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Abstract—We study the problem of maximizing the infor-
mation in a wireless sensor network with unreliable links. W\
consider a sensor network with a tree topology, where the rdo
corresponds to the sink, and the rest of the network detectsra
event and transmits data to the sink. We formulate a combi-
natorial optimization problem that maximizes the information
that reaches the sink under deadline, energy, and interferece
constraints. This framework allows using a variety of error
recovery schemes to tackle link unreliability. We show thatthis
optimization problem is NP-hard in the strong sense when the
input is the maximum node degree of the tree. We then propose
a dynamic programming framework for solving the problem
exactly, which involves solving a special case of the Job latval
Selection Problem (JISP) at each node. Our solution has a
polynomial time complexity when the maximum node degree is
O(log N) in a tree with N nodes. For trees with higher node
degrees, we further develop a sub-optimal solution, which s low
complexity and allows distributed implementation. We investigate
tree structures for which this solution is optimal to the original
problem. The efficiency of the sub-optimal solution is furtker
demonstrated through numerical results on general trees.

I. INTRODUCTION

nodes in the network aggregate data from all their predeces-
sors, and only transmit the aggregated data) greatly reduce
the communication overhead [2].

A tree structure is commonly used for data aggregation in
wireless sensor networks [3], [4]. In this paper, we conside
a tree topology with the sink as the root of the tree. An
event is observed by a subset of nodes in the tree called the
source nodes. All source nodes transmit their data about the
event to the sink. Our goal is to maximize tirdormation
obtained by the sink. The information obtained by the sink
is a representation of the quality of the data that reaches th
sink. For example, it could be the sum of the inverses of the
error variances of the data from various sources that resache
the sink [5]. It could also represent other relevant metsiosh
as the Log-Likelihood Ratio if detection is being performed
by the network, distortion, etc.

Much of the existing work in data aggregation does not
take channel errors, and interference into account. Howeve
wireless channels are inherently prone to errors due tadadi
and environmental factors. Also, interference is a ciitica
component of the wireless environment. We consider a one-

A wireless sensor network is a wireless network consistingpp interference model where two nodes that are one hop
of a number of sensors that sense a desired aspect of theregigay from each other cannot transmit simultaneously. We
in which they are deployed. These networks are used inafo consider unreliable links where the errors acrossrifft
number of military and civilian applications, such as targeinks are independent of each other, and allow for the usage

tracking and environment monitoring. Sensor measuremegfSvarious error-recovery schemes including retransissi
are prone to errors due to environmental factors and resouggding, etc.

constraints. Therefore, sinks cannot rely on the data semge

Delay is also an important parameter in a wireless sensor

a single sensor. In many applications, the sinks only desirg,etwork. While most works focus only on energy, minimizing
certain function of the data sensed by different sensor $10dge delay can help save a huge amount of energy. For instance,
(e.g., average temperature, maximum pressure, deteatal Sigsuppose that a sensor network is tracking a target. In ooder t
etc.). When sinks require certain classes of functions ef tensure good tracking quality, the sink must obtain previous

sensed data, performinig-network computatiointermediate
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measurements in a timely manner so that the best subset of
sensors for the next measurement is chosen. If the sink does
not get the measurements in a timely manner, the target might
have moved too far resulting in a poor measurement quality
during future measurements. On the other hand, if the sink
decides to ensure good tracking quality by activating aelarg
number of sensors at all times, a large amount of energy could
be wasted. Therefore, it is critical that the sink obtainssse
measurements in a delay efficient manner.

With this model, we provide an optimization framework for
maximizing the information received at the sink under a dead
line constraint at the sink, and per-sensor energy conssrai
The output of this framework is a schedule of time slots for
each node within the deadline, and the amount of energy to
be expended by each node on transmissions and receptions.

The main contributions of this work are summarized as



follows: Other existing work in this area can be broadly charactdrize
« We develop an optimization based framework to maxinto two classes - constructing efficient data aggregatieest
mize the information that is received at the sink froni3], [9] and approaches to study the trade-offs betweenggner
all the source nodes in the data gathering tree. Thiglay and the quality of aggregated data [10], [11], [12B][1
optimization frameworlexplicitly accounts for unreliable [1], [14]. Constructing an optimal data aggregation tred s
links, deadlines, per-sensor energy constraints, and-intéhard for a number of cases such as minimizing the number of
ference transmissions [9], maximizing the lifetime [3], etc. Most o
« We show that this optimization problem is NP-hard in ththese works considering the construction of data gathering
strong sense by a reduction from the 3-partition probletrees do not take interference and unreliable channels into
[6], which implies that the problem does not allow account. Our focus in this work is to design a communication-
pseudo-polynomial time algorithm or a fully polynomialefficient protocol in any given data gathering tree.
time approximation scheme (FPTAS) [6]. Several existing works use optimization approaches toystud
« We develop a dynamic programming framework to solvenergy-delay trade-offs and energy-quality trade-offsiein
the optimization problem, which involves solving a spedata aggregation. Boulis et. al., [10] study trade-offsmeetn
cial case of the single-machine Job Interval Selecti@nergy and data accuracy in data aggregation trees. In [11],
Problem (JISP) at each node. For this subproblem, we et. al., study trade-offs between energy and latency in
propose an optimal solution using dynamic programmingdata aggregation trees, assuming a time-slotted syndaani
which has an exponential time complexity 6f(2%), system. In [12], Ye et. al., study the fundamental energgyde
where k denotes the maximum node degree in the datsde-off for distributed data aggregation in wirelessssen
gathering tree. This leads to a polynomial time solutionetworks. Their goal is to maximize a certain parameteedall
to our problem wherk = O(log N), where N denotes the discounted reward at each node, where the reward is due to
the total number of nodes, a condition that often holds thata aggregation and the discount is due to the time for which
practice. the node waits in order to aggregate data from its predersesso
« For a dense sensor network with high node degrees, wWge common drawback in all of these works is that they do
further develop a sub-optimal solution for solving the innot take link errors and interference constraints into anto
terval scheduling subproblem, which has low complexityhile framing their optimization problem. We have previlyus
and allows distributed implementation. This solution istudied the problem of maximizing information in data gathe
optimal to the original problem for certain tree structuresng trees under deadline and one-hop interference contsrai
« We evaluate the performance of the sub-optimal algéer error-free links[13]. For unit capacity links, a distributed
rithm for general tree structures through numerical evabptimal solution was developed that involved solving a loca
uations, and show that it not only performs close to theed Maximum Weighted Matching (MWM) problem at each
optimal solution but also outperforms an existing JISRop. Since the matching only involved neighboring nodes, th
approximation algorithm. algorithm had a low computational complexity. However, the
The rest of this paper is organized as follows. In Section Inclusion of link errors, as done in this work, substangiall
we overview related work. In Section Ill, we describe ouincreases the difficulty of the problem. We have also studied
system model and assumptions. In Section 1V, we formuladoblem of maximizing information under energy constrsint
our problem. In Sections V, VI, and VII, we study then [14].
problem without energy constraints. In Section V, we study In a preliminary version of this work [1], we have studied
the structural properties of the deadline constrainedlprop maximizing the information for unreliable sensor networks
and prove that it is NP-hard in the strong sense. We theansidering deadline constraints only. Here, we also demsi
discuss an optimal solution based on dynamic programmiggergy constraints, show that the problem is NP-hard in the
in Section VI. In Section VII, we propose a sub-optima$trong sense, and develop a more efficient optimal solution
solution to the deadline constrained problem, and show {{@(2*)) than the exhaustive search based optimal solution
optimality for certain tree structures. In Section VIII, ween (O(k!)) in [1].
extend our solutions to the general problem formulated in
Section IV (including energy constraints). In Section IXe w
provide numerical results comparing the performance of our
sub-optimal algorithm with that of the optimal solution and We model the system as a grapitV’ U{S}, E) whereV' is
a baseline algorithm for general tree structures. Finaily, the set ofactivenodes,S is the sink, and® is the set of links.

