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ABSTRACT
Mobile data crowdsourcing has found a broad range of applications

(e.g., spectrum sensing, environmental monitoring) by leveraging

the “wisdom” of a potentially large crowd of “workers” (i.e., mobile

users). A key metric of crowdsourcing is data accuracy, which relies

on the quality of the participatingworkers’ data (e.g., the probability
that the data is equal to the ground truth). However, the data quality

of a worker can be its own private information (which the worker

learns, e.g., based on its location) that it may have incentive to

misreport, which can in turn mislead the crowdsourcing requester

about the accuracy of the data. This issue is further complicated by

the fact that the worker can also manipulate its effort made in the

crowdsourcing task and the data reported to the requester, which

can also mislead the requester. In this paper, we devise truthful

crowdsourcing mechanisms for Quality, Effort, and Data Elicitation
(QEDE), which incentivize strategic workers to truthfully report

their private worker quality and data to the requester, and make

truthful effort as desired by the requester. The truthful design of

the QEDE mechanisms overcomes the lack of ground truth and the

coupling in the joint elicitation of worker quality, effort, and data.

Under the QEDE mechanisms, we characterize the socially optimal

and the requester’s optimal task assignments, and analyze their

performance. We show that the requester’s optimal assignment is

determined by the largest “virtual valuation” rather than the highest

quality among workers, which depends on the worker’s quality and

the quality’s distribution. We evaluate the QEDE mechanisms using

simulations which demonstrate the truthfulness of the mechanisms

and the performance of the optimal task assignments.
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1 INTRODUCTION
Mobile data crowdsourcing (referred to as “crowdsourcing” for

brevity) has found a wide range of applications. Typical applications

involves physical sensing tasks (also known as “crowdsensing")

such as spectrum sensing, traffic monitoring, and environmental

monitoring. In principle, crowdsourcing leverages the “wisdom”

of a potentially large crowd of workers (i.e., mobile users) for a

crowdsourcing task. A key advantage of crowdsourcing lies in that

it can exploit the diversity of inherently inaccurate data from many

workers by aggregating the data obtained by the crowd, such that

the data accuracy (also referred to as “data quality”) after aggrega-

tion can be substantially enhanced. With enormous opportunities

brought by big data, crowdsourcing serves as an important first

step for data mining tools to harness the power of big data in many

application domains.

To fully exploit the potential of crowdsourcing, it is important

to assign crowdsourcing tasks to workers based on their quality. A

worker’s quality
1
captures the intrinsic accuracy of the worker’s

data relative to the ground truth of the interested variable, and

it generally varies for different workers depending on a worker’s

characteristics (e.g., location, capabilities of sensors). For example,

if the crowdsourcing task is to detect whether a licensed frequency

band is idle or occupied by a licensed user (for opportunistic spec-

trum access by unlicensed users), then the quality of a worker’s

data is the probability of correct detection, which depends on the

worker’s location relative to the licensed user. Workers generally

have diverse quality. A worker can learn its quality based on the

knowledge of its characteristics, such as its location
2
. However,

the quality of a worker’s can be its private information, which is

unknown to and cannot be verified by the crowdsourcing requester.

For example, a worker’s location is often its private information

that is unknown to the requester. As a result, a strategic worker may

have incentive to manipulate its quality revealed to the requester

so as to gain an advantage. For example, a worker of low quality

may pretend to have high quality in the hope of receiving a high

reward for contributing high quality data to the task.

In addition to the worker quality, the data quality of a worker is

also affected by its effort exerted in a crowdsourcing task. The data

quality of a worker when it makes effort in the task is higher than

when it makes no effort. For example, to detect whether a licensed

1
We use “worker quality” and “quality” exchangeably in this paper. “Worker quality”

should be distinguished from “data quality”.

2
Alternatively, a worker can report its characteristics (e.g., location) that determines

its quality to the requester, so that the requester can learn the worker’s quality. In this

case, reporting the worker’s quality is equivalent to reporting its characteristics.
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frequency band is idle, a worker should measure the signal in that

band to make an estimate, rather than making a guess without any

measuring. However, a worker’s effort can also be its hidden action

that cannot be observed by the requester. Due to the inaccurate

nature of the data, a strategic worker may report some arbitrary

data to the requester without making effort in the task, while the

requester is not able to verify whether effort was actually made.

Furthermore, the data itself obtained by a worker from the task

could also be its private information that it can manipulate in favor

of itself.

In the presence of strategic workers with private worker quality,

hidden effort, and private data, our goal is to incentivize work-

ers to truthfully reveal their worker quality and data, and make

truthful effort as desired by the crowdsourcing requester. Such a

truthful mechanism is desirable as it eliminates the possibility of

manipulation, which would encourage workers to participate in

crowdsourcing. More importantly, the joint truthful elicitation of

quality, effort, and data ensures that the requester can correctly
know the data accuracy of the collected data, which is a key metric of

crowdsourcing. This is in contrast to the situation of crowdsourcing

with private participating cost, where manipulating the cost does

not mislead the requester about the data accuracy.

The joint elicitation of quality, effort, and data calls for new

truthful design that is different from existing mechanisms. First, a

worker’s payoff as a function of its quality, effort, and data has a

different structure from that of its private participating cost. As a

result, existing designs for cost elicitation cannot work for the prob-

lem here. Second, due to the statistical dependency of a worker’s

private data on its private quality and hidden effort, the joint elici-

tation of quality, effort, and data needs to overcome the coupling

therein.

Given a truthful mechanism that can elicit quality, effort, and

data from workers, an important question for the requester is to

determine which worker(s) the task should be assigned to based

on their quality, in order to maximize the social welfare or the

requester’s payoff. This involves the tradeoff between assigning the

task to more workers to improve the data accuracy, and assigning

it to fewer workers to reduce the total cost incurred or total reward

paid to the workers.

The main contributions of this paper can be summarized as

follows.

• Under a quality-aware crowdsourcing framework, we devise

truthful crowdsourcing mechanisms for Quality, Effort and

Data Elicitation (QEDE). With general task assignment func-

tions, the QEDE mechanisms incentivize strategic workers

to truthfully reveal their private quality and data, and make

truthful effort as desired by the crowdsourcing requester.

The truthful design of the QEDE mechanisms overcomes the

lack of ground truth and the coupling in the joint elicitation

of worker quality, effort, and data, by exploiting the statis-

tical dependency of a worker’s private data on its private

worker quality and hidden effort.

• Under the QEDE mechanisms, we characterize the socially

optimal (SO) and the requester’s optimal (RO) task assign-

ments, and analyze their performance. We show that the RO

assignment is determined by the largest virtual valuation

rather than the highest quality among workers, which de-

pends on the worker’s quality and the quality’s distribution.

We also show that, as the number of workers becomes large,

the gap between the social welfare attained by the RO as-

signment and the SO assignment decreases and converges

to 0.

• We evaluate the QEDE mechanisms using simulation results

which demonstrate the truthfulness of the mechanisms and

the performance of the RO and SO assignments.

