → ∞, the transmission opportunity of all

channels would be lost if a perfect matching could not be

found (even by one or a few disconnected users).

Next, we develop a policy which shares the nice asymptotic

near-optimality of the PM policy, but overcomes its limitation

in non-asymptotic regimes.

Class of MWM (Maximum Weighted Matching) Policies.
Consider the random bipartite graph G = [X ∪ Y,E], now

we associate each user vertex i ∈ X with a non-negative

weight Wi(t) ≥ 0 in each time-slot t. Based on G and the

weight vector W(t), the users to update is determined by the

Maximum Weighted Matching M. A user is served in time-

slot t if it is covered by an edge from M, i.e., Xi(t) = 1
only if there exists channel j, such that edge (i, j) ∈ M, and

Xi(t) =
∑m

j=1 1{(i,j)∈M}.

Note that if W(t) is age-independent, the policy may still

be inefficient. For example, assume user 1 has the desire to

update, i.e., Ui(t) = 1. If we assign W1(t) = 0, then user

1 may not be covered by the Maximum Weighted Matching

even a perfect matching does exist. On the other hand, assume

user 2’s information is up to date and there is no new pending

packet. If we assign W2(t) by a large weight that dominates



all other weights in W(t). User 2 has the highest priority for

the maximum weighted matching, however, it could waste the

channel resources since it contributes 0 to age reduction. To

address this issue, we define an age-aware weight vector W(t)
based on system state X (t) to indicate the desire for update.

Definition 2: Given the system state X (t), W(t) is an age-

aware weight vector if the following property holds{
Wi(t) > 0, if Ui(t) = 1,

Wi(t) = 0, if Ui(t) = 0.
(25)

Remark 3: With an age-aware weight vector W(t), no user

with 0 age-difference (Hi(t) = Di(t)) is updated. Any strictly

positive number can be assigned to the user with strictly

positive age-difference (Hi(t)−Di(t) > 0, i.e., Ui(t) = 1).

Definition 3: A policy π belongs to the class of MWM

policies (ΠMWM ) if there exists an age-aware weight vector

W(t), such that the users to update is determined by the

Maximum Weighted Matching with weight W(t).

It is obvious that any policy π ∈ ΠMWM is work-

conserving even with finite number of users or channels. Now

we show that the class of MWM policies are also near-optimal

in the asymptotic regime. The following lemmas help us build

the relationship between the class of MWM policies and the

PM policy.

Lemma 5: Let π be an arbitrary policy from ΠMWM . For

any given sample path ω and time-slot t, by the end of time-

slot t, policy π has served every packet that πPM has served.

Proof: Consider two information update systems S1 and

S2, each consists of n users and m channels. Both systems

have the same arrivals and channel state realization. S1 uses

policy π and S2 uses policy πPM . We only need to show that

for any given sample path ω, if a packet x for user i is served

by πPM by the end of time-slot t, then the same packet x
must be served in the same time-slot or it has already been

served by the policy π.

First of all, packet x is not replaced by a new packet without

being served in system S1. Assume there is a new packet y for

the same user i, packet y arrives in time-slot t′ ≤ t. If packet

x has not been served by policy π, packet x is no longer the

latest packet and will be replaced. Since S1 and S2 share the

same arrivals realization, packet y also arrives in system S2

in time-slot t′. At this time, packet x has not been served by

policy πPM since t′ ≤ t, it should be replaced by packet y as

well. This fact contradicts with the assumption that packet x
is still in system S2 and is served exactly in time-slot t. We

know that packet x is not replaced in system S1.

Now we consider two cases:

Case 1: packet x has already been served in system S1.
This is what we want and there is nothing to prove.

Case 2: packet x is the latest pending packet for user i
in system S1. Since packet x is served in system S2, we know

that the bipartite graph G has a perfect matching that covers

all user vertices. Note that even a perfect matching exists,

policy πPM only serve packets for users that have the desire to

update (U(t) = 1). Due to the existence of perfect matching,

the maximum weighted matching can serve any user i that

satisfies Ui(t) = 1 as the total weight increases by adding up

strictly positive values. Therefore, packet x is also served in

time-slot t in system S1.

