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Maximizing Information in Unreliable Sensor
Networks under Deadline and Energy Constraints

Srikanth Hariharan*, Zizhan Zheng and Ness B. Shroff

Abstract—We study the problem of maximizing the infor-
mation in a wireless sensor network with unreliable links. We
consider a sensor network with a tree topology, where the root
corresponds to the sink, and the rest of the network detects an
event and transmits data to the sink. We formulate a combi-
natorial optimization problem that maximizes the information
that reaches the sink under deadline, energy, and interference
constraints. This framework allows using a variety of error
recovery schemes to tackle link unreliability. We show thatthis
optimization problem is NP-hard in the strong sense when the
input is the maximum node degree of the tree. We then propose
a dynamic programming framework for solving the problem
exactly, which involves solving a special case of the Job Interval
Selection Problem (JISP) at each node. Our solution has a
polynomial time complexity when the maximum node degree is
O(logN) in a tree with N nodes. For trees with higher node
degrees, we further develop a sub-optimal solution, which has low
complexity and allows distributed implementation. We investigate
tree structures for which this solution is optimal to the original
problem. The efficiency of the sub-optimal solution is further
demonstrated through numerical results on general trees.

I. I NTRODUCTION

A wireless sensor network is a wireless network consisting
of a number of sensors that sense a desired aspect of the region
in which they are deployed. These networks are used in a
number of military and civilian applications, such as target
tracking and environment monitoring. Sensor measurements
are prone to errors due to environmental factors and resource
constraints. Therefore, sinks cannot rely on the data sensed by
a single sensor. In many applications, the sinks only desirea
certain function of the data sensed by different sensor nodes
(e.g., average temperature, maximum pressure, detect a signal,
etc.). When sinks require certain classes of functions of the
sensed data, performingin-network computation(intermediate

This work was supported in part by ARO MURI Awards W911NF-07-
10376 (SA08-03) and W911NF-08-1-0238, and NSF Awards 0626703-CNS,
0635202-CCF, and 0721236-CNS.

S. Hariharan is with the Department of Electrical and Computer Engineer-
ing, The Ohio State University, 2015 Neil Ave., Columbus, OH43210, USA
srikanth.hariharan@gmail.com

Z. Zheng is with the Department of Electrical and Computer Engineering,
The Ohio State University, 2015 Neil Ave., Columbus, OH 43210, USA
zhengz@ece.osu.edu

N. B. Shroff is with the Department of Electrical and Computer En-
gineering and the Department of Computer Science and Engineering,
The Ohio State University, 2015 Neil Ave., Columbus, OH 43210, USA
shroff@ece.osu.edu

* Corresponding author.
A preliminary version of this paper by S. Hariharan and N. B. Shroff

titled “Deadline Constrained Scheduling for Data Aggregation in Unreliable
Sensor Networks” appeared in the proceedings of the9th Intl. Symposium
on Modeling and Optimization in Mobile, Ad Hoc, and WirelessNetworks
(WIOPT), 2011 [1].

nodes in the network aggregate data from all their predeces-
sors, and only transmit the aggregated data) greatly reduces
the communication overhead [2].

A tree structure is commonly used for data aggregation in
wireless sensor networks [3], [4]. In this paper, we consider
a tree topology with the sink as the root of the tree. An
event is observed by a subset of nodes in the tree called the
source nodes. All source nodes transmit their data about the
event to the sink. Our goal is to maximize theinformation
obtained by the sink. The information obtained by the sink
is a representation of the quality of the data that reaches the
sink. For example, it could be the sum of the inverses of the
error variances of the data from various sources that reaches
the sink [5]. It could also represent other relevant metricssuch
as the Log-Likelihood Ratio if detection is being performed
by the network, distortion, etc.

Much of the existing work in data aggregation does not
take channel errors, and interference into account. However,
wireless channels are inherently prone to errors due to fading
and environmental factors. Also, interference is a critical
component of the wireless environment. We consider a one-
hop interference model where two nodes that are one hop
away from each other cannot transmit simultaneously. We
also consider unreliable links where the errors across different
links are independent of each other, and allow for the usage
of various error-recovery schemes including retransmissions,
coding, etc.

Delay is also an important parameter in a wireless sensor
network. While most works focus only on energy, minimizing
the delay can help save a huge amount of energy. For instance,
suppose that a sensor network is tracking a target. In order to
ensure good tracking quality, the sink must obtain previous
measurements in a timely manner so that the best subset of
sensors for the next measurement is chosen. If the sink does
not get the measurements in a timely manner, the target might
have moved too far resulting in a poor measurement quality
during future measurements. On the other hand, if the sink
decides to ensure good tracking quality by activating a large
number of sensors at all times, a large amount of energy could
be wasted. Therefore, it is critical that the sink obtains sensor
measurements in a delay efficient manner.

With this model, we provide an optimization framework for
maximizing the information received at the sink under a dead-
line constraint at the sink, and per-sensor energy constraints.
The output of this framework is a schedule of time slots for
each node within the deadline, and the amount of energy to
be expended by each node on transmissions and receptions.

The main contributions of this work are summarized as
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follows:
• We develop an optimization based framework to maxi-

mize the information that is received at the sink from
all the source nodes in the data gathering tree. This
optimization frameworkexplicitly accounts for unreliable
links, deadlines, per-sensor energy constraints, and inter-
ference.

• We show that this optimization problem is NP-hard in the
strong sense by a reduction from the 3-partition problem
[6], which implies that the problem does not allow a
pseudo-polynomial time algorithm or a fully polynomial
time approximation scheme (FPTAS) [6].

• We develop a dynamic programming framework to solve
the optimization problem, which involves solving a spe-
cial case of the single-machine Job Interval Selection
Problem (JISP) at each node. For this subproblem, we
propose an optimal solution using dynamic programming,
which has an exponential time complexity ofO(2k),
wherek denotes the maximum node degree in the data
gathering tree. This leads to a polynomial time solution
to our problem whenk = O(logN), whereN denotes
the total number of nodes, a condition that often holds in
practice.

• For a dense sensor network with high node degrees, we
further develop a sub-optimal solution for solving the in-
terval scheduling subproblem, which has low complexity
and allows distributed implementation. This solution is
optimal to the original problem for certain tree structures.

• We evaluate the performance of the sub-optimal algo-
rithm for general tree structures through numerical eval-
uations, and show that it not only performs close to the
optimal solution but also outperforms an existing JISP
approximation algorithm.

The rest of this paper is organized as follows. In Section II,
we overview related work. In Section III, we describe our
system model and assumptions. In Section IV, we formulate
our problem. In Sections V, VI, and VII, we study the
problem without energy constraints. In Section V, we study
the structural properties of the deadline constrained problem,
and prove that it is NP-hard in the strong sense. We then
discuss an optimal solution based on dynamic programming
in Section VI. In Section VII, we propose a sub-optimal
solution to the deadline constrained problem, and show its
optimality for certain tree structures. In Section VIII, wethen
extend our solutions to the general problem formulated in
Section IV (including energy constraints). In Section IX, we
provide numerical results comparing the performance of our
sub-optimal algorithm with that of the optimal solution and
a baseline algorithm for general tree structures. Finally,in
Section X, we conclude the paper.

II. RELATED WORK

The problem of evacuating all the packets in a multi-hop
wireless network in minimum time is quite related to what
we are studying. Different works [7], [8] have studied this
problem for error-free channels. They propose polynomial-
time algorithms for tree structures for the one-hop interference
model. These works do not consider in-network computation.

Other existing work in this area can be broadly characterized
into two classes - constructing efficient data aggregation trees
[3], [9] and approaches to study the trade-offs between energy,
delay and the quality of aggregated data [10], [11], [12], [13],
[1], [14]. Constructing an optimal data aggregation tree isNP-
hard for a number of cases such as minimizing the number of
transmissions [9], maximizing the lifetime [3], etc. Most of
these works considering the construction of data gathering
trees do not take interference and unreliable channels into
account. Our focus in this work is to design a communication-
efficient protocol in any given data gathering tree.

Several existing works use optimization approaches to study
energy-delay trade-offs and energy-quality trade-offs under
data aggregation. Boulis et. al., [10] study trade-offs between
energy and data accuracy in data aggregation trees. In [11],
Yu et. al., study trade-offs between energy and latency in
data aggregation trees, assuming a time-slotted synchronized
system. In [12], Ye et. al., study the fundamental energy-delay
trade-off for distributed data aggregation in wireless sensor
networks. Their goal is to maximize a certain parameter called
the discounted reward at each node, where the reward is due to
data aggregation and the discount is due to the time for which
the node waits in order to aggregate data from its predecessors.
The common drawback in all of these works is that they do
not take link errors and interference constraints into account
while framing their optimization problem. We have previously
studied the problem of maximizing information in data gather-
ing trees under deadline and one-hop interference constraints,
for error-free links[13]. For unit capacity links, a distributed
optimal solution was developed that involved solving a local-
ized Maximum Weighted Matching (MWM) problem at each
hop. Since the matching only involved neighboring nodes, the
algorithm had a low computational complexity. However, the
inclusion of link errors, as done in this work, substantially
increases the difficulty of the problem. We have also studieda
problem of maximizing information under energy constraints
in [14].