The rest of this paper is organized as follows. Section 2 reviews

related work. In Section 3, we describe the system model of quality-

aware crowdsourcing with private data quality and formulate the

problem of truthful mechanism design. In Section 4, we devise truth-

ful mechanisms for Quality, Effort, and Data Elicitation (QEDE),

and explain the ideas of the design and the rationale behind. In

Section 5, we characterize the optimal assignments under the QEDE

mechanisms and analyze their performance. Section 6 discusses

modification of the QEDE mechanisms when there is no reference

data from the requester. Simulation results are presented in Section

7. Section VII concludes this paper and discusses future work.

2 RELATEDWORK
Quality based data crowdsourcing. The quality of data is impor-

tant for allocating crowdsourcing tasks to workers, and has been

studied in a few works [1–8]. One interesting line of work [6–8]

in this direction has studied truthful mechanisms for information

quality based task allocation where workers have private partici-

pating cost. Some other works have focused on learning the data

quality of workers, e.g., by exploiting the correlation of their data

for the same tasks [1, 3], or allocating tasks on the fly [5]. Different

from these works, this paper focuses on the situation where quality

is a worker’s private information that is unknown to the requester.

A recent work [9] has proposed a quality-aware crowdsourcing

framework and devised truthful mechanisms for quality and effort

elicitation. Compared to this paper, a key difference of [9] is that

the data considered in [9] take continuous values and the quality is

measured by the variance of the error, which can capture physical

sensing tasks involving fine-grained measurements such as mea-

suring temperature or air pollution. On the other hand, this paper

focuses on data taking discrete values and the quality measured by

the correct probability, which can capture physical sensing tasks

as well as human intelligent tasks involving coarse-grained detec-

tion or classification, such as spectrum occupancy, image labeling.

Moreover, the truthful mechanisms devised in this paper achieve

joint elicitation of quality, effort, and data, which is stronger than

in [9] which achieves quality and effort elicitation. As a result of

these differences, the truthful mechanisms of in this paper and its

analysis are non-trivially different from those in [9].

Truthful crowdsourcing with private cost. There have been
a lot of recent research on incentive mechanisms for crowdsourc-

ing [2, 4, 10–17]. Most of these mechanisms incentivize workers

to truthfully reveal their participating cost. The cost is considered

to be a strategic worker’s private information that it may not re-

veal truthfully without appropriate incentive. Different from these

works, we study the situation where the quality of a worker’s data



obtained from a crowdsourcing task is the worker’s private infor-

mation that it can manipulate. A worker’s payoff as a function of its

private quality has a different structure than that of its private cost.

As a result, existing designs for cost elicitation (such as the classical

VCG auction and the characterization of truthful mechanisms [18,

Theorem 9.36]) cannot work for quality elicitation, so that new

design is needed. Furthermore, this paper aims at joint elicitation

of quality, effort, and data. The statistical dependency of a worker’s

private data on its private quality and hidden effort leads to the

coupling in the elicitation of quality, effort, and data, which needs

to be addressed.

Mechanism design for hidden actions and data elicitation.
There have been many studies on mechanism design for hidden

actions in the economics literature [19], which is concerned with

strategic agents that can take hidden actions not desired by a prin-

cipal who recruits the agents to work on a task. A few recent works

have studied this problem in the context of crowdsourcing [14, 20–

23]. Cai et al. [21] have designed truthful mechanisms to incentivize

workers to make effort as desired in statistical estimation. Luo et al.
[14] have designed mechanisms that not only elicit desired effort

from workers but also truthful revelation of their private cost and

data. This paper is different from these works as we aim to jointly

elicit workers’ private quality, private data, and hidden effort, which

cannot be achieved by existing truthful design.

Mechanism design for truthful elicitation of strategic agents’ data

(e.g., opinions) has been extensively studied in various applications

(e.g., [24]), more recently for crowdsourcing [14, 20, 22, 23, 25].

The data of an agent can be its private information that it can

manipulate in favor of its benefit. Different from the existing works,

in this paper we aim to design truthful mechanisms that jointly

elicit workers’ private data, private quality, and hidden effort, which

calls for new truthful design.

3 QUALITY-AWARE DATA
CROWDSOURCING FRAMEWORK

We consider a crowdsourcing requester (also referred to as worker

0
3
) recruiting a set of workers N ≜ {1, · · · ,N } to work on a task.

For convenience, let N+ ≜ N ∪ {0}. The structure and procedure

of the crowdsourcing system is illustrated in Fig. 1 and described

in detail as follows.

3.1 Data crowdsourcing with private data
quality

Data observation. The crowdsourcing task is to observe and esti-

mate an unknown and random variable of interestX . The interested

variable X takes discrete values (e.g., the answer of a multi-choice

question). For ease of exposition, we assume that X takes one of

two possible values
4
0 and 1. We also assume that X takes value 0

or 1 equally likely in the prior distribution. After working on the

task, each worker i ∈ N+ (i.e., including the requester) obtains

random data Di . The accuracy of the data Di is quantified by the

correct probability pi , which is the probability that Di is equal to

3
In Section 6, we will address the situation where the requester cannot work on the

task as a worker.

4
The results of this paper can be fairly easily extended to the case of multiple possible

values of the interested variable X .
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Figure 1: Structure and procedure of the quality-aware
crowdsourcing framework.

the interested variable X , given by

pi ≜ Pr(Di = X ) = qiei + 0.5(1 − ei ). (1)

Here the correct probability pi depends on the worker quality qi of
worker i and the effort ei exerted by worker i in the task, which is

explained as follows.

Worker quality. Given that worker i makes effort in the task,

the quality qi ∈ [0, 1] determines the correct probability pi which
quantifies how accurate Di is. The quality qi is an intrinsic coef-
ficient that captures worker i’s capability for the task. Note that

a larger qi means higher quality. The quality generally varies for

different workers. We assume that each worker i ∈ N+ knows

its quality qi (e.g., by learning the correct probability based on its

location). However, the quality of each worker i ∈ N is unknown to

the requester. For ease of exposition, we assume that each worker’s

quality qi is within the range of [q, q̄] which is known to the re-

quester.

Work effort. The effort ei ∈ {0, 1} represents whether worker i
makes effort in the task, where ei = 1 and ei = 0 indicate making

and not making effort, respectively. If worker i makes effort, then

the correct probability pi of worker i is equal to the worker quality

qi ; otherwise, pi is equal to 0.5, which means that worker i simply

makes a guess ofX randomly according to the prior distribution. To

ensure that making effort is meaningful, we assume that qi > 0.5.

Therefore, given the quality qi , making effort ei = 1 means a larger

correct probability pi and thus higher accuracy of Di than not

making effort. The binary effort model (i.e., either making effort

or not) is reasonable (also used in, e.g., [20, 22, 23]), as workers’

behavior tend to be simple in practice. We assume that each worker

i can control its effort ei , but it cannot be observed by the requester.
We assume that the requester itself always makes effort in the task

(i.e., e0 = 1).

Task assignment. The requester assigns the crowdsourcing

task to the workers by assigning effort e ′i to each worker i , which
indicates whether it desires worker i to make effort in the task,

based on the workers’ quality. To this end, each worker i reports its
quality q′i to the requester

5
. Since the true quality qi is worker i’s

private information, it may manipulate the reported quality q′i to
its own advantage such that q′i , qi . Based on the quality reported

by all workers, the requester determines the effort e ′i assigned to

5
Workers should report their worker quality {q′i } rather than data quality {p′i }, as it
allows the requester to assign the task to workers based on their quality {q′i }. This is
desirable for achieving some particular task assignments, such as the socially optimal

assignment.



each worker i according to some assignment function

e ′i (q
′) (2)

and notifies worker i of e ′i . The assignment function e ′i (q
′) is pre-

defined by the requester and announced to all the workers before

they report their quality. Aworker’s assignment generally varies for

different workers due to the diversity of their quality. Intuitively,

a worker of high quality is preferred to be assigned to the task.

