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Abstract—Mobile crowdsensing has found a variety of appli-
cations (e.g., spectrum sensing, environmental monitoring) by
leveraging the “wisdom” of a potentially large crowd of mobile
users. An important metric of a crowdsensing task is data accu-
racy, which relies on the data quality of the participating users’
data (e.g., users’ received SNRs for measuring a transmitter’s
transmit signal strength). However, the quality of a user can be
its private information (which, e.g., may depend on the user’s
location) that it can manipulate to its own advantage, which can
mislead the crowdsensing requester about the knowledge of the
data’s accuracy. This issue is exacerbated by the fact that the
user can also manipulate its effort made in the crowdsensing
task, which is a hidden action that could result in the requester
having incorrect knowledge of the data’s accuracy. In this paper,
we devise truthful crowdsensing mechanisms for Quality and
Effort Elicitation (QEE), which incentivize strategic users to
truthfully reveal their private quality and truthfully make efforts
as desired by the requester. The QEE mechanisms achieve the
truthful design by overcoming the intricate dependency of a
user’s data on its private quality and hidden effort. Under the
QEE mechanisms, we show that the crowdsensing requester’s
optimal (RO) effort assignment assigns effort only to the best
user that has the smallest “virtual valuation”, which depends on
the user’s quality and the quality’s distribution. We also show
that, as the number of users increases, the performance gap
between the RO effort assignment and the socially optimal effort
assignment decreases, and converges to0 asymptotically. We fur-
ther discuss some extensions of the QEE mechanisms. Simulation
results demonstrate the truthfulness of the QEE mechanisms and
the system ef�ciency of the RO effort assignment.

Index Terms—Crowdsensing, truthful incentive mechanism,
data quality.

I. INTRODUCTION

M OBILE crowdsensing has found a variety of applica-
tions, such as spectrum sensing [2], and environmen-

tal monitoring (e.g., air quality [3], noise level [4], weather
conditions [5] like temperature, humidity, and wind speed).
In principle, crowdsensing leverages the �wisdom� of a poten-
tially large crowd of mobile users for a crowdsensing task. The
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primary advantage of crowdsensing lies in that it exploits the
diversity of inherently inaccurate data from many users by
aggregating the data sensed by the crowd, such that the data
accuracy after aggregation can be substantially enhanced. With
enormous opportunities brought by big data, crowdsensing
serves as an important foundation for big data learning tools
to harness the power of big data in a wide range of application
domains.

To fully exploit the potential of crowdsensing, it is important
to assign crowdsensing tasks to users based on the quality of
their data. The quality of a user�s data captures the accuracy
of the data relative to the actual ground truth of the event of
interest, and it generally varies for different users depending
on a user�s speci�c situation (e.g., location, surrounding). For
example, if the crowdsensing task is to measure the transmit
signal strength of a transmitter, then the SNR received by a
user from the transmitter determines the quality of the user�s
data, and users generally can receive distinct SNR values
depending on their locations. A user can learn the quality
of its data by estimation, based on its speci�c situation or
using some history data. For example, a user can estimate
the SNR received from a transmitter based on its distance
from the transmitter. However, the quality of a user�s data can
be its private information, which is unknown to and cannot
be veri�ed by the crowdsensing requester. For example, as a
user�s received SNR from a transmitter depends on its location
which is its private information, the requester cannot verify
what is the actual received SNR of that user. As a result,
a strategic user may have incentive to manipulate its quality
revealed to the requester so as to gain an advantage. For
example, a user with a low quality may pretend to have a high
quality in the hope of receiving a high reward for contributing
high quality data to the task. To the best of our knowledge,
this paper is the �rst to design truthful mechanisms to elicit
private quality from strategic users.

In addition to the quality, the effort exerted by a user in
the crowdsensing task also affects the accuracy of the user�s
data. A user can improve its data�s accuracy by making a
greater effort to complete the task. For example, to measure
the signal strength of a transmitter, a user can take the average
of more samples of the received signal in order to combat
noise. However, a user�s effort can also be its hidden action
that cannot be observed by the requester. Due to the inaccurate
nature of the data, a strategic user may report some arbitrary
data to the requester without making any effort in the task,
while the requester is not able to verify how much effort was
actually made.
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In the presence of strategic users with private quality and
hidden efforts, our goal is to incentivize users to truthfully
reveal their quality, and make efforts as desired by the crowd-
sensing requester. Such a truthful mechanism is desirable as
it eliminates the possibility of manipulation, which would
encourage users to participate in crowdsensing. More impor-
tantly, the truthful elicitation of quality and effort ensures
that the requester can obtain the correct knowledge of the
data�s accuracy after aggregating the requested data, which is
a critical metric of the crowdsensing task. This is in contrast
to the situation of private cost, where manipulating the cost
cannot mislead the requester about the data accuracy.

The jointly truthful elicitation of quality and effort calls
for new designs that are signi�cantly different from existing
mechanisms. First, a user�s payoff as a function of its private
quality has a structure essentially different from that of its
private cost. As a result, existing designs for cost elicitation
cannot work for quality elicitation. Second, due to the intricate
dependency of a user�s data on its private quality and hidden
effort, the joint elicitation of quality and effort needs to
overcome the intricate coupling between the elicitation of
quality and the elicitation of effort.

Given a truthful mechanism that can elicit quality and effort
from users, an important question for the requester is to
determine how much effort to assign to the users based on
their quality, in order to maximize the requester�s payoff. This
involves the tradeoff between assigning more effort to improve
the data�s accuracy, and assigning less effort to reduce the
reward paid to the users to compensate their costs.

The main contributions of this paper can be summarized as
follows.

• We devise truthful crowdsensing mechanisms for Qual-
ity and Effort Elicitation (QEE), with general effort
assignment functions, which incentivize strategic users
to truthfully reveal their private quality and truthfully
make efforts as desired by the crowdsensing requester.
The QEE mechanisms achieve the truthful design by
overcoming the intricate dependency of a user�s data on
its private quality and hidden effort.

• Under the QEE mechanisms, we characterize the crowd-
sensing requester�s optimal (RO) effort assignment (under
some condition) that maximizes the requester�s expected
payoff based on the distribution information of users�
quality. We show that the RO effort assignment assigns
effort only to the best user that has the smallest virtual
valuation, which depends on the user�s quality and the
quality�s distribution.

• For the RO effort assignment, we show that the expected
requester�s payoff and the social welfare both increase
as the number of users increases, or the cost decreases.
We also show that the performance gap of the RO effort
assignment from the SO social welfare decreases as the
number of users increases, and converges to 0 asymp-
totically. We show via numerical results that the users�
payoffs attained by the RO effort assignment can decrease
when the number of users increases.

The rest of this paper is organized as follows. Section II
discusses related work. In Section III, we describe the system

model of crowdsensing with private data quality and formulate
the problems of truthful mechanism design. In Section IV,
we devise truthful mechanisms for Quality and Effort Elic-
itation (QEE) for continuous-valued data. In Section V,
we characterize the optimal effort assignment under the QEE
mechanisms and devise truthful mechanism, and analyze their
performance and system ef�ciency. Simulation results are
presented in Section VII. Section VIII concludes this paper
and discusses future work.

II. RELATED WORK

Truthful Crowdsensing With Private Cost

Crowdsensing has recently attracted a lot of research
interests [6]�[9]. There have been many mechanisms
to incentivize users to truthfully reveal their costs in
crowdsensing [10]�[13]. The cost is considered to be a
strategic user�s private information that it would not be
willing to reveal truthfully to the user�s advantage without
appropriate incentive. Departing from these works, we study
the setting where the quality of a user�s data contributed to the
crowdsensing task is the user�s private information that it can
manipulate. A user�s payoff as a function of its private quality
has an essentially different structure as that of its private
cost. As a result, existing designs for cost elicitation (such as
the classical VCG auction and the characterization of truthful
mechanisms [14, Theorem 9.36]) cannot work for quality
elicitation, so that new designs are needed. Furthermore,
this paper aims at joint elicitation of quality and effort. The
intricate dependency of a user�s data on its private quality
and hidden effort results in the intricate coupling between the
elicitation of quality and the elicitation of effort, which needs
to be overcome.