In a preliminary version of this work [1], we have studied
maximizing the information for unreliable sensor networks
considering deadline constraints only. Here, we also consider
energy constraints, show that the problem is NP-hard in the
strong sense, and develop a more efficient optimal solution
(O(2k)) than the exhaustive search based optimal solution
(O(k!)) in [1].

III. SYSTEM MODEL AND ASSUMPTIONS

We model the system as a graphG(V ∪{S}, E) whereV is
the set ofactivenodes,S is the sink, andE is the set of links.
The graphG is a tree rooted at the sink. Anactive node is
one that is either a source node or has at least one source node
in its sub-tree. Sensors take measurements forevents(such as
tracking a target, measuring the temperature, etc.), and send
an aggregated form of the data to the sink within a deadline.
A node may or may not be a source for a particular event.

We consider a time-slotted and synchronized system. We
assume that the number of time slots to transmit a packet, the
number of transmissions (including retransmissions, number
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of coded bits, etc.) are all integers. Link capacities need not
be identical across links. For simplicity of exposition, we
assume that each source has data ready at time zero. It is
straightforward to extend this notion to incorporate arbitrary
known time slots at which data is ready at nodes [13]. We
assume that each source has a single data packet for an event,
and the next event occurs only after the deadline for the
current event has expired. We also consider a primary (or one-
hop) interference model where no two links that share a node
can be active at the same time. This model has been used
to characterize the interference for Bluetooth or FH-CDMA
based systems. Extending the results to a more general class
of interference models is an open problem for future work.

We assume “perfect” aggregation, i.e., intermediate nodes
can gather data from predecessors, and aggregate them into
a single packet [2], [4], [9], [13]. For reliable links and
energy constraints, we have also extended this framework
for “imperfect” aggregation [15]. Further, in [15], we have
also extended our solution to account for optimal selectionof
source nodes to maximize information.

We now define the following notations (Table I).

V Set of nodes
S Sink
E Set of links
VL Set of leaf nodes
VS Set of source nodes
P (i) Parent of nodei
C(i) Set of children of nodei
wi Information provided by source nodei
w

j
i Information received at nodei from nodej

ti Number of time slots allocated to nodei for transmissions
Wi Number of time slots that nodei waits to receive packets
Ti Maximum number of time slots that can be allocated to

nodei for transmissions
D Deadline at sink
ei Energy allocated to nodei for transmissions
Ei Energy constraint at nodei for transmissions and

receptions
ET Energy expended on one transmission
ER Energy expended on one reception
Ei Maximum energy that can be allocated to nodei for

transmissions
fi(ti, ei) Link reliability function of the link fromi to its parent

TABLE I
NOTATIONS

We refer to the actual sensor measurements asdata. For
each source nodei, we define theinformation, wi, provided
by i as follows. Let ~xi (of dimensionni) represent the raw
measurements of sensori. We definewi as I(~xi), whereI :
R

ni → R. The functionI(·) represents the quality of the
data. For example, data could be temperature, location, etc.,
while information could represent error variance, distortion,
Log-Likelihood Ratio, etc. By aggregated data, we mean the
in-network computed data (or the information provided by the
in-network computed data).

Each sensor has a per-sensor energy constraint. The amount
of energy spent by a sensor for any event is proportional to
the amount of energy spent on transmissions and receptions.

Wireless links are unreliable, and we assume that packets
losses are independent across links. Since links are unre-
liable, we can employ a number of known error-recovery

techniques such as retransmissions, coding, etc. We model
the link reliability of a link from nodei (to its parent) as a
functionfi(t, e), wheret is the number of time slots allocated
for transmissions for nodei, and e is the energy spent on
transmissions over the link.fi(t, e) denotes the probability
that information is successfully transmitted from nodei if t
transmissions slots, ande units of energy for transmission are
allowed. Note thatfi(t, e) can be any arbitrary function (that
is of practical importance), and hence can model any known
error-recovery technique for that particular link. Similarly, it
can account for different link capacities. For instance, if2 time
slots are required to transmit data from nodei to its parent,
and t = 1, fi(t, e) can be set to zero. Further, it also allows
modeling various relationships between the energy required for
transmissions, and the time slots allocated for transmission.

To illustrate the link reliability function, consider a simple
case in which transmission during any given slot consumes a
fixed amount of energy. Then,fi(t, e) can simply be a function
of min(t, e). For example, if the link capacity is one,ET = 1,
and we use retransmissions,fi(t, e) = (1 − pmin(t,e)), where
p is the packet error rate over the link fromi to its parent.
Here,fi(t, e) is the probability that the packet fromi reaches
its parent. Consider another example. Assume that the link
capacity is one,ET = 1, and thatp represents the bit error
rate. Suppose we use coding, and we require at leastk bits
to be successful for decoding at the receiver. Then,fi(t, e) =
min(t,e)
∑

j=k

(

min(t, e)

j

)

(1−p)jp(min(t,e)−j) is the probability that

at leastk out of min(t, e) bits are successful.
We define theinformation received at nodeB from a

particular source nodeA, denoted bywA
B , as the product

of the information provided by nodeA and theproduct (or
weighted product)of the link reliabilities over all the links
from nodeA to nodeB. To be precise, ifPA,B represents the
path fromA to B, then the information received atB from A
is wA

B = wA

∏

j∈PA,B
fj(tj , ej).

Remark: We note that the algorithms we develop in the
later sections also work when the information received at
nodeB from source nodeA is defined as the product of the
information provided by nodeA and thesum (or weighted
sum)of the link reliabilities over all the links from nodeA to
nodeB, i.e., wA

B = wA(
∑

j∈PA,B
fj(tj , ej)). The product of

the link reliabilities is very meaningful when the link errors are
independent. This, for instance, could represent theexpected
information that reaches the sink from any node in the tree.
The sum of the link reliabilities is also of importance as it
can be used to model fairness. For instance, we can model
proportional fairness [16] among links using a logarithmic
function. Note that the logarithm of the product of link
reliabilities is the sum of the logarithms of the link reliabilities.

Finally, we model theinformation received at nodeB as
a (weighted) sum of the information received atB from
individual source nodes. Note that whenB is the sink, we
obtain the information received at the sink. This metric is of
importance especially when sensor measurements are fused.
For instance, thesumof the inverses of the error variances of
individual sensors represents the overall error variance of the
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fused measurements when measurements are independent [5].

A. Motivating application - sensor networks

Consider a sensor network shown in Figure 1. Sensors send
their data over a tree network to a sink (red node). In order to
illustrate our definitions of information, consider a part of this
network (encircled in green) with three nodes and the sinkS.
Suppose that all the three sensors are source nodes measuring
the location of a target. Let sensori provide an error variance
Ri for the target location,i ∈ {1, 2, 3}. Then, a metric for
measuring theinformationprovided by sensori is 1

Ri
. If data

from sensors 1 and 2 is combined (say), then one of the metrics
for the overall variance,R12 of the combined data is given by
1

R12
= 1

R1
+ 1

R2
, which is lower than bothR1 andR2 [5].

1

23

S

Fig. 1. Motivating Example

Suppose that retransmissions are used in order to account for
unreliable links. If sensori is allowed to maketi transmissions
and consumeei units of energy on transmissions, the proba-
bility that sensori’s transmission is successful is given by
fi(ti, ei). When data aggregation is used at intermediate nodes,
for example, node 1 can combine data from node 3, and trans-
mit both data simultaneously. Assuming that errors across links
are independent, the probability that node 1’s data reachesthe
sink isf1(t1, e1), the probability that node 2’s data reaches the
sink isf2(t2, e2), and the probability that node 3’s data reaches
the sink isf3(t3, e3)f1(t1, e1). Now, the expected information
received at the sink is

∑

i∈{1,2,3}
1
Ri

P(i’s data reaches the
sink) = 1

R1
f1(t1, e1) +

1
R2

f2(t2, e2) +
1
R3

f3(t3, e3)f1(t1, e1).
One can clearly verify that without taking the communication
model into account, we get the information1

R1
+ 1

R2
+ 1

R3
.

IV. PROBLEM FORMULATION

We first describe our forwarding policy for data aggregation.
Forwarding Policy: For an event, each node will wait for
a certain time to aggregate data from its predecessors. Until
that waiting time expires, a node, even if it is a source node,
will not transmit its data to its parent. After the waiting time
expires, the node will no longer accept transmissions from its
children. The implication of this policy is that a node will
never transmit data that it receives from two or more nodes
separately. It will always aggregate the data that it receives
and transmit the aggregated data.

This forwarding policy is commonly used in the literature
for data gathering problems [2], [3], [9], [13], [14].