Note that in general the assignment e ′i is not only dependent on the

quality q′i reported by worker i but also on the quality q′
−i reported

by the other workers. After being assigned effort e ′i to, each worker

i works on the task by making actual effort ei . Since ei is a hidden
action of worker i , it may manipulate it against the assignment e ′i
to its own advantage such that ei , e ′i . After obtaining data di from
the task (which is a sample realization of the random data Di ), each

worker i reports data d ′i to the requester. Since di is also private

information of worker i , it may manipulate the reported data d ′i
against the actual obtained data di to its own advantage such that

di , d
′
i .

Data aggregation. After collecting all the data d reported by

the workers, the requester aggregates the data d by making the

optimal estimate x0 of the interested variable X based on d . The
optimal estimate x0 maximizes the posterior probability that x0 is

equal to the ground truth x , i.e.,

x0 (q
′,e ′,d ′) ≜ arg max

d ∈{0,1}
EX |d ′ (q′,e ′)[1X=d ]. (3)

Note that the distribution of X conditioned on d ′ depends on work-

ers’ reported quality q′ and assigned effort e ′. Then the utility of

crowdsourcing is represented by the correct probability pc of the
optimal estimate x0, given by

pc (q
′,e ′,d ′) ≜ EX |d (q,e )

[
1X=x0 (q′,e ′,d ′)

]
. (4)

Note that the expectation is over the posteriori distributionX |d (q,e )
conditioned on the true data d depending on the true quality q and

actual effort e . If the task is not assigned to any worker (i.e., e ′i = 0,

∀i), then the correct probability pc is defined to be 0.

Reward payment. On the other hand, the requester pays a

reward ri to each worker i for working on the task, according to a

certain reward function:

ri (q
′, e ′i ,d

′
i ,d0). (5)

Note that the reward ri depends on the reference data d0 obtained

by the requester itself. The reward function is also pre-defined by

the requester, and announced to all the workers before they report

their quality (together with the assignment function e ′i (q
′)). Note

that the reward function can only depend on the information that

the requester knows, i.e., q′, e ′, d ′, and d0.

3.2 Mechanism Design Objective
Based on the crowdsourcing system described above, each worker

i’s payoff ui is the reward ri paid by the requester minus its cost in
the task, given by,

ui (q
′, ei ,d

′
i ,d0) ≜ ri (q

′, e ′i ,d
′
i ,d0) − ciei . (6)

Here the cost ci represents how much resource is consumed by

worker i (e.g., how much time is spent by worker i) if it makes effort

ei = 1 in the task. If worker i make no effort ei = 0, it incurs no

cost. Note that the relative weight of the cost ci with respect to the

reward ri in (6) can be captured by ci . We assume that workers have

the same cost
6 c (i.e., ci = c , ∀i) which is known to the requester.

This assumption is reasonable when the cost c is determined by a

uniform market price for working on a task.

The requester’s payoff u0 is the crowdsourcing utility (i.e., the

correct probability pc ) minus the total reward paid to the workers,

i.e.,

u0 (q
′,e ′,d ′) ≜ pc (q

′,e ′,d ′) −
∑
i ∈N

ri (q
′, e ′i ,d

′
i ,d0). (7)

As the workers have private quality and data and make hidden

effort, if any worker manipulates its reported quality, reported data,

or actual effort, then the estimate x0 found by the requester would

be different from the correct estimator, i.e.,

x0 (q
′,e ′,d ′) , x0 (q,e,d ).

More importantly, the correct probability pc found by the requester
would be different from the correct one, i.e.,

pc (q
′,e ′,d ′) , pc (q,e,d ).

This means that manipulation would lead to the requester’s incor-
rect knowledge of the correct probability! This is highly undesirable

since the data accuracy is often a key performance metric that

the requester needs to know correctly (e.g., to meet some thresh-

old requirement). Note that this issue does not arise in the setting

where workers have private cost only, since manipulating the cost

can affect only the crowdsourcing utility and the reward payment

but cannot affect the requester’s knowledge of the data accuracy.

Furthermore, the possibility of manipulation could result in con-

cerns that discourage workers to participate in crowdsourcing. Thus

motivated, we aim to design a mechanism, which is a pair of an

assignment function e ′i (q
′) and a reward function ri (q′, e ′i ,d

′
i ,d0),

that can achieve the property of incentive compatibility as stated

below.

Definition 1. A mechanism is dominant incentive-compatible
(DIC) if, given any quality reported by the other workers, the optimal
strategy of each worker i for maximizing its expected payoff is to
truthfully report its quality and data, and make the effort desired by
the requester, i.e.,

ED0 |di (qi ,ei )
[
ui (qi ,q

′
−i , ei ,di ,D0)

]
≥

ED0 |di (qi ,ei )
[
ui (q

′
i ,q
′
−i , e

′
i ,d
′
i ,D0)

]
,∀(q′i , ei ,d

′
i ),∀q

′
−i .

Another natural and desirable property we aim to achieve is

that each worker’s expected reward should at least compensate its

cost (i.e., its expected payoff is nonnegative), since otherwise the

worker would not participate in crowdsourcing for a payoff of 0.

This property of individual rationality is stated as follows.

Definition 2. A mechanism is individually rational (IR) if for
each worker i , given that it truthfully reports its quality and makes
the effort desired by the requester, its expected payoff is nonnegative,
i.e.,

ED0 |di (qi ,ei )
[
ui (qi ,q

′
−i , e

′
i ,di ,D0)

]
≥ 0, ∀q′−i .

6
The truthful mechanisms still hold when workers have diverse costs ci (i.e., ci , c j ,
∀i , j ) which are known to the requester.



4 TRUTHFUL QUALITY, EFFORT, AND DATA
ELICITATION FOR CROWDSOURCING

In this section, we design truthful crowdsourcing mechanisms that

achieve the DIC and IR properties.

We first present the QEDE mechanisms as follows.

Definition 3. A Quality, Effort, and Data Elicitation (QEDE)
mechanism consists of any assignment function e ′i (q

′) that satisfies
the condition in (8) and the reward function ri (d0,di ,q′, e ′i ) given by
(9) based on that e ′i (q

′):

e ′i (q
′
i ,q
′
−i ) ≥ e ′i (q

′′
i ,q

′
−i ), ∀q

′
i ≤ q′′i , ∀q

′
−i (8)

ri (d0,d
′
i ,q
′, e ′i )= kq

′
ie
′
i (q
′)

[ 1d0=di + q0 − 1

2q0 − 1

]
+ ce ′i (q

′)

+

∫ q′i

q
kqe ′i (q,q

′
−i )dq− kq

′
ie
′
i (q
′)
[
0.5 + (q′i − 0.5)e ′i (q

′)
]

(9)

where k is any constant that satisfies the condition

k ≥
c

q(q − 0.5)
(10)

and 1A is the indicator function that is equal to 1 if condition A is
true and 0 otherwise.

