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Abstract—The number and size of data centers has seen a
rapid growth in the last few years. It is no longer uncommon
to see large data centers with thousands or even tens of
thousands of machines. Hence, it is critical to develop scalable
scheduling mechanisms for processing the enormous number of
jobs handled by popular paradigms such as the MapReduce
framework. This work explores the possibility of simplifying
the scheduling procedure by exploiting the “largeness” of the
data center system. Specifically, we consider the problem of
minimizing the total flow time of a sequence of jobs under the
MapReduce framework, where the jobs arrive over time and
need to be processed through both Map and Reduce procedures
before leaving the system. We show that any work-conserving
scheduler is asymptotically optimal under a wide range of traffic
loads, including the heavy traffic limit. Our results are shown
for scenarios in which the tasks can be preempted and served
in parallel over different machines, as well as scenarios when
each task has to be served only on one machine and cannot
be preempted. This result implies, somewhat surprisingly, that
when we have a large number of machines, there is little to be
gained by optimizing beyond ensuring that a scheduler should be
work-conserving. For long running applications, we also study
the relationship between the number of machines and total
running time, and show sufficient conditions to guarantee the
asymptotic optimality of work-conserving schedulers. Further, we
run extensive simulations, that indeed verify that when the total
number of machines is large, state-of-the-art work-conserving
schedulers have similar and close-to-optimal delay performance.

I. INTRODUCTION

The number of large-scale data centers (e.g., those with tens

of thousands of machines) is rapidly increasing. MapReduce is

a framework designed to process massive amounts of data in

data centers [1]. Although it was first proposed by Google [1],

today, many other companies including Microsoft, Yahoo, and

Facebook also use this framework. This framework is being

widely used for applications such as search indexing, distribut-

ed searching, web statistics generation, and data mining.

In MapReduce, each arriving job consists of a set of

Map tasks and Reduce tasks. The scheduler is centralized

and responsible for making decisions on which task will be

executed at what time and on which machine. The key metric

considered in this paper is the total delay in the system per

job, which is the time it takes a job, since its arrival into the

system, to be processed fully. This includes both the delay in
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waiting before the first task in the job begins to be processed,

and the time for processing all tasks in the job.

A critical consideration for the design of the scheduler is

the dependence between the Map and Reduce tasks. For each

job, the Map tasks need to be finished before starting any of its

Reduce tasks1 [1], [3]. Various scheduling solutions have been

proposed within the MapReduce framework [2]–[6]. However,

under some weak assumptions it was proven [7] that there

is no upper bound on the competitive ratio of any causal

scheduler for total delay (i.e. flow time, which is the time

between the job arrival and the completion of all the phases

in the job) minimization problem. In an attempt to minimize

the total delay, a new metric to analyze the performance of

schedulers called efficiency ratio was introduced in [7], [8],

where loose bounds were provided on the performance of

general work-conserving schedulers, and under the special

case of preemptive and paralleizable tasks, it was shown that

a scheduler called ASRPT can guarantee an efficiency ratio

of two. However, ASPRT requires a sorting operation whose

complexity grows rapidly with the number of machines in the

data center. What we show in this paper is that the scheduler

design can be significantly simplified by taking advantage of

scale. Moreover, this scale also allows us to design simple

schedulers that not only provide a bounded efficiency ratio as

in [7], [8], but in fact approach optimality (i.e., the efficiency

ratio goes to 1) as the number of machines grows large.

Thus, by exploiting the scale inherent in current data centers,

we can improve both the complexity of scheduler design in

MapReduce-style multiple-phases system and the performance

guarantees that we can provide.

We briefly summarize the main contributions of our work:

• Under certain weak assumptions, we show that for the

flow-time minimization problem any work-conserving

scheduler is asymptotically optimal in two classes of

scenarios. (i) Preemptive and Parallelizeable: in which

the Reduce tasks can be preempted and served in parallel

over different machines (Section III). (ii) Non-Preemptive

and Non-Parallelizeable: when each Reduce task has to

be served only on one machine and cannot be preempted

(Section IV). These scenarios can be thought to capture

two extreme cases of data locality, the first when the cost

of data migration is negligible, and the second when the

1Here, we consider the most popular case in reality without the Shuffle
phase. For discussion about the Shuffle phase, see [2].



cost of data migration is prohibitive.

• For long running applications, we study the relationship

between the number of machines N and total running

time T . We provide sufficient conditions to guarantee

the asymptotic optimality of work-conserving schedulers,

when T is function of N (Section V).

• We verify via simulations (Section VI) that while state-of-

the-art work-conserving schedulers have different delay

performance for a small number of machines N , these

differences rapidly vanish as N becomes large, and the

performance is virtually indistinguishable and close to

optimal for a few hundred machines.

Our results provide the following two surprising properties:

First, in a large system, it is not necessary to implement com-

plex schedulers, as long as they honor the work-conserving

principle, thus ensuring both high performance and scalability.

Second, under appropriate and general assumptions, work-

conserving schedulers can guarantee asymptotic optimality

under both the Noah Effect [9] (a large amount of workload

arrives into the system in the preemptive and parallelizable

scenario) and Joseph Effect [9] (a large number of cumulative

running jobs remain in the system in the non-preemptive and

non-parallelizable scenario).

II. SYSTEM MODEL AND ASYMPTOTIC OPTIMALITY

A. System Model under MapReduce Framework

MapReduce has two elemental processes: Map and Reduce.