We now formulate our optimization problem. The notations
below can be recalled from Table I.

Problem ΠDE :

max
~t, ~W,~e

∑

i∈VS

wi
S

s.t. ti ∈ {0, 1, ..., Ti} ∀i ∈ V

ei ∈ {0, 1, ..., Ei} ∀i ∈ V

eiET +
∑

j∈C(i)

ejER ≤ Ei ∀i ∈ V ∪ {S} (1)

For eachi ∈ V ∪ {S}\VL, and for eachC ⊆ C(i),
∑

j:j∈C

tj ≤Wi − min
j:j∈C

Wj (2)

Wi ∈ {0, 1, ..., D − 1} ∀i ∈ V andWS = D

We now explain the constraints in problemΠDE . Constraint
(1) represents the energy constraint at each node in the
network. This consists of transmission and reception energies.
We note that leaf nodes do not expend energy on receptions,
and the sink does not expend energy on transmissions. The
relation between one-hop interference and delay is represented
by (2). Under the one-hop interference model, a parent node
can only receive packets from one of its children nodes during
a particular slot. However, when a child transmits to its parent,
the other children (of the same parent) can receive data from
their children (by the definition of the one-hop interference
model). Constraint (2) says that for any subset of the children
nodes, the total number of transmissions made by this subsetof
nodes is bounded above by the difference between the waiting
time of the parent and the waiting time of the child that has
the least waiting time in the chosen subset. This constraintis
similar to the interference constraint for error-free channels.
Examples illustrating this constraint can be found in [13].

While we are ultimately interested in solving problemΠDE ,
it is interesting to first study the problem without energy con-
straints, i.e., with only deadline and interference constraints.
Studying this problem provides insights into solvingΠDE .
We call this problem without energy constraintsΠD. Without
energy constraints,Ei units of energy can be expended on
transmissions by each nodei. For notational convenience, in
ΠD, we refer to the link reliability function,fi(ti, Ei), as
simply fi(ti). We study the structural properties ofΠD and
show that it is NP-hard. This automatically implies that the
problemΠDE is also NP-hard. We first solveΠD, and use its
solution to develop an algorithm that solvesΠDE .

V. STRUCTURAL PROPERTIES ANDNP-HARDNESS

In this section, we study the properties of the optimal
solution of problemΠD, and show that it is NP-hard. These
properties will be used to derive an optimal algorithm in
Section VI and a sub-optimal algorithm with lower complexity
in Section VII.

Theorem V.1. Consider any single hop in the data aggrega-
tion tree with parent nodeP having k children, C1, C2,...,
Ck. For problemΠD, let an optimal waiting time ofP be
W ∗

P and let W ∗
1 ,..., W ∗

k be optimal waiting times of thek
children, respectively. Lett∗1, t∗2,..., t∗k be an optimal solution
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for the number of transmissions made by thek children,
respectively. WLOG, assume thatW ∗

1 ≤ W ∗
2 ≤ ... ≤ W ∗

k .
For j ∈ {1, 2, ..., k}, defineW ′

j recursively as follows.

W ′
1 = W ∗

1 (3)

W ′
j = max(W ∗

j ,W
′
j−1 + t∗j−1), if j ∈ {2, 3, ..., k} (4)

Then, for eachj ∈ {1, 2, ..., k}, we have the following
properties:

1) W ′
j is also an optimal waiting time for nodeCj .

2) W ′
j , W

′
j + 1, ..., W ′

j + t∗j − 1 are optimal transmission
slots for nodeCj .

Proof: We show 1) and 2) by induction onj.
Consider j = 1. By definition, W ′

1 = W ∗
1 , and hence

W ′
1 is an optimal waiting time for nodeC1. We prove 2) by

contradiction. Suppose thatW ′
1, W ′

1 + 1, ..., W ′
1 + t∗1 − 1 are

not optimal transmission slots for nodeC1. SinceC1 cannot
transmit beforeW ′

1 because of the forwarding policy, and since
C1 needs to maket∗1 transmissions,C1 must transmit in at
least one time slot afterW ′

1+ t∗1−1. If there exists a time slot
in {W ′

1,W
′
1 + 1, ...,W ′

1 + t∗1 − 1} during which none of the
children ofP transmit, then makingC1 transmit during this
slot does not affect the optimality of the solution. Supposethat
there exists a time slot in{W ′

1,W
′
1+1, ...,W ′

1+t∗1−1} during
which a child ofP other thanC1 transmits. Once again, by
makingC1 transmit during this slot, and scheduling the other
child to transmit in the time slot afterW ′

1 + t∗1 − 1 (in which
C1 was originally transmitting), the optimality of the solution
is not affected. This can be reasoned as follows.

• The new schedule is feasible.
• The value of the objective function does not decrease

because of interchanging the schedules. This is because
the expected number of packets aggregated byC1 does
not change after time slotW ′

1, and the expected number
of packets aggregated by any other node in that hop
cannot decrease since it now has greater time to gather
data from its predecessors.

This contradicts our assumption thatW ′
1, W ′

1+1, ...,W ′
1+

t∗1 − 1 are not optimal transmission slots forC1.
Assume that 1) and 2) are true for nodeCm.
Considerj = m+ 1. If max(W ∗

m+1,W
′
m + t∗m) = W ∗

m+1,
then clearlyW ′

m+1 is an optimal waiting time for nodeCm+1.
Suppose thatW ∗

m+1 < W ′
m + t∗m. By 1) and 2) for nodeCm,

nodeCm+1 cannot start transmitting beforeW ′
m+ t∗m. If node

Cm+1 waits until slotW ′
m + t∗m(> W ∗

m+1), it can potentially
aggregate more packets, and still maket∗m+1 transmissions.
Therefore, the value of the objective function cannot decrease
if Cm+1 waits until W ′

m + t∗m. Hence, 1) follows for node
Cm+1.

The proof of 2) is virtually identical to that for the case
j = 1.

Thus, by induction, 1) and 2) are true∀j ∈ {1, 2, ..., k}.
Theorem V.1 shows that in order to find a collision-free

optimal schedule, it is enough to know the optimal waiting
time of each node, and the optimal number of time slots to
be allocated for transmission over each link. Specifically,it

shows that if the optimal waiting time of a nodei is Wi, and
the optimal number of time slots it is allocated isti, then the
optimal collision-free schedule ofi is the set of time slots
{Wi,Wi + 1, ...,Wi + ti − 1}.

We now show thatπD can be solved in a recursive manner.
Let X [i,W ] represent the information received at nodei if

node i waits for a timeW . We defineX [i,W ] as follows.
For any leaf nodel, for any W ∈ {0, 1, ..., D − 1}, we
haveX [l,W ] = wlλl. (Here,λl = 1, if l is a source, and
zero, otherwise). Recall thatwl is the information provided
by l. Consider any hop with parent nodeP havingk children,
C1, C2,..., Ck. Then, for anyW , X [P,W ] can be calculated
recursively as

X [P,W ] = wPλP + max
{WCi

,tCi
}

k
∑

i=1

X [Ci,WCi
]fCi

(tCi
), (5)

where{WCi
, tCi
} satisfy the constraints of problemπD for

nodeP . The intuition behind (5) is that the contribution from a
child Ci that waits for a timeWCi

and is allowed to maketCi

transmissions isX [Ci,WCi
]fCi

(tCi
), and we are interested in

the sum of the information.

Theorem V.2. X [i,W ] computed by (5) maximizes the infor-
mation received at nodei if nodei waits for a timeW , for any
nodei in the tree. Consequently,X [S,D] provides an optimal
solution toπD.

The proof can be found in the appendix.

Theorem V.3. Let C1, C2, ..., Ck be the children of node
i that is not a leaf node. IfW ∗ is the optimal waiting
time of nodei, then one of the optimal set of time slots
during which the children transmit is given by{max(0,W ∗−
k
∑

j=1

TCj
),max(0,W ∗ −

k
∑

j=1

TCj
) + 1, ...,W ∗ − 1}.

Proof: We prove this theorem by contradiction.
From Theorem V.1, we know that transmitting in consecu-

tive slots is optimal.
Suppose that the set of slots given above is not optimal. This

means that at least one of the children makes a transmission

before max(0,W ∗ −
k

∑

j=1

TCj
). Since the maximum total

number of transmissions for all the nodes in the hop is given by
k
∑

j=1

TCj
, no child node makes a transmission in at least one of

the slots in the set above. If the child node that had transmitted

before the slotmax(0,W ∗−
k
∑

j=1

TCj
) had waited until this free

slot, it could have potentially gathered more packets, and still
made a successful transmission, thus increasingX [i,W ]. This
contradicts the assumption that the above set of time slots is
not optimal.