IIl. SYSTEM MODEL AND ASSUMPTIONS

Section X, we conclude the paper. The graphG is a tree rooted at the sink. Aactive node is
one that is either a source node or has at least one source node
Il. RELATED WORK in its sub-tree. Sensors take measurementsvents(such as

The problem of evacuating all the packets in a multi-hojpacking a target, measuring the temperature, etc.), and se
wireless network in minimum time is quite related to whaan aggregated form of the data to the sink within a deadline.
we are studying. Different works [7], [8] have studied thi®\ node may or may not be a source for a particular event.
problem for error-free channels. They propose polynomial-We consider a time-slotted and synchronized system. We
time algorithms for tree structures for the one-hop interiee assume that the number of time slots to transmit a packet, the
model. These works do not consider in-network computationumber of transmissions (including retransmissions, remb



of coded bits, etc.) are all integers. Link capacities need rtechniques such as retransmissions, coding, etc. We model

be identical across links. For simplicity of exposition, wehe link reliability of a link from nodei (to its parent) as a

assume that each source has data ready at time zero. Huisction f;(t, ¢), wheret is the number of time slots allocated

straightforward to extend this notion to incorporate admt for transmissions for nodé, ande is the energy spent on

known time slots at which data is ready at nodes [13]. Weansmissions over the linkf;(¢,e) denotes the probability

assume that each source has a single data packet for an exkat,information is successfully transmitted from nodig ¢

and the next event occurs only after the deadline for thansmissions slots, anrdunits of energy for transmission are

current event has expired. We also consider a primary (or ormdlowed. Note thatf;(¢,e) can be any arbitrary function (that

hop) interference model where no two links that share a noideof practical importance), and hence can model any known

can be active at the same time. This model has been usedbr-recovery technique for that particular link. Simlya it

to characterize the interference for Bluetooth or FH-CDMAan account for different link capacities. For instanc@, tilme

based systems. Extending the results to a more general ckless are required to transmit data from nad® its parent,

of interference models is an open problem for future work.and¢ = 1, f;(¢,e) can be set to zero. Further, it also allows
We assume “perfect” aggregation, i.e., intermediate node®deling various relationships between the energy redtine

can gather data from predecessors, and aggregate them frdnsmissions, and the time slots allocated for transomissi

a single packet [2], [4], [9], [13]. For reliable links and To illustrate the link reliability function, consider a sie

energy constraints, we have also extended this framew@ise in which transmission during any given slot consumes a

for “imperfect” aggregation [15]. Further, in [15], we havefixed amount of energy. Ther;(¢, ¢) can simply be a function

also extended our solution to account for optimal selecbn of min(t, ¢). For example, if the link capacity is on&z = 1,

source nodes to maximize information. and we use retransmissiorys(t,e) = (1 _pmin(t,e)), where
We now define the following notations (Table ). p is the packet error rate over the link frointo its parent.
- ST oo Here, f;(t, e) is the probability that the packet froirreaches
g Sink its parent. Consider another example. Assume that the link
E Set of links capacity is oneEr = 1, and thatp represents the bit error
“jL gg: g]f Leoégrggdneosdes rate. Suppose we use coding, and we require at ledsits
Ps(i) Parent of node to be successful for decoding at the receiver. Thef, ¢) =
C(4) Set of children of node min(t,e) min(t, e) o ‘
w; Information provided by source node Z ( " ) (1_p)3p(mm(ta€)_3) is the probability that
w! Information received at nodéefrom node; =k
t; Number of t!me slots aIIocateq to _noalefor transm|SS|ons at leastk out of min(t7 e) bits are successful.
W; Number of time slots that nodewaits to receive packets - . : .
Ti Maximum number of time slots that can be allocated to| We define theinformation received at node3 from a
b Bodzf_fm tfaﬂ_SEﬁISSIOHS particular source noded, denoted byw%, as the product
eadline at sin f . .
o Energy allocated to nodfor transmissions of Fhe information prowd_ed by_no_d_q and theproduct_ (or
E; Energy constraint at nodifor transmissions and weighted productpf the link reliabilities over all the links
receptions from nodeA to nodeB. To be precise, if?4 g represents the
E E ded t issi '
T nergy expendeda on one transmission H . .
o Energy expended on one reception _pathAfromA to B, then the information received & from A
& Maximum energy that can be allocated to nader IS wp = wa HjePA’B I (tjv ej)-
transmissions _ _ o Remark We note that the algorithms we develop in the
fi(ti,e;) | Link reliability function of the link fromi to its parent . . . .
later sections also work when the information received at
TABLE | node B from source nodel is defined as the product of the

NoTATIONS information provided by noded and thesum (or weighted

sum)of thelink reliabilities over all the links from noded to

We refer to the actual sensor measurementslata For nodeB, i.e., wp = wa(X;cp, , [i(tj,¢;)). The product of
each source nodg we define thenformation w;, provided the link reliabilities is very meaningful when the link erscare
by i as follows. Letz; (of dimensionn;) represent the raw independent. This, for instance, could representetgected
measurements of sensorWe definew; as I(z;), wherel : information that reaches the sink from any node in the tree.
R™ — R. The functionI(-) represents the quality of theThe sum of the link reliabilities is also of importance as it
data. For example, data could be temperature, location, e€&n be used to model fairness. For instance, we can model
while information could represent error variance, distorg Pproportional fairness [16] among links using a logarithmic
Log-Likelihood Ratio, etc. By aggregated data, we mean tfienction. Note that the logarithm of the product of link
in-network computed data (or the information provided by threliabilities is the sum of the logarithms of the link relikties.
in-network computed data). Finally, we model thenformation received at nod® as

Each sensor has a per-sensor energy constraint. The ameuifiveighted) sum of the information received Bt from
of energy spent by a sensor for any event is proportional itwdividual source nodes. Note that whéh is the sink, we
the amount of energy spent on transmissions and receptiondtain the information received at the sink. This metricfis o

Wireless links are unreliable, and we assume that packéatgportance especially when sensor measurements are fused.
losses are independent across links. Since links are urfer instance, theumof the inverses of the error variances of
liable, we can employ a number of known error-recoveindividual sensors represents the overall error variaridbe



fused measurements when measurements are independen®jigiblem I1pg:

max ) wj

t,W.e ieVs

t; €{0,1,..,T;}VieV

A. Motivating application - sensor networks
Consider a sensor network shown in Figure 1. Sensors senﬁ't'

their data over a tree network to a sink (red node). In order to e; €{0,1,...&} VieV

illustrate our definitions of information, consider a pafrthuis e;Er + Z e;jEr < E; Vi e VU{S} (1)
network (encircled in green) with three nodes and the $ink jeC(i)

Suppose that all the three sensors are source nodes measurin For eachi € V U {S}\Vy, and for eachC' C C(i),
the location of a target. Let sensoprovide an error variance

R; for the target location; € {1,2,3}. Then, a metric for St <wi- min W; (2)
measuring thenformationprovided by sensor is Ri If data J:j€C 7

from sensors 1 and 2 is combined (say), then one of the metrics W; €{0,1,...,D—1} Vie VandWs = D

for the overall varianceR,, of the combined data is given by

7= = 7 + 7> Which is lower than botiR, and R; [5].

We now explain the constraints in probldii, . Constraint
(1) represents the energy constraint at each node in the
network. This consists of transmission and reception éegrg
We note that leaf nodes do not expend energy on receptions,
and the sink does not expend energy on transmissions. The
relation between one-hop interference and delay is reprede
by (2). Under the one-hop interference model, a parent node
can only receive packets from one of its children nodes durin
a particular slot. However, when a child transmits to itsepar
Fig. 1. Motivating Example the other children (of the same parent) can receive data from
their children (by the definition of the one-hop interferenc
Suppose that retransmissions are used in order to accauntf@del). Constraint (2) says that for any subset of the obidr
unreliable links. If sensoris allowed to make; transmissions nodes, the total number of transmissions made by this sobset
and consume; units of energy on transmissions, the probayodes is bounded above by the difference between the waiting
bility that sensori’s transmission is successful is given bytime of the parent and the waiting time of the child that has
fi(ti, e;). When data aggregation is used at intermediate nodgfe least waiting time in the chosen subset. This constigint
for example, node 1 can combine data from node 3, and tragfnilar to the interference constraint for error-free ahels.
mit both data simultaneously. Assuming that errors aciio&s | Examples illustrating this constraint can be found in [13].
are independent, the probablllty that node 1's data reattiees While we are u|t|mate|y interested in So|ving prob'@h@E,
sink is f1(t1, e1), the probability that node 2's data reaches this interesting to first study the problem without energyrco
sink is f2(t2, €2), and the probability that node 3's data reachesiraints, i.e., with only deadline and interference caists.
the sink isf3(ts, e3) f1(t1, e1). Now, the expected information stydying this problem provides insights into solvifib, .
received at the sink i$°, ., , 4 7-P(’'s data reaches the we call this problem without energy constraifis. Without
sink) = z-f1(t1,e1) + 75 fa(ta, e2) + 5= fa(ts,e3) f1(t1,e1).  energy constraintsS; units of energy can be expended on
One can clearly verify that without taking the communicatiotransmissions by each nodeFor notational convenience, in
model into account, we get the informatiqgﬁ + R% + R%- IIp, we refer to the link reliability function,f;(¢;,&;), as
simply f;(¢;). We study the structural properties Hfp and
show that it is NP-hard. This automatically implies that the
problemIlpg is also NP-hard. We first solvd p, and use its
We first describe our forwarding policy for data aggregatiogolution to develop an algorithm that solvHs) .
Forwarding Policy: For an event, each node will wait for
a certain time to aggregate data from its predecessorsl Unti \/ STRUCTURAL PROPERTIES ANDNP-HARDNESS
that waiting time expires, a node, even if it is a source node
will not transmit its data to its parent. After the waitingne
expires, the node will no longer accept transmissions frism