The condition (8) is a general monotonicity property for the task

assignment functions: given any quality of the other workers, if the

task is assigned to a worker, then the task is still assigned to that

worker when its quality improves. Intuitively, these assignment

functions are natural and desirable for system efficiency. Next we

will explain the main ideas of the design of the QEDE mechanisms

(8) and (9). In particular, we will show successively that, for each

worker, 1) it is optimal to report its true data (Lemma 1); 2) it is

optimal to make actual effort as desired (Lemma 2); 3) it is optimal

to report the true quality (Lemma 3). As a result, the DIC property

is achieved (Theorem 1). Then we will explain the rationale behind

the design in Remark 1.

In the following, we show how the QEDE mechanisms achieve

the DIC property (with the proofs in Appendix). We first show

that any worker’s optimal reported data is to report the true data,

independent of its reported quality and actual effort. Given the

lack of the ground truth x , this is achieved by the peer prediction

mechanism (see, e.g., [20, 22, 23, 25]) which compares the reported

data di with the reference data d0 from the requester.

Lemma 1. Under the QEDE mechanisms, given that any worker i
reports any quality q′i and makes any effort e ′i , its optimal reported
data is its true data d ′i = di .

Using Lemma 1, given that worker i reports the optimal data

d ′i = di , we can express its expected payoff as

ED0 |di (qi ,ei )[ui (q
′, e ′i ,di ,D0)]=kq

′
ie
′
i (q
′) [0.5+ (qi−0.5)ei )]

+

∫ q′i

q
kqe ′i (q,q

′
−i )dq − kq

′
ie
′
i (q
′)
[
0.5 + (q′i − 0.5)e ′i (q

′)
]

+ ce ′i (q
′) − cei . (11)

Then we have

ED0 |Di (qi ,ei )[ui (q
′, e ′i ,Di ,D0)]

= ED0 |di (qi ,ei )[ui (q
′, e ′i ,di ,D0)],∀d

′
i

since the right hand side of (11) is independent of di . For conve-
nience, we can define

ūi (q
′,qi , e

′
i , ei ) ≜ ED0 |Di (qi ,ei )[ui (q

′, e ′i ,Di ,D0)] (12)

according to (11). Then we show that, as worker i can only affect

its payoff in (12) via its reported quality q′i and actual effort ei , its
optimal actual effort is the desired effort e ′i , independent of qi and
true quality qi .

Lemma 2. Under the QEDE mechanisms, given that any worker i
reports any quality q′i and truthfully report its data di , its optimal
actual effort is the desired effort ei = e ′i .

Using Lemma 2, given that worker i reports the optimal data

d ′i = di and makes the optimal effort ei = e ′i , we can express its

expected payoff using (11) and (12) as

ūi (q
′,qi , e

′
i , ei )=kq

′
ie
′
i (q
′) (qi − q

′
i )+

∫ q′i

q
kqe ′i (q,q

′
−i )dq. (13)

For convenience, we can define

ûi (q
′,qi , e

′
i ) ≜ ūi (q

′,qi , e
′
i , ei ) (14)

according to (13).

Next we show that, as worker i can only affect its payoff in

(14) via its reported quality q′i , its optimal reported quality is its

true quality qi , under the general condition (8) on the assignment

function e ′i (q
′).

Lemma 3. Under the QEDE mechanisms, given that any worker
i truthfully reports its data di and makes the desired effort e ′i , its
optimal reported quality is its true quality q′i = qi .

Using Lemmas 1, 2, and 3, we can show that the DIC property

is achieved as in the next theorem. Using (13) and (14), given that

worker i reports the optimal data d ′i = di , makes the optimal effort

ei = e ′i , and reports the optimal quality q′i = qi , its payoff is given

by

ûi (qi ,q
′
−i ,qi , e

′
i ) = k

∫ qi

q
qe ′i (q,q

′
−i )dq. (15)

It follows that the IR property is also achieved since ûi (qi ,q′−i ,qi , e
′
i )

≥ 0 due to that e ′i (q
′) ≥ 0, ∀q′.

Theorem 1. The QEDE mechanisms are DIC and IR.

Remark 1: We explain the design rationale of the QEDE mecha-

nisms as follows. We first observe that the optimal reported data d ′i
that maximizes ED0 |di (qi ,ei )[1D0=d ′i

] which is the probability that

d ′i is equal to d0 is always the true data di (as in Lemma 1). Then we

can design the expected reward as a function of 0.5 + (qi − 0.5)ei
which is the probability that d ′i is equal to the ground truth x , such
that worker i’s expected payoff depends on the true quality qi and
the actual effort ei , and is independent of the true data di (as in
(11)). Now the expected payoff only depends on q′i , e

′
i , qi , and ei

(as in (12)). Then we can design the reward function such that the

optimal actual effort ei that maximizes the payoff is always the



desired effort e ′i and independent of q′i and qi (as in Lemma 2). As

a result, worker i’s payoff now only depends on q′i , e
′
i , and qi (as in

(13) and (14)). Next we further design the reward function such that,

under the monotonicity condition (8) on e ′i , the optimal reported

quality q′i is always the true quality qi and independent of e ′i (as in
Lemma 3).

It follows from (15) that when all workers behave truthfully (i.e.,

q′i = qi , ei = e ′i , and d
′
i = di ), the total expected reward paid by the

requester is ∑
i ∈N

*
,
k

∫ qi

q
qe ′i (q,q

′
−i )dq + ce

′
i (q
′)+
-
. (16)

It can be seen from (16) that, to minimize the requester’s payoff,

k should be minimized such that condition (10) is satisfied with

equality. We assume that this equality holds in the rest of this paper.

Remark 2: We can see from (16) that the requester’s payment for

each worker consists of two parts: while the second part ce ′i (q
′)

is to compensate the worker’s cost, the first part (i.e., the integral

multiplied by k) is to elicit the worker’s truthful behavior. This

shows that the requester pays more than needed to cover the cost by

the truth-eliciting payment (also known as “information rent” [26]),

which is due to the requester’s uncertainty of workers’ quality. We

can also observe from (16) that, as the multiplier k (determined

by (10)) and the integral are both decreasing in the lower bound q

of workers’ quality, the truth-eliciting payment is also decreasing

in q (as illustrated by Fig. 5 in Section 7). Intuitively, this is because

the requester knows more information (i.e., less uncertainty) of

workers’ quality with a larger q. We further observe that both the

truth-eliciting payment and the payment for compensating the cost

are increasing in the cost c . This shows that the requester’s payment

decreases faster than the cost when c increases (as illustrated by

Fig. 6 in Section 7).

5 OPTIMAL TASK ASSIGNMENT FOR
TRUTHFUL CROWDSOURCING

In Section 4, we have shown that the DIC and IR properties can

be achieved by all the QEDE mechanisms which have general as-

signment functions that satisfy condition (8). In this section, we

will find the optimal assignment under the QEDE mechanisms that

maximizes the social welfare and the requester’s payoff, respec-

tively. Because of the DIC property, in this section we assume that

q′ = q, e = e ′, and d ′ = d . Therefore, for brevity, we use q, e , and
d instead of q′, e ′, and d ′ respectively.