For the Map tasks, the inputs are divided into several small

sets, and processed by different machines in parallel. The

Reduce tasks then operate on the intermediate data, possibly

running the operation on multiple machines in parallel to

generate the final result. Note that for a given job, the Reduce

tasks have to start executing after all (or a subset) of Map

tasks for that job have been completed.

Consider a data center with N machines and n jobs that

arrive during a time period T . We assume that each machine

can only process one job at a time. A machine could represent

a processor, a core in a multi-core processor or a virtual

machine. We assume the scheduler periodically collects the

information on the state of jobs running on the machines,

which is used to make scheduling decisions.

We assume that each job i brings Mi units of workload for

its Map tasks and Ri units of workload for its Reduce tasks.

Here, the Ri workload belongs to Reduce operations. Each

Map task has 1 unit of workload2, however, each Reduce task

can have multiple units of workload. Time is slotted and each

machine can run one unit of workload in each time slot.

We assume that the number of job arrivals in each time slot

is i.i.d., and the arrival rate is λ. Assume that {Mi} are i.i.d.

with expectation M , and {Ri} are i.i.d. with expectation R.

In time slot t for job i, mi,t and ri,t machines are scheduled

for Map and Reduce tasks, respectively. As we know, each

job contains several tasks. We assume that job i contains K

2Because the Map tasks are independent and have small workload [5], such
assumption is valid.

tasks, and the workload of the Reduce task k of job i is Ri,k.

Thus, for any job i,
∑K

k=1 Ri,k = Ri. In time slot t for job i,

r
(k)
i,t machines are scheduled for the Reduce task k. As each

Reduce task may consist of multiple units of workload, it can

be processed in either preemptive and parallelizable or non-

preemptive and non-parallelizable fashion based on the type

of scheduler [7].

Definition 1. A scheduler is called preemptive and paral-

lelizable if Reduce tasks belonging to the same job can run

in parallel on multiple machines, can be interrupted by other

tasks, and can be rescheduled to different machines in different

time slots.

A scheduler is called non-preemptive and non-

parallelizable if each Reduce task can only be scheduled on

one machine and, once started, it must keep running without

any interruption.

The schedulers are classified into these two different sce-

narios based on implementation consideration. In data centers,

there is additional cost of data migration and initialization

for each job. Such a cost could be caused by limited I/O

speed, limited network transmission rate, and large amount

of initialization work needed before a job. When the cost of

data migration and initialization is not significant, then the

schedulers can interrupt and migrate data from one machine

to another to avoid unnecessary delay, which corresponds to

the preemptive and parallelizable scenario. Alternatively, when

such a cost is large, then the schedulers should avoid any

action of interruption and migration, which corresponds to

the non-preemptive and non-parallelizable scenario. Which

scenario is more appropriate depends on the application,

network topology and transmission rate, and the I/O speed.

Let the arrival time of job i be ai, the time slot in which

the last Map task finishes execution be f
(m)
i , and the time

slot in which all Reduce tasks are completed be f
(r)
i . For the

preemptive and parallelizable scenario, the problem definition

is as follows:

min
mi,t,ri,t

n
∑

i=1

(

f
(r)
i − ai + 1

)

s.t.

n
∑

i=1

(mi,t + ri,t) ≤ N, ri,t ≥ 0, mi,t ≥ 0, ∀t,

f
(m)
i
∑

t=ai

mi,t = Mi,

f
(r)
i
∑

t=f
(m)
i +1

ri,t = Ri, ∀i ∈ {1, ..., n}.

(1)

In the non-preemptive and non-parallelizable scenario, the

optimization problem in this scenario is as in Eq. (1), with

additional constraints representing the non-preemptive and

non-parallelizable nature as follows:

r
(k)
i,t = 0 or 1, r

(k)
i,t = 1 if 0 <

t−1
∑

s=0

r
(k)
i,s < Ri,k. (2)

The scheduling problems (both preemptive and paralleliz-

able and non-preemptive and non-parallelizable) are NP-hard

in the strong sense [7].



B. Asymptotic Optimality of Schedulers

Definition 2. For a data center with N machines, let T
represent the total time slots. Define FS(N, T ) as the total

flow time of a scheduler S, and F ∗(N, T ) as the minimum

total flow time over all feasible schedulers. Then, a scheduler

S is called asymptotically optimal if

lim
N→∞

FS(N, T )

F ∗(N, T )
= 1 w.p.1 for any given T. (3)

Definition 3. In a data center with N machines, traffic

intensity ρN is the ratio of expected arrival workload over

the processing ability of N machines. When ρN is a constant

for any value of N , it is written as ρ for short.

Note that when we let N goes to infinity, we also let the

corresponding arrival load go to infinity, such that ρN > 0
(and also ρN → 1), to avoid trivialities.

Also, we define work-conserving schedulers as follows.

Definition 4. A scheduler is called work-conserving sched-

uler if jobs are always scheduled when there are idle machines

without violating the dependencies among multiple phases.

The definition contains two parts. First, jobs are scheduled

without unnecessary waiting, i.e., there is no time slot that jobs

are waiting and machines are idle. Second, the dependence

between multiple phases (called Phase Precedence [8]) must

hold. In MapReduce framework, specially, the phase depen-

dence between Map and Reduce tasks has to always hold. That

is for a job, Reduce tasks can only be processed if all (or in

general a subset) of Map tasks are completed for that job. In

the following sections, we will show the asymptotic optimality

of the work-conserving schedulers that are the most popular

and widely used in data centers.