Lemma 6: Let π be an arbitrary policy from ΠMWM , we

have E[Jπ] ≤ E[JπPM

].
Proof: We only need to show that with probability one,

Jπ
T ≤ JπPM

T for any T ≥ 0. Similar to the proof of

lemma 5, we consider two information update systems S1

and S2, S1 uses policy π and S2 uses policy πPM . Consider

time period [0, T − 1], assume system S2 served p packets

for user i, namely x1, x2, · · · , xp. According to Lemma 5,

x1, x2, · · · , xp have also been served in system S1. Let tk(x)
denote the service time of packet x in system Sk, we have

t1(x) ≤ t2(x) for all x ∈ {x1, x2, · · · , xp}. We divide

time interval [0, T − 1] into subintervals, [0, t2(x1)], [t2(x1)+
1, t2(x2)], · · · , [t2(xp−1) + 1, t2(xp)], [t2(xp) + 1, T − 1]. As

shown in Fig. 5, we can apply the same argument from Lemma

1 to prove the dominating result.
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Fig. 5. The age comparison of a certain user between policy π from the
class of MWM policies (S1) and the perfect matching policy πPM (S2) for
a certain user. For any time-slot t, policy π has served every packet that πPM

has served. In this example, policy π has one more service to serve packet A3.
The green markers from two systems have the same age, the age in system S1

is always no larger than that in system S2 between two consecutive markers.

Based on Lemma 6 and Theorem 2, we have the following

theorem.

Theorem 3: Consider a many-channel information update

system described by X (t). Let π be an arbitrary policy from

the class of MWM policies, then π is work-conserving and

the gap between Jπ and J∗ can be bounded by

E[Jπ]− J∗ < 6ne−C1n. (26)

for all n > M .

There are a few weight vectors W(t) that satisfy (25).

In the Age Difference Weighted Matching (ADWM) policy,

we choose Wi(t) = Hi(t) − Di(t) to be the age difference

between the user’s age and packet’s age (a.k.a. delay). The

ADWM policy minimizes the total age sum in each time-slot,

hence, it is expected to achieve good age performance. We

can also use an update-indicator weight vector Wi(t) = Ui(t)
to develop an Update-indicator Weighted Matching (UWM)

policy. UWM is also a work-conserving policy but treats all



users that have the desire for update equally regardless of the

age-difference contribution.

However, Delay Weighted Matching (DWM) with Wi(t) =
Di(t), which achieves good delay performance [22] in multi-

user multi-channel systems, is sub-optimal in terms of age

performance. Since the weight vector violates the requirement

(25). Assume a new packet arrival for user i comes in time-slot

t with Di(t) = 0, it is associated with 0 weight. If the current

age Hi(t) is very high, then DWM loses the opportunity to

reduce the age to 1.

B. Analysis of the PM Policy

In this section, we focus on the age performance analysis

of the PM policy. The same argument also works for Theorem

3 using Lemma 5 and 6.

We first consider a finite horizon T and a user i, assume

there are NT
i services to user i from 0 to time-slot T − 1

with τ th service happens in time-slot Xi
τ and set Xi

0 = 0.

Let Ii(τ) be the number of time-slots between (τ − 1)th and

τ th service to user i, i.e., Ii(τ) = Xi
τ −Xi

τ−1. Let Ri denote

the number of remaining time-slots after the last service event

before T . In τ th interval, the age evolves as Di(X
i
τ−1) +

1, Di(X
i
τ−1)+2, · · · , Di(X

i
τ−1)+Ii(τ). Hence, the total age

sum in τ th interval is given by Di(X
i
τ−1)Ii(τ) +

I2
i (τ)+Ii(τ)

2 .

We use (9) and (13) to characterize the objective function

under PM policy:

JπPM

= lim
T→∞

1

nT

n∑
i=1

T−1∑
t=0

HπPM

i (t)

=

n∑
i=1

{
lim

T→∞
1

nT

NT
i∑

τ=1

(
Di(X

i
τ−1)Ii(τ) +

I2i (τ) + Ii(τ)

2

)

+ lim
T→∞

1

nT

[
Di(X

i
NT

i
)Ri +

R2
i +Ri

2

]}
w.p.1. (27)

Before evaluating the age performance, we introduce the

following lemma which helps to simplify (27).

Lemma 7: Let Ri denote the remaining part of user i in

(27) after NT
i

th
service, i.e.,

Ri = lim
T→∞

1

nT

[
Di(X

i
Ni(T ))Ri +

R2
i +Ri

2

]
, (28)

then Ri = 0 with probability one.