5.1 Socially optimal assignment
An important metric for the assignment e (q) is system efficiency,

which is measured by the social welfare (the requester may be also

interested in this objective). The social welfare v is the crowdsourc-

ing utility (i.e., the correct probability pc ) minus the total cost of

all workers, i.e.,

v (q,e (q)) ≜ ED (q,e )[pc (q,e,D)] −
∑
i ∈N

cei . (17)

Definition 4. The socially optimal (SO) assignment eso (q) for
the QEDE mechanisms is the assignment function e (q) satisfying

condition (8) that maximizes the social welfare, i.e.,

{eso (q),∀q} ≜ arg max

{e (q ),∀q } s.t. (8)
EQ [v (Q,e (q))]. (18)

We first consider single-worker assignment, which consists of

the assignment functions that assign the task to at most one worker.

The advantage of single-worker assignment is that it simplifies the

implementation of crowdsourcing: the requester needs to collect

data from only one worker rather than potentially many workers.

We should note that single-worker assignment still exploits the
diversity of potentially many available workers in crowdsourcing,

as the worker is selected based on the quality of all the workers.

Under single-worker assignment, the requester’s optimal estimate

x0 of the interested variable X is just equal to the data di reported
by the worker i who works on the task, and the correct probability

pc is equal to the quality qi of that worker i .
We can find the socially optimal assignment for single-worker

assignment as follows.

Proposition 1. For single-worker assignment, the socially optimal
assignment is given by

esoi (q) =



1, i = arg maxj qj and qi ≥ c

0, otherwise
. (19)

Proposition 1 shows that the task is assigned to the “best” worker

i that has the highest quality qi if and only if the cost c is less than
the qualityqi . This is clearly because the best worker maximizes the

correct probability pc and thus the social welfare v . It is also clear

that the SO assignment (19) satisfies the monotonicity condition

(8) of the QEDE mechanisms (thus the proof of Proposition 1 fol-

lows and is omitted). We should note that although single-worker

assignment involves only one worker to work on the task, it still

exploits the diversity of multiple available workers, as it selects the

worker of the highest quality.

Next we consider general assignment functions that can assign

the task to multiple workers. It can been shown (e.g., see [5]) that

the optimal estimate given in (3) is equivalent to that x0 = 1 if and

only if ∏
i :ei=1,di=1

log

qi
1 − qi

≥
∏

j :ej=1,dj=1

log

qj

1 − qj

and x0 = 0 otherwise. It has been shown in [5] that, without im-

posing the condition (8) of the QEDE mechanisms, the optimal

assignment that maximizes the social welfare satisfies an intuitive

property: there exists some k such that the task is assigned to only

the top k workers that have the highest quality. As a result, it can

be found by an efficient exhaustive search algorithm with linear

complexity as described in Algorithm 1. In the following, we show

that the solution found by Algorithm 1 is also the SO assignment

for the QEDE mechanisms. Due to space limitation, the proofs of

the results in the rest of this paper are given in our online technical

report [27].

Proposition 2. For multi-worker assignment, the socially optimal
assignment is found by Algorithm 1.

The main idea of the proof of Proposition 2 is to show that the

output of Algorithm 1 satisfies the monotonicity condition (8) of

the QEDE mechanisms.



Algorithm 1: Find the socially optimal assignment for multi-

worker assignment

1 Index workers in the descending order of their quality, i.e.,

q1 ≥ q2 ≥ · · ·qN ;

2 ej ← 0, ∀j, t ← v (q,e ), i = 1;

3 while i ≤ N ;
4 do
5 ei ← 1;

6 if v (q,e ) > t then
7 e∗ ← e;

8 end
9 i ← i + 1;

10 end
11 return eso ;

5.2 Requester’s optimal assignment
A desirable objective for the requester is to find the optimal assign-

ment that maximizes its expected payoff.

Definition 5. The crowdsourcing requester’s optimal (RO) as-
signment e∗ (q) for the QEDE mechanism is the assignment function
e (q) satisfying condition (8) that maximizes the requester’s expected
payoff (7), i.e.,

{e∗ (q),∀q} ≜ arg max

{e (q ),∀q } s.t. (8)
ED (Q ,e )[u0 (Q,e,D)]. (20)

For ease of analysis, in the rest of this subsection we focus on

single-worker assignment. One reason is that the characterization

of the RO assignment for single-worker assignment and the corre-

sponding performance analysis provide useful insights. We further

assume that each worker’s quality follows an independent and

identical distribution over an interval [q, q̄], which is known to the

requester.

Proposition 3. For single-worker assignment, when

α (q) ≜ q + kq
F (q) − 1

f (q)

is an increasing function of q, the RO assignment is given by

e∗i (q) =



1, i = arg maxj α (qj ) and α (qi ) ≥ c

0, otherwise
(21)

where f (q) and F (q) denote the probability density function (PDF)
and cumulative density function (CDF) of each worker’s quality, re-
spectively.

We should note that the property that α (q) is an increasing

function of q holds under mild conditions, e.g., when F (q) and f (q)
follow a uniform distribution. We assume that this property holds

in the rest of this section.

Remark 3: Proposition 3 shows that the task is assigned to the

“best”
7
worker i that has the largest “virtual valuation” α (qi ), if and

only if the cost c is less than the virtual valuation α (qi ). Note that
each worker i’s virtual valuation depends on not only its quality qi
but also the quality’s distribution F (qi ) and f (qi ). This implies that

7
If there are multiple “best” workers, only one of them is selected by breaking the tie

randomly.

the range of a worker’s possible quality, represented by ∆q ≜ q̄ −q,

affects the task assignment. For ease of analysis, suppose F (q) and
f (q) follow a uniform distribution such that (F (q)−1)/f (q) = q−q̄.
Given workers’ quality, when the upper bound q̄ of workers’ quality
decreases so that the quality range ∆q decreases, each worker’s

virtual valuation α (qi ) increases, and thus the condition α (qi ) ≥ c
for assigning the task to the best worker i is more likely to hold.

Intuitively, this is because a smaller quality range incurs a lower

truth-eliciting payment in (16) by the requester in order to achieve

truthful elicitation, which increases the requester’s payoff. In the

special case of ∆q = 0, a worker’s virtual valuation is equal to

its quality. The concept of virtual valuation was introduced by

Myerson [18] and is in the same spirit as the result here.

Remark 4: Comparing (19) and (21), we can see that the SO as-

signment is similar to the RO assignment in that the task can be

assigned only to the best worker i that has the highest quality qi .
This is because the virtual valuation α (q) is increasing in q and thus

arg maxj qj = arg maxj α (qj ). The difference is that the RO assign-

ment assigns the task to the best worker i based on the condition

α (qi ) ≥ c rather than the condition qi ≥ c for the SO assignment.

Since it can be easily seen that α (qi ) ≤ qi always holds, there
exist some values of qi such that α (qi ) < c while qi ≥ c . In this

case, the RO assignment e∗i (q) is different from the SO assignment

esoi (q) and attains lower social welfare than esoi (q). Intuitively, this
is because, although assigning the task increases the crowdsourcing

utility and also the social welfare, it incurs a too high truth-eliciting

payment. As a result, the RO assignment is not socially optimal,

and the gap is essentially due to the asymmetry of workers’ quality

information between the workers and the requester.