C. Assumptions

In this part, we list the assumptions which will be used

in the following sections. It does not mean that all the

assumptions are needed in each theorem. We will point out

which assumption is required when we state the theorems.

(A1) {Mi, i = 1, 2, ...} are i.i.d. with expectation 0 <
M < ∞, {Ri, i = 1, 2, ...} are i.i.d. with expectation

0 < R < ∞.

(A2) {Mi, i = 1, 2, ...} are i.i.d. with expectation 0 <
M < ∞ and variance σ2

m < ∞, {Ri, i = 1, 2, ...}
are i.i.d. with finite expectation 0 < R < ∞ and

finite variance σ2
r < ∞.

(A3) The workload distribution of each job does not

change with T and N .

(A4) For each N , the number of arrival jobs A
(N)
t in each

time slot t are i.i.d., and are independent of Mi and

Ri.

(A5) For all t, A
(N)
t and

A
(N)
t

N
converges to infinity and a

constant w.p.1, respectively, as N goes to infinity.

(A6) The traffic intensity ρ is a constant, where 0 < ρ < 1.

(A7) The traffic intensity ρN → 1 as N → ∞, and

lim inf
N→∞

(1− ρN )
√
N√

log logN
>

√
2(σm + σr)
√

M +R
. (4)

(A8) When the traffic intensity ρN → 1, if
A

(N)
t

N
→ 1

M+R
w.p.1 as N → ∞, then

lim inf
N→∞

(

E

[

A
(N)
t

N

]

− A
(N)
t

N

)√
N

√
log logN

≥ 0 w.p.1. (5)

(A9) In non-preemptive and non-parallelizable scenario,

the number of Reduce tasks in each job are i.i.d.,

and the workload of each Reduce task are also i.i.d..

Also, the largest number of Reduce tasks in each job

are bounded.

(A10) The traffic intensity ρN → 1 as N → ∞, and

lim inf
N→∞

(1− ρN )
√
N√

log logN
= ∞. (6)

Remark 1. Note that the assumptions of the arrival jobs are

weak. In Sections III and IV, we will see that, when ρ < 1,

we allow for heavy tailed distributions and only requires finite

mean ((A1)). Similarly, for appropriate heavy traffic region of

ρN goes to 1, we allow for heavy tailed distributions and only

requires finite mean and variance ((A2)).

Lemma 1. Assumption (A5) implies that lim
N→∞

A
(N)
t /N = c

w.p.1, where c is a constant. By the definition of traffic intensity

ρ, assumptions (A3) and (A4) imply that

ρ =
1

N
E





A
(N)
t
∑

j=1

(M +R)



 =
1

N
E
[

A
(N)
t

]

(M +R). (7)

and
c ≤ lim

N→∞
E
[

A
(N)
t

]

/N =
ρ

M +R
. (8)

Similarly, assumptions (A3) and (A9) or (A10) imply that

c ≤ lim
N→∞

E
[

A
(N)
t

]

/N =
1

M +R
. (9)

Remark 2. Roughly speaking, (A7) implies that

1− ρN >

√
2(σm + σr)
√

(M +R)

√

log logN

N
, (10)

when N is large enough. Similarly, (A10) implies that 1 −
ρN ≫

√
log logN√

N
, when N is large enough.

In other words, assumptions (A7) and (A10) define the

appropriate heavy traffic regions, which show the convergence

rate of ρN to 1 corresponding to N .

III. ASYMPTOTIC OPTIMALITY OF WORK-CONSERVING

SCHEDULERS IN PREEMPTIVE AND PARALLELED

SCENARIO

In this section, we will show that all the work-conserving

schedulers are asymptotically optimal. For simplicity, we let

M
(t)
j and R

(t)
j be the Map and Reduce workload of jth arrival

job in time slot t, respectively, in the following sections.



Theorem 1. Under assumptions (A1) and (A3)-(A6), any

work-conserving scheduler is asymptotically optimal.

Proof: To prove Theorem 1, we first show that if the

machines only serve the Map tasks of jobs arriving in the

current time slot and the Reduce tasks of jobs arrived in the

previous time slot, then the probability that all these task

can be served immediately goes 1 as N goes to infinity.

In the following part, “no unnecessary delay” or “be served

immediately” means that all the available phases can be served.

Obviously, the phases, whose dependent phases are running,

are unavailable and cannot be served for any schedulers.

For the first time slot, there is no Reduce tasks correspond-

ing to previous time slot. When time slot t > 1, there could

be both new arrival workload of Map and available workload

of Reduce. Thus, if we can prove no unnecessary delay for

each job when t > 1, then it is obvious that there will be no

delay when t = 1.

For any other time slot t > 1, we have

lim
N→∞

A
(N)
t−1
∑

j=1

R
(t−1)
j +

A
(N)
t
∑

j=1

M
(t)
j −N

N

= lim
A

(N)
t−1→∞

A
(N)
t−1
∑

j=1

R
(t−1)
j

A
(N)
t−1

lim
N→∞

A
(N)
t−1

N
+

lim
A

(N)
t →∞

A
(N)
t
∑

j=1

M
(t)
j

A
(N)
t

lim
N→∞

A
(N)
t

N
− 1

=
(

R+M
)

c− 1 ≤ ρ− 1 w.p.1.

(11)

Since ρ < 1, then Eq. (11) is less than 0 w.p.1. Then, for

any time slot t, the Map tasks of new arrival jobs and the

Reduce tasks of jobs which arrive in the previous time slot

can be finished at time slot t w.p.1, as N goes to infinity.