Mechanism Design for Hidden Actions

Mechanism design for hidden actions has been well studied
in the economics literature [15], which is concerned with
strategic agents that can take hidden actions that are not
desired by a principal who employs the agents to work on
a task. There are a few recent studies that have investi-
gated this problem in the context of crowdsourcing [13], [16].
Cai et al. [16] have proposed truthful mechanisms to incen-
tivize users to make efforts as desired in statistical estimation.
However, most of the work on truthful elicitation of effort do
not take into consideration agents� other possible private infor-
mation (e.g., quality, cost). In a recent work [13], Luo et al.
have made progress in this direction by providing mechanisms
that not only elicit desired efforts from users but also truthful
revelation of their private costs and data. This paper is different
from these works as we aim to jointly elicit users� desired
effort and true quality. Due to the intricate coupling between
the elicitation of quality and the elicitation of effort, existing
mechanism designs cannot handle the problem studied in this
paper.

Quality-Aware Crowdsensing

The quality information of users is important for allocating
crowdsensing tasks to the users, and has been studied in
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Fig. 1. Structure and procedure of the crowdsensing system.

a few works [7], [17]�[20]. One interesting line of work in
this direction has focused on learning the quality of users,
e.g., by exploiting the correlation of their data for the same
tasks [17], [18], or allocating tasks on the �y [19]. This paper
focuses on the setting where quality is a user�s private infor-
mation that is unknown to the requester. To the best of our
knowledge, this paper is the �rst to design truthful mechanisms
to elicit private quality from strategic users.

III. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a crowdsensing requester (also referred to as
user 0) recruiting a set of users N � {1, · · · , N } to work on
a crowdsensing task. For convenience, let N+ � N ∪ {0}.
The structure and procedure of the crowdsensing system is
illustrated in Fig. 1 and described in detail as follows.

A. Crowdsensing With Private User Quality

Data Observation: The crowdsensing task aims to observe
and estimate an unknown and random event of interest X .
We consider continuous-valued data such that X ∈ R (e.g.,
the signal strength of a transmitter). The interested event X
follows an arbitrary prior distribution which is known to the
requester. Each user i ∈ N+ (i.e., including the requester)
obtains random data D i after working on the task, which is
equal to X corrupted by an independent additive noise Wi,
i.e.,

D i � X + Wi (1)

where

E [Wi] = 0, Var(Wi) =
qi

ei
. (2)

Here the mean of Wi is assumed to be 0 without loss
of generality (WLOG), and the distribution of Wi can be
arbitrary. The accuracy of D i is quanti�ed by the variance
of Wi, which is equal to the ratio of the quality qi of user
i and the effort ei exerted by user i in the task. For ease of
exposition, we assume that users� quality is within the range
of [q, q̄], which is known to the requester.

Worker Quality: Given the effort ei, the quality qi > 0
determines the variance qi

ei
of the difference D i − X (i.e.,

the noise Wi) which quanti�es how accurate D i is. The quality
qi is an intrinsic coef�cient that captures user i �s capability
for the task. Note that a smaller qi means a higher quality.
The quality generally varies for different users (e.g., users
can receive distinct SNRs from a transmitter based on their

locations). We assume that each user i ∈ N+ knows its quality
qi (e.g., by estimating the received SNR based on the user�s
distance from a transmitter). However, the quality of each user
i ∈ N is unknown to the requester (e.g., the received SNR
from a transmitter depends on the user�s location which is its
private information).

Worker Effort: The effort ei ≥ 0 represents how much
work user i devotes to the task. For example, the effort can
be (approximately) the number of samples of the received
signal from a transmitter taken by the user. Given the quality
qi, a higher effort ei means a smaller variance qi

ei
and thus a

higher accuracy of D i. We should note that it is reasonable
to model the variance of noise Wi as the function qi

ei
which

is inversely proportional to the effort ei (e.g., as in [13]): if
each unit of user i �s effort ei is a sample of the observed event
taken by user i , then when user i makes k units effort (i.e.,
kei) by taking k i.i.d. samples, it is clear that the variance
of the average of the k samples is exactly qi

kei
. We assume

that each user i can fully control its effort ei, but it cannot be
observed by the requester.

Task Assignment: The requester allocates the crowdsensing
task to the users by assigning an effort e′i that it desires each
user i to exert in the task, based on the quality of the users.
To this end, each user i reports its quality q′i to the requester.
Since the true quality qi is user i �s private information, it may
manipulate the reported quality q′i to its own advantage such
that q′i �= qi. Based on the quality reported by all the users,
the requester determines the effort e′i assigned to each user i
according to some effort assignment function

e′i(q
′) (3)

and noti�es user i of its assigned effort e′i. The effort
assignment function e′i(q

′) is pre-de�ned by the requester and
announced to all the users before they report their quality.
The effort assigned to a user generally varies for different
users due to the diversity of their quality. Intuitively, a user
with a higher quality would be assigned a larger effort. Note
that in general the assigned effort e′i is not only dependent
on the quality q′i reported by user i but also on the quality
q′
−i reported by the other users. After being assigned effort e′i

to, each user i works on the task by making actual effort ei.
Since ei is a hidden action of user i , it may manipulate it
against the assigned effort e′i to its own advantage such that
ei �= e′i. After obtaining data di from the task, which is a
sample realization of the random data D i, each user i reports
data d′

i to the requester. We assume that each user i truthfully
reports its data di (we will discuss in Remark 3 that this is a
reasonable assumption).

Data Aggregation: After collecting all the data d reported
by the users, the requester makes an estimate x∗ of the
interested event X based on d. It uses the estimator that
achieves the minimum mean squared error (MMSE), which
is a common metric for statistical estimation [21] , i.e.,

x∗ � arg min
x′ EX|d(q′,e′)

[
(x′ − X )2

]
. (4)

Here the estimation is based on the posteriori distribution X |d
of X , which depends on the quality q′ and efforts e′ of the
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TABLE I

SUMMARY OF MAIN NOTATION

users. Then the utility of crowdsensing is represented by the
estimation loss l , which is quanti�ed by the MMSE:

l(d, q′, e′) � EX|d(q′,e′)
[
(x∗ − X )2

]
. (5)

Reward Payment.*: On the other hand, the requester pays
a reward r i to each user i for its contribution to the task,
according to a certain reward function:

r i(d0, di, q′, e′i). (6)

Note that the reward r i depends on the data d0 observed by
the requester itself. The reward function is also pre-de�ned by
the requester, and announced to all the users before they report
their quality (together with the effort assignment function
e′i(q

′)). Note that the reward function can only depend on the
information that the requester knows, i.e., d0, d, q′, and e′.

B. Mechanism Design Objective

Based on the crowdsensing system described above, each
user i �s payoff ui is the reward r i paid by the requester minus
its cost in the task, given by,

ui(d0, di, q′, ei) � r i(d0, di, q′, e′i) − ciei. (7)

Here the cost coef�cient ci represents how much resource (e.g.,
sensing time, energy) is consumed by user i for each unit of
effort ei devoted to the crowdsensing task. Therefore, as a
linear function of ei, the total cost ciei represents the total
amount of resource consumed by user i in the task. Note that
the weight of the total cost ciei relative to the reward r i in (7)
can be integrated into the cost ci. We assume that all users
have the same cost coef�cient c (i.e., ci = c, ∀i ) and it is
known to the requester. This assumption is reasonable when c
is common knowledge that is determined by the market price
(e.g., the same price is paid for each sensing sample of each
user).