5.3 Performance Analysis
Next we analyze the impact of system parameters on the perfor-

mance of the SO and RO assignments.

Proposition 4. The expected RO payoff EQ [u0 (e∗ (Q ))] attained
by the RO assignment, the expected SO social welfare EQ [v (eso

1
(Q ))],

and the expected social welfare EQ [v (e∗
1
(Q ))] attained by the RO

assignment, all increase as the number of workers N increases, or the
cost c decreases.

Remark 5: Proposition 4 shows that the RO payoff and social

welfare benefit from a greater diversity gain in workers’ quality.

This is because when there are more workers, the quality of the best

worker is likely to be higher, which improves the crowdsourcing

utility. On the other hand, a larger c increases the cost incurred to

workers as well as the truth-eliciting payment (i.e., the first term

in (16)), and thus reduces the RO payoff and social welfare.

Proposition 5. The gap between the expected social welfare of the
SO assignment and the RO assignmentEQ [v (eso

1
(Q ))]−EQ [v (e∗

1
(Q ))]

converges to 0 as the number of workers N goes to infinity.

Remark 6: Proposition 5 shows that the performance gap between

the RO assignment and the SO assignment decreases to 0 asymp-

totically as the number of workers increases. This is because when

there are more workers, the quality of the best worker improves,

so that the gap between the RO and SO assignments decreases to 0

(i.e., they are more often the same), and thus the gap between their

social welfare also decreases to 0.



Reported quality
0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9

U
s
e

r 
p

a
y
o

ff

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

Truth quality & effort & data
True effort & data
Effort = 0 & True data
Effort = 1 & True data
True effort & Untrue data
Effort = 0 & Untrue data
Effort = 1 & Untrue data

Figure 2: Impact of reported quality
q′

1

Reported quality (=true quality)
0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9

U
s
e

r 
p

a
y
o

ff

-7

-6

-5

-4

-3

-2

-1

0

1

2

3

True effort & data
Effort = 0 & True data
Effort = 1 & True data
True effort & Untrue data
Effort = 0 & Untrue data
Effort = 1 & Untrue data

Figure 3: Impact of reported quality
q′

1
when it is truthful

Number of users
10 20 30 40 50

S
o

c
ia

l 
w

e
lf
a

re
/r

e
q

u
e

s
te

r 
p

a
y
o

ff

0

0.2

0.4

0.6

0.8

1

SW-SO
SW-RO
RP-RO
UP-RO

Figure 4: Impact of the number of
workers n

Quality range
0.1 0.2 0.3 0.4 0.5

S
o

c
ia

l 
w

e
lf
a

re
/r

e
q

u
e

s
te

r 
p

a
y
o

ff

0

0.2

0.4

0.6

0.8

SW-SO
SW-RO
RP-RO
UP-RO

Figure 5: Impact of quality range ∆q

Cost
0 0.02 0.04 0.06 0.08 0.1

S
o

c
ia

l 
w

e
lf
a

re
/r

e
q

u
e

s
te

r 
p

a
y
o

ff

0

0.2

0.4

0.6

0.8

SW-SO
SW-RO
RP-RO
UP-RO

Figure 6: Impact of cost c

6 DEALINGWITH NO REFERENCE DATA
FROM THE REQUESTER

In the previous sections, we have assumed that the requester itself

can work on the task and obtains data d0 with quality q0 and effort

e0 = 1, which are (certainly) known by the requester. The reference

data d0 and its quality q0 are necessary information needed to

achieve the truthfulness of the QEDE mechanism. If the requester

cannot work on the task (e.g., when it is too far away from the

location of interest), we can modify the QEDE mechanism to deal

with this situation, described as follows.

For each worker i , we pick any other worker j , i as a reference
worker, and define the reward function ri as

ri (q
′, e ′i ,d

′
i ,d
′
j ) (22)

where d ′j is the data reported by worker j. We are interested in a

mechanism under which truthful behavior of all workers is a Nash
equilibrium, defined as follows.

Definition 6. A mechanism achieves truthful strategies of all
workers as a Nash equilibrium (NE) if, for each worker i , given that
all other workers j , i , ∀j truthfully report their quality and data,
and make the effort desired by the requester, the optimal strategy of
worker i for maximizing its expected payoff is also to the truthful
strategy, i.e.,

ED j |di (qi ,ei )
[
ui (qi ,q−i , ei ,di ,D j )

]
≥

ED j |di (qi ,ei )
[
ui (q

′
i ,q−i , e

′
i ,d
′
i ,D j )

]
,∀(q′i , ei ,d

′
i ),∀q−i .

To deal with the lack of reference data d0 from the requester, we

modify the reward function of the QEDE mechanism given in (9)

by replacing d0 with the reported data d ′j of worker i’s reference

worker, worker j, and replacing q0 with worker j’s quality q′j . To

guarantee that each worker i working on the task (i.e., ei = 1) has

a reference worker j , i also working on the task (i.e., ej = 1),

we need to restrict the assignment function e ′ such that there are

either at least two workers or no worker working on the task, i.e.,∑
i ∈N

e ′i (q
′) , 1, ∀q′. (23)

The conditions (8) and (10) of the QEDE mechanism remain the

same.We can show that the modified QEDEmechanism can achieve

an NE where all workers behave truthfully, and also the IR property.

The proof follows from the same argument as that of Theorem 1.

7 SIMULATION RESULTS
In this section, we evaluate the properties of the QEDE mechanisms

and its performance with the RO assignment using simulations.

7.1 Worker’s payoff
To illustrate the truthfulness of the QEDEmechanisms, we compare

a worker’s expected payoff when it truthfully reports its quality

and data and makes its effort with when it untruthfully reports its

quality and/or data and/or makes its effort. We use the SO assign-

ment esoi (q) in (19) for the QEDE mechanisms. We set the default

parameters as follows
8
: n = 2, c = 0.3, µq ≜ (q̄ + q)/2 = 0.75,

∆q = 0.4, q1 = 0.7, q2 = 0.6.

Figs. 2 and 3 illustrate worker 1’s expected payoff as it reports

varying quality q′
1
(Fig. 2) or varying true quality q1 (Fig. 3) while

making desired effort e ′
1
= e∗

1
(q′

1
,q2) or undesired effort e ′

1
,

8
It suffices to consider 2 workers only as the RO assignment only depends on the best

worker’s quality.



e∗
1
(q′

1
,q2), and reporting true data d ′

1
= d1 or untrue data d

′
1
, d1,

compared to when it truthfully reports its quality and data and

makes its effort. We can see that the worker’s payoff when its be-

havior is untruthful is always less than when truthful. Furthermore,

the worker’s payoff gap due to untruthfulness often increases when

it is more untruthful (i.e., the difference between the reported qual-

ity and true quality increases). This confirms that the DIC property

is achieved by the QEDE mechanisms so that workers have incen-

tive to behave truthfully. We also observe from Figs. 2-3 that the

worker’s payoff is always greater than 0 when it behaves truth-

fully. This confirms that the IR property is achieved by the QEDE

mechanisms.