IV. PROBLEM FORMULATION

'In this section, we study the properties of the optimal
§o|ution of problemlIp, and show that it is NP-hard. These

children. The implication of this policy is that a node Wi”prog?[_ertni/sl ng be Esedt_ to Ideirlve_tr?n o_[;)rt:rlnal algonthlm _;n
never transmit data that it receives from two or more nod§§C lon Vi and a sub-optimal algorithm with lower compigxi

separately. It will always aggregate the data that it regeiv'" Section V.

and transmit the aggregated data. Theorem V.1. Consider any single hop in the data aggrega-
This forwarding policy is commonly used in the literaturgion tree with parent node” having & children, Cy, Cs,...,

for data gathering problems [2], [3], [9], [13], [14]. Cy. For problemIIp, let an optimal waiting time of? be
We now formulate our optimization problem. The notation®/; and let W,..., W} be optimal waiting times of thé

below can be recalled from Table I. children, respectively. Letj, t3,..., t; be an optimal solution



for the number of transmissions made by thechildren, shows that if the optimal waiting time of a nodés W;, and
respectively. WLOG, assume thif; < Wy < ... < Wy, the optimal number of time slots it is allocatedtjs then the
For j € {1,2,...,k}, defineW recursively as follows. optimal collision-free schedule of is the set of time slots
, N {Wi,Wi—l—l,...,Wi—f—ti—l}.
Wi =W ®3) We now show thatrp can be solved in a recursive manner.
Wi =max(W;, W;_, +t;_,), if j€{2,3,....k}(4) Let X[i, W] represent the information received at nadé
node: waits for a timeW. We defineX[i, W] as follows.
For any leaf node, for any W ¢ {0,1,....,D — 1}, we
Then, for eachj € {1,2,...,k}, we have the following have X[I, W] = w;\.. (Here,\, = 1, if [ is a source, and

properties: zero, otherwise). Recall that; is the information provided
1) W] is also an optimal waiting time for node;. by I. Consider any hop with parent nodehavingk children,
2) Wi, Wi+ 1, .., W/ +t: — 1 are optimal transmission C, Cs,..., Ci. Then, for anylW, X [P, W] can be calculated
slots for nodeC;. recursively as

k

Proof: We show 1) and 2) by induction on
Considerj = 1. By definition, W] = Wy, and hence X[P.W]=wpAp+ {WI?&,?C }ZX G Welfe,(te.), (9

W/ is an optimal waiting time for nod€’;. We prove 2) by
contradiction. Suppose thak?, W/ + 1, ..., W/ +t; — 1 are where {W¢,,tc,} satisfy the constraints of problemy for
not optimal transmission slots for nodd. SinceC; cannot nodeP. The intuition behind (5) is that the contribution from a

transmit befordV, because of the forwarding policy, and smc&h'ld C; that waits for a timé¥c, and is allowed ,to make, ,
Cy needs to make; transmissions(; must transmit in at transmissions iX'[C;, We: | fe, (tc) and we are interested in
least one time slot aftdi’/ +¢; — 1. If there exists a time slot 1€ Sum of the information.
in {W{,W{ +1,..,Wj + ¢ — 1} during which none of the Theorem V.2. X[i, W] computed by (5) maximizes the infor-
children of P transmit, then making”; transmit during this mation received at nodgif nodei waits for a timelV, for any
slot does not affect the optimality of the solution. Suppibsg nodei in the tree. Consequently [S, D] provides an optimal
there exists a time slot iW{, W{+1, ..., W] +t;—1} during solution torp.
which a child of P other thanC; transmits. Once again, by
making C; transmit during this slot, and scheduling the other
child to transmit in the time slot aftéV] +¢; — 1 (in which Theorem V.3. Let C;, C», ..., Ci be the children of node
(4 was originally transmitting), the optimality of the solti 7 that is not a leaf node. Ifiv* is the optimal waiting
is not affected. This can be reasoned as follows. time of nodei, then one of the optimal set of time slots
« The new schedule is feasible. during which the children transmit is given Bynax (0, W* —

» The value of the objective function does not decreaﬁ; .
because of interchanging the schedules. This is becal Te; ), max(0, W* ZTO + 1., W 1)
the expected number of packets aggregated’bydoes =1
not change after time sld#’/, and the expected number ~ Proof: We prove thIS theorem by contradiction.
of packets aggregated by any other node in that hopFrom Theorem Vl we knOW that transm|tt|ng |n consecu-

cannot decrease since it now has greater time to gatfi¥g slots is optimal.
data from its predecessors. Suppose that the set of slots given above is not optimal. This

means that at least one of the children makes a transmission

The proof can be found in the appendix.

This contradicts our assumption tHat, W| +1, ..., W| +

t7 — 1 are not optimal transmission slots fok. before max(0, W* — ZTO . Since the maximum total

Assume that 1) and 2) are true for nodsg,.

Considerj = m + 1. If max(W;, ., W), +t5) = Wy, ngmberof transmissions for all the nodes in the hop is giwen b
then clearlylV, +1 is an optimal waiting time for nodé€’,,,+1.
Suppose thatV;;,  , < W} +t: . By 1) and 2) for node”,,, —
nodeC 1 cannot start transmitting befof€;, +17,,. If node the slots in the set above. If ‘the child node that had tranedhit
Cry1 Waits until slotW,, + 5, (> W, 1), it can potentially
aggregate more packets and still mat&ga+1 transmissions. before the slotnax(0, W* — ZTC ) had waited until this free
Therefore, the value of the objective function cannot desee
if Cp,y1 waits until W/ + t* . Hence, 1) follows for node

Z Tc;, no child node makes a transmission in at least one of

slot, it could have potenually gathered more packets, difid s
made a successful transmission, thus increa&ifigiV]. This

Crt1-
w‘i‘he proof of 2) is virtually identical to that for the case® contradicts the assumption that the above set of time sots i
=1 not optimal. |

Thus, by induction, 1) and 2) are trisg € {1,2,....k}. m The implication of this theorem is that no child needs to

Theorem V.1 shows that in order to find a collision-fregansmit beforemax(0, W* ZTO This is critical in
optimal schedule, it is enough to know the optimal waiting
time of each node, and the optimal number of time slots teducing the search space for determlnlng the optimal megiti
be allocated for transmission over each link. Specifically, time of each node, and will be used in the rest of the paper.



We now show that findingX [, W] for a non-leaf node each having three elements, such t@ a, = B for | =

and for a giverlV is NP-hard in the strong sense by reducin? _ neS;
it from the 3-partition problem [6] which is known to be NP- 125000 ]
hard in the strong sense Suppose thaj = 1.
3-Partiton Problem: Given 3m + 1 positive integers _(=): If there exists a seb; = {an,,an,,an,} such that
3m Z a, = B, then we can schedule the childréh,,, C,,,,
ai,as, ..., azm, and B such thatz a; =mB,and? <a; < 5
i=1 andC,, in a,, + an, + an, = B slots, and we will obtain
% fori =1,2,...,3m; is there a partition of the s¢tl, ..., 3m} Xi, B] = an, + an, + an, = B.
into m disjoint subsetsSy, Ss, ..., S, such thatz a; = B («<): To prove the converse, suppose that there exists a
i€S; schedule such thaX'[i, B] > B. Note that for anyn < B,
for j=1,2,...,m? X|[Cj,n] = a; for j = 1,2,...,3m. Suppose that there does
Note that if there exists a solution to this problem, eadft exist a set consisting of three elements such that the sum
subsetS; has exactly three elements. of the elements i3. SinceZ < a; < B for j = 1,2, ..., 3m,

Theorem V.4. Determining X [, W] for an arbitrary nodei if the _schedule consists _of more than thr_ee children, then th
having k children, and for an arbitrary waiting timeV is total time _for all the children to transmit would exceij
NP-hard in the strong sense when the input to the problem§9tS; and if the schedule consists of less than three efmildr
k. then the amount of information obtained would be strictly
less thanB. Hence, the schedule must exactly consist of
Proof: Given an instance of the 3-partition problem, wenree children. However, if the total information accouhte
construct the following instance of the scheduling problefigr by these children is greater tha®, then the total time
with error-free links Node: hask = 3m children, denoted by to obtain this information is also greater thah (since the

C1, Cs, ..., C3m. The number of time slots required to transmigransmission time is identical to the information provijled
a packet over the linkKCy;, i) is a;, and the information pos- Hence, we obtain a contradiction.

sessed by’; at time slot zero is alsaj, for j = 1,2,...3m.  Thus, the result holds foj = 1. Assume that the result
Further, each child’; hasm—1 children, and each child &;  nolds forj = r.
also accounts foe; units of information, forj = 1,2, ..., 3m. Considerj = r + 1.