For the convenience of readers, we summarize the main
notation used in this paper in Table I.

The requester�s payoff u0 is the crowdsensing�s utility (i.e.,
the negative of the estimation loss l ) minus the total reward
paid to the users, i.e.,

u0(x, d, q′, e′) � −l(d, q′, e′) −
∑
i∈N

r i(d0, di, q′, e′i) (8)

As the users have private quality and make hidden efforts,
if any user manipulates its reported quality or actual effort,
then the estimator found by (4) would be different from the
correct estimator, i.e.,

x∗ �= arg min
x′

EX|d(q,e)

[
(x′ − X )2

]
.

More importantly, the estimation loss found by (5) would be
different from the correct one, i.e.,

l(d, q′, e′) �= min
x′

EX|d(q,e)

[
(x′ − X )2

]
.

This means that manipulation would lead to incorrect knowl-
edge of the requester about the estimation loss! This is
undesirable since the data�s accuracy is a critical performance
metric that needs to be ensured to meet some requirement
(e.g., a tolerance threshold for acceptable data accuracy). Note
that this issue does not arise in the setting where users have
private costs only, since manipulating the costs can affect
only the crowdsensing�s utility and the reward payment but
cannot affect the requester�s knowledge of the data accuracy.
Furthermore, the possibility of manipulation could result in
concerns that discourage users to participate in crowdsensing.
Thus motivated, we aim to design a mechanism, which is a pair
of an effort assignment function e′i(q

′) and a reward function
r i(d0, di, q′, e′i), that can achieve the property of incentive
compatibility as stated below.

Definition 1: A mechanism is dominant incentive-
compatible (DIC) if, given any set of quality reported by the
other users, the optimal strategy of each user i for maximizing
its expected payoff is to truthfully report its quality and make
the effort desired by the requester, i.e.,

ED0,Di(qi,ei)

[
ui(D0, D i, qi, q′

−i, e′i)
]

≥ ED0,Di(qi,ei)

[
ui(D0, D i, q′i, q

′
−i, ei)

]
, ∀(q′i, ei), ∀q′

−i.

Another natural and desirable property we aim to achieve is
that each user�s expected reward should at least compensate its
cost (i.e., its expected payoff is nonnegative), since otherwise
the user would not participate in crowdsensing for a payoff
of 0. This property of individual rationality is stated as follows.

Definition 2: A mechanism is individually rational (IR) if
for each user i , given that it truthfully reports its quality and
makes the effort desired by the requester, its expected payoff
is nonnegative, i.e.,

ED0,Di(qi,ei)

[
ui(D0, D i, qi, q′

−i, e′i)
] ≥ 0, ∀q′

−i.

IV. TRUTHFUL QUALITY AND EFFORT ELICITATION

FOR CROWDSENSING

In this section, we design truthful crowdsensing mechanisms
that achieve the DIC and IR properties.

We �rst present the QEE mechanisms as follows.
Definition 3: A Quality and Effort Elicitation (QEE) mech-

anism is a pair of any effort assignment function e′i(q
′)

that satis�es the condition in (9) and the reward function
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r i(d0, di, q′, e′i) given by (10) based on that e′i(q
′):

e′i(q
′
i, q

′
−i) ≥ e′i(q

′′
i , q′

−i), ∀q′i ≤ q′′i , ∀q′
−i (9)

r i(d0, di, q′, e′i) = c
∫ q̄

q′
i

e′i(q,q′
−i)

q
dq+2ce′i(q

′)

−ce′2i (q′)
q′i

[
(d0−di)2 − q0

e0

]
. (10)

The condition in (9) captures general effort assignment func-
tions where the effort assigned to each user increases as
its quality improves, given any quality of the other users.
Intuitively, these effort assignment functions are natural and
desirable for system ef�ciency. In the following, we will show
the main ideas of the design of the QEE mechanisms (9)
and (10). The rationale behind the design will be explained
in Remark 1.

We show how the QEE mechanisms achieve the DIC
property in the following three steps. We �rst show how each
user�s expected payoff depends on its true quality and actual
effort (Lemma 1). Then we show that if the elicitation of
quality is achieved, the elicitation of effort is also achieved
(Lemma 2). Last, given that the actual effort is optimized,
we show that the elicitation of quality is achieved (Lemma 3).
As a result, the DIC property is achieved (Theorem 1).

We �rst show that each user�s expected payoff can be
expressed as a function of its true quality and actual effort
using (10).

Lemma 1: Under the QEE mechanisms, given that any
user i reports quality q′i and its data di and makes effort ei,
its expected payoff is given by

ED0,Di(qi,ei)[ui(D0, D i, q′, ei)] = c
∫ q̄

q′
i

e′i(q,q′
−i)

q
dq+2ce′i(q

′)

−ce′2i (q′)qi

eiq′i
− cei. (11)

Then we show that, as user i can only affect its payoff
in (11) via its reported quality q′i and actual effort ei, its opti-
mal actual effort can be found as a function of q′i using (11).

Lemma 2: Under the QEE mechanisms, given that any
user i reports quality q′i and its data di, its optimal actual
effort is given by

ei =
√

qi

q′i
e′i(q

′). (12)

Note that the optimal actual effort ei in (12) is equal to the
desired effort e′i when the reported quality q′i is equal to the
true quality qi. It means that if the elicitation of quality is
achieved, then the elicitation of effort is also achieved. This
is a key property we need to overcome the intricate coupling
between the elicitation of quality and the elicitation of effort,
and achieve the elicitation of effort. Using Lemma 2, given
that user i reports its data di and makes the optimal effort as
in (12), we can express its payoff in (11) as

c
∫ q̄

q′
i

e′i(q,q′
−i)

q
dq+ 2ce′i(q

′) − 2c
√

qi

q′i
e′i(q

′), (13)

by substituting (12) into (11).

Next we show that, since user i can only affect its own
payoff in (13) via its reported quality q′i, its optimal q′i is its
true quality qi, under the general condition (9) on the effort
assignment function e′i(q

′).
Lemma 3: Under the QEE mechanisms, given that any user

i reports its data di and makes its optimal actual effort as (12),
its optimal reported quality is its true quality q′i = qi.

Note that the optimal reported quality q′i is always equal to
the true quality qi and is independent of e′i. Therefore, this
property achieves the elicitation of quality.

Using Lemmas 1, 2, and 3, we can show that the QEE
mechanisms achieve the DIC property as in the next theorem.
Given that user i reports its data di, makes the optimal effort
ei = e′i, and reports the optimal quality q′i = qi, its payoff in
(13) is given by

c
∫ q̄

qi

e′i(q,q′
−i)

q
dq. (14)

It follows that the IR property is also achieved since (38) is
no less than 0 due to the fact that e′i(q

′) ≥ 0, ∀q′.
Theorem 1: The QEE mechanisms are DIC and IR.
Remark 1: We explain the rationale behind the truthful

design of the QEE mechanisms as follows. To incentivize each
user i to report the true quality q′i = qi and make the desired
effort ei = e′i, the reward function r i must depend on the
true quality qi and the actual effort ei, since otherwise user i
can manipulate q′i and ei without regard to qi and e′i. Since
r i can only be de�ned using the information known to the
requester (i.e., d0, di, q′, and e′i), and the variance of the noise
Wi in data di is determined by the true quality qi and the
actual effort ei, we can design r i as a function of the squared
error (d0 −di)2 such that the expected reward is a function of
the variance and thus depends on qi and ei (as in Lemma 1
and (11)). Therefore, the expected reward depends only on q′i,
e′i, qi, and ei (as in (11)). Then we can design the reward
function such that the optimal actual effort ei that maximizes
user i �s expected payoff is equal to e′i when q′i = qi (as in
Lemma 2 and (12)). Given that the actual effort is optimized,
the payoff only depends on q′i, e′i, and qi (as in (13)). Next we
further design the reward function such that, under the general
condition on e′i (as in (9)), the optimal reported quality q′i that
maximizes the payoff is always equal to qi and independent
of e′i (as in Lemma 3).