The implication of this theorem is that no child needs to

transmit beforemax(0,W ∗ −
k

∑

j=1

TCj
). This is critical in

reducing the search space for determining the optimal waiting
time of each node, and will be used in the rest of the paper.
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We now show that findingX [i,W ] for a non-leaf nodei
and for a givenW is NP-hard in the strong sense by reducing
it from the 3-partition problem [6] which is known to be NP-
hard in the strong sense1.
3-Partition Problem: Given 3m + 1 positive integers

a1, a2, ..., a3m, andB such that
3m
∑

i=1

ai = mB, and B
4 < ai <

B
2 for i = 1, 2, ..., 3m; is there a partition of the set{1, ..., 3m}

into m disjoint subsetsS1, S2, ..., Sm such that
∑

i∈Sj

ai = B

for j = 1, 2, ...,m?
Note that if there exists a solution to this problem, each

subsetSj has exactly three elements.

Theorem V.4. DeterminingX [i,W ] for an arbitrary nodei
having k children, and for an arbitrary waiting timeW is
NP-hard in the strong sense when the input to the problem is
k.

Proof: Given an instance of the 3-partition problem, we
construct the following instance of the scheduling problem
with error-free links. Nodei hask = 3m children, denoted by
C1, C2, ..., C3m. The number of time slots required to transmit
a packet over the link(Cj , i) is aj , and the information pos-
sessed byCj at time slot zero is alsoaj , for j = 1, 2, ..., 3m.
Further, each childCj hasm−1 children, and each child ofCj

also accounts foraj units of information, forj = 1, 2, ..., 3m.
Each child ofCj takesB time slots to transmit a packet to
Cj , for j = 1, 2, ..., 3m. Finally, we haveW = mB at node
i. Figure 2 illustrates this construction.

a a

a
a

W=mB
i

1 3m

3m
21

a

a
1

a
2

a
2 a

3m
a
3m

C1 C
2 ........

........... .......
a
1

C
3m

a
2

B B B B B B

Fig. 2. Reduction from the 3-partition problem

We now show that there exists a solution to the 3-partition
problem if and only if there exists a schedule such that
X [i,mB] ≥ m(m+1)B

2 .
We show by induction that for anyj = 1, 2, ...,m, there

exists a schedule such thatX [i, jB] ≥ j(j+1)B
2 if and only if

there existsj disjoint subsetsS1, S2, ..., Sj of {a1, ..., a3m},

1In [1] and [13], we claim that the corresponding optimization problems
are MAX SNP-hard, which means that unless P=NP, there does not exist
any Polynomial Time Approximation Scheme (PTAS) for those problems.
However, we found that the reduction to prove MAX SNP-hardness was not
accurate. We correct this, and prove that these optimization problems are NP-
hard in the strong sense using reduction from a 3-partition problem. Since
we consider a more general problem than those considered in [1], [13], this
immediately implies that the problem that we study in this work is also NP-
hard in the strong sense.

each having three elements, such that
∑

n∈Sl

an = B for l =

1, 2, ..., j.
Suppose thatj = 1.
(⇒): If there exists a setS1 = {an1 , an2 , an3} such that

∑

n∈S1

an = B, then we can schedule the childrenCn1 , Cn2 ,

andCn3 in an1 + an2 + an3 = B slots, and we will obtain
X [i, B] = an1 + an2 + an3 = B.
(⇐): To prove the converse, suppose that there exists a

schedule such thatX [i, B] ≥ B. Note that for anyn < B,
X [Cj, n] = aj for j = 1, 2, ..., 3m. Suppose that there does
not exist a set consisting of three elements such that the sum
of the elements isB. SinceB

4 < aj <
B
2 for j = 1, 2, ..., 3m,

if the schedule consists of more than three children, then the
total time for all the children to transmit would exceedB
slots, and if the schedule consists of less than three children,
then the amount of information obtained would be strictly
less thanB. Hence, the schedule must exactly consist of
three children. However, if the total information accounted
for by these children is greater thanB, then the total time
to obtain this information is also greater thanB (since the
transmission time is identical to the information provided).
Hence, we obtain a contradiction.

Thus, the result holds forj = 1. Assume that the result
holds forj = r.

Considerj = r + 1.
(⇒): If there existsr + 1 disjoint subsetsS1, S2, ..., Sr+1

such that
∑

n∈Sl

an = B for l = 1, 2, ..., r + 1, then we can

schedule the children corresponding to the elements inSl

between slots(l − 1)B and lB, for l = 1, 2, ..., r + 1. Since
a child Cj gets an additional information ofaj after every
B slots, we haveX [Cj , (l − 1)B] = laj for l = 1, 2, ...,m
and for j = 1, 2, ..., 3m. Hence, the children corresponding
to Sl will totally account for lB units of information for
l = 1, 2, ..., r + 1. Therefore, the total information obtained
by this schedule is(r+1)(r+2)B

2 .
(⇐): To prove the converse, suppose that there exists a

schedule such thatX [i, (r + 1)B] ≥ (r+1)(r+2)B
2 . We can

split this schedule intor + 1 non-overlapping schedules,
S′
1, S

′
2, ..., S

′
r+1, where the waiting time of nodes inS′

l lies
between(l−1)B andlB for l = 1, 2, ..., r+1. Therefore, if a
child Cj is in scheduleS′

l , then it would account forlaj units
of information. SinceX [i, (r+ 1)B] ≥ (r+1)(r+2)B

2 , we have

r+1
∑

l=1

∑

j:Cj∈S′
l

laj ≥
(r + 1)(r + 2)B

2
. (6)

Further, since the waiting time at nodei is given byW =
(r + 1)B, we have

r+1
∑

l=1

∑

j:Cj∈S′
l

aj ≤ (r + 1)B, (7)

since it takesaj time slots to transmit a packet fromCj to i,
for j = 1, 2, ..., 3m.

Subtracting (7) from (6), we get
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r+1
∑

l=1

∑

j:Cj∈S′
l

(l − 1)aj ≥
r(r + 1)B

2
. (8)

This implies that

r+1
∑

l=2

∑

j:Cj∈S′
l

(l − 1)aj ≥
r(r + 1)B

2
, (9)

sinceS′
1 accounts for zero information in (9). The relation (9)

implies that inrB slots, the scheduleS′
2, S

′
3, ..., S

′
r+1 accounts

for at least r(r+1)B
2 units of information. According to the

induction hypothesis, this is possible if and only if the sets
S′
2, S

′
3, ..., S

′
r+1 each contain exactly three elements, and the

sum of the transmission times of the children in each set is
B. Now, given thatS′

2, S
′
3, ..., S

′
r+1 are disjoint subsets each

containing three elements whose sum isB, X [i, (r+ 1)B] ≥
(r+1)(r+2)B

2 if and only if S′
1 also consists of three children

such that the sum of their transmission times isB.
Hence, the result follows by induction, and therefore, deter-

miningX [i,W ] is NP-hard in the strong sense when the input
to the problem is the number of children ofi.

This result implies that even if the transmission times, and
the deadline are bounded by a polynomial in the input, the
problem remains NP-hard. Since the deadline is typically
linear in the input, it is important to show NP-hardness in
the strong sense for this problem. This means that a pseudo-
polynomial time optimal algorithm cannot exist for this prob-
lem unless P=NP.
Relationship to the Job Interval Selection Problem:We
now show that computingX [i,W ] is a Job Interval Selection
Problem (JISP) in a single machine. JISP is a well-studied
problem in the machine scheduling literature [17], [18], [19].
It is known to be MAX SNP-hard, which implies that unless
P=NP it is not possible to find a Polynomial-Time Approxi-
mate Solution (PTAS) to JISP.

We briefly describe the Job Interval Selection Problem
(JISP). In a single-server JISP,n jobs need to be served by a
single machine. Each job hask instances, where each instance
is associated with an explicit time interval during which it
must be scheduled, and a certain profit. The machine can only
serve one instance of any job during each time slot. The goal
is to find a schedule such that at most one instance of a job is
present in the schedule, the instances in the schedule do not
conflict in time, and the sum of the profits of the job instances
is maximum.

DeterminingX [i,W ] for an arbitrary nodei and an arbitrary
waiting timeW is a JISP. This can be seen as follows. In our
problem, the jobs correspond to the children nodes that need
to be served by the parent. Each instance of the job (child)
corresponds to the interval during which it transmits, and a
weight. The interval corresponds to the interval of the job
instance, and the node weight corresponds to the profit of the
job instance. Thus, our problem is a JISP.

There exists12 -approximation algorithms for special cases of
JISP. However, JISP is a relatively small part of our problem.
While finding X [i,W ] for each nodei and for eachW
is a JISP, we ultimately needX [S,D]. If we use existing

JISP approximation algorithms, they could result in a very
poor performance (since if there areh hops in the tree, the
approximation factor of the overall problem could be as poor
as 1

2h
). Further, the input to our problem is the maximum node

degree of the tree, which is typically small. Therefore, we take
these issues into account, and develop a new solution.