Let Fwc(N, T ) be the total flow time of any work-

conserving scheduler, and let F ∗(N, T ) is the optimal total

flow time of all feasible schedulers.

We define the set Ξt as follows:

Ξt ,

































































ǫ :

A
(N)
t∑

j=1

M
(t)
j

N
≥ 1 as N → ∞















, t = 1



















ǫ :

A
(N)
t−1
∑

j=1

R
(t−1)
j +

A
(N)
t
∑

j=1

M
(t)
j

N
≥ 1 as N → ∞



















, t ≥ 2

. (12)

Then, set Ξt is a null set for any t by the previous proof.
T
⋃

t=1
Ξt, which is a finite union of null sets, is also a null set.

Thus, P

(

T
⋂

t=1
(Ω \ Ξt)

)

= P

(

Ω \
T
⋃

t=1
Ξt

)

= 1, i.e., for any

T , when N goes to infinity, all the Map and Reduce workload

will be finished either in the time slot they arrive or the very

next time slot w.p.1. In the set Ω\
T
⋃

t=1
Ξt, any work-conserving

scheduler has the same total flow time as the infinite number

of machines scenario w.p.1, as N goes to infinity. If there

are infinite number of machines, then the total flow time is

a lower bound of the finite number of machines scenario. In

other words,

(

Ω \
T
⋃

t=1
Ξt

)

⊆
{

lim
N→∞

Fwc(N,T )
F∗(N,T ) = 1

}

. Thus,

P
(

lim
N→∞

Fwc(N,T )
F∗(N,T ) = 1

)

= 1. Eq. (3) is achieved.

Corollary 1. In Theorem, we can also get that

lim
T→∞

lim
N→∞

FS(N, T )

F ∗(N, T )
= 1 w.p.1. (13)

Proof: Similar to the proof of Theorem 1,
∞
⋃

t=1
Ξt, which

is a countable union of null sets, is also a null set. Hence,

using the same method to prove Eq. (3), we can get Eq. (13).

In previous results, we fixed traffic intensity ρ as a constant

which is less than 1. In the next theorem, we will discuss heavy

traffic scenario, and show that work-conserving scheduler

is still asymptotically optimal in appropriate heavy traffic

regions.

Theorem 2. In the MapReduce framework, assume (A2)-(A5)

and (A7)-(A8) hold. Then, any work-conserving scheduler is

asymptotically optimal.

Proof: Similarly to the proof of Theorem 1, we focus on

the workload of Map tasks which corresponds to jobs arrive

in the current time slot, and the workload of Reduce tasks

which corresponds to jobs arrived in the previous time slot.

If such workload can be immediately served by any work-

conserving scheduler, then by the same proof of Theorem 1,

we can directly achieve Theorem 2.

For time slot t > 1, there could be both Map arrival tasks

and remaining Reduce tasks. For time slot 1, there are only

Map tasks are available in the framework, i.e., there is a lighter

workload in time slot 1 than other time slots. Thus, we only

need to focus on time slot t > 1. If the workload can be

immediately served at t > 1, then it is also true when t = 1.

For time slot t ≥ 2, we have

lim sup
N→∞

A
(N)
t−1
∑

j=1

R
(t−1)
j +

A
(N)
t
∑

j=1

M
(t)
j −N

√
N log logN

= lim sup
A

(N)
t−1→∞

A
(N)
t−1
∑

j=1

(R
(t−1)
j −R)

√

A
(N)
t−1 log logA

(N)
t−1

lim
N→∞

√

A
(N)
t−1 log logA

(N)
t−1√

N log logN

+ lim sup
A

(N)
t →∞

A
(N)
t
∑

j=1

(M
(t)
j −M)

√

A
(N)
t log logA

(N)
t

lim
N→∞

√

A
(N)
t log logA

(N)
t√

N log logN

− lim inf
N→∞

N −A
(N)
t M −A

(N)
t−1R√

N log logN
.

(14)



By Eq. (9) in Lemma 1, we can get that

lim
N→∞

1√
N log logN

√

A
(N)
t log logA

(N)
t

= lim
N→∞

√

A
(N)
t

N

√

√

√

√
log(log

A
(N)
t

N
+ logN)

log logN

=
√
c ≤ 1

√

M +R
w.p.1.

(15)

By the Law of the Iterated Logarithm (LIL) [10], we can

get that

lim sup
A

(N)
t−1→∞

A
(N)
t−1
∑

j=1

(R
(t−1)
j −R)

√

A
(N)
t−1 log logA

(N)
t−1

=
√
2σr w.p.1 (16)

and

lim sup
A

(N)
t →∞

A
(N)
t
∑

j=1

(M
(t)
j −M)

√

A
(N)
t log logA

(N)
t

=
√
2σm w.p.1. (17)

Based on Eq. 8 in Lemma 1, there are two cases: c < 1
M+R

or c = 1
M+R

.

1) Case 1: c < 1
M+R

. We get

lim inf
N→∞

√
N√

log logN

(

1− A
(N)
t

N
(M +R)

)

=

(

1

M +R
− c

)

lim
N→∞

(M +R)
√
N√

log logN
w.p.1.