Remark 2: We can see from (38) that, given the effort
assignment function e′i(q

′) and the users� quality qi and q′
−i,

the user�s payoff increases as the upper bound q̄ of users�
quality increases, and thus the requester�s payoff decreases
as q̄ increases. This means that the requester can pay less
�information rent� [22] by knowing more information (i.e.,
having less uncertainty) about users� quality with a smaller
upper bound q̄. In the extreme case where the requester knows
that all users have the same quality (i.e., qi = q̄, ∀i ), all users
have 0 payoffs while the requester receives all the surplus
of users� efforts, which means that the mechanism is fully
�ef�cient� for the requester�s interest.

Remark 3: We should note that, for the QEE mechanisms,
it is dif�cult for a user to misreport its data to improve its
payoff. This is because the user needs to know the requester�s
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quality q0 and effort e0 (which determines the distribution
of d0). However, this is the requester�s the private information
that the user would not know. Therefore, it is reasonable to
assume that users truthfully report their data (as we do in this
paper).

V. OPTIMAL EFFORT ASSIGNMENT FOR

TRUTHFUL CROWDSENSING

We have shown that the DIC and IR properties can be
achieved by all the QEE mechanisms which have general
effort assignment functions that satisfy condition (9). We will
now show how the requester can �nd the optimal effort
assignment that maximizes its payoff, based on the distribution
information of users� quality. Because of the DIC property,
we assume that q′ = q and e = e′ in this section, and thus,
for brevity, we use q and e instead of q′ and e′, respectively.
For ease of analysis, we assume that the interested event X
follows a normal prior distribution N (0, 1) (i.e., with mean
0 and variance 1). We further assume that users� quality
follow independent and identical uniform distributions over
an interval [q, q̄], which is known to the requester.

Definition 4: The crowdsensing requester’s optimal (RO)
effort assignment e∗(q) is the effort assignment function e(q)
that maximizes the requester�s expected payoff (8) among all
the QEE mechanisms, i.e.,

{e∗(q), ∀q} � arg max
{e(q),∀q}

EX,D(Q,e)[u0(X, D, Q, e)]. (15)

Then the optimal effort assignment can be characterized as
follows.

Theorem 2: When c ≥ 1/ (9q), the requester�s optimal
effort assignment (15) is given by

e∗i (q)=

⎧⎪⎨
⎪⎩

max

{
qi

(
1√

� (qi)
− 1

)
, 0

}
, i = arg minj � (qj)

0, otherwise,
(16)

∀q, where

� (qi) � c
(

F (qi)
f (qi)

+ qi

)
, ∀i (17)

and f (q) and F (q) denote the probability density func-
tion (PDF) and cumulative density function (CDF) of each
user�s quality, respectively.

In the rest of this section, we will assume that the condition
c ≥ 1/ (9q) in Theorem 2 is satis�ed so that the RO effort
assignment is given in (16). This is because the characteri-
zation of the RO effort assignment under this condition and
the corresponding performance analysis provide useful insights
on the impact of system parameters on the performance and
system ef�ciency. Furthermore, when this condition is not
satis�ed, we can still use the effort assignment in (16), and
the corresponding performance can be lower bounded by that
when the condition holds.

Remark 4: Theorem 2 shows that the optimal effort assign-
ment assigns effort to only one user, and furthermore, this
effort depends only on that user�s quality (and its distribution)

but is independent of the other users� quality. Therefore,
the optimal effort assignment appears to be �single-sensing�
rather than �crowdsensing�. However, we should note that in
fact it exploits the diversity gain of multiple users� quality,
since only the �best�1 user i that has the smallest � (qi)
is assigned to effort. This �single-sensing� observation is
essentially because the cost functions are linear, so that the
marginal gain of the requester�s payoff by increasing the best
user�s effort is always greater than by increasing any other
user�s effort. It is in contrast to data estimation with no data
cost [23], for which it is usually optimal to use data from
multiple sources rather than only from the one source with
the best quality. One attractive implication of this �single-
sensing� observation is that it simpli�es the implementation
of crowdsensing: the requester needs to collect data only from
the best user rather than a potentially large number of users.

For convenience, let q∗1 denote the quality of the best user
for the RO effort assignment and e∗1(q) the RO effort assigned
to the best user.

Remark 5: Theorem 2 shows that the best user is the
user i with the smallest �virtual valuation� � (qi) rather than
the highest quality qi, where each user i �s virtual valuation
depends on not only its quality qi but also the quality�s
distribution F (qi) and f (qi). This implies that the range of
a user�s possible quality, represented by Δq � q̄− q, affects
its effort assignment: given users� quality, when users have a
smaller quality range, more effort is assigned to the best user
due to a smaller virtual valuation. This is intuitive because
a larger quality range incurs a higher payment to the user in
order to truthfully elicit quality. In the special case of Δq = 0,
a user�s virtual valuation is equal to its quality. The concept
of virtual valuation was introduced by Myerson [14] and is in
the same spirit as the result here.

Remark 6: According to condition (9), the RO effort e∗1(q)
assigned to the best user in (16) increases when its quality
q∗1 improves. Note that no effort is assigned if its quality is
too low (i.e., � (q∗1) ≥ 1). This is because a higher quality
improves the marginal utility of crowdsensing by making more
effort, and thus assigns more effort to the best user. On the
other hand, we can observe from (16) and (17) that e∗1(q)
decreases as the cost c increases. This is due to that a larger
c incurs a larger payment to compensate the higher marginal
cost, which results in less effort assigned.

Next we analyze the impact of system parameters on the
performance of the RO effort assignment and its system
ef�ciency.

Proposition 1: The expected RO payoff EQ[u0(e∗(Q))]
attained by the RO effort assignment increases as the number
of users N increases, or the cost c decreases.

Remark 7: Proposition 1 shows that the requester bene�ts
from a greater diversity gain in users� quality. This is because
when there are more users, the quality of the best user is
likely to be higher, which improves the crowdsensing�s utility.
On the other hand, a larger cost c increases the total cost and
thus reduces the payoff.

1If there are multiple �best� users, only one of them is selected by breaking
the tie randomly.
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The system ef�ciency of an effort assignment function e(q)
is quanti�ed by the social welfare v it attains, which is the
crowdsensing�s utility (i.e., the expected estimation loss l )
minus the total cost of all users, i.e.,

v(e(q)) � −ED(q,e)[l(D, q, e)] −
∑
i∈N

ciei. (18)

For the interest of system ef�ciency, it is desirable to achieve
the optimal social welfare.

Definition 5: The socially optimal (SO) effort assignment
eso(q) is the effort assignment function e(q) that maximizes
the social welfare, i.e.,

eso(q) � max
e(q)

v(e(q)). (19)

The socially optimal effort assignment can be characterized
as follows.

Proposition 2: The socially optimal effort assignment is
given by

eso
i (q) =

⎧⎨
⎩max

{
qi

(
1√
cqi

− 1
)

, 0
}

, i = arg minj qj

0, otherwise.
(20)

Remark 8: Proposition 2 shows that the SO effort assign-
ment assigns effort only to the �best� user i that has the
highest quality qi. Comparing (16) and (20), we can see that
the SO effort assignment is only different from the RO effort
assignment in that it selects the best user and assigns the effort
to it based on the highest quality rather than the smallest virtual
valuation among the users. Since it can be easily seen that each
user i �s virtual valuation � (qi) is no less than its quality qi,
the RO effort assigned to the best user is less than the SO effort
assigned. This is because, although assigning more effort can
improve the social welfare, it would result in a too higher
payment. As a result, the RO effort assignment is not socially
optimal, and the gap is essentially due to the asymmetry of
users� quality information between the users and the requester.