Each child ofC; takes B time slots to transmit a packet t0 (). | there existsr + 1 disjoint subsetss;, Ss, ..., Syi1
Cj, for j = 1,2,...,3m. Finally, we haveW = mB at node ¢ cn thatz an, = Bforl = 1,2,...r + 1, then we can
1. Figure 2 illustrates this construction. s,
schedule the children corresponding to the elements;in
between slot§! — 1)B and!B, for [ = 1,2,...,r + 1. Since
a child C; gets an additional information af; after every
B slots, we haveX[C},(l —1)B] = la; for I = 1,2,....m
and forj = 1,2,...,3m. Hence, the children corresponding
to S; will totally account for /B units of information for
l =1,2,...,r + 1. Therefore, the total information obtained
by this schedule i¢” L0 +2)8

(«<): To prove the converse, suppose that there exists a
schedule such thaX[s, (r + 1)B] > w. We can
split this schedule intor + 1 non-overlapping schedules,

W=mB

& 4 3 %, . %m S1,5%,...,5 .1, where the waiting time of nodes ifi] lies
between(l—1)B andiB forl = 1,2, ...,r+ 1. Therefore, if a
Fig. 2. Reduction from the 3-partition problem child Cj is in schedulesS;, then it would account foka; units

, _ _. of information. SinceX[i, (r +1)B] > w, we have
We now show that there exists a solution to the 3-partition

problem if and only if there exists a schedule such that r+1 1 NE

X[i,mB]ZM- Z Z lajz%' (6)
We show by induction that for any = 1,2,...,m, there I=1 j:C, €S|

exists a schedule such that:, jB] > w if and only if

there existg disjoint subsetss;, Ss, ..., S; of {a1,...,asm}, Further, since the waiting time at nodss given by W’ =

(r+1)B, we have

1In [1] and [13], we claim that the corresponding optimizatiproblems

are MAX SNP-hard, which means that unless P=NP, there doe®xist r+t
any Polynomial Time Approximation Scheme (PTAS) for thosebfems. Z Z a; < (7’ + 1)B, (7)
However, we found that the reduction to prove MAX SNP-hassneas not I=1 j:C;€S]

accurate. We correct this, and prove that these optimizatioblems are NP-

hard in the strong sense using reduction from a 3-partitimblpm. Since gjnce it takes:: time slots to transmit a packet frofi: to 1,
we consider a more general problem than those consideret],ifil B], this f . J J
immediately implies that the problem that we study in thiskvis also NP- orj=12,..,3m.

hard in the strong sense. Subtracting (7) from (6), we get



JISP approximation algorithms, they could result in a very
poor performance (since if there akehops in the tree, the
approximation factor of the overall problem could be as poor
: as%). Further, the input to our problem is the maximum node
This implies that degree of the tree, which is typically small. Therefore, aket
these issues into account, and develop a new solution.
> Y (e EUE (©)

1=2 j:C;€S] VI. AN OPTIMAL SOLUTION TO mp

(8)

I=1j5:C;€S8]

since S} accounts for zero information in (9). The relation (9) In this section, we propose an optimal algorithm to the
implies that inr B slots, the schedulé}, S5, ..., S\, , accounts interval scheduling sub-problem, i.e., to compitg, W] for a
for at least""t12 units of information. According to the Non-leaf node and for any waiting timéV" € {0, 1, ..., D—1}.
induction hypothesis, this is possible if and only if thesset/Vhile the problem is strongly NP-hard in general, we obtain
S4,85,..., S, each contain exactly three elements, and tif# algorithm of time complexity)(k*2*), where’ denotes
sum of the transmission times of the children in each settfie maximum node degree in the data aggregation tree. Hence
B. Now, given thatS}, S5, ..., S, , are disjoint subsets eachwhenk = O(log N'), an optimal schedule at each node can be
containing three elements whose sunBisX [i, (r + 1)B] > found in polynomial time, which, together with the dynamic
w if and only if S also consists of three childrenProgramming framework proposed in the previous section,
such that the sum of their transmission timesBis provides an optimal polynomial time algorithm to the deaelli
Hence, the result follows by induction, and therefore, deteconstrained optimization problem. For larde we further
mining X [i, W] is NP-hard in the strong sense when the inplf0Pose a sub-optimal algorithm having a low computational
to the problem is the number of children of m complexity in the next section.
This result implies that even if the transmission times, and The interval scheduling subproblem that needs to be solved
the deadline are bounded by a polynomial in the input, ti§&n be formally defined as follows.
problem remains NP-hard. Since the deadline is typicaff§ingle-machine scheduling with a common deadline and
linear in the input, it is important to show NP-hardness ifultiple time windows: Let 7 = {.Ji,..., Ji} denote a set
the strong sense for this problem. This means that a pseufib% jobs. Each jobJ; can be processed in one of; time
polynomial time optimal algorithm cannot exist for this pro Windows, {(s1,1i, u%), ..., (sy,,. i, s, )}, Where s3I
lem unless P=NP. are integers, and’ denotes thej-th release time (the time
Relationship to the Job Interval Selection Problem:We at which the job is released to the machirig)denotes the-
now show that computing [i, W] is a Job Interval Selection th processing time, and’, denotes the weight (or profit) if;
Problem (JISP) in a single machine. JISP is a well-studiésischeduled in the time interval}, s; +1]. Given an integer
problem in the machine scheduling literature [17], [18R]j1L W, a feasible schedule is a subset of time windows, such that
It is known to be MAX SNP-hard, which implies that unlesgll the intervals are subsets of the inter{@ll¥’], at most one
P=NP it is not possible to find a Polynomial-Time Approxitime window is selected for each job, and no two intervals in
mate Solution (PTAS) to JISP. the schedule overlap. A schedule is optimal if the total Wweig
We briefly describe the Job Interval Selection Problewf the scheduled jobs is maximized.
(JISP). In a single-server JISR,jobs need to be served by a We note that when each job only has a single time window
single machine. Each job hasinstances, where each instancassociatedr; = 1 Vi), and a common deadling’, there
is associated with an explicit time interval during which iexists an optimal dynamic programming based solution with
must be scheduled, and a certain profit. The machine can opijtynomial time complexity ink and W [20]. We propose
serve one instance of any job during each time slot. The gdlaé following extension to solve the general problem. First
is to find a schedule such that at most one instance of a jokcnsider the collection of all the time windows belonging
present in the schedule, the instances in the schedule do teo@ll the jobs, and sort them in non-increasing order of
conflict in time, and the sum of the profits of the job instanceslease times. Ties are broken arbitrarily. Denote theedort
iS maximum. time windows asT = {T1,...,T,,}, wheren = Z?Zlmj,
DeterminingX [i, W] for an arbitrary nodé and an arbitrary T; = (v;, si, i, ui), Wherew;, s;, 1;, u; denote the index of the
waiting time W is a JISP. This can be seen as follows. In oyob, the release time, the processing time, and the weight of
problem, the jobs correspond to the children nodes that nebée i-th time window, respectively. LeZ[i,Z, s|] denote the
to be served by the parent. Each instance of the job (chilsaximum weight that can be achieved by a feasible subset of
corresponds to the interval during which it transmits, andtsme windowsT’ C T, such that (1)I" C {71, ..., T;}; (2) the
weight. The interval corresponds to the interval of the joket of jobs corresponding to time windows T is Z C J;
instance, and the node weight corresponds to the profit of ## T’ can be scheduled within time interval, W] subject
job instance. Thus, our problem is a JISP. to the release time constraints. Finally, the optimal sofuis
There exist%-approximation algorithms for special cases dhe maximum value o¥[n,Z, s| for Z C J,s € {0, ..., W}.
JISP. However, JISP is a relatively small part of our problem The algorithm first initializesZ[i, Z, s] to zero for alli =
While finding X[i, W] for each nodei and for eachW 0,..,n,Z C J ands =0, ..., W. The algorithm then proceeds
is a JISP, we ultimately need’[S, D]. If we use existing by checking eactl; from i = 1 to n. Consider the-th round.