We omit the proof of Lemma 7 due to the limited space.

Remark 4: From Lemma 7, we know that the remaining

part in (27) is negligible. We only need to focus on the first

NT
i complete intervals.

Now (27) can be rewritten as

JπPM

=

n∑
i=1

[RHS1i +RHS2i] w.p.1. (29)

where

RHS1i = lim
T→∞

1

nT

NT
i∑

τ=1

I2i (τ) + Ii(τ)

2
. (30)

RHS2i = lim
T→∞

1

nT

NT
i∑

τ=1

Di(X
i
τ−1)Ii(τ). (31)

We divide the rest of the analysis into part 1 and part 2 to

evaluate RHS1i and RHS2i respectively.

Part 1: Evaluating RHS1i in (30)
If we consider a service event as a renewal, then {Xi}

is a renewal process, {Ii} is a series of i.i.d. inter-renewal

time. Note that a service (renewal) event can happen only if

there is at least one packet arrival coming in since the last

service. Therefore, after the last service, we need to wait until

the first packet arrival occurs, and then wait until there is a

good channel opportunity, i.e., there exists a perfect matching.

We have the following lemma to derive the first and second

moment of the inter-renewal time Ii.

Lemma 8: The first and second moments of the inter-renewal

time Ii are given by:

E [Ii] =
pi + ps − pips

pips
. (32)

E
[
I2i
]
=

pips
ps − pi

[
(1− pi)(2− pi)

p3i
− (1− ps)(2− ps)

p3s

]
.

(33)

where ps is the probability that the bipartite graph G has a

perfect matching.

Applying the elementary reward renewal theorem, we have:

RHS1i = lim
T→∞

1

2nT

NT
i∑

τ=1

I2i (τ) + lim
T→∞

1

2nT

NT
i∑

τ=1

Ii(τ)

=
1

2n

(
E[I2i ]

E[Ii]
+ 1

)
w.p.1. (34)

Part 2: Evaluating RHS2i in (31)
The distribution of Di(X

i
τ−1), i.e., the packet delay at (τ −

1)th service of user i, is given by the following lemma:

Lemma 9: The PMF of Di(X
i
τ−1) is given by:

P
(
Di(X

i
τ−1) = d

)
= (1− ps)

d(1− pi)
d (ps + pi − pips) .

(35)

for all τ > 1 and d ≥ 0. The initial packet delay Di(X
i
0) = 0

with probability one.

Let us consider the reverse process {X̂i} of the renewal

process {Xi}, and a sequence of i.i.d. random variables

{D̂i(X
i
τ )}, that follows the distribution (35) for all τ ≥ 0.

The only difference between {D̂i(X
i
τ )} and {Di(X

i
τ )} is

that D̂i(X
i
0) may not be zero and is treated as if the sys-

tem is running from −∞. The process {X̂i} starts with

the first interval Ii(N
T
i ), a random number D̂i(X

i
NT

i −1
)

is then generated based on (35). We have Ii(N
T
i − 1) ≥

D̂i(X
i
NT

i −1
), and hence, the next interval length depends

on the value of D̂i(X
i
NT

i −1
). Therefore, the sequence{

(Xi
τ , D̂i(X

i
τ−1))

}1

τ=NT
i

is a Markov renewal process. Let

Yi(τ) = D̂i(X
i
τ−1)Ii(τ) denote the reward of τ th interval.



The expectation of the reward function is finite4.

E[Yi(τ)] = E

[
D̂i(X

i
τ−1)Ii(τ)

]
= E

[
D̂i(X

i
τ−1)

]
E [Ii(τ)] < ∞. (36)

Applying the renewal theorem for Markov renewal process

[25], we have:

lim
T→∞

1

T

1∑
τ=NT

i

Yi(τ)

=
E

[
E

[
D̂i(X

i
τ−1)Ii(τ)|D̂i(X

i
τ )
]]

E

[
E

[
Ii(τ)|D̂i(Xi

τ )
]]

=
E

[
E

[
D̂i(X

i
τ−1)

]
E

[
Ii(τ)|D̂i(X

i
τ )
]]

E [Ii(τ)]

=
E

[
D̂i(X

i
τ−1)

]
E

[
E

[
Ii(τ)|D̂i(X

i
τ )
]]

E [Ii(τ)]

= E

[
D̂i(X

i
τ−1)

]
. (37)

with probability one.