For convenience, let qso
1 denote the quality of the best user

for the SO effort assignment and eso
1 (q) the SO effort assigned

to the best user.
Proposition 3: The expected SO social welfare

EQ[v(eso
1 (Q))] and social welfare EQ[v(e∗1(Q))] attained by

the RO effort assignment increases as the number of users N
increases, or the cost c decreases.

Similar to Proposition 1, Proposition 3 shows that the social
welfare also bene�ts from a greater diversity gain in users�
quality: when there are more users, the quality of the best
user is likely to improve.

Proposition 4: The gap between the expected social welfare
of the RO effort assignment and the SO effort assignment
EQ[v(eso

1 (Q))] − EQ[v(e∗1(Q))] decreases as the number
of users N increases, and converges to 0 as N goes to
in�nity.

Remark 9: Proposition 4 shows that the performance gap
between the RO effort assignment and the SO effort assign-
ment decreases to 0 asymptotically as the number of users
increases. This is because the gap between the RO effort and

the SO effort assigned to the best user decreases when its
quality improves, and that the crowdsensing�s utility and thus
the social welfare is a concave function of the effort from the
best user.

VI. EXTENSIONS

In this section, we extend the QEE mechanisms to the
situations where 1) workers have quadratic cost functions;
2) the requester lacks reference data for the interested variable.

A. Quadratic Cost Function

In this subsection, we design the QEE mechanisms for
quadratic cost functions. We consider that each worker i �s
cost is a quadratic function of its effort ei quanti�ed by a
cost coef�cient ci, i.e.,

1
2

cie2
i .

For ease of exposition, we assume that ci = c, ∀i . We
present the QEE mechanisms as follows.

Definition 6: For the quadratic cost functions, a Quality,
Effort, and Data Elicitation (QEE) mechanism is any effort
assignment function e′i(q

′) that satis�es condition (9) and the
reward function r i(d0, di, q′, e′i) given by (21) based on that
e′i(q

′):

r i(d0, di, q′, e′i) = c
∫ q̄

q′
i

e′2i (q,q′
−i)

q
dq+

3
2

ce′2i (q′)

−ce′3i (q′)
q′i

[
(d0−di)2 − q0

e0

]
. (21)

We can show that they achieve the DIC and IR properties.
Theorem 3: For the quadratic cost functions, the QEE

mechanisms are DIC and IR.
The design idea and rationale of the QEE mechanisms for

the quadratic cost functions are similar to those for the linear
cost functions in Section IV.

Remark 10: We can see from the QEE mechanisms for the
linear and quadratic cost functions that their design idea and
rationale (as discussed in Section IV-A) can be used for more
general cost functions, such as any n-th order cost functions
cien

i . We can also see that workers can have diverse cost
functions with different parameters and forms (e.g., linear or
quadratic), in which case the reward functions of the truthful
design will have different parameters and forms for different
workers accordingly.

B. No Reference Data From the Requester

In the previous sections, we have assumed that the requester
itself can work on the task and obtains data d0 with quality
q0 and effort e0 = 1, which are (certainly) known by
the requester. The reference data d0 and its quality q0 are
necessary information needed to achieve the truthfulness of
the QEE mechanism. If the requester cannot work on the task
(e.g., when it is too far away from the location of interest),
we can modify the QEE mechanism to deal with this situation,
described as follows.
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For each worker i , we pick any other worker j �= i as a
reference worker, and de�ne the reward function r i as

r i(q′, e′i, d′
i, d′

j) (22)

where d′
j is the data reported by worker j . We are interested

in a mechanism under which truthful behavior of all workers
is a Nash equilibrium, de�ned as follows.

Definition 7: A mechanism achieves truthful strategies of
all workers as a Nash equilibrium (NE) if, for each worker i ,
given that all other workers j �= i , ∀j truthfully report their
quality and data, and make the effort desired by the requester,
the optimal strategy of worker i for maximizing its expected
payoff is also to the truthful strategy, i.e.,

EDj ,Di(qi,ei)

[
ui(qi, q−i, e′i, e′j , D i, D j)

]
≥ EDj ,Di(qi,ei)

[
ui(q′i, q−i, ei, e′j, D i, D j)

]
, ∀(q′i, ei), ∀q−i.

To deal with the lack of reference data d0 from the requester,
we modify the reward function of the QEE mechanism given
in (10) by replacing d0 with the reported data d′

j of worker
i �s reference worker, worker j , and replacing q0 with worker
j �s quality q′j , i.e.,

r i(q′, e′i, e′j , di, dj) = c
∫ q̄

q′
i

e′i(q,q′
−i)

q
dq+2ce′i(q

′)

−ce′2i (q′)
q′i

[
(dj−di)2 −

q′j
e′j

]
. (23)

To guarantee that each worker i working on the task (i.e.,
ei > 0) has a reference worker j �= i also working on
the task (i.e., ej > 0), we need to restrict the assignment
function e′ such that there are either at least two workers or
no worker working on the task. The conditions (9) of the QEE
mechanism remain the same. We can show that the modi�ed
QEE mechanism can achieve an NE where all workers behave
truthfully, and also the IR property. The proof follows from
the same argument as that of Theorem 1.

VII. SIMULATION RESULTS

In this section, we evaluate the properties of the QEE mech-
anisms and its performance with the RO effort assignment
using simulation results.

A. User’s Payoff

To illustrate the DIC and IR properties of the QEE mecha-
nisms, we compare a user�s expected payoff when it truthfully
reports its quality and makes its effort with that when it
untruthfully reports its quality and/or makes its effort. We use
the RO effort assignment e∗i (q) in (16) for the QEE mech-
anism. We set the default parameters as follows2: n = 2,
c = 0.3, µq � (q̄ + q)/ 2 = 2, Δq = 3, q1 = 1.2, q2 = 2.75.

Fig. 2 illustrates user 1�s expected payoff as it reports
varying quality q′1 and makes no effort, or truthful effort
e∗1(q

′
1, q2), or optimal effort

√
q1
q′

1
e∗1(q

′
1, q2) (as in (12)), com-

pared to when it truthfully reports its quality and makes

2It is WLOG to consider 2 users only as the RO effort assignment assigns
effort to the best user only based on the best user�s quality.

Fig. 2. Impact of reported quality q′1.

Fig. 3. Impact of actual effort e1.

its effort. Fig. 2 illustrates user 1�s expected payoff as it
makes varying effort e1 and reports its actual quality q1,
or the highest quality q, compared to when it truthfully reports
its quality and makes its effort.. We can see that the user�s
payoff when its behavior is untruthful is always no greater
than when truthful. Furthermore, the user�s payoff gap due
to untruthfulness increases when it is more untruthful (i.e.,
the gap between the reported quality and actual quality, or the
desired effort and the actual effort is larger). This con�rms
that the DIC property is achieved by the QEE mechanism so
that users have incentive to behave truthfully. We also observe
from Figs. 2-3 that the user�s payoff is always greater than 0.
This con�rms that the IR property is achieved by the QEE
mechanism.

B. Requester’s Payoff

To illustrate the system ef�ciency of the RO effort assign-
ment, we compare the expected requester�s payoff (CP) and
total users� payoff (SP) attained by the RO effort assign-
ment (CP-RO, SP-RO) with the expected social welfare (SW)
attained by the SO effort assignment (SW-SO), and the
expected SW attained by the RO effort assignment (SW-RO).
Note that SP-RO is represented by the gap between CP-RO
and SW-RO curves in �gures. We set the default parameters as
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Fig. 4. Impact of cost c.