The algorithm iterates through each pair @, s), and sets A. Algorithmic framework to calculat&’[S, D]
Zi,Z,s| = max(Z[i—1,Z,s], Z[i — 1, T\{vi}, s+ ;] + ;) if

vi €1, 5 > s;, ands +1; < W. Otherwise, it Set&’[;, 7, s] = Algorithm 2 Computing optimal solution for problefi
Z[i—1,Z,s]. The main steps of the algorithm are as follows 9 P .g P P D
1: for each leaf nodeé € V;, do

i i 2: for W=0—D-1do
Algorithm 1 ComputingX [i, W] for any non-leaf nod¢ and . X[i, W] = wi\i
waiting time IW” for problemIT, 4: for each non-leaf nodé such thatX|-,-] has been com-

1: Sort the time win(_jows, d_enoted_ as{T; = puted for all ofi’s childrendo
(vi,si,_li,ui)}izl,___,n, in non-increasing order of .. for W=0-D—1do
start imess;. ComputeX[i, W] using Algorithm 1

ij for ;or_IO g; gg : Finally, computeX[S, D] at the root -
4: for s— 0 — W do : Look up X|[S, D], and assign optimal waiting times, and
) . transmissions slots to the root’s children
5: Zi,Z,s]+ 0 _
) 9: Go down the tree from the root to the leaves assigning
6: for i =1 —n do optimal waiting times and transmission slots at each node
7: . for each pair of(Z, s) such thatZ C 7 ands < W by looking up the corresponding vectaf], -].
0

8: if v, ¢ ZTORs < s; OR s+ 1; > W then

Z[i,T,s] « ZJi — 1,T, 5] Algorithm 2 is optimal because of the correctness of the
o elseZ[i,7,s] « max(Z[i — 1,7,s],Z[i — recursionto comput&[,] (Theorem V.2). Using this algo-

1L, Z\{vi}, s+ L] + ui) rithmic framework, the overall complexity of computing an

return maxzc 7 seqo,...,w1 Z[n,Z, 5] optimal solution to problenilp is O(hDk?2%), whereh is

the maximum number of hops in the tree (assuming that nodes
_ at the same height can perform computations in parallel). We
We now prove the correctness of Algorithm 1. will use this framework for all the other algorithms devesop

Theorem VI.1. Algorithm 1 is optimal for computing[;,17] 1 this work as well.

for any non-leaf node and waiting timelV/.

The proof can be found in the appendix. VIlI. SUB-OPTIMAL FORMULATION AND SOLUTION TO 7p

We now analyze the time complexity of Algorithm 1. It In this section, we propose a sub-optimal solution to the in-
takesO(nlogn) time to sort the time windows, whenme = terval scheduling subproblem for largewhich, together with
2521 m;. If m = max;<;<,m;, thenn = O(mk). The loop the dynamic programming framework proposed in Section V,
runs n times, and in each roun®*W pairs of (Z,s) are provides an efficient solution to the deadline constrained

examined. For each pair dfZ, s), it takes constant time to problem. The structural propertiesof, imply that in any hop
updateZ[i, Z, s|. Hence the time complexity of the algorithmthe next node starts transmitting only after the previouseno
is O(mk log(mk) + mkW2F). has finished transmitting. This is because the optimal sdked
When applied to our problent; is bounded by the maxi- for each child in that hop is an interval, and the schedules of
mum number of children of any node in the tree. For a giveHy two children cannot conflict, i.e., no two intervals can

W € {0,...,D — 1}, m is bounded bymin(k7, W)T, where intersect. Therefore, in each hop, there is an order in which
T = max; ; T, is a constant, since for any children, it suffice§hildren are allocated time slots for transmission. Thaide

to consider the waiting times ifmax(W — k7,0),...,W}, the sub-optimal formulation is that we assume that in any, hop

and for each waiting time, at mogt time slots will be allo- the order in which children transmit to their parent is known

cated for transmission. Furthermore, since a feasibledssae \We denote this problerfi;”.

takes at mostnin(k7, W) time slots, it suffices to compute T0 be precise, let the symbol—+" represent the order

Z[i, T, s] for s € {max(W —kT,0), ..., W}. This implies that of transmission. For instanc€/; — C3 means thatC; is

it suffices to computé i, Z, s] for only min(k7, W) values of Scheduled for transmissions befdre. For each non-leaf node

s. SinceT is a constantyn = O(k). Hence, the time complex- ¢ in the network (including the sink), let the set of children

ity of computingZ[-, -, -] is O(k2 log(k) + k32F) = O(k32%). C_(z’) = {12'1,2'2,‘...,21|0(1‘)‘},‘ and the order of transmission be

Thus, the running time of the algorithm at a node having 9iven byii — iz — ... = i)c(;)|. From Theorem V.1 and The-

children isO(k*2%) for any W € {0, ..., D —1}. This implies orem V.3, we know that transmitting in consecutive timesslot

that the complexity of computing([i,-] at any nodei is is optimal, and that there are no unscheduled slots oncerthe fi

O(DE32K). child starts transmitting. AlsolV;, < W,, < ... < Wi‘c(i)‘).
Note that Algorithm 1 only computeX |7, W] for a given It follqws that the.constraint (2) il can be replaced by the

nodei, and a given waiting timéV. We ultimately need to following constraint. For eachec V' U {S}\VL,

calculate X[S, D] at the sink to solvdlp. We propose the

following dynamic programming based algorithmic framekvor Z ty <W; — W, (20)

for this purpose. J5EC()



Thus, the only difference between problé&y and problem
1154 is that the constraint (2) is replaced by (10). It turns out
that once the order of transmission in each hop is known,
the resulting problem can then be solved in polynomial time.
Hence our sub-optimal solution to the interval scheduling
subproblem has two steps. First, we fix the order in which
children transmit to their parent in each hop. We can design
intelligent heuristics for fixing such an order. We designlsu
a heuristic to evaluate our sub-optimal solution in Sectdn
Second, for this given order for transmission, we solve the
problemIIs¥®, which is the focus of this section.

Note that even if we fix the order, we still need to determine
the waiting times and the number of time slots allocated
to each node. For instance, consider two childrén and
C>. They have waiting time$V; and Wa, respectively, and
are allocated; and i, time slots, respectively. Suppose we
know thatC';’s schedule isbeforeCy’s schedule. Then, from
Theorem V.1, we know that’; +t; —1 < W5. We now need
to determindV/y, t1, Wa, andts, with the additional constraint
that the order in which children are scheduled is known.

We now provide some graph theoretic preliminaries required
to solvellsy.

A. Preliminaries

1) Maximum Weight Independent Set: An Independent
Set in a graphG(V, E) is a set of verticed/ C V

6) Increasing Independent Set on rectangle graphsAn
Increasing Independent Set on a rectangle graph is an
independent set that has the following property.