VI. A N OPTIMAL SOLUTION TO πD

In this section, we propose an optimal algorithm to the
interval scheduling sub-problem, i.e., to computeX [i,W ] for a
non-leaf nodei and for any waiting timeW ∈ {0, 1, ..., D−1}.
While the problem is strongly NP-hard in general, we obtain
an algorithm of time complexityO(k32k), wherek denotes
the maximum node degree in the data aggregation tree. Hence
whenk = O(logN), an optimal schedule at each node can be
found in polynomial time, which, together with the dynamic
programming framework proposed in the previous section,
provides an optimal polynomial time algorithm to the deadline
constrained optimization problem. For largek, we further
propose a sub-optimal algorithm having a low computational
complexity in the next section.

The interval scheduling subproblem that needs to be solved
can be formally defined as follows.
Single-machine scheduling with a common deadline and
multiple time windows: Let J = {J1, ..., Jk} denote a set
of k jobs. Each jobJi can be processed in one ofmi time
windows, {(si1, l

i
1, u

i
1), ..., (s

i
mi

, limi
, ui

mi
)}, where sij , l

i
j , u

i
j

are integers, andsij denotes thej-th release time (the time
at which the job is released to the machine),lij denotes thej-
th processing time, andui

j denotes the weight (or profit) ifJi
is scheduled in the time interval[sij , s

i
j + lij ]. Given an integer

W , a feasible schedule is a subset of time windows, such that
all the intervals are subsets of the interval[0,W ], at most one
time window is selected for each job, and no two intervals in
the schedule overlap. A schedule is optimal if the total weight
of the scheduled jobs is maximized.

We note that when each job only has a single time window
associated (mi = 1 ∀i), and a common deadlineW , there
exists an optimal dynamic programming based solution with
polynomial time complexity ink and W [20]. We propose
the following extension to solve the general problem. First
consider the collection of all the time windows belonging
to all the jobs, and sort them in non-increasing order of
release times. Ties are broken arbitrarily. Denote the sorted
time windows asT = {T1, ..., Tn}, wheren =

∑k
j=1 mj ,

Ti = (vi, si, li, ui), wherevi, si, li, ui denote the index of the
job, the release time, the processing time, and the weight of
the i-th time window, respectively. LetZ[i, I, s] denote the
maximum weight that can be achieved by a feasible subset of
time windowsT′ ⊆ T, such that (1)T′ ⊆ {T1, ..., Ti}; (2) the
set of jobs corresponding to time windows inT′ is I ⊆ J ;
(3) T

′ can be scheduled within time interval[s,W ] subject
to the release time constraints. Finally, the optimal solution is
the maximum value ofZ[n, I, s] for I ⊆ J , s ∈ {0, ...,W}.

The algorithm first initializesZ[i, I, s] to zero for all i =
0, ..., n, I ⊆ J ands = 0, ...,W . The algorithm then proceeds
by checking eachTi from i = 1 to n. Consider thei-th round.
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The algorithm iterates through each pair of(I, s), and sets
Z[i, I, s] = max(Z[i−1, I, s], Z[i−1, I\{vi}, s+ li]+ui) if
vi ∈ I, s ≥ si, ands+ li ≤W . Otherwise, it setsZ[i, I, s] =
Z[i− 1, I, s]. The main steps of the algorithm are as follows.

Algorithm 1 ComputingX [i,W ] for any non-leaf nodei and
waiting timeW for problemΠD

1: Sort the time windows, denoted as{Ti =
(vi, si, li, ui)}i=1,...,n, in non-increasing order of
start timessi.

2: for i = 0→ n do
3: for I ⊆ J do
4: for s = 0→W do
5: Z[i, I, s]← 0

6: for i = 1→ n do
7: for each pair of(I, s) such thatI ⊆ J and s ≤ W

do
8: if vi 6∈ I OR s < si OR s + li > W then

Z[i, I, s]← Z[i− 1, I, s]
9: elseZ[i, I, s] ← max(Z[i − 1, I, s], Z[i −

1, I\{vi}, s+ li] + ui)
return maxI⊆J ,s∈{0,...,W} Z[n, I, s]

We now prove the correctness of Algorithm 1.

Theorem VI.1. Algorithm 1 is optimal for computingX [i,W ]
for any non-leaf nodei and waiting timeW .

The proof can be found in the appendix.
We now analyze the time complexity of Algorithm 1. It

takesO(n logn) time to sort the time windows, wheren =
∑k

j=1 mj. If m = max1≤j≤k mj , thenn = O(mk). The loop
runs n times, and in each round,2kW pairs of (I, s) are
examined. For each pair of(I, s), it takes constant time to
updateZ[i, I, s]. Hence the time complexity of the algorithm
is O(mk log(mk) +mkW2k).

When applied to our problem,k is bounded by the maxi-
mum number of children of any node in the tree. For a given
W ∈ {0, ..., D − 1}, m is bounded bymin(kT ,W )T , where
T = maxi,j Ti,j is a constant, since for any children, it suffices
to consider the waiting times in{max(W − kT , 0), ...,W},
and for each waiting time, at mostT time slots will be allo-
cated for transmission. Furthermore, since a feasible schedule
takes at mostmin(kT ,W ) time slots, it suffices to compute
Z[i, I, s] for s ∈ {max(W −kT , 0), ...,W}. This implies that
it suffices to computeZ[i, I, s] for onlymin(kT ,W ) values of
s. SinceT is a constant,m = O(k). Hence, the time complex-
ity of computingZ[·, ·, ·] is O(k2 log(k) + k32k) = O(k32k).
Thus, the running time of the algorithm at a node havingk
children isO(k32k) for anyW ∈ {0, ..., D− 1}. This implies
that the complexity of computingX [i, ·] at any nodei is
O(Dk32k).

Note that Algorithm 1 only computesX [i,W ] for a given
node i, and a given waiting timeW . We ultimately need to
calculateX [S,D] at the sink to solveΠD. We propose the
following dynamic programming based algorithmic framework
for this purpose.

A. Algorithmic framework to calculateX [S,D]

Algorithm 2 Computing optimal solution for problemΠD

1: for each leaf nodei ∈ VL do
2: for W = 0→ D − 1 do
3: X [i,W ] = wiλi

4: for each non-leaf nodei such thatX [·, ·] has been com-
puted for all ofi’s childrendo

5: for W = 0→ D − 1 do
6: ComputeX [i,W ] using Algorithm 1

7: Finally, computeX [S,D] at the root
8: Look up X [S,D], and assign optimal waiting times, and

transmissions slots to the root’s children
9: Go down the tree from the root to the leaves assigning

optimal waiting times and transmission slots at each node
by looking up the corresponding vectorX [·, ·].

Algorithm 2 is optimal because of the correctness of the
recursion to computeX [·, ·] (Theorem V.2). Using this algo-
rithmic framework, the overall complexity of computing an
optimal solution to problemΠD is O(hDk32k), whereh is
the maximum number of hops in the tree (assuming that nodes
at the same height can perform computations in parallel). We
will use this framework for all the other algorithms developed
in this work as well.

VII. SUB-OPTIMAL FORMULATION AND SOLUTION TO πD

In this section, we propose a sub-optimal solution to the in-
terval scheduling subproblem for largek, which, together with
the dynamic programming framework proposed in Section V,
provides an efficient solution to the deadline constrained
problem. The structural properties ofπD imply that in any hop
the next node starts transmitting only after the previous node
has finished transmitting. This is because the optimal schedule
for each child in that hop is an interval, and the schedules of
any two children cannot conflict, i.e., no two intervals can
intersect. Therefore, in each hop, there is an order in which
children are allocated time slots for transmission. The idea of
the sub-optimal formulation is that we assume that in any hop,
the order in which children transmit to their parent is known.
We denote this problemΠsub

D .
To be precise, let the symbol “→” represent the order

of transmission. For instance,C1 → C2 means thatC1 is
scheduled for transmissions beforeC2. For each non-leaf node
i in the network (including the sink), let the set of children
C(i) = {i1, i2, ..., i|C(i)|}, and the order of transmission be
given byi1 → i2 → ...→ i|C(i)|. From Theorem V.1 and The-
orem V.3, we know that transmitting in consecutive time slots
is optimal, and that there are no unscheduled slots once the first
child starts transmitting. Also,Wi1 ≤ Wi2 ≤ ... ≤ Wi|C(i)|

).
It follows that the constraint (2) inΠD can be replaced by the
following constraint. For eachi ∈ V ∪ {S}\VL,

∑

j:j∈C(i)

tj ≤Wi −Wi1 . (10)
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Thus, the only difference between problemΠD and problem
Πsub

D is that the constraint (2) is replaced by (10). It turns out
that once the order of transmission in each hop is known,
the resulting problem can then be solved in polynomial time.
Hence our sub-optimal solution to the interval scheduling
subproblem has two steps. First, we fix the order in which
children transmit to their parent in each hop. We can design
intelligent heuristics for fixing such an order. We design such
a heuristic to evaluate our sub-optimal solution in SectionIX.
Second, for this given order for transmission, we solve the
problemΠsub

D , which is the focus of this section.
Note that even if we fix the order, we still need to determine

the waiting times and the number of time slots allocated
to each node. For instance, consider two childrenC1 and
C2. They have waiting timesW1 andW2, respectively, and
are allocatedt1 and t2 time slots, respectively. Suppose we
know thatC1’s schedule isbeforeC2’s schedule. Then, from
Theorem V.1, we know thatW1+ t1− 1 < W2. We now need
to determineW1, t1, W2, andt2, with the additional constraint
that the order in which children are scheduled is known.