Fig. 5. Impact of quality range ∆q.

follows: N = 5, c = 0.5, µq � (q̄+ q)/ 2 = 2, Δq = 3. It can
be veri�ed that all the data points presented in the �gures of
this section satisfy the optimality condition c ≥ 1/ (9q) in
Theorem 2 for the RO effort assignment. For convenience,
we illustrate the negative of social welfare or the requester�s
payoff in all �gures.

Fig. 4 illustrates the impact of the cost c on the performance
of CP-RO, SW-RO, and SW-SO. We observe that all the three
curves and SP-RO increase as c increases, which is because
higher cost results in less effort and low performance. We also
observe that the gap between SW-RO and SW-SO is small
when c is large. This is because a large c results in little effort
so that the social welfare is close to the lower bound in which
no effort is made, and thus the gap in the social welfare is
also small.

Fig. 5 illustrates the impact of the quality range Δq on
the performance. We observe that all the three curves are
decreasing in Δq. This shows that CP and SW are concave
functions of the quality, so that the increase of CP or SW
at high quality is larger than the decrease of CP or SW at
low quality when Δq is large. We also observe that SP-RO
increases as Δq increases. This is partly due to that a larger
range of possible quality would require a higher truth-eliciting
reward according to (38). We further observe that the gap

Fig. 6. Impact of the number of users N .

between SW-RO and SW-SO is small when Δq is small.
This is partly because the gap between the RO and SO effort
assignments is decreasing in Δq according to (16) and (20).

Fig. 6 illustrates the impact of the number of users N on
the performance. We observe that all the three curves are
decreasing in N , which is because they bene�t from a greater
diversity gain in users� quality when there are more users.
We also observe that the gap between SW-RO and SW-SO
is decreasing and converging to 0 when N increases, which
con�rms our result in Proposition 4. It is interesting to observe
that, while all of CP-RO, SW-RO, and SW-SO increases as N
increases, SP-RO can decrease when N increases (e.g., as SP-
RO is smaller at N = 50 than at N = 20). This can be
understood by examining the best user�s payoff given by

c
∫ q̄

q∗
1

e∗1(q,q−i)
q

dq

according to (38). We can see that when N increases, q∗1 is
likely to decrease which would increase the above integral.
However, q−i is also likely to increase as N increases,
which decreases e∗1(q,q−i), and this effect can outweigh the
increase of q∗1 such that the integral decreases. This means
that while the requester bene�ts from more users, the users
can experience a loss due to the �competition� among the
users.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we have devised the QEE mechanisms for
crowdsensing, to incentivize strategic users to truthfully reveal
their private quality and make efforts as desired by the crowd-
sensing requester. The QEE mechanisms have achieved the
truthful design by overcoming the intricate coupling between
the elicitation of quality and the elicitation of effort. Under
the QEE mechanisms, we have analyzed the performance and
system ef�ciency of the requester�s optimal effort assignment.

For future work, one interesting direction is to consider
users that have no knowledge of their quality. In this case,
the requester needs to learn the quality of strategic users
which may not truthfully provide data to the requester for
the purpose of learning. In this paper, we have focused on the

Authorized licensed use limited to: The Ohio State University. Downloaded on May 05,2023 at 23:56:56 UTC from IEEE Xplore.  Restrictions apply. 



1968 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 27, NO. 5, OCTOBER 2019

truthful quality and effort elicitation under the assumptions
that users truthfully report their data and their cost is known
to the requester. The truthful mechanism design when users�
data and/or costs are also private information is still an open
problem and will be studied in our future work.

APPENDIX

We use f Y (y) and FY (y) to denote the probability density
function (PDF) and cumulative density function (CDF) of a
random variable Y , respectively.

Proof of Lemma 1

Comparing (10) and (11), it suf�ces to show that

ED0,Di(qi,ei)

[
(D0 − D i)2

]
=

q0

e0
+

qi

ei
.

This follows from that

ED0,Di(qi,ei)

[
(D0 − D i)2

]
= EX,W0,Wi(qi,ei)

[
((X + W0) − (X + Wi))

2
]

= EW0,Wi(qi,ei)

[
(W0 + Wi)2

]
=

q0

e0
+

qi

ei
,

where the last equality follows from the fact that the variance
of the sum of independent Gaussian random variables is equal
to the sum of their variances.

Proof of Lemma 2

For brevity, we can de�ne

ūi(q′, qi, e′i, ei) � ED0,Di(qi,ei)[ui(D0, D i, q′, e′i)] (24)

according to (11). Using (11) and (24), we have

� 2ūi(q′, qi, e′i, ei)
�e 2

i

= −2ce′2i (q′)qi

e3
i q′i

≤ 0.

Hence the optimal actual effort ei must satisfy

� ūi(q′, qi, e′i, ei)
�e i

=
ce′2i (q′)qi

e2
i q′i

− c = 0.

Solving the above equation for ei yields (12).

Proof of Lemma 3

For brevity, we can de�ne

ûi(q′, qi, e′i) � ūi(q′, qi, e′i,
√

qi

q′i
e′i) (25)

according to (13) and (24). For convenience, we write
ûi(q′, qi, e′i) as ûi(q′i, q

′
−i, qi, e′i). According to (25), it suf�ces

to show that ûi(qi, q′
−i, qi, e′i) ≥ ûi(q,q′

−i, qi, e′i), ∀q �= qi.

Let q′i = a > qi. Using (13) and (25), we have

ûi(qi, q′
−i, qi, e′i) − ûi(a,q′

−i, qi, e′i)

= c
∫ q̄

qi

e′i(q,q′
−i)

q
dq+ 2ce′i(qi, q′

−i) − 2c
√

qi

qi
e′i(qi, q′

−i)

−
(

c
∫ q̄

a

e′i(q,q′
−i)

q
dq+ 2ce′i(a,q′

−i) − 2c

√
qi

a
e′i(a,q′

−i)
)

= c
∫ a

qi

e′i(q,q′
−i)

q
dq− 2ce′i(a,q′

−i)
(

1 −
√

qi

a

)

≥ ce′i(a,q′
−i)
∫ a

qi

1
q

dq− 2ce′i(a,q′
−i)
(

1 −
√

qi

a

)

= ce′i(a,q′
−i)
[
ln

a
qi

− 2
(

1 −
√

qi

a

)]
≥ 0

where the �rst inequality follows from condition (9) and
the second inequality follows from the following lemma.

Lemma 4: g(y) � ln y − 2(1 −
√

1
y ) ≥ 0, ∀y ≥ 1.

Proof : For any y ≥ 1, we have

�g (y)
�y

=
1
y
− 1

y
√

y
=

1
y

(
1 − 1√

y

)
≥ 0.

Then since we observe that g(1) = 0, we have g(y) ≥ 0,
∀y ≥ 1. �

Let q′i = b < qi. Using (13) and (25), we have

ûi(b,q′
−i, qi, e′i) − ûi(qi, q′

−i, qi, e′i)

= c
∫ q̄

b

e′i(q,q′
−i)

q
dq+ 2ce′i(b,q′

−i) − 2c

√
qi

b
e′i(b,q′

−i)

−
(

c
∫ q̄

qi

e′i(q,q′
−i)

q
dq+ 2ce′i(qi, q′

−i)−2c
√

qi

qi
e′i(qi, q′

−i)
)

= c
∫ qi

b

e′i(q,q′
−i)

q
dq+ 2ce′i(b,q′

−i)
(

1 −
√

qi

b

)

≤ ce′i(b,q′
−i)
∫ qi

b

1
q

dq+ 2ce′i(a,q′
−i)
(

1 −
√

qi

b

)

= ce′i(b,q′
−i)
[
ln

qi

b
+ 2

(
1 −

√
qi

b

)]
≤ 0

where the �rst inequality follows from condition (9) and
the second inequality follows from the following lemma.

Lemma 5: g(y) � ln y + 2(1 −√
y) ≤ 0, ∀y ≥ 1.