Let A = {ry,re,...,mn} be an ordered set of rectangles
ordered in the following fashion. Any j € {1,2,...,m}
such thati < j must obey the following.

o The maximum x-coordinate of any point ir} is
at most equal to the minimum x-coordinate of any
point in ;.
o The maximum y-coordinate of any point i} is
at most equal to the minimum y-coordinate of any
point in ;.
Then, A is an Increasing Independent Set on the given
rectangle graph. Note that the rectangles Anare
ordered such that the next rectangléoighe right and to
the topof the previous rectangle in the order. Further,
an increasing independent set on a rectangle graph is
an independent set on the corresponding double interval
graph.

o
w R
w3

A B

such that no two vertices iV have an edge between
them. A Maximum Weight Independent Set @ is an
Independent Set of maximum total weight of vertices.
Interval graph: Let{I, I, ..., I,,} be a set of intervals
on the real line. Then, the interval gragk(V, E') cor-

2)

(a) Rectangle Graphs (b) Increasing Independent Set

Fig. 3. Rectangle Graphs and Independent Sets

We now provide an example to illustrate the definitions

3)

4)

5)

responding to this set of intervals is defined as follow$y, e consider Figure 3(a). Each rectangle in the figure

o V. ={Ii,I,..,1,}. Each vertex denotes an interrepresents a vertex in a rectangle graph. There will be an
val. edge between two vertices only if the corresponding two
o Foranyy,z € {1,2,..,,n}, (I,,I.) € E if and rectangles intersect. For instance, there is an edge betwee
only if the intervals intersect, i.el, N I # (. rectangles 4 and §1,2, 3,4} and{1, 2, 3, 5} are two maximal

Interval graph of interval number m: The definition independent sets of rectangles. WHile 4} is an independent

is identical to that of the interval graph except that eac#et in the rectangle graph, it does not form an independént se

vertex can now be represented as a disjoint union #fthe corresponding double interval graph because itsvale

m intervals. An interval graph of interval number 2 igon the y-axis intersect. Alsofl,2,3} is an example of an

called adouble interval graph Increasing Independent Set in the rectangle graph because

Rectangle graphs:Rectangle graphs are a subclass d&ctangle 2 is to the right and to the top of rectangle 1, and

double interval graphs. A double interval graph can bgctangle 3 is to the right and to the top of rectangle 2.

transformed into a rectangle graph by simply labeling Figure 3(b) shows an Increasing Independent Set for a

the vertices in the double interval graph as the setode with two childrend and B, where A has to make two

product of the two intervals instead of the union of th&ransmissions, and3 has to make one transmission before

two intervals. Thus, each vertex now represents a reét-deadlinelW. Assuming thatA transmits beforeB, an

angle inRR2. It is important to note that two rectangledncreasing Independent Set is given Hytransmitting from

that do not intersect need not form an independent $ét — 3 to W — 1, and B transmitting fromW — 1 to W,

in the corresponding double interval graph. On the oth€ilearly, the rectangle foB is to the top and to the right of

hand, every independent set in the double interval gragite rectangle forA.

is an independent set in the rectangle graph.

Maximum Weight Independent Set on interval graphs

(order 1) can be found in polynomial time. HOWGVGI,B'

Maximum Weight Independent Set on interval graphs We first construct a graphG’, as follows. For eaclC},

of orderm, m > 1, is still NP-hard [21]. Jj € {1,2,..,k}, for eachtc,, tc; € {0,1,2,..,7¢,},

Solution
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k
construct nodes labeletC;, W — ZTCf’th)’ (C;, W —

j=1

the complexity of finding X[i, W] in Theorem VII.1 is
O(k*1ogk).

& Algorithm 3 summarizes how to compufé[i, W] for any
> Te, + Lite,), o (Cj,W — tc,,tc,), respectively. The non-leaf nodei, and waiting timelV’.

=1

first term in the label represents the child, the second tefyorithm 3 ComputingX|[i, W] for problemII34
represents the waiting time of the child, and the third term-
represents the number of transmissions made by the chilé;
A node labeled(C;, W¢,,tc,) in this graph is assigned a ™
weight X [C, We,|(fc, (tc,)). For any two nodeéC;, W;, t;)
and(C;, W;,t;) in G, there exists an edge if and only()
{Wi, Wi+1, ..., Wi—i—ti—l}ﬂ{Wj, W;+1, ..., Wj—l—tj—l} £ (),
or (b) C; = C;.

We show that when the order of schedules of children in We can now include this interval scheduling algorithm
any hop of the tree is known, finding [, ] is equivalent to in the algorithmic framework (Algorithm 2) developed in
finding a Maximum Weighted Increasing Independent Set Bection VI-A to calculate an optimal solution ;4.
the rectangle graph correspondingGé.

Construct grapl’ as shown in Section VII-B

Construct the rectangle graph correspondingGto as
showin in Theorem VII.1

3: Find a Maximum Weight Increasing Independent Set in
the rectangle graph corresponding6

Theorem VII.2. Algorithm 3 provides a collision-free sched-
Theorem VII.1. Consider any hop with parent having ¥ ule, and accurately determines[i, W] for any non-leaf node
children C1, ..., C,. WLOG, assume that the order in whichi and waiting timelV/.
the children are scheduled i5; — Cy — ... — C}. Assign
an interval [a;,b;] to child C;, i € {1,2,...,k}, such that
W <a; <b <as <by <..<ar < b, and replace the
first term in the label of each node @ by this interval. Then, . sub . .

solution toII7}* for a tree with a maximum of hops where

e . , )
G is a double interval graph, and([i, W] can be obtained ch hop hag children on average can easily be calculated

by finding a Maximum Weighted Increasing Independent & 5 . .
in the rectangle graph corresponding . %eo be O(hDk*log k), whereD is the deadline. One can thus

see that the sub-optimal version has a very low computdtiona
Proof: Assign an interval[a;,b;] to child C;, i € complexity.

{1,2,...,k}, such thatW < a; < by < az < by < ... < To summarize, we make the following observations.

aj, < by. ReplaceC; by [a;, b;] in the first term of the label | propiemT;, is NP-hard in the strong sense. However, in

of each node ir". Note that the second and the third terms ;- yrohlem, the exponential complexity is in the number

in th(_e label of each node_aﬂ?’ is an |_nterval Wh_lch specifies of children ) in a hop.

the time slots during which the child transmits. Each node , |t 1. is small (which is typically the case), then with

in G’ can now be represented as the union of two disjoint O(hDK32¥) complexity we can solve problefip. Oth-
intervals, the first interval corresponding to the childd dhe erwise, we can use the sub-optimal version that has a
second interval corresponding to the time slots during Wwitic compléxityO(thQ log k).

transmits. Further, for any two nodes @ that represent the
same child, there exists an edge between the two nodes since
the first interval in both the node labels have a non-emp§: Discussion

. . . X
mter/sectlon. Therefore;” is a double interval graph. _In certain tree structures, the order in which children are
G’ can now be transformed into a rectangle graph as defi eduled does not affect the optimal solution of problém
before. Let the x-axis represent the children, and the g-axi 1) Sinale hop t works: Si Il nod tf
represent the schedules. Consider any two childégnand ) tr:ggs?nkogrerelzg‘er\llg%ress' c;rr:fye aensoinispaepr?c:rrr:r?n-

Cm. Let 1 < m, and hencel; transmits befora,,. In the network computation. Therefore, the order in which leaf
rectangle graph, a non-conflicting schedule €r and C ’ !
gle grap 9 G i nodes are scheduled does not matter. Hence, the sub-

can be achieved if and only if the rectangle corresponding to iimal solution i timal in thi
C,,’s schedule is to the top and to the right of the rectangle optimal solution Is-optimal In this case. | .
2) Symmetric trees: A symmetric tree is defined as one in

corresponding t@’;’s schedule. It cannot be to the left because hich nodes that | ber of h ;
a, > b It cannot be to the bottom because that would which nodes hat are equal number of hops away from
the sink satisfy the following:

contradict the assumption th&} transmits before”,,, .

Proof: This result follows from the previous results in the
paper. [ |
The computational complexity of determining an optimal

Thus, X[i, W] can be obtained by finding a Maximum a) They have equal number of children.
Weighted Increasing Independent Set in this rectanglehgrap b) Either all of them are source nodes or none of
corresponding ta>’. m them are source nodes, and they provide the same
In [22], an algorithm has been proposed to determine a amount of information.
Maximum Weighted Increasing Independent Set in a rectangle ~ €) Each incoming link has the same link reliability
graph for determining similarities in DNA sequences. For function.

n rectangles in the rectangle graph, the complexity of this  An example of a symmetric tree is given in Figure 4(a).
algorithm is O(nlogn). G’ has O(k?) vertices. Therefore, It is easy to see that the order of transmission of children



11

in any hop of a symmetric tree does not affect the Proof: The proof follows by induction, and is similar to

optimal solution to problenilp. that of Theorem V.2. |
3) We now combine the ideas from the above two cases

to construct our last example. Consider a tree that j§ Optimal solution tdIpp

Sym”."?t”c' except at the fgrthest hop from the sink. We now extend Algorithm 1 to take the extra energy
Specifically, we relax condition (c) at parents of leaf

. : : constraint at each node into account. To compkite, I, r],
nodes. Incoming links of a node, whose children aré . . .