7.2 Requester’s payoff
To illustrate the system efficiency of the RO assignment, we com-

pare the expected requester’s payoff (RP), workers’ total payoff

(UP), and social welfare (SW) attained by the RO assignment (RP-

RO, UP-RO, SW-RO) with the expected social welfare (SW) attained

by the SO assignment (SW-SO). Note that by definition, UP-RO is

always equal to SW-RO minus RP-RO. We set the default parame-

ters as follows: N = 5, c = 0.04, µq ≜ (q̄ + q)/2 = 0.75, ∆q = 0.4.

We assume that each worker’s quality follows an i.i.d. uniform

distribution over [q, q̄].

Fig. 4 illustrates the impact of the number of workers N on the

performance. We observe that all the curves are increasing in N ,

which is because they benefit from a greater diversity in workers’

quality when there are more workers. We also observe that the gap

between SW-RO and SW-SO converges to 0 as N increases, which

confirms our result in Proposition 5.

Fig. 5 illustrates the impact of the quality range ∆q on the perfor-

mance. We observe that SW-SO is increasing in ∆q. This is because
the social welfare benefits from a greater diversity of workers’ qual-

ity. We also observe that RP-RO is decreasing in ∆q. Intuitively,
this is due to that a larger quality range requires a higher truth-

eliciting payment in (16). We further observe that as ∆q increases,

the gap between SW-RO and SW-SO is first 0 and then increases.

This is because when ∆q is small, the RO assignment is always

the same as the SO assignment so that SW-RO is always equal to

SW-SO; when ∆q is greater than some value and increases, the RO

assignment more often differs from the SO assignment due to the

higher truth-eliciting payment, so that the gap between SW-RO

and SW-SO increases.

Fig. 6 illustrates the impact of the cost c on the performance.

We observe that all the curves except for UP-RO are decreasing

in c , which is because a higher cost results in lower social welfare

or the requester’s payoff. We also observe that RP-RO decreases

faster than SW-RO as c increases. This is because a larger c not

only results in a higher payment for compensating workers’ cost,

but also a higher truth-eliciting payment in (16) (as discussed in

Remark 2). We further observe that as c increases, the gap between

SW-RO and SW-SO is first 0 and then increases. This is because

when c is small, the RO assignment is always the same as the SO

assignment; when c is greater than some value and increases, the

RO assignment more often differs from the SO assignment due to

the higher truth-eliciting payment.

8 CONCLUSION AND FUTUREWORK
In this paper, we have devised the QEDE mechanisms for quality-

aware crowdsourcing, to incentivize strategic workers to truthfully

report their private quality and data, and make truthful effort as

desired by the crowdsourcing requester. The QEDE mechanisms

have achieved the truthful design by exploiting the statistical de-

pendency of a worker’s private data on its private worker quality

and hidden effort, while addressing the coupling in the joint elic-

itation of quality, effort, and data. Under the QEQE mechanisms,

we have characterized the socially optimal and requester’s optimal

assignments and analyzed their performance, which provide useful

insight.

For future work, one interesting direction is to consider workers

that have no knowledge of their quality. In this case, the requester

needs to learn the quality of strategic workers which may not

truthfully provide data to the requester for the purpose of learning.

In this paper, we have focused on the truthful elicitation of quality,

effort, and data under the assumption that workers’ cost is known

to the requester. The truthful design when workers’ cost is also their

private information is still an open problem and will be studied in

our future work.

REFERENCES
[1] D. R. Karger, S. Oh, and D. Shah, “Budget-optimal crowdsourcing using low-rank

matrix approximations,” in IEEE Annual Allerton Conference on Communication,
Control, and Computing (Allerton), 2011.

[2] I. Koutsopoulos, “Optimal incentive-driven design of participatory sensing sys-

tems,” in IEEE International Conference on Computer Communications (INFOCOM),
2013.

[3] D. Lee, J. Kim, H. Lee, and K. Jung, “Reliable multiple-choice iterative algorithm

for crowdsourcing systems,” in ACM International Conference on Measurement
and Modeling of Computer Systems (SIGMETRICS), 2015.

[4] N. B. Shah and D. Zhou, “Double or nothing: Multiplicative incentive mechanisms

for crowdsourcing,” in Conference on Neural Information Processing Systems (NIPS),
2015.

[5] Y. Liu and M. Liu, “An online learning approach to improving the quality of

crowd-sourcing,” in ACM International Conference on Measurement and Modeling
of Computer Systems (SIGMETRICS), 2015.

[6] H. Jin, L. Su, D. Chen, K. Nahrstedt, and J. Xu, “Quality of information aware

incentive mechanisms for mobile crowd sensing systems,” in ACM International
Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc), 2015.

[7] H. Jin, L. Su, H. Xiao, and K. Nahrstedt, “INCEPTION: Incentivizing privacy-

preserving data aggregation for mobile crowd sensing systems,” in ACM Inter-
national Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc),
2016.

[8] H. Jin, L. Su, and K. Nahrstedt, “CENTURION: Incentivizing multi-requester

mobile crowd sensing,” in IEEE International Conference on Computer Communi-
cations (INFOCOM), 2017.

[9] X. Gong and N. Shroff, “Truthful mobile crowdsensing for strategic users with

private qualities,” in International Symposium on Modeling and Optimization in
Mobile, Ad Hoc, and Wireless Networks (WiOpt), 2017.

[10] L. Duan, T. Kubo, K. Sugiyama, J. Huang, T. Hasegawa, and J. Walrand, “Incentive

mechanisms for smartphone collaboration in data acquisition and distributed

computing,” in IEEE International Conference on Computer Communications (IN-
FOCOM), 2012.

[11] D. Yang, G. Xue, X. Fang, and J. Tang, “Crowdsourcing to smartphones: Incentive

mechanism design for mobile phone sensing,” in ACM Annual International
Conference on Mobile Computing and Networking (MobiCom), 2012.

[12] Z. Feng, Y. Zhu, Q. Zhang, L. M. Ni, and A. V. Vasilakos, “Trac: Truthful auc-

tion for location-aware collaborative sensing in mobile crowdsourcing,” in IEEE
International Conference on Computer Communications (INFOCOM), 2014.

[13] A. Tarable, A. Nordio, E. Leonardi, and M. A. Marsan, “The importance of being

earnest in crowdsourcing systems,” in IEEE International Conference on Computer
Communications (INFOCOM), 2015.

[14] Y. Luo, N. B. Shah, J. Huang, and J. Walrand, “Parametric prediction from para-

metric agents,” in The 10th Workshop on the Economics of Networks, Systems and
Computation (NetEcon), 2015.

[15] W. Wang, L. Ying, and J. Zhang, “The value of privacy: Strategic data subjects,

incentive mechanisms and fundamental limits,” in ACM International Conference



on Measurement and Modeling of Computer Systems (SIGMETRICS), 2016.
[16] L. Pu, X. Chen, J. Xu, and X. Fu, “Crowdlet: Optimal worker recruitment for

self-organized mobile crowdsourcing,” in IEEE Conference on Computer Commu-
nications (INFOCOM), 2016.

[17] H. Zhang, B. Liu, H. Susanto, G. Xue, and T. Sun, “Incentive mechanism for

proximity-based mobile crowd service systems,” in IEEE International Conference
on Computer Communications (INFOCOM), 2016.