(18)

Since c < 1
M+R

and lim
N→∞

√
N√

log logN
= ∞, we can get

that

lim inf
N→∞

(1− A
(N)
t

N
(M +R))

√
N√

log logN
= ∞ w.p.1. (19)

2) Case 2: c = 1
M+R

. In this case, by assumption (A8), we

can get that

lim inf
N→∞

N −A
(N)
t M −A

(N)
t−1R√

N log logN
= lim inf

N→∞

√
N(1− ρN )√
log logN

+ lim inf
N→∞

√
N(E

[

A
(N)
t

N

]

− A
(N)
t

N
)(M +R)

√
log logN

≥ lim inf
N→∞

√
N(1− ρN )√
log logN

>

√
2(σm + σr)
√

M +R
w.p.1.

(20)

For both cases, combined with Eqs. (16) and (17), we can

get that

lim sup
N→∞

A
(N)
t−1
∑

j=1

R
(t−1)
j +

A
(N)
t
∑

j=1

M
(t)
j −N

√
N log logN

< 0 w.p.1. (21)

The following proof is similar to the proof of Theorem 1.

Remark 3. If we change ρN to
A

(N)
t

N
(M +R) in assumption

(A7) and the assumption also holds w.p.1, then the same

applies for Theorem 2 without assumption (A8).

Remark 4. Although the proof is given under MapReduce

framework (2 phases), the results in Theorem 1 and Theorem 2

can be directly generalized to multiple-phases scenarios.

Remark 5. There is no assumption on the dependence be-

tween the workload of Map and Reduce for each job, thus

the results in Theorem 1 and Theorem 2 can be applied in

the scenario, where there could be arbitrary dependencies

between the workload of Map and Reduce for each job.

IV. ASYMPTOTIC OPTIMALITY OF WORK-CONSERVING

SCHEDULERS IN NON-PREEMPTIVE AND

NON-PARALLELIZABLE SCENARIO

In the previous section, we show the asymptotic opti-

mality of work-conserving schedulers in the preemptive and

parallelizable scenario. In this section, we will show the

performance of work-conserving scheduler in non-preemptive

and non-parallelizable scenario.

Theorem 3. In the non-preemptive and non-parallelizable

scenario of MapReduce framework, under assumptions (A1),

(A3)-(A6), and (A9), any work-conserving scheduler is asymp-

totically optimal.

To prove Theorem 3, we first consider the Reduce only jobs

scenario and show Lemma 2.

Lemma 2. In the non-preemptive and non-parallelizable s-

cenario, if the jobs are Reduce only and each job only has

one task, then, under assumptions (A1) and (A3)-(A6), any

work-conserving scheduler is asymptotically optimal.

Proof: For the queue length of the one-phase jobs Q
(N)
t

at time slot t and given number of machines N , if the queue

length satisfies that

lim sup
N→∞

Q
(N)
t

N
< 1 w.p.1. (22)

for any time slot t, then Lemma 2 can be directly proven by

the same proof process of Theorem 1. To prove this result, we

use mathematical induction, which includes the following two

steps:

1) For t = 1, we prove that lim sup
N→∞

Q
(N)
1

N
< 1, w.p.1.

When t = 1, there is no remaining workload from the

previous time slots. If each job which arrives in time slot

1 only has 1 unit of workload, then there is no difference

between preemptive and parallelizable and non-preemptive

and non-parallelizable. In this case, lim sup
N→∞

W
(N)
1

N
< 1 w.p.1.

holds based on Theorem 1 and the fact that W
(N)
1 is equal

to the queue length in this case. If not all the jobs have

1 unit of workload, then the total queue length of jobs



Q
(N)
1 is less than the total workload of all the jobs. Thus,

lim sup
N→∞

Q
(N)
1

N
≤ lim sup

N→∞

W
(N)
1

N
< 1 w.p.1.

2) Assume that for all s = 1, 2, ...t − 1, lim sup
N→∞

Q(N)
s

N
<

1 w.p.1. Under this assumption, prove that for time slot t,

lim sup
N→∞

Q
(N)
t

N
< 1 w.p.1 is also true.

Let’s consider time slot t. Q
(N)
t contains all the remaining

jobs which are not finished from all the previous t − 1 time

slots, i.e.

Q
(N)
t =

t
∑

s=1

Number of jobs which arrive at time

slot s and are remained at time slot t.
(23)

By the induction hypothesis, for all the previous t− 1 time

slots before time slot t, there is not delay caused because there

are not enough machines to accommodate the load. Thus, the

only reason that makes some jobs are not finished yet is that

these jobs do not have long enough time to finish all of their

workload. Thus,

Q
(N)
t

N
=

1

N

t
∑

s=1

A(N)(s, t− s+ 1), (24)

where A(N)(t, w) is the number of jobs, which arrives at time

slot t and have at least w units of workload.

When N goes to infinity, it can be simplified as follows:

lim
N→∞

Q
(N)
t

N
=

t
∑

s=1

(

lim
N→∞

A
(N)
s

N
lim

A
(N)
s →∞

A(N)(s, t− s+ 1)

A
(N)
s

)

=

t
∑

s=1

(

lim
N→∞

A
(N)
s

N
P (Ri ≥ t− s+ 1)

)

w.p.1

≤ lim
N→∞

A
(N)
t

N

∞
∑

s=1

P (Ri ≥ s) ≤ lim
N→∞

A
(N)
t R

N
≤ ρ < 1 w.p.1.

(25)

By mathematical induction, we can get that for any given

time slot t, the queue length Q
(N)
t satisfies lim sup

N→∞

Q
(N)
t

N
< 1

w.p.1. Thus, Lemma 2 can be directly achieved by a similar

proving process as Theorem 1,

If the jobs are not Reduce-only applications, then there are

both Map and Reduce phases. Based on Lemma 2, we can

prove Theorem 3 as follows.