. . ..we need to solve the following extension of the interval
all leaf nodes, need not have the same link rellab|I|t¥

function. However, the link reliability functions must be; cheduling subproblem defined in Section VI, where each

. . . ob J; is again associated withn; time windows with each
identical across hops. For example, consider two nodes

P and @, with two children each. Both these c:hildrer}'me window having the following fornts;, L;, €5, u;), where

. Jrrgr g0
are leaf nodes. If the link reliability functions for the he new symbok; denotes the amount of energy allocated.
incoming links of P be f; and f,, then the link error

Further, for any feasible solution, the total energy altedao
probabilities for the incoming links of) must also be the time windows selected must be bounded-by
f1 and f>. However, f; need not be identical tg,

We extend our solution tdl, as follows. First, we again
unlike the symmetric case. It can be easily seen that t létaln the sorted collection of time windows, representgd b
sub-optimal algorithm is optimal in this case as well.

= {Ty,...,T,}, by sorting according to non-increasing
) ] ) order of release timesg-. Here, T; = (v;, 84,1, e, u;). Let
Since the only difference between the sub-optimal and ﬂZﬁ[z‘,I, s, €] denote the maximum weight that can be achieved
optimal problem is in determining the order in which node@y a feasible subset of time window® C T. such that
transmit in a hop, one can use intelligent heuristics to came it satisfies (1)-(3) defined in Section VI, and the following
with a particular policy for scheduling. However, in gerleraaqgitional condition: (4) the total energy allocatedTtois at
choosing the optimal order of transmission in any hop dependoste. The algorithm initializesZ[i, Z, s, e] to zero for each
on a number of factors such as the number of source nodesin o, 7¢c 7. s=0....W —1, ande = 0.....r. The

the sub-tree, the entire structure of the sub-tree, andirke |algorithm then proceeds by checking edgHrom i = 1 to n.

errors in the sub-tree. Consider thei-th iteration. The algorithm iterates over each
triplet (Z, s,e), and setsZ][i,Z, s, e] to be the maximum of
VIIl. SoLuTioN ToIlpp Zli—1,Z,s,e] and Z[i — 1,Z\{v;}, s + l;,e — e;] +u; when

. . v, €L, s+1; <W,s;, > s, ande > e;. Otherwise, it sets
Having completely studiedIp, we can now proceed to 2T, s,¢] = Z[i — 1,T, 5, ¢]
developing a solut_|0n for the 9“9'”_5" problelfp; that we The correctness of the algorithm can be proved in a similar
formulated in Section IV. The idea is to use the structuré th\?lay as that for Algorithm 1. The time complexity is given
we developed forllp to compute the optimal solution for by O(mklog mk + mkWr2*) since we also need to iterate

IIpg. We also develop a sub-optimal version similai§”, e, yajues ofe for each iteration. When applied to a node
and solve it by computing an energy constrained Maximum, .- problem, we have € {0 |E;/Eg]}, andel €

. . J
Weight Increasing Independent Set. {0, ..., &}, where&; is assumed to be a constant. For a given

Similar to solvingllp, we can solvellpg in a recursive W, m is bounded bymin(k7, W)TE, where€ = max; &;.
manner. - ) ) i _ Furthermore, it suffices to compute on$§fi, Z, s, e] for e €
Let X[i,W,r] be the information obtained at from the {1,...,min(k&,r)} for a givenr. Hence, the time complexity
sub-tree rooted at nodeé if i waits for a time W, and f ine algorithm for a giverV andr is O(k42%).
consumes at most units of energy on receptions. We can gy again appropriately incorporating the algorithmic feam
define X [i, W, r] recursively as follows. For any leaf node \york for Algorithm 2 in Section VI-A, we can obtain an opti-
X[, W,r] = w. FOFE&} non_—jIEgaf nodé X[i, W, r] = widi+  mal solution toll p ». The complexity of this optimal algorithm
max » _ X[j, W, | 2L ST £ (4, e5), where @ is the i O(hDrpaxk*2F), Wherery,,, is the maximum units of
@ JjeC() Er energy allowed for receptions at any node in the network.
set of constraints including (2) for nodeand the constraint
> jec € < r. Thefirst term represents the information frony Sub-optimal solution tl
i, and the second term represents the information fiem
children toi. Note that if childj allowse; units of energy for
transmissions, it can allow at masE~=~ | units of energy
on receptions. This is represented in the second term.
We can show that by computing [S, D, Lg—zj], we can
obtain an optimal solution to probleiip .

We now develop a sub-optimal algorithm that computes
X|[i, W, r] for a non-leaf nodé in the tree, assuming that the
order of transmission for its children is given. As mentidne
before, the idea is to find an energy constrained Maximum
Weight Increasing Independent Set.

Suppose that hask children, 1,2, ..., k. WLOG, assume
Theorem VIII.1. X[i, W, r] maximizes the information thatthat the order in which the children transmit is given by»
can be obtained ai from the sub-tree rooted at nodeif ¢ 2 — ... — k, i.e., childm transmits before chilch if m <
waits for a timell/, and consumes at mosunits of energy on n. We define anincreasing Independent Set starting from a
receptions. Consequentli([S, D, Lg—ij] provides an optimal specific rectangleas one that does not include any rectangles
solution to problemIpg. that are to the left or to the bottom of the given rectangle.
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For instance, in Figure 3(a), an Increasing Independent $®tn[j, e, w,t] in (11) involvesO(r) elements, and the second
starting from rectangle 1 i§1,2, 3}, whereas an Increasingmaximum involvesO(k) elements. Therefore, the complexity
Independent Set starting from rectangle Z2s3}. of computing X[i, W, r] for a given W, r, and order of
Let (j,w,t) represent the rectangle corresponding to childansmission of children iO(k3r). Therefore, the overall
j when it waits for a timew and usest time slots for complexity isO(hDr2, . k3).
transmission. Letm[j, e, w,t] represent the weight of the We infer that the scheduling problem involving deadline
Maximum Weight Increasing Independent Set starting frooonstraints is indeed the computationally complex part of
the rectangldj, w, t) that expends at most units of energy, problemIlyg. In fact, the problem has a very low compu-

in total, on transmissions. We defime[j, e, w, t] recursively, tational complexity if there were only energy constrairité][

starting from childk, as follows. However, we note that we still have a distributed optimal
solution, and that the exponential complexity in the dewslli
Ei — eEr constrained problem is only in the maximum node degree of
m[k,e,wat] = X[kvwv LTR]f(tve)ve <r the tree.
. . Ej — GIET /
mlj,e,w,t] = glgi((X[]’w’ | En 1f(t€') + IX. NUMERICAL RESULTS
( }TtlgéQ/m[j+ Le—e¢, uw't]), In this section, we wish to numerically study how the
w,

ordering of transmissions in each hop affects the overal pe
formance. Since energy constraints do not have an impact in
(11)  this aspect, we only consider probldfip. We have provided
where()’ is the set of constraints including+ ¢ < w' < W, numer?cal re;ults f:onsidering energy constraints in []l&}._
andt’ < min(W —w — t, Tj41). num(_encall_y mvestlga_te the pe_rformance of the sub-ogdtima
The meaning ofn[j, e, w,#] in (11) is the following. The solution with the optlma_l solution for general trges fiay, . _
first term represents the contribution from rectangles, t) FOr the purpose of ordering nodes in the sub-optimal saiytio
when child j expendse’ units of energy on transmission. V& order node.s (having the same parent) to transmlt_su_ch
If j expendse’ units of energy on transmissions, then thi1at @ node with a greater number of source nodes in its
children j + 1,7 + 2, ...,k can at most expend — ¢ units sub-tree transmlts_ later than a node W|th_a Iessgr number of
of energy, in total, on transmissions. Further, sifcstarts SOUrce nodes in its sub-tree. We call this heurisiic We
transmitting atw, and transmits fot slots, the next child can US€ retransmissions as the error-recovery scheme for these
only start transmitting after + ¢ slots. Hence, we considers'mmat_'on,& The link rel|ab|I|tthf the Imkfrom a nodeo .|t_s
the Maximum Weight Increasing Independent Sets startiRgentis givenbyi(t;) = (1—p;"), wherep; is the probability
from child j + 1 when childj + 1 starts transmitting after Of error over link (i, P(i)).
w +t slots, and the childrefp+ 1,5+ 2, ..., &k expend at most
e — ¢’ units of energy on transmissions.
We now prove the correctness of (11).

]<k7eg’r7

Theorem VIIL.2. Consider any nodei with % children
1,2,....,k.m[j, e, w, t] computed by (11) is the maximum infor-
mation that reaches nodefrom childrenyj, j + 1, ..., k, when
the childj has a waiting timev and transmits fot slots, and
nodeq expends at most units of energy on receptions from o.
J,7+1,..., k. ConsequentlyX[i, W, r] = max(m|[L,r,,]).