[18] N. Nisan, T. Roughgarden, E. Tardos, and V. V. Vazirani, Algorithmic game theory.
Cambridge University Press, 2007, vol. 1.

[19] P. Bolton and M. Dewatripont, Contract theory. MIT press, 2005.

[20] A. Dasgupta and A. Ghosh, “Crowdsourced judgement elicitation with endoge-

nous proficiency,” in International World Wide Web Conference (WWW), 2013.
[21] Y. Cai, C. Daskalakis, and C. H. Papadimitriou, “Optimum statistical estimation

with strategic data sources,” in Conference on Learning Theory (COLT), 2015.
[22] Y. Liu and Y. Chen, “Learning to incentivize: Eliciting effort via output agreement,”

International Joint Conference on Artificial Intelligence (IJCAI), 2016.
[23] ——, “Sequential peer prediction: Learning to elicit effort using posted prices.” in

AAAI Conference on Artificial Intelligence (AAAI), 2017.
[24] D. Prelec, “A Bayesian truth serum for subjective data,” Science, vol. 306, no. 5695,

pp. 462–466, 2004.

[25] H. Jin, L. Su, and K. Nahrstedt, “Theseus: Incentivizing truth discovery in mobile

crowd sensing systems,” in ACM International Symposium on Mobile Ad Hoc
Networking and Computing (MobiHoc), 2017.

[26] V. Krishna, Auction theory. Academic press, 2009.

[27] “Incentivizing truthful data quality for quality-aware mobile data crowdsourcing,”

Technical Report, 2017. [Online]. Available: https://www.dropbox.com/s/

y99bim7hbaxht4j/crowdsourcing-quality-mobihoc-TR.pdf?dl=0

APPENDIX
Proof of Lemma 1
Let

¯di be the complementary value of di , i.e., ¯di , di . For conve-
nience, let PX |di (qi ,ei ) (d ) denote the probability that X is equal to

d conditioned on data di given quality qi and effort ei . We observe

that when ei = 1 we have

PX |di (qi ,1) (di ) = qi ≥ 1 − qi = PX |di (qi ,1) (
¯di ),

and when ei = 0 we have

PX |di (qi ,0) (di ) = 0.5 ≥ 1 − 0.5 = PX |di (qi ,0) (
¯di ).

Since

ED0 |di (qi ,ei )
[
1D0=di

]
= PD0 |di (qi ,ei ) (di )

= q0PX |di (qi ,ei ) (di ) + (1 − q0) (1 − PX |di (qi ,ei ) (di ))

= (2q0 − 1)PX |di (qi ,ei ) (di ) + 1 − q0,

we have

ED0 |di (qi ,ei )

[ 1D0=di + q0 − 1

2q0 − 1

]
= PX |di (qi ,ei ) (di ).

Similarly, we can show that

ED0 |di (qi ,ei )

[ 1D0= ¯di + q0 − 1

2q0 − 1

]
= PX |di (qi ,ei ) (

¯di ).

Then it follows from (9) that, for any reported quality q′i and any

actual effort ei , the optimal reported data is given by

d ′i = arg max

d ∈{0,1}
ED0 |di (qi ,ei )

[ 1D0=d + q0 − 1

2q0 − 1

]

= arg max

d ∈{0,1}
PX |di (qi ,ei ) (d )

= arg max

d ∈{0,1}

[
PX |di (qi ,0) (d )+(PX |di (qi ,1) (d )−PX |di (qi ,0) (d ))ei

]

= di .

Proof of Lemma 2
Using (12), when e ′i = 1 we have

ūi (q
′
i ,qi , 1, 1) − ūi (q

′
i ,qi , 1, 0) = kq

′
i (qi − 0.5) − c ≥ 0

where the inequality follows from (10), and when e ′i = 0 we have

ūi (q
′
i ,qi , 0, 0) − ūi (q

′
i ,qi , 0, 1) = c ≥ 0.

Hence the optimal effort to make is ei = e ′i .

Proof of Lemma 3
For convenience, we write ûi (q′,qi , e ′i ) as ûi (q

′
i ,q
′
−i ,qi , e

′
i ). It suf-

fices to show that ûi (qi ,q′−i ,qi , e
′
i ) ≥ ûi (q,q′−i ,qi , e

′
i ), ∀q , qi . Let

q′i > qi . Using (14), we have

ûi (qi ,q
′
−i ,qi , e

′
i ) − ûi (q

′
i ,q
′
−i ,qi , e

′
i )

= kqie
′
i (qi ,q

′
−i ) (qi − qi ) +

∫ qi

q
kqe ′i (q,q

′
−i )dq

− *
,
kq′ie

′
i (qi ,q

′
−i ) (qi − q

′
i ) +

∫ q′i

q
kqe ′i (q,q

′
−i )dq

+
-

= kq′ie
′
i (qi ,q

′
−i ) (q

′
i − qi ) −

∫ q′i

qi
kqe ′i (q,q

′
−i )dq

≥ kq′ie
′
i (qi ,q

′
−i ) (q

′
i − qi ) − kq

′
ie
′
i (qi ,q

′
−i ) (q

′
i − qi ) = 0

where the inequality follows from (8). Now let q′i < qi . Using (14),

we have

ûi (qi ,q
′
−i ,qi , e

′
i ) − ûi (a,q

′
−i ,qi , e

′
i )

= kqie
′
i (qi ,q

′
−i ) (qi − qi ) +

∫ qi

q
kqe ′i (q,q

′
−i )dq

− *
,
kq′ie

′
i (qi ,q

′
−i ) (qi − q

′
i ) +

∫ q′i

q
kqe ′i (q,q

′
−i )dq

+
-

= kq′ie
′
i (qi ,q

′
−i ) (q

′
i − qi ) +

∫ qi

q′i
kqe ′i (q,q

′
−i )dq

≥ kq′ie
′
i (qi ,q

′
−i ) (q

′
i − qi ) + kq

′
ie
′
i (qi ,q

′
−i ) (qi − q

′
i ) = 0

where the inequality follows from (8).

Proof of Theorem 1
As the IR property has been proved using (15), we only show that

the DIC property is achieved. Choose and fix any (q′i , ei ,d
′
i ). It

follows from Lemma 1 that

ED0

[
ui (q

′
i ,q
′
−i , ei ,di ,D0)

]
≥ ED0

[
ui (q

′
i ,q
′
−i , ei ,d

′
i ,D0)

]
.

Using (11) and (12), it follows from Lemma 2 that

ūi (q
′,q′i , e

′
i , e
′
i ) ≥ ūi (q

′,qi , e
′
i , ei ).

Using (13) and (14), it follows from Lemma 3 that

ûi (q
′,qi , e

′
i ) ≥ ûi (q

′,q′i , e
′
i ).

Therefore, we have

ED0

[
ui (qi ,q

′
−i , e

′
i ,di ,D0)

]
≥ ED0

[
ui (q

′
i ,q
′
−i , ei ,d

′
i ,D0)

]
.

https://www.dropbox.com/s/y99bim7hbaxht4j/crowdsourcing-quality-mobihoc-TR.pdf?dl=0
https://www.dropbox.com/s/y99bim7hbaxht4j/crowdsourcing-quality-mobihoc-TR.pdf?dl=0
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