Since D̂i(X
i
0) ≥ 0 and Di(X

i
0) = 0 with probability one,

RHS2i ≤ lim
T→∞

1

nT

1∑
τ=NT

i

Yi(τ). (38)

with probability one.

Substituting (34), (37) and (38) into (29), we have

JπPM ≤ 1

n

n∑
i=1

[
E

[
D̂i(X

i
τ−1)

]
+

1

2

(
E[I2i ]

E[Ii]
+ 1

)]
. (39)

with probability one, which leads to

E

[
JπPM

]
≤ 1

n

n∑
i=1

[
E

[
D̂i(X

i
τ−1)

]
+

1

2

(
E[I2i ]

E[Ii]
+ 1

)]
.

(40)

The performance gap E

[
JπPM

]
− J∗ can be bounded by

E

[
JπPM

]
− J∗

≤ 1

n

n∑
i=1

{
E

[
D̂i(X

i
τ−1)

]
+

1

2

(
E[I2i ]

E[Ii]
− 2− pi

pi

)}

=
1

n

n∑
i=1

1

ps
(1− ps) =

1

ps
(1− ps). (41)

Recall that ps ≥ 1 − 3ne−C1n for all n > N1. We

can choose a large enough number N2 > 0, such that

for all n > max{N1, N2}, 1
ps

≤ 1
1−3ne−C1n < 2. Let

M � max{N1, N2}, we have

E[JπPM

]− J∗ < 6ne−C1n. (42)

for all n > M .

4Note that Ii(τ) depends on D̂i(X
i
τ ) but is independent from D̂i(X

i
τ−1).

As n → ∞, the gap between E[JπPM

] and the optimal

objective value J∗ vanishes near-exponentially fast.

VI. MANY-USER ASYMPTOTIC REGIME

In this regime, we fix α < 1, i.e., the number of channels

m is smaller than the number of users n and let the number

of channels m → ∞. Lower bounds LA and LS are both

non-trivial, whichever becomes larger depends on the arrival

probabilities {pi}ni=1 and channel-user ratio α.

Next, we propose a class of RMWM (Randomized Max-

imum Weighted Matching) policies that achieve good age

performance when the number of channels m → ∞.

Class of RMWM Policies. The scheduler randomly gen-

erates m different users with equal probability, let X ′ denote

the set of generated users. Now construct a subgraph G′ =
[X ′∪Y,E′] from the random bipartite graph G = [X ∪Y,E],
where E′ ⊆ E is the set of all edges that have an endpoint

in X ′. In subgraph G′, there are equal number of users and

channels, i.e., |X ′| = |Y | = m. The scheduler then uses an

age-aware weight vector W(t) to determine the Maximum

Weighted Matching M on G′. A user is updated in time-

slot t if it is covered by an edge from M, i.e., Xi(t) = 1
only if there exists channel j, such that edge (i, j) ∈ M, and

Xi(t) =
∑m

j=1 1{(i,j)∈M}.

The analysis of the class of RMWM policies is difficult

since the distribution of the total number of updates per time-

slot is intractable. As in Section V, we propose a simple policy

RPM (Randomized Perfect Matching) for ease of analysis.

RPM Policy. The scheduler randomly generates m different

users with equal probability, and the subgraph G′ is con-

structed in the same way. If G′ has a perfect matching, then

any user i with Ui(t) > 0 will be updated by the packet in

the buffer. Otherwise, no user is updated.

Remark 5: The same argument in Lemma 5 does not

apply directly since two policies may randomly generate two

different user sets. The same result still holds if they select

the same user set X ′(t) in each time-slot t.

Lemma 10: Let π be an arbitrary policy from the class of

RMWM policies and πRPM denote the RPM policy, assume

they select the same user set X ′(t) in each time-slot t. For any

given sample path ω and time-slot t, by the end of time-slot

t, policy π has served every packet that πRPM has served.

Similarly, we have the following dominance property.

Lemma 11: E [Jπ] ≤ E

[
JπRPM

]
.