We now provide some graph theoretic preliminaries required
to solveΠsub

D .

A. Preliminaries

1) Maximum Weight Independent Set: An Independent
Set in a graphG(V,E) is a set of verticesU ⊆ V
such that no two vertices inU have an edge between
them. A Maximum Weight Independent Set inG is an
Independent Set of maximum total weight of vertices.

2) Interval graph: Let {I1, I2, ..., In} be a set of intervals
on the real line. Then, the interval graphG(V,E) cor-
responding to this set of intervals is defined as follows.

• V = {I1, I2, ..., In}. Each vertex denotes an inter-
val.

• For any y, z ∈ {1, 2, .., , n}, (Iy, Iz) ∈ E if and
only if the intervals intersect, i.e.,Iy ∩ Iz 6= ∅.

3) Interval graph of interval number m: The definition
is identical to that of the interval graph except that each
vertex can now be represented as a disjoint union of
m intervals. An interval graph of interval number 2 is
called adouble interval graph.

4) Rectangle graphs:Rectangle graphs are a subclass of
double interval graphs. A double interval graph can be
transformed into a rectangle graph by simply labeling
the vertices in the double interval graph as the set-
product of the two intervals instead of the union of the
two intervals. Thus, each vertex now represents a rect-
angle inR2. It is important to note that two rectangles
that do not intersect need not form an independent set
in the corresponding double interval graph. On the other
hand, every independent set in the double interval graph
is an independent set in the rectangle graph.

5) Maximum Weight Independent Set on interval graphs
(order 1) can be found in polynomial time. However,
Maximum Weight Independent Set on interval graphs
of orderm, m > 1, is still NP-hard [21].

6) Increasing Independent Set on rectangle graphs:An
Increasing Independent Set on a rectangle graph is an
independent set that has the following property.
Let A = {r1, r2, ..., rm} be an ordered set of rectangles
ordered in the following fashion. Anyi, j ∈ {1, 2, ...,m}
such thati < j must obey the following.

• The maximum x-coordinate of any point inri is
at most equal to the minimum x-coordinate of any
point in rj .

• The maximum y-coordinate of any point inri is
at most equal to the minimum y-coordinate of any
point in rj .

Then,A is an Increasing Independent Set on the given
rectangle graph. Note that the rectangles inA are
ordered such that the next rectangle isto the right and to
the topof the previous rectangle in the order. Further,
an increasing independent set on a rectangle graph is
an independent set on the corresponding double interval
graph.

1 5
4

2

3

(a) Rectangle Graphs

A B

W−1

W−3

W

(b) Increasing Independent Set

Fig. 3. Rectangle Graphs and Independent Sets

We now provide an example to illustrate the definitions
above. Consider Figure 3(a). Each rectangle in the figure
represents a vertex in a rectangle graph. There will be an
edge between two vertices only if the corresponding two
rectangles intersect. For instance, there is an edge between
rectangles 4 and 5.{1, 2, 3, 4} and{1, 2, 3, 5} are two maximal
independent sets of rectangles. While{1, 4} is an independent
set in the rectangle graph, it does not form an independent set
in the corresponding double interval graph because its intervals
on the y-axis intersect. Also,{1, 2, 3} is an example of an
Increasing Independent Set in the rectangle graph because
rectangle 2 is to the right and to the top of rectangle 1, and
rectangle 3 is to the right and to the top of rectangle 2.

Figure 3(b) shows an Increasing Independent Set for a
node with two childrenA andB, whereA has to make two
transmissions, andB has to make one transmission before
a deadlineW . Assuming thatA transmits beforeB, an
Increasing Independent Set is given byA transmitting from
W − 3 to W − 1, and B transmitting fromW − 1 to W .
Clearly, the rectangle forB is to the top and to the right of
the rectangle forA.

B. Solution

We first construct a graph,G′, as follows. For eachCj ,
j ∈ {1, 2, ..., k}, for each tCj

, tCj
∈ {0, 1, 2, ..., TCj

},
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construct nodes labeled(Cj ,W −
k

∑

j=1

TCj
, tCj

), (Cj ,W −

k
∑

j=1

TCj
+ 1, tCj

), ..., (Cj ,W − tCj
, tCj

), respectively. The

first term in the label represents the child, the second term
represents the waiting time of the child, and the third term
represents the number of transmissions made by the child.
A node labeled(Cj ,WCj

, tCj
) in this graph is assigned a

weightX [Cj ,WCj
](fCj

(tCj
)). For any two nodes(Ci,Wi, ti)

and(Cj ,Wj , tj) in G′, there exists an edge if and only if(a)
{Wi,Wi+1, ...,Wi+ti−1}∩{Wj ,Wj+1, ...,Wj+tj−1} 6= ∅,
or (b) Ci = Cj .

We show that when the order of schedules of children in
any hop of the tree is known, findingX [·, ·] is equivalent to
finding a Maximum Weighted Increasing Independent Set in
the rectangle graph corresponding toG′.

Theorem VII.1. Consider any hop with parenti having k
children C1, ..., Ck. WLOG, assume that the order in which
the children are scheduled isC1 → C2 → ... → Ck. Assign
an interval [ai, bi] to child Ci, i ∈ {1, 2, ..., k}, such that
W < a1 < b1 < a2 < b2 < ... < ak < bk, and replace the
first term in the label of each node inG′ by this interval. Then,
G′ is a double interval graph, andX [i,W ] can be obtained
by finding a Maximum Weighted Increasing Independent Set
in the rectangle graph corresponding toG′.

Proof: Assign an interval [ai, bi] to child Ci, i ∈
{1, 2, ..., k}, such thatW < a1 < b1 < a2 < b2 < ... <
ak < bk. ReplaceCi by [ai, bi] in the first term of the label
of each node inG′. Note that the second and the third terms
in the label of each node ofG′ is an interval which specifies
the time slots during which the child transmits. Each node
in G′ can now be represented as the union of two disjoint
intervals, the first interval corresponding to the child, and the
second interval corresponding to the time slots during which it
transmits. Further, for any two nodes inG′ that represent the
same child, there exists an edge between the two nodes since
the first interval in both the node labels have a non-empty
intersection. Therefore,G′ is a double interval graph.
G′ can now be transformed into a rectangle graph as defined

before. Let the x-axis represent the children, and the y-axis
represent the schedules. Consider any two children,Cl and
Cm. Let l < m, and henceCl transmits beforeCm. In the
rectangle graph, a non-conflicting schedule forCl and Cm

can be achieved if and only if the rectangle corresponding to
Cm’s schedule is to the top and to the right of the rectangle
corresponding toCl’s schedule. It cannot be to the left because
am > bl. It cannot be to the bottom because that would
contradict the assumption thatCl transmits beforeCm.

Thus, X [i,W ] can be obtained by finding a Maximum
Weighted Increasing Independent Set in this rectangle graph
corresponding toG′.

In [22], an algorithm has been proposed to determine a
Maximum Weighted Increasing Independent Set in a rectangle
graph for determining similarities in DNA sequences. For
n rectangles in the rectangle graph, the complexity of this
algorithm is O(n log n). G′ has O(k2) vertices. Therefore,

the complexity of findingX [i,W ] in Theorem VII.1 is
O(k2 log k).

Algorithm 3 summarizes how to computeX [i,W ] for any
non-leaf nodei, and waiting timeW .

Algorithm 3 ComputingX [i,W ] for problemΠsub
D

1: Construct graphG′ as shown in Section VII-B
2: Construct the rectangle graph corresponding toG′ as

showin in Theorem VII.1
3: Find a Maximum Weight Increasing Independent Set in

the rectangle graph corresponding toG′

We can now include this interval scheduling algorithm
in the algorithmic framework (Algorithm 2) developed in
Section VI-A to calculate an optimal solution toΠsub

D .

Theorem VII.2. Algorithm 3 provides a collision-free sched-
ule, and accurately determinesX [i,W ] for any non-leaf node
i and waiting timeW .

Proof: This result follows from the previous results in the
paper.

The computational complexity of determining an optimal
solution toΠsub

D for a tree with a maximum ofh hops where
each hop hask children on average can easily be calculated
to beO(hDk2 log k), whereD is the deadline. One can thus
see that the sub-optimal version has a very low computational
complexity.

To summarize, we make the following observations.

• ProblemΠD is NP-hard in the strong sense. However, in
our problem, the exponential complexity is in the number
of children (k) in a hop.