Proof : For any y ≥ 1, we have

�g (y)
�y

=
1
y
− 1√

y
=

1√
y

(
1√
y
− 1
)

≤ 0.

Then since we observe that g(1) = 0, we have g(y) ≤ 0,
∀y ≥ 1. �

Proof of Theorem 1

As the IR property has been proved using (38), we only
show that the DIC property is achieved. Choose and �x any
(q′i, ei). It follows from Lemma 2 that

ūi(q′i, ei) ≤ ūi(q′i,
√

qi

q′i
e′i).
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Then it follows from Lemma 3 that

ūi(q′i,
√

qi

q′i
e′i) ≤ ūi(qi,

√
qi

qi
e′i) = ūi(qi, e′i).

Hence we conclude that

ūi(q′i, ei) ≤ ūi(qi, e′i).

Proof of Theorem 2

We �rst express the estimation loss l as a function of
the quality q and efforts e only, and then accordingly �nd
the optimal effort assignment e∗ for the requester�s expected
payoff as a function of the quality q, and lastly show that the
optimal effort assignment e∗(q) satis�es condition (9) when
c ≥ 1/ (9q).

The requester�s posterior distribution of the interested event
X conditioned on all the data d collected from the users is
given by

X |d(q, e) ∼ N
( ∑

i∈N diei/q i

1 +
∑

i∈N ei/q i
,

1
1 +

∑
i∈N ei/q i

.
)

Hence the MMSE estimator de�ned in (4) is given by [21]

x∗ =
∑

i∈N diei/q i

1 +
∑

i∈N ei/q i
,

and the corresponding estimation loss de�ned in (5) is given
by

l(d, q, e) =
1

1 +
∑

i∈N ei/q i
(26)

which can be written in short as l(q, e).
Using (10) and (11), the expected reward paid to user i is

given by

EX,Di(qi,ei)[r i(X, D i, q, ei)]

= c
∫ q̄

qi

ei(q,q−i)
q

dq+ 2cei(q) − ce2i (q)
qi

qi

ei(q)

= c
∫ q̄

qi

ei(q,q−i)
q

dq+ cei(q). (27)

It follows from (26) and (27) that the expected requester�s
payoff de�ned in (8) is given by

EX,D(q,e)[u0(X, D, q, e(q))]

= − 1
1 +

∑
i∈N ei(q)/q i

−
∑
i∈N

(
c
∫ q̄

qi

ei(q,q−i)
q

dq+ cei(q)
)

. (28)

For brevity, de�ne

ū0(e(q)) � EX,D(q,e)[u0(X, D, q, e(q))].

Hence the optimal effort assignment de�ned in (15) is given
by

{e∗(q), ∀q} = arg max
{e(q),∀q}

EQ[ū0(e(Q))]. (29)

Since we observe that

EQi

[
c
∫ q̄

Qi

ei(q,q−i)
q

dq
]

=
∫ q̄

q

f (q′)c
∫ q̄

q′

ei(q,q−i)
q

dqdq′

=
[
F (q′)c

∫ q̄

q′

ei(q,q−i)
q

dq
]q′=q̄

q′=q

+
∫ q̄

q

F (q′)c
ei(q′, q−i)

q′
dq′

=
∫ q̄

q

f (q′)
F(q′)
f (q′)

c
ei(q′, q−i)

q′
dq′ = EQi

[
c
F(Qi)
f (Qi)

ei(Qi, q−i)
Qi

]
(30)

where the second equality follows from integration by parts,
then using (28) we have

EQ[ū0(e(Q))]

= −EQ

[
1

1 +
∑

i∈N ei(Q)/Q i

]

−
∑
i∈N

EQ

[
c
∫ q̄

Qi

ei(q,Q−i)
q

dq+ cei(Q)
]

= EQ

[
− 1

1+
∑

i∈N ei(Q)/Q i
−
∑
i∈N

cei(Q)
(

F (Qi)
f (Qi)Qi

+1
)]

(31)

where the second equality follows from (30). Hence �nding
{e∗(q), ∀q} in (29) is equivalent to solving the following
problem for each q independently:

max
e(q)

− 1
1+
∑

i∈N ei(q)/q i
−
∑
i∈N

cei(q)
(

F (qi)
f (qi)qi

+ 1
)

. (32)

Substituting

ēi(q) � ei(q)
qi

, ∀i

into (32), we have

max
ē(q)

− 1
1 +

∑
i∈N ēi(q)

−
∑
i∈N

� (qi)ēi(q). (33)

We can see that the optimal solution of (33) must satisfy
ēk(q) > 0 for k � arg mini � (qi) and ēi(q) = 0, ∀i �= k.
Hence we can �nd ēk(q) by solving

max
ēk(q)

− 1
1 + ēk(q)

− � (qk)ēk(q),

which yields

ēk(q) = max

{
1√

� (qk)
− 1, 0

}
.

Hence we have (16).
To show that e∗(q) satis�es condition (9) when c ≥ 1/ (9q),

it suf�ces to show that e∗1(q
∗
1 , q−1) is decreasing in q∗1 when

c ≥ 1/ (9q). Observe that we have

�� (qi)
�q i

=
�c
(

F (qi)
f(qi)

+ qi

)
�q i

=
�c (2qi − q)

�q i
= 2c.
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Suppose e∗1(q) = q∗1( 1√
α(q∗

1 )
− 1) ≥ 0. Then we have

�e ∗
1(q)

�q ∗
1

=
1√

� (q∗1)
− 1 − cq∗1

� (q∗1)
√

� (q∗1)

=
� (q∗1)(1 −√� (q∗1)) − cq∗1

� (q∗1)
√

� (q∗1)
≤ 0

where the inequality follows from the following lemma.
Lemma 6: For c ≥ 1/ (9q), g(q) � c(2q − q)(1 −√
c(2q− q)) − cq≤ 0, ∀q ≥ q.

Proof : For any q ≥ q, we have

�g (q)
�q

= 2c− 2c
√

c(2q− q) − c2(2q− q)√
c(2q− q)

− c

= c(1 − 3
√

c(2q− q)) ≤ c(1 − 3
√

cq) ≤ 0

where the inequality follows from the condition c ≥ 1/ (9q).
Then since we observe that

g(q) = cq(1 −√cq) − cq≤ cq− cq= 0,

we have g(q) ≤ 0, ∀q ≥ q. �

Proof of Proposition 1

We �rst show the claims for EQ[u0(e∗(Q))]. Suppose
e∗1(q) = q∗1( 1√

α(q∗
1 )

− 1) ≥ 0. Substituting (16) into (31),

we have

EQ[u0(e∗(Q))]

= EQ

[
− 1

1 + e∗1(Q)/Q ∗
1

− ce∗1(Q)
(

F (Q∗
1)

f (Q∗
1)Q∗

1

+ 1
)]

= EQ∗
1

[
− 1

1 + e∗1(Q
∗
1)/Q

∗
1

− � (Q∗
1)e

∗
1(Q

∗
1)

Q∗
1

]

= EQ∗
1

[
−
√

� (Q∗
1) − � (Q∗

1)

(
1√

� (Q∗
1)

− 1

)]

= EQ∗
1

[
−2
√

� (Q∗
1) + � (Q∗

1)
]

where the second equality follows from that e∗1(q) = e∗1(q
∗
1).

Since

� (−2
√

� (q∗1) + � (q∗1))
�q ∗

1

=
� (−2

√
� (q∗1) + � (q∗1))
�� (q∗1)

�� (q∗1)
�q ∗

1

= 2c

(
1 − 1√

� (q∗1)

)
≤ 0,

and that the best quality Q∗
1(N ) for N users stochastically

dominates the best quality Q∗
1(N ′) for N ′ users for any N ′ >

N , i.e.,

Q∗
1(N ) ≥st Q∗

1(N
′), ∀N ′ > N, (34)

it follows that EQ[u0(e∗1(Q))] is increasing in N . Since

� (−2
√

� (q∗1) + � (q∗1))
�c

=
� (−2

√
� (q∗1) + � (q∗1))
�� (q∗1)

�� (q∗1)
�c

= 2q

(
1 − 1√

� (q∗1)

)
≤ 0,

it follows that EQ[u0(e∗1(Q))] is decreasing in c.