Proof: Based on the result of Lemma 10, applying the

same argument from Lemma 6, we have:

E [Jπ|X′
π = X′] ≤ E

[
JπRPM |X′

πRPM = X′
]
. (43)

Note that X′
π and X′

πRPM have the same distribution, taking

the expectation for both sides the result follows.

Next, we focus on the analysis of the RPM policy. We can

apply the same argument from Section V-B, we only need to



replace ps by αps due to the randomness (each user is selected

with probability α). Based on (41), we have:

E

[
JπRPM

]
≤ 1

2n

n∑
i=1

2− pi
pi

+
1

αps
− 1

2

≤ LA +
2

ps
LS ≤ (1 +

2

ps
)J∗. (44)

From Lemma 4, we have ps ≥ 1−3me−C1m for all m > N1.

Take m → ∞ and apply Lemma 11, we have:

Theorem 4: Consider a many-user information update sys-

tem described by X (t). Let π be an arbitrary policy from the

class of RMWM policies, the competitive ratio can be upper

bounded by:

lim
m→∞

E [Jπ]

J∗ ≤ 3. (45)

Remark 6: Competitive ratio (45) is a very general result

that holds for all channel-user ratio α, arrival probabilities

{pi}ni=1 and any connectivity probability q > 0.

VII. NUMERICAL SIMULATIONS

In this section, we use numerical simulations to validate

the theoretical results under two regimes and compare the age

performance between different policies. In both regimes, we

set arrival probabilities pi = 0.5 for any user 1 ≤ i ≤ n and

set connectivity probability q = 0.2.

A. Many-channel Asymptotic Regime

In this regime, the number of channels m is greater than

or equal to the number of users n. We assume m = n
and run simulations for different m. Based on (21), the

lower bound L = 2 is independent from n and q. We use

DWM (Delay Weighted Matching), UWM (Update-indicator

Weighted Matching) and ADWM (Age Difference Weighted

Matching) policies and compare the age performance in terms

of the age expectation E [Jπ].
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Fig. 6. Simulation results when m = n.

From Fig. 6, we have the following observations

• UWM and ADWM policy both converge to the lower

bound very fast. Even for m = 10, the gap to the lower

bound is already negligible. On the other hand, DWM

is sub-optimal, the gap E [Jπ] − J∗ ≥ 2 even in the

asymptotic regime.

• The age performance of UWM policy is very close to

ADWM policy. They are both from the class of MWM

policies and only differ from the choice of weight vectors.

As long as (25) is satisfied, any policy from ΠMWM

should converge to the lower bound asymptotically.

B. Many-user Asymptotic Regime
In this regime, the number of channels m is less than the

number of users n. We assume n = 5m, i.e., α = 0.2, and

run simulations for different m. We use RUWM (Randomized

Update-indicator Weighted Matching), RADWM (Random-

ized Age Difference Weighted Matching) to compare the

age performance in terms of the age expectation E [Jπ].
We also use MADWM (Maximum Age Difference Weighted

Matching) as a benchmark policy where in each time-slot m
users with the largest age difference are selected in set X̂
and the schedule is determined by the maximum weighted

matching with age difference weight in the subgraph [X̂, Y, Ê].
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Fig. 7. Simulation results when n = 5m.

From Fig. 7, we have the following observations

• The objective value E [Jπ] of RUWM and RADWM

policy is less than 3 times of lower bound when m ≥ 6.

The competitive ratio
E[Jπ ]
J∗ → 2 when m → ∞.

• All three policies have very similar convergence rate, for

all m the objective values of RUWM and RADWM are

within 2 times of that in MADWM.

Note that the scheduler in MADWM needs to track the

up-to-date age information of all flows, while RUWM and

RADWM only require 1-bit information of the update-

indicator from each flow.

VIII. CONCLUSION

In this paper, we investigate the age minimization prob-

lem in multi-user multi-channel systems. Age of information
measures the elapsed time of the last served packet since its

generation, hence, it depends on the inter-arrival and inter-

service time. Based on this observation, we derive a policy-

independent lower bound for the age minimization problem.

Then we focus on two asymptotic regimes, i.e., many-channel

asymptotic regime and many-user asymptotic regime. In both

regimes, we propose classes of policies which achieve prov-

ably good age performance. This paper demonstrates how to

exploit multi-channel flexibility to improve the age perfor-

mance in information updating systems.
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