Proof of Theorem 3: To prove the theorem, we first

introduce another type of scheduler called Scheduler with

Proper Threshold (SPT) if it schedules the Map and Reduce

tasks as follows: All the Map tasks are scheduled within a

pool of Nm = N −
∑K

k=0 Nr(k) machines, where K is the

maximum number of tasks in Reduce jobs. Since each task

are also i.i.d., let Rk be the expectation of kth task, where

1 ≤ k ≤ K . For the Reduce task k of each job, it should be

scheduled within a pool of Nr(k) machines. The K pools of

{Nr(1), · · ·Nr(K)} machines, which are reserved for Reduce

tasks, and the pool of Nm, which are reserved for Map tasks,

does not have intersection. Within each pool of machines, the

corresponding tasks are scheduled by any work-conserving

method. We choose the threshold Nr(k) as ⌈ Rk

M+R
N⌉.

Given a total of N machines in the data center, let Q
(N)
0,t be

the queue length of the Map jobs at time slot t, and Q
(N)
k,t be

the queue length of the kth Reduce task of each job. Then, if

the scheduler only schedules the Map tasks of new arrving jobs

and Reduce tasks which arrived in the previous time slot, we

can get
Q

(N)
0,t

Nm
< 1 w.p.1 by the proof of Theorem 1. Also, based

on Lemma 2, we can get
Q

(N)
k,t

Nr(k)
< 1 w.p.1 for all 1 ≤ k ≤ K .

Thus, following the same proof of Theorem 1, we can directly

get that any scheduler in SPT is asymptotically optimal.

In fact, the threshold between Map and Reduce tasks are

unnecessary when N goes to infinity. Since each pool of

machines can guarantee enough space for corresponding jobs

when N goes to infinity, then without these thresholds, there

is still enough space for all the jobs. In other words, for

any work-conserving scheduler in non-preemptive and non-

parallelizable scenario, the queue length Q
(N)
t =

∑K
k=0 Q

(N)
k,t ,

then

lim
N→∞

Q
(N)
t

N
= lim

N→∞

∑K
k=0 Q

(N)
k,t

Nm +
∑K

k=1 Nr(k, t)

≤ max
k=1,...K

{

lim
N→∞

Q
(N)
0,t

Nm

, lim
N→∞

Q
(N)
k,t

Nr(k, t)

}

< 1 w.p.1.

(26)

Thus, by the same proof method of Theorem 1, we can

directly get that any work-conserving scheduler is asymptot-

ically optimal. More details of the proof are in our online

technical report [11].

Theorem 4. In the non-preemptive and non-parallelizable sce-

nario of MapReduce framework, under assumptions (A2)-(A5),

and (A8)-(A10), any work-conserving scheduler is asymptoti-

cally optimal.

Proof. In the Reduce only scenario, assume that each job only

has one non-preemptive and non-parallelizable Reduce task.

What we need to prove now is that

lim sup
N→∞

Q
(N)
t −N√

N log logN
< 0 w.p.1. (27)

where Q
(N)
t is the queue length of Reduce jobs in time slot t

when the system has N machines. If Eq. (27) holds for all t,
Theorem 4 can be achieved by the same proof of Theorem 3.

Similar to the proof of Lemma 2, we use mathematical

induction to prove Eq. (27). With N machines, let A(N)(t, w)
be the number Reduce jobs, which arrive at time slot t and

have at least w units of workload.



First, when t = 1, Q
(N)
1 = A(N)(1, 1), then we can get that

lim sup
N→∞

Q
(N)
1 −N√

N log logN
= lim sup

N→∞

A(N)(1, 1)−N√
N log logN

= lim sup
N→∞

P (R
(t)
j ≥ 1)(

A
(N)
t

N
− E[

A
(N)
t

N
])
√
N

√
log logN

+

lim sup
N→∞

√
N√

log logN

(

P (R
(t)
j ≥ 1)ρN

R
− 1

)

(28)

By Markov’s inequality, P (R
(t)
j ≥ 1) ≤ R. Thus, by

assumptions (A8) and (A10), we can directly get that Eq. (27)

holds for t = 1.

Assume that Eq. (27) holds for all s = 1, 2, ...t− 1. If we

can prove that Eq. (27) also holds for t, then by mathematical

induction, we can show that Eq. (27) holds for any given t.
Since Eq. (27) holds for all s = 1, 2, ...t− 1, then no Reduce

jobs are delayed because there are not enough machines to

accommodate the workload. In other words, if a job arriving

at time slot s is still running in time slot t, then the workload

of that job is greater than t− s units.

For simplicity, we introduce Y
(t)
j (w) as follows:

Y
(t)
j (w) , 1(R

(t)
j ≥ w) =

{

1, R
(t)
j ≥ w

0, R
(t)
j < w

, (29)

where 1(·) is a indicator function.