The proof can be found in the appendix.

Thus, (11) provides away to compuXe[i, W, T] for a given (a) Symmetric tree (b) General tree for simulations
order of transmission of’s children. Using the algorithmic Fig. 4. Symmetric and general trees
framework in Section VI-A, we can determidé[S, D, Lg—ij]
for a given order of transmissions at each hop. We consider the tree in Figure 4(b) with link error probabil-

Finally, we study the computational complexity of thisties as shown and source nodes represented by filled circles
algorithm. Leth be the maximum number of hops in the tree, We consider two trees with the same structure but with one of
be the maximum node degree, ang,,. be the maximum units the links (Link 2 in Figure 4(b)) having a different probatyil
of energy allowed for receptions at any node in the networ&f error (shown in a box in Figure 4(b)). The deadline is v@rie
We first analyze the complexity of computin§[i, W, r| for from 5 to 75. For each link:, P(4)), we select]; such that the
a non-leaf nodei, for a given waiting timeW, reception probability that a packet gets lost in all tiyg transmissions
energy constraint, and a given order of transmission ofis less than 0.01.

i's children. Recall thatX[:, W, r] is computed using (11). We first set the probability of error of Link 2 to be 0.15.
There areO(k?) recursions involved in (11) since there arérom Figure 5(a), we can see that heurigticis optimal for
O(k?) rectangles in the rectangle graph in problEm. Each this tree with the given link error probabilities. Note thhe
recursion has a complexity @¥(kr) since the first maximum JISP approximation algorithm in [17] performs very poorly



13

relative to our algorithms. This is because JISP is only agfar our algorithm for arbitrary tree structures through sintiolas,
our problem, and these algorithms cannot be directly agpliand understood when it performs optimally and when it does
to our problem since we have a multi-hop network. not. Future work involves incorporating aspects such as ARQ
We now change the probability of error of Link 2 to 0.9instead of simply allocating a fixed number of slots, or a
Now from Figure 5(b), we observe that heuriskicis actually fixed amount of energy to each link. These problems are
not optimal for certain deadlines. This is because for thesignificantly more challenging as they involve a decision
deadlines the optimal solution is fd® to transmit befored. process based approach, and become computationally comple
However, when the deadline is small or large, the sub-optineven for simple tree structures.
solution is optimal. This can be reasoned as follows. When
the deadline is small (less than 10 time slots), the amount of
information that is obtained from node is not much since3
accounts for Only two nodes. Sinckaccounts for four nodes’ [1] S. Hariharan and N. B. Shroff, “Deadline constrained eztting for
iti ti lfor A t it thar t th kets f data aggregation in unreliable sensor networks,Initernational Sym-
! IS optmal for.A to wal onger- a 0 Qa €r packe S _rom posium on Modeling and Optimization in Mobile, Ad Hoc, andelegss
its predecessors, and transmit aftérfinishes transmitting. Networks (WIOPT)2011.
However, when the deadline is slightly largefr,would have [2] V\% Heinéﬂmam A ,Chaﬂdrakalsapy ar)dl H. Bé_ilakrishnanne‘rfy-
s . efficient Communication Protocols for Wireless Microsensetworks,”
gathered packets_ by a certain tl_me slot, \_/vhlch occurs much 0 Jiernational Conference on System Scien@ao0.
before the deadline. However, since the link frds's child  [3] Y. wu, S. Fahmy, and N. B. Shroff, “On the construction ahaximum-
has a high probability of error3 might not have gathered lifetime data gaflhefi_ﬂr? tree in Seﬂsoég(e;wozrlégsz-CotﬂnBS and
; A : approximation algorithm,” iIHEEE INF M .
its child’s packet. Therefore, IA was Sc_hedUIe.d bef_orB, B 4] A. Goel and D. Estrin, “Simultaneous optimization fornoave costs:
could have waited longer to give more time to its child to g-an Single sink aggregation or single source buy-at-bulkS@DA 2003.
mit its packet. Therefore, the optimal order of transmissio [5] H.hL. V._lTre(e&S,SDetectigg,gEstimation, and Modulation Theory: Part |
. . : . . John Wiley ons, 1 .
here is to transmib after A. I_:Ina”y’ when the deadline is very 6] M. R. Garey and D. S. Johnso@omputers and Intractability: A Guide
large, the order of scheduling of and B no longer matters to the Theory of NP-CompletenessW. H. Freeman, 1979.
because each have sufficient time to gather packets from théfl L. Gargkano and A. A. Rescigno, “Optimally fast Idata gaihg in sensor
; - networks,” Lecture Notes in Computer Sciena®l. 4162, 2006.
predecessors,' Note that we do I‘!Ot ShOW. the ‘]ISP algomhm [Ié] C. Florens, M. Franceschetti, and R. McEliece, “Loweubds on data
Figure 5(b) since the JISP provides an information less than' cojlection time in sensory networkslEEE JSAG vol. 22, no. 6, 2004
2 units, and the difference between the sub-optimal and tHgJ B. Krishnamachari, D. Estrin, and S. B. Wicker, “The incpaf data

; ; ; ; aggregation in wireless sensor networks,"JT@DCSW ’'02 2002.
optimal solution is very small that the difference cannot I3[?0] A. Boulis, S. Ganeriwal, and M. B. Srivastava, “Aggréga in sensor

observed if the JISP algorithm is included. networks: An energy-accuracy trade-off” irst IEEE Intl. Wksp. on
Furthermore, we observe that even if some links are bad, Sensor Network Protocols and Applicatior2903.

ot ; ; ; ; [11] Y. Yu, B. Krishnamachari, and V. K. Prasanna, “Energtehcy tradeoffs
the heuristic can still be close to optimal. For this expeiirt) for data gathering in wireless Sensor networks IGEE INFOCOM

we vary the error probability of Link 1 from 0.05 to 0.95 2004.
while keeping that of Link 2 fixed, and vice versa. We fix th@l2] Z. Ye, A. Abouzeid, and J. Ai, “Optimal policies for digiuted data

; ; ; . aggregation in wireless sensor networks,"lHEE INFOCOM 2007.
deadline to be 15 time slots. From Figure 5(c), it is cleat thﬁs] S. Hariharan and N. B. Shroff, “Maximizing aggregatedormation
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Fig. 5. Numerical Results

Proof: We prove this theorem by induction on nodes in
the tree from leaves to the root.

At any leaf nodel, X[I, W] = w;\;, since the maximum
information that reaches a leaf nodeus if [ is a source, and
0, otherwise. Therefore, the result holds for leaf nodes.

Assume that the result holds for all nodes at depth

Consider any nodeé at depthh — 1 from the root of the
tree. Suppose that [i, W] computed by (5) is not maximum.
This implies that for at least one childof i, and for at least
one waiting timeW”’, X|[j, W’] is not maximum. However,
this contradicts the induction hypothesis sincs a node that
is at depthh from the root of the tree.

Hence, the result follows. |
Proof of Theorem VI.1

Proof: We show this result by induction om.

Clearly, forn = 0, Z[i,Z, s] is initialized correctly for each
7 C J,ands € {0,...,W}. It now suffices to show that at
the end of the-th iteration, Z[i, Z, s] is assigned the correct
value for eachZ C 7, ands € {0,...,W}, assuming the
correctness of théi — 1)-th iteration. LetT; = (v;, 84, i, u;)
denote thei-th time window. If v; ¢ Z, then it is clear that
Zi,Z,s| = Z[i —1,Z,s] as shown in Step 6. Suppose that
v; € Z. Then Z[i,Z, s] is maximized by including either a
time window; that belongs to joly; with j < 4, or T; itself.

In the first case, we again ha&[i,Z,s| = Z[i — 1,Z, s]

as shown in Steps 6 and 8. In the second case, we must ha
Z[i,ZL,s) = Z[i—1,I\{v;}, s+1;]+u; by the optimality of the
(i — 1)-th iteration, and the non-increasing ordering of releasg
times. Furthermore, this can only happen wher; < W, and
s > s;, again by the non-increasing ordering of release timed

Therefore, the result holds for thé" iteration, and hence
the proof follows by induction. |
Proof of Theorem VIII.2

Proof: We prove this result by induction. Consider chil
k. For anye < r, mlk,e,w,t] = X[k, w, LE’“%;ET]JC(t,e) is
the maximum information that reaches nodesing child k
alone. Hence, the result is true for chitd
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