Proof of Proposition 2

It follows from (26) that �nding the SO effort assignment
eso(q) is equivalent to solving the following problem for each
q independently:

max
e(q)

− 1
1 +

∑
i∈N ei(q)/q i

−
∑
i∈N

cei(q).

The above problem can be solved using a similar argument as
that of solving problem (32) in the proof of Theorem 2, which
yields (20).

Proof of Proposition 3

Suppose eso
1 (q) = qso

1 ( 1√
cqso

1
− 1) ≥ 0. Using (26),

substituting (20) into (18), we have

v(eso(q)) = − 1
1 + eso

1 (q)/q so
1

− ceso
1 (q)

= −√cqso
1 − cqso

1

(
1√
cqso

1

− 1

)

= −2
√

cqso
1 + cqso

1 . (35)

Since

� (−2
√

cqso
1 + cqso

1 )
�q so

1

= c
(

1 − 1√
cqso

1

)
≤ 0,

it follows from (34) and q∗1 = qso
1 that EQ[v(eso(Q))] =

EQso
1

[v(eso(Q))] is increasing in N . Similarly, we have

� (−2
√

cqso
1 + cqso

1 )
�c

= q
(

1 − 1√
cqso

1

)
≤ 0,

and it follows that EQ[v(eso(Q))] is decreasing in c.

Suppose e∗1(q) = q∗1

(
1√

α(q∗
1 )

− 1
)

≥ 0. Using (26),

substituting (16) into (18), we have

v(e∗(q)) = − 1
1 + e∗1(q)/q ∗

1

− ce∗1(q)

= −
√

� (qi) − cq∗1√
� (qi)

+ cq∗1 . (36)

Since

� (−√� (qi) − cq∗
1√

α(qi)
+ cq∗1)

�q ∗
1

= − 2c√
� (q∗1)

+
c2q∗1

� (q∗1)
√

� (q∗1)
+ c

= −c

[(
1√

� (q∗1)
− 1

)
+

1√
� (q∗1)

(
1 − cq∗1

� (q∗1)

)]
≤ 0,

where the inequality follows from that � (q∗1) =
c(2q∗1 − q) ≥ cq∗1 , it follows from (34) that
EQ[v(e∗(Q))] = EQ∗

1
[v(e∗(Q))] is increasing in N .
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Similarly, we have

� (−√� (qi) − cq∗
1√

α(qi)
+ cq∗1)

�c

= − 2q∗1√
� (q∗1)

+
q∗1

2c

� (q∗1)
√

� (q∗1)
+ q∗1

= −q∗1

[(
1√

� (q∗1)
− 1

)
+

1√
� (q∗1)

(
1 − cq∗1

� (q∗1)

)]
≤ 0,

and it follows that EQ[v(e∗(Q))] is decreasing in c.

Proof of Proposition 4

Using (35) and (36), we have

v(eso(Q))−v(e∗(Q)) =
√

� (q∗1)+
cq∗1√
� (q∗1)

−2
√

cq∗1 (37)

where we use the fact that q∗1 = qso
1 . Then we have

�
(√

� (q∗1) + cq∗
1√

α(q∗
1 )

− 2
√

cq∗1

)
�q ∗

1

=
�

�√
α(q∗

1 )−
√

cq∗
1

�2

√
α(q∗

1 )

�q ∗
1

= − c

� (q∗1)
√

� (q∗1)

(√
� (q∗1) −√cq∗1

)2

+
1√

� (q∗1)

2
(√

� (q∗1) −√cq∗1

)(
c√

� (q∗1)
− c

2
√

cq∗1

)

=
c
(√

� (q∗1) −√cq∗1
)(√

� (q∗1)cq∗1 + cq∗1 − � (q∗1)
)

� (q∗1)
√

� (q∗1)cq∗1
≥ 0

where the inequality follows from√
� (q∗1) −√cq∗1 =

√
c(2q∗1 − q) −√cq∗1 ≥ 0

and√
� (q∗1)cq∗1 +cq∗1−� (q∗1) =

√
c(2q∗1 − q)cq∗1 +cq∗1−c(2q∗1 − q)

≥ c
√

(q∗1−q)(q∗1−q)−c(q∗1−q)=0.

Then it follows from (34) that EQ[v(eso(Q))] −
EQ[v(e∗(Q))] = EQ[v(eso(Q)) − v(e∗(Q))] is decreasing
in N . Furthermore, using (37) we have

lim
N→∞

(EQ[v(eso(Q))] − EQ[v(e∗(Q))])

= lim
N→∞

EQ[v(eso(Q)) − v(e∗(Q))]

= lim
N→∞

EQ∗
1

[√
� (Q∗

1)+
cQ∗

1√
� (Q∗

1)
−2
√

cQ∗
1

]

= lim
q∗

1→q

(√
� (q∗1) +

cq∗1√
� (q∗1)

− 2
√

cq∗1

)

=
√

� (q) +
cq√
� (q)

− 2
√

cq

=
√

cq+
cq
√cq

− 2
√

cq= 0,

where the third equality follows from that

lim
N→∞

f Q∗
1(N)(q) = ∞,

and

lim
N→∞

f Q∗
1(N)(q) = 0, ∀q �= q.

Proof of Theorem 3

The proof is similar to the proofs of Lemmas 1, 2, and 3 and
Theorem 1, and we present the differences as follows. We �rst
show that the DIC property is achieved. Similar to the proof
of Lemma 2, given that any user i reports any quality q′i and
truthfully report its data di, its optimal effort to make is

ei = 3

√
qi

q′i
e′i(q

′).

Similar to the proof of Lemma 3, for q′i = a > qi, we have

ûi(qi, q′
−i, qi, e′i) − ûi(a,q′

−i, qi, e′i)

= c
∫ a

qi

e′i(q,q′
−i)

q
dq− 3

2
ce′i(a,q′

−i)
(

1 −
(qi

a

) 2
3
)

≥ ce′i(a,q′
−i)
[
ln

a
qi

− 3
2

(
1 −

(qi

a

) 2
3
)]

≥ 0

where the second inequality follows from the following fact:

g(y) � ln y − 3
2

(
1 −

(
1
y

) 2
3
)

≥ 0, ∀y ≥ 1,

which can be proved in a similar way as the proof of Lemma 4.
Also, for q′i = b < qi, we have

ûi(b,q′
−i, qi, e′i) − ûi(qi, q′

−i, qi, e′i)

= c
∫ qi

b

e′i(q,q′
−i)

q
dq+ 2ce′i(b,q′

−i)
(

1 −
√

qi

b

)

≤ ce′i(b,q′
−i)
[
ln

qi

b
+

3
2

(
1 −

(qi

b

) 2
3
)]

≤ 0

where the second inequality follows from the following fact:

g(y) � ln y +
3
2

(
1 − y

2
3

)
≤ 0, ∀y ≥ 1,

which can be proved in a similar way as the proof of Lemma 5.
Then we show that the IR property is also achieved. Similar

to the proof of Theorem 1, we have

ũi(di, qi, e′i) = c
∫ q̄

qi

e′2i (q,q′
−i)

q
dq+

3
2

ce′2i (qi, q′
−i)

−3
2

c
(

qi

qi

) 2
3

e′2i (qi, q′
−i)

= c
∫ q̄

qi

e′2i (q,q′
−i)

q
dq≥ 0.
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