• If k is small (which is typically the case), then with
O(hDk32k) complexity we can solve problemΠD. Oth-
erwise, we can use the sub-optimal version that has a
complexityO(hDk2 log k).

C. Discussion

In certain tree structures, the order in which children are
scheduled does not affect the optimal solution of problemΠD.

1) Single hop tree networks:Since all nodes apart from
the sink are leaf nodes, only the sink performs in-
network computation. Therefore, the order in which leaf
nodes are scheduled does not matter. Hence, the sub-
optimal solution is optimal in this case.

2) Symmetric trees:A symmetric tree is defined as one in
which nodes that are equal number of hops away from
the sink satisfy the following:

a) They have equal number of children.
b) Either all of them are source nodes or none of

them are source nodes, and they provide the same
amount of information.

c) Each incoming link has the same link reliability
function.

An example of a symmetric tree is given in Figure 4(a).
It is easy to see that the order of transmission of children
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in any hop of a symmetric tree does not affect the
optimal solution to problemΠD.

3) We now combine the ideas from the above two cases
to construct our last example. Consider a tree that is
symmetric, except at the farthest hop from the sink.
Specifically, we relax condition (c) at parents of leaf
nodes. Incoming links of a node, whose children are
all leaf nodes, need not have the same link reliability
function. However, the link reliability functions must be
identical across hops. For example, consider two nodes,
P andQ, with two children each. Both these children
are leaf nodes. If the link reliability functions for the
incoming links ofP be f1 and f2, then the link error
probabilities for the incoming links ofQ must also be
f1 and f2. However,f1 need not be identical tof2,
unlike the symmetric case. It can be easily seen that the
sub-optimal algorithm is optimal in this case as well.

Since the only difference between the sub-optimal and the
optimal problem is in determining the order in which nodes
transmit in a hop, one can use intelligent heuristics to comeup
with a particular policy for scheduling. However, in general,
choosing the optimal order of transmission in any hop depends
on a number of factors such as the number of source nodes in
the sub-tree, the entire structure of the sub-tree, and the link
errors in the sub-tree.

VIII. S OLUTION TO ΠDE

Having completely studiedΠD, we can now proceed to
developing a solution for the original problemΠDE that we
formulated in Section IV. The idea is to use the structure that
we developed forΠD to compute the optimal solution for
ΠDE . We also develop a sub-optimal version similar toΠsub

D ,
and solve it by computing an energy constrained Maximum
Weight Increasing Independent Set.

Similar to solvingΠD, we can solveΠDE in a recursive
manner.

Let X [i,W, r] be the information obtained ati from the
sub-tree rooted at nodei if i waits for a time W , and
consumes at mostr units of energy on receptions. We can
defineX [i,W, r] recursively as follows. For any leaf nodel,
X [l,W, r] = wlλl. For a non-leaf nodei, X [i,W, r] = wiλi+

max
Q

∑

j∈C(i)

X [j,Wj , ⌊
Ej − ejET

ER

⌋]f(tj , ej), whereQ is the

set of constraints including (2) for nodei, and the constraint
∑

j∈C(i) ej ≤ r. The first term represents the information from
i, and the second term represents the information fromi’s
children toi. Note that if childj allowsej units of energy for
transmissions, it can allow at most⌊Ej−ejET

ER
⌋ units of energy

on receptions. This is represented in the second term.
We can show that by computingX [S,D, ⌊ES

ER
⌋], we can

obtain an optimal solution to problemΠDE .

Theorem VIII.1. X [i,W, r] maximizes the information that
can be obtained ati from the sub-tree rooted at nodei if i
waits for a timeW , and consumes at mostr units of energy on
receptions. Consequently,X [S,D, ⌊ES

ER
⌋] provides an optimal

solution to problemΠDE .

Proof: The proof follows by induction, and is similar to
that of Theorem V.2.

A. Optimal solution toΠDE

We now extend Algorithm 1 to take the extra energy
constraint at each node into account. To computeX [i,W, r],
we need to solve the following extension of the interval
scheduling subproblem defined in Section VI, where each
job Ji is again associated withmi time windows with each
time window having the following form(sij , l

i
j , e

i
j , u

i
j), where

the new symboleij denotes the amount of energy allocated.
Further, for any feasible solution, the total energy allocated to
the time windows selected must be bounded byr.

We extend our solution toΠD as follows. First, we again
obtain the sorted collection of time windows, represented by
T = {T1, ..., Tn}, by sorting according to non-increasing
order of release timessij. Here, Ti = (vi, si, li, ei, ui). Let
Z[i, I, s, e] denote the maximum weight that can be achieved
by a feasible subset of time windowsT′ ⊆ T, such that
it satisfies (1)-(3) defined in Section VI, and the following
additional condition: (4) the total energy allocated toT

′ is at
moste. The algorithm initializesZ[i, I, s, e] to zero for each
i = 0, ..., n, I ⊆ J , s = 0, ...,W − 1, and e = 0, ..., r. The
algorithm then proceeds by checking eachTi from i = 1 to n.
Consider thei-th iteration. The algorithm iterates over each
triplet (I, s, e), and setsZ[i, I, s, e] to be the maximum of
Z[i− 1, I, s, e] andZ[i− 1, I\{vi}, s+ li, e− ei] + ui when
vi ∈ I, s + li ≤ W , si ≥ s, and e ≥ ei. Otherwise, it sets
Z[i, I, s, e] = Z[i− 1, I, s, e].

The correctness of the algorithm can be proved in a similar
way as that for Algorithm 1. The time complexity is given
by O(mk logmk + mkWr2k) since we also need to iterate
over r values ofe for each iteration. When applied to a node
i in our problem, we haver ∈ {0, ..., ⌊Ei/ER⌋}, and eij ∈
{0, ..., Ei}, whereEi is assumed to be a constant. For a given
W , m is bounded bymin(kT ,W )T E , whereE = maxi Ei.
Furthermore, it suffices to compute onlyZ[i, I, s, e] for e ∈
{1, ...,min(kE , r)} for a givenr. Hence, the time complexity
of the algorithm for a givenW andr is O(k42k).

By again appropriately incorporating the algorithmic frame-
work for Algorithm 2 in Section VI-A, we can obtain an opti-
mal solution toΠDE . The complexity of this optimal algorithm
is O(hDrmaxk

42k), where rmax is the maximum units of
energy allowed for receptions at any node in the network.

B. Sub-optimal solution toΠDE

We now develop a sub-optimal algorithm that computes
X [i,W, r] for a non-leaf nodei in the tree, assuming that the
order of transmission for its children is given. As mentioned
before, the idea is to find an energy constrained Maximum
Weight Increasing Independent Set.

Suppose thati hask children,1, 2, ..., k. WLOG, assume
that the order in which the children transmit is given by1→
2 → ... → k, i.e., childm transmits before childn if m <
n. We define anIncreasing Independent Set starting from a
specific rectangleas one that does not include any rectangles
that are to the left or to the bottom of the given rectangle.
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For instance, in Figure 3(a), an Increasing Independent Set
starting from rectangle 1 is{1, 2, 3}, whereas an Increasing
Independent Set starting from rectangle 2 is{2, 3}.

Let (j, w, t) represent the rectangle corresponding to child
j when it waits for a timew and usest time slots for
transmission. Letm[j, e, w, t] represent the weight of the
Maximum Weight Increasing Independent Set starting from
the rectangle(j, w, t) that expends at moste units of energy,
in total, on transmissions. We definem[j, e, w, t] recursively,
starting from childk, as follows.

m[k, e, w, t] = X [k, w, ⌊
Ek − eET

ER

]f(t, e), e ≤ r

m[j, e, w, t] = max
e′≤e

(X [j, w, ⌊
Ej − e′ET

ER

]f(t, e′) +

max
(w′,t′)∈Q′

m[j + 1, e− e′, w′, t′]),

j < k, e ≤ r,

(11)

whereQ′ is the set of constraints includingw+ t ≤ w′ ≤W ,
and t′ ≤ min(W − w − t, Tj+1).

The meaning ofm[j, e, w, t] in (11) is the following. The
first term represents the contribution from rectangle(j, w, t)
when child j expendse′ units of energy on transmission.
If j expendse′ units of energy on transmissions, then the
children j + 1, j + 2, ..., k can at most expende − e′ units
of energy, in total, on transmissions. Further, sincej starts
transmitting atw, and transmits fort slots, the next child can
only start transmitting afterw + t slots. Hence, we consider
the Maximum Weight Increasing Independent Sets starting
from child j + 1 when child j + 1 starts transmitting after
w+ t slots, and the childrenj+1, j+2, ..., k expend at most
e− e′ units of energy on transmissions.

We now prove the correctness of (11).

Theorem VIII.2. Consider any nodei with k children
1, 2, ..., k. m[j, e, w, t] computed by (11) is the maximum infor-
mation that reaches nodei from childrenj, j + 1, ..., k, when
the childj has a waiting timew and transmits fort slots, and
nodei expends at moste units of energy on receptions from
j, j + 1, ..., k. Consequently,X [i,W, r] = max(m[1, r, ·, ·]).