Then,

lim sup
N→∞

Q
(N)
t −N√

N log logN
= lim sup

N→∞

t
∑

s=1
A(N)(s, t− s+ 1)−N

√
N log logN

= lim sup
N→∞

t
∑

s=1

A(N)
s
∑

j=1

Y
(t)
j (t− s+ 1)−N

√
N log logN

=− lim inf
N→∞

(1− ρN )
√
N√

log logN
+ lim sup

N→∞

√

A
(N)
s log logA

(N)
s√

N log logN
•

t
∑

s=1

lim sup
A

(N)
s →∞

A(N)
s
∑

j=1

Y
(t)
j (t− s+ 1)− E[Y

(t)
j (t− s+ 1)]A

(N)
s

√

A
(N)
s log logA

(N)
s

+ lim sup
N→∞

(

t
∑

s=1
E[Y

(t)
j (t− s+ 1)]

A(N)
s

N
−RE[

A(N)
s

N
]

)√
N

√
log logN

.

(30)

For the expectation E
[

Y
(t)
j (w)

]

and the standard derivation

σ
Y

(t)
j (w)

of Y
(t)
j (w), we have

E
[

Y
(t)
j (w)

]

= E
[

1(R
(t)
j ≥ w)

]

= P (R
(t)
j ≥ w) (31)

and

σ
Y

(t)
j (w)

≤
√

E

[

(

1(R
(t)
j ≥ w)

)2
]

≤ 1. (32)

By LIL and assumption (A5), we get

lim sup
N→∞

Q
(N)
t −N√

N log logN
≤

√
2ct− lim inf

N→∞

(1 − ρN )
√
N√

log logN

+ lim sup
N→∞

(

t
∑

s=1
E[Y

(t)
j (t− s+ 1)]

A(N)
s

N
−RE[

A(N)
s

N
]

)√
N

√
log logN

(33)

where c is constant. Since
t
∑

s=1
E[Y

(t)
j (t − s + 1)] =

t
∑

s=1
P (R

(t)
j ≥ (t − s + 1)) ≤ R, by assumption (A8) we can

get that

lim sup
N→∞

Q
(N)
t −N√

N log logN
≤

√
2ct− lim inf

N→∞

(1− ρN )
√
N√

log logN
(34)

Thus, by assumption (A10), we can directly get that Eq. (27)

holds for t. By mathematical induction, for any given t, Eq. 27

holds. Then, the remaining proof is same as the proof of

Theorem 3.

Remark 6. If we change ρN to
A

(N)
t

N
(M +R) in assumption

(A10) and the assumption also holds w.p.1, then the same

applies for Theorem 4 without assumption (A8).

V. THE RELATIONSHIP BETWEEN T AND N

In the previous sections, we have studied the behavior of

asymptotic optimality of work-conserving schedulers when N
goes to infinity. However, in long running system, the total

number of time slots can also be very large. To show that the

asymptotic optimality holds when both T and N are large, we

need to consider the relationship between T and N , which is

shown in this section.

Let T (N) be a function of N . We show the sufficient con-

ditions to guarantee asymptotic optimality of work-conserving

schedulers in the following theorem.

Theorem 5. In the preemptive and parallelizable scenario,

assume (A1), (A3)-(A6) hold. Additionally, if there exists a

constant α > 0, such that

lim
N→∞

T (N) exp (−kN)N1+α ≤ 1, (35)

where k = cIW (W
ρ
). W is sum of two independent random

variables M and R, which have the same distribution as

{Mi} and {Ri}, respectively. W = M + R and IW (·) are

expectation and rate function of workload W , respectively.

Assume that the moment generating function of W has finite

value in some neighborhood of 0. Then

lim
N→∞

Fwc(N, T (N))

F ∗(N, T (N))
= 1 w.p.1. (36)

Proof: Let

EN =















For t = 1, 2, ...T (N), there exists a t0,

such that

A
(N)
t0
∑

i=1

M
(t)
i +

A
(N)
t0−1
∑

i=1

R
(t)
i > N















. (37)



Since

En =

T (N)
⋃

t=1











A
(N)
t0
∑

i=1

M
(t)
i +

A
(N)
t0−1
∑

i=1

R
(t)
i > N











, (38)

by i.i.d. assumption, we get

P (En) ≤
T (N)
∑

t=1

P







A
(N)
t0
∑

i=1

M
(t)
i +

A
(N)
t0−1
∑

i=1

R
(t)
i > N







=

T (N)
∑

t=1

P





A
(N)
t
∑

i=1

W
(t)
i > N



 ,

(39)

where {W (t)
i } is a sequence of i.i.d random variables that have

the same distribution as W .

By Chernoff’s inequality, we have

P (EN ) ≤
T (N)
∑

t=1

exp

(

−A
(N)
t IW

(

W

ρ

))

=T (N) exp
(

−k
(N)
t N

)

,

(40)

where IW (·) is the rate function of W and k
(N)
t =

A
(N)
t

N
IW (W

ρ
). When N goes to infinity, kNt converges to

k = cIW (W
ρ
) for all t. Then, when N goes to infinity, we

have

lim
N→∞

P (EN )N1+α ≤ lim
N→∞

T (N) exp (−kN)N1+α ≤ 1.

(41)

Thus,
∑N

n=1 P (En) < ∞. Based on Borel-Cantelli Lemma

[10], we can get that

P

(

lim sup
N→∞

EN

)

= 0, (42)

which means that P (EN infinitely often) = 0. Thus,

P (EN only happens for finite N) = 1. Then, there exists a

N0, such that for any N > N0, P (Ec
N ) = 1.