The proof can be found in the appendix.
Thus, (11) provides a way to computeX [i,W, r] for a given

order of transmission ofi’s children. Using the algorithmic
framework in Section VI-A, we can determineX [S,D, ⌊ES

ER
⌋]

for a given order of transmissions at each hop.
Finally, we study the computational complexity of this

algorithm. Leth be the maximum number of hops in the tree,k
be the maximum node degree, andrmax be the maximum units
of energy allowed for receptions at any node in the network.
We first analyze the complexity of computingX [i,W, r] for
a non-leaf nodei, for a given waiting timeW , reception
energy constraintr, and a given order of transmission of
i’s children. Recall thatX [i,W, r] is computed using (11).
There areO(k2) recursions involved in (11) since there are
O(k2) rectangles in the rectangle graph in problemΠD. Each
recursion has a complexity ofO(kr) since the first maximum

in m[j, e, w, t] in (11) involvesO(r) elements, and the second
maximum involvesO(k) elements. Therefore, the complexity
of computing X [i,W, r] for a given W , r, and order of
transmission of children isO(k3r). Therefore, the overall
complexity isO(hDr2maxk

3).
We infer that the scheduling problem involving deadline

constraints is indeed the computationally complex part of
problemΠDE . In fact, the problem has a very low compu-
tational complexity if there were only energy constraints [14].
However, we note that we still have a distributed optimal
solution, and that the exponential complexity in the deadline
constrained problem is only in the maximum node degree of
the tree.

IX. N UMERICAL RESULTS

In this section, we wish to numerically study how the
ordering of transmissions in each hop affects the overall per-
formance. Since energy constraints do not have an impact in
this aspect, we only consider problemΠD. We have provided
numerical results considering energy constraints in [15].We
numerically investigate the performance of the sub-optimal
solution with the optimal solution for general trees forΠD.
For the purpose of ordering nodes in the sub-optimal solution,
we order nodes (having the same parent) to transmit such
that a node with a greater number of source nodes in its
sub-tree transmits later than a node with a lesser number of
source nodes in its sub-tree. We call this heuristicH . We
use retransmissions as the error-recovery scheme for these
simulations. The link reliability of the link from a nodei to its
parent is given byfi(ti) = (1−ptii ), wherepi is the probability
of error over link(i, P (i)).
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Fig. 4. Symmetric and general trees

We consider the tree in Figure 4(b) with link error probabil-
ities as shown and source nodes represented by filled circles.
We consider two trees with the same structure but with one of
the links (Link 2 in Figure 4(b)) having a different probability
of error (shown in a box in Figure 4(b)). The deadline is varied
from 5 to 75. For each link(i, P (i)), we selectTi such that the
probability that a packet gets lost in all theTi transmissions
is less than 0.01.

We first set the probability of error of Link 2 to be 0.15.
From Figure 5(a), we can see that heuristicH is optimal for
this tree with the given link error probabilities. Note thatthe
JISP approximation algorithm in [17] performs very poorly
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relative to our algorithms. This is because JISP is only a part of
our problem, and these algorithms cannot be directly applied
to our problem since we have a multi-hop network.

We now change the probability of error of Link 2 to 0.9.
Now from Figure 5(b), we observe that heuristicH is actually
not optimal for certain deadlines. This is because for these
deadlines the optimal solution is forB to transmit beforeA.
However, when the deadline is small or large, the sub-optimal
solution is optimal. This can be reasoned as follows. When
the deadline is small (less than 10 time slots), the amount of
information that is obtained from nodeB is not much sinceB
accounts for only two nodes. SinceA accounts for four nodes,
it is optimal forA to wait longer thanB to gather packets from
its predecessors, and transmit afterB finishes transmitting.
However, when the deadline is slightly larger,A would have
gathered packets by a certain time slot, which occurs much
before the deadline. However, since the link fromB’s child
has a high probability of error,B might not have gathered
its child’s packet. Therefore, ifA was scheduled beforeB, B
could have waited longer to give more time to its child to trans-
mit its packet. Therefore, the optimal order of transmission
here is to transmitB afterA. Finally, when the deadline is very
large, the order of scheduling ofA andB no longer matters
because each have sufficient time to gather packets from their
predecessors. Note that we do not show the JISP algorithm in
Figure 5(b) since the JISP provides an information less than
2 units, and the difference between the sub-optimal and the
optimal solution is very small that the difference cannot be
observed if the JISP algorithm is included.

Furthermore, we observe that even if some links are bad,
the heuristic can still be close to optimal. For this experiment,
we vary the error probability of Link 1 from 0.05 to 0.95
while keeping that of Link 2 fixed, and vice versa. We fix the
deadline to be 15 time slots. From Figure 5(c), it is clear that
irrespective of the error probability of Link 1, the sub-optimal
solution is still optimal. However, for Link 2, as the error
probability increases above 0.35, the sub-optimal solution
begins to deviate from the optimal solution. Therefore, high
error probabilities do not necessarily change the optimal
order of transmission.

X. CONCLUSION

In this paper, we have studied the problem of maximizing
information in tree networks with unreliable links in the
presence of deadline and energy constraints. We formulated
an integer programming problem that explicitly accounted
for interference, link errors, per-sensor energy constraints,
and deadlines. We first studied the problem without energy
constraints, showed that the integer programming problem was
NP-hard in the strong sense, and looked at a sub-optimal
version. We provided a low complexity, distributed optimal
solution to the sub-optimal version, and analyzed tree struc-
tures for which the sub-optimal solution was actually optimal.
We used the insights obtained for the deadline constrained
problem to develop a distributed optimal algorithm based on
dynamic programming for the original problem (including
energy constraints). Further, we studied the performance of

our algorithm for arbitrary tree structures through simulations,
and understood when it performs optimally and when it does
not. Future work involves incorporating aspects such as ARQ
instead of simply allocating a fixed number of slots, or a
fixed amount of energy to each link. These problems are
significantly more challenging as they involve a decision
process based approach, and become computationally complex
even for simple tree structures.
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Fig. 5. Numerical Results

Proof: We prove this theorem by induction on nodes in
the tree from leaves to the root.

At any leaf nodel, X [l,W ] = wlλl, since the maximum
information that reaches a leaf node iswl, if l is a source, and
0, otherwise. Therefore, the result holds for leaf nodes.

Assume that the result holds for all nodes at depthh.
Consider any nodei at depthh − 1 from the root of the

tree. Suppose thatX [i,W ] computed by (5) is not maximum.
This implies that for at least one childj of i, and for at least
one waiting timeW ′, X [j,W ′] is not maximum. However,
this contradicts the induction hypothesis sincej is a node that
is at depthh from the root of the tree.

Hence, the result follows.
Proof of Theorem VI.1

Proof: We show this result by induction onn.
Clearly, forn = 0, Z[i, I, s] is initialized correctly for each
I ⊆ J , and s ∈ {0, ...,W}. It now suffices to show that at
the end of thei-th iteration,Z[i, I, s] is assigned the correct
value for eachI ⊆ J , and s ∈ {0, ...,W}, assuming the
correctness of the(i − 1)-th iteration. LetTi = (vi, si, li, ui)
denote thei-th time window. If vi 6∈ I, then it is clear that
Z[i, I, s] = Z[i − 1, I, s] as shown in Step 6. Suppose that
vi ∈ I. Then Z[i, I, s] is maximized by including either a
time windowTj that belongs to jobvi with j < i, or Ti itself.
In the first case, we again haveZ[i, I, s] = Z[i − 1, I, s]
as shown in Steps 6 and 8. In the second case, we must have
Z[i, I, s] = Z[i−1, I\{vi}, s+li]+ui by the optimality of the
(i− 1)-th iteration, and the non-increasing ordering of release
times. Furthermore, this can only happen whens+li ≤W , and
s ≥ si, again by the non-increasing ordering of release times.

Therefore, the result holds for theith iteration, and hence
the proof follows by induction.
Proof of Theorem VIII.2

Proof: We prove this result by induction. Consider child
k. For anye ≤ r, m[k, e, w, t] = X [k, w, ⌊Ek−eET

ER
]f(t, e) is

the maximum information that reaches nodei using childk
alone. Hence, the result is true for childk.

Assume thatm[j, e, w, t] represents the maximum informa-
tion that reaches nodei using childrenj, j + 1, ..., k, when
the childj has a waiting timew and transmits fort slots, and
nodei expends at moste units of energy on receptions.

Consider nodej−1. Suppose thatm[j−1, e, w, t] computed
by (11) is not the maximum information that reaches node
i. This implies that there existsw′, t′, and e′ satisfying the
constraints in (11) such thatm[j, e−e′, w′, t′] is not maximum.
However, this contradicts the induction hypothesis.

Hence, the result holds for all nodes.
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