Now let us see what is the meaning of Ec
N . Based on

Eq. (38), we have Ec
N =

T (N)
⋂

t=1
{∑A

(N)
t0

i=1 M
(t)
i +

∑A
(N)
t0−1

i=1 R
(t)
i >

N}. In other words, for any event in Ec
N , there are always

enough machines to accommodate the workload in each time

slot. Thus, Ec
N ⊆ {Fwc(N,T )

F∗(N,T ) = 1}. Since P (Ec
N , where N >

N0) = 1, then P (F
wc(N,T )

F∗(N,T ) = 1, where N > N0) = 1. Then

we can have that

lim
N→∞

Fwc(N, T (N))

F ∗(N, T (N))
= 1 w.p.1. (43)

Remark 7. For a constant T , we can easily check that Eq. (35)

is satisfied.

VI. SIMULATION RESULTS

A. Simulation Setting

We evaluate the efficacy of different schedulers for both

preemptive and parallelizable and non-preemptive and non-

parallelizable scenarios for different number of machines N .

We choose Poisson process as the job arrival process [5]

[7]. To show the performance of work-conserving schedulers

under heavy tailed distributions, we choose Pareto distribution

as the workload distributions of Map and Reduce [12]. The

cumulative distribution function of a random variable X with

Pareto distribution is shown as follows:

P (X > x) =

{

1− (xm

x
)α x ≥ xm

0 x < xm
, (44)

where xm is a scale parameter and α is a shape parameter.

For the workload distribution of Map phase of jobs, we

choose the scale parameter xm as 20, and the shape parameter

α as 3. For the workload distribution of Reduce phase of

jobs, we choose the scale parameter xm as 10, and the shape

parameter α as 3.

We compare 4 typical work-conserving schedulers:

The FIFO scheduler: It is the default scheduler in Hadoop.

All the jobs are scheduled in their order of arrival.

The Fair scheduler: It is a widely used scheduler in Hadoop.

The assignment of machines are scheduled to all the waiting

jobs in a fair manner. If some jobs need fewer machines, then

the remaining machines are scheduled to other jobs, to avoid

resource wastage and to keep the scheduler work-conserving.

The ASRPT scheduler: ASRPT (Available Shortest Re-

maining Precessing Time) is given in [7], which is based on

SRPT [13] and provides good performance guarantee for any

given number of machines N .

The LRPT scheduler: Jobs with larger unfinished workload

are always scheduled first. Roughly speaking, the performance

of this scheduler represents in a sense how poorly even some

work-conserving schedulers can perform.

In the simulations, the ratio of a scheduler is obtained by

the total flow-time of the scheduler over the lower bound of

the total flow-time in 100 time slots. Here, we choose the

total flow time when all the jobs can be immediately served

as the lower bound. The lower bound is just the total flow time

of jobs when there is infinity number of machines. Obviously,

there are better (larger) lower bound estimations [7]. However,

when N is large enough, as we will see, the performance of

all work-conserving schedulers converge to this lower bound

of the flow time, showing asymptotic optimality.

B. Fixed Traffic Intensity

In this part, we choose traffic intensity ρ as 0.5. The ratios

to the lower bound of different schedulers are shown in Fig. 1

for independent Map and Reduce workload for each job. Also,

we choose the correlation coefficient is 1 and −1 between

the workload of Map and Reduce for each job as positive

and negative correlation scenarios. The ratios are shown in

Fig. 2 and Fig. 3, respectively. From Fig. 1 to Fig. 3, we

can directly get that the ratio is very close to 1 in all the

figures, when N is large (e.g., N = 500, the difference from

the lower bound is less than 0.3%). Thus, all the four work-

conserving schedulers are asymptotically optimal in the fixed

traffic intensity scenario.

C. Heavy Traffic Scenario

In the heavy traffic scenario, we retain all the parameters

as with the fixed traffic intensity scenario, except that the
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Fig. 2. Ratio to the Lower Bound (Pareto Distribution, Fixed Traffic Intensity,
Map and Reduce are Positively Correlated)

traffic intensity changes corresponding to different number of

machines. We choose
(1−ρN )N

1
3

√
log logN

= 1, which satisfies assump-

tions (A7) and (A10). Then, the ratios to the lower bound of

different schedulers are shown in Fig. 4 (independent), Fig. 5

(positively correlated), and Fig. 6 (negatively correlated).

Similarly, from Fig. 4 to Fig. 6, we can see that all the

four work-conserving schedulers are asymptotically optimal

in the heavy traffic scenario (the traffic intensity is about 0.93
when total number of machines is 10000). We find that for

a wide range of different parameters and distributions, the

performance is similar for both fixed traffic intensity and heavy

traffic scenarios, as can be seen in our technical report [11].

VII. CONCLUSION

This work is motivated by growth in the size and number

of data centers. We prove that any work-conserving scheduler

is asymptotically optimal under a wide range of traffic loads,

including the heavy traffic limit. These results are shown for

scenarios where data migration is costly (non-preemptive and

non-parallelizable) and cheap (preemptive and parallelizable).

We also verify these analytical results via extensive simula-
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Fig. 4. Ratio to the Lower Bound (Pareto Distribution, Heavy Traffic, Map
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Fig. 5. Ratio to the Lower Bound (Pareto Distribution, Heavy Traffic, Map
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Fig. 6. Ratio to the Lower Bound (Pareto Distribution, Heavy Traffic, Map
and Reduce are Negatively Correlated)

tions, whereby state-of-the-art work-conserving schedulers are

shown to have similar and close-to-optimal delay performance

when the number of machines is large. Our results suggest that

for large data centers, there is little to be gained by designing

schedulers that optimize beyond ensuring the work conserving

principle. Hence, this work provides a clear guideline on de-

veloping simple and scalable schedulers for large data centers.
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