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ABSTRACT

In this paper, we develop a mathematical framework for
studying the problem of maximizing the “information” re-
ceived at the sink in a data gathering wireless sensor net-
work. We explicitly account for unreliable links, energy con-
straints, and in-network computation. The network model is
that of a sensor network arranged in the form of a tree topol-
ogy, where the root corresponds to the sink node, and the
rest of the network detects an event and transmits data to
the sink over one or more hops. This problem of sending data
from multiple sources to a common sink is often referred to
as the convergecasting problem. We develop an integer op-
timization based framework for this problem, which allows
for tackling link unreliability using general error-recovery
schemes. Even though this framework has a non-linear ob-
jective function, and cannot be relaxed to a convex program-
ming problem, we develop a low complexity, distributed so-
lution. The solution involves finding a Maximum Weight In-
creasing Independent Set (MWIIS) in rectangle graphs over
each hop of the network, and can be obtained in polynomial
time. Further, we apply these techniques to a target tracking
problem where we optimally select sensors to track a given
target such that the information obtained is maximized sub-
ject to constraints on the per-node sensing and communica-
tion energy. We validate our algorithms through numerical
evaluations, and illustrate the advantages of explicitly con-
sidering link unreliability in the optimization framework.

Categories and Subject Descriptors
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1. INTRODUCTION
In a wireless sensor network, a group of sensors are de-

ployed to sense certain aspects of a region. The properties
sensed could potentially have a number of applications in
military and civilian domains, such as finding the location
of a target, sensing the temperature and pressure in a re-
gion, etc. While the network is ad-hoc in general, occasion-
ally sensors have to report the sensed data to one or more
sinks (end-users). When there is only one sink, the problem
of sending data from multiple sources to this common sink
is often called the convergecasting problem [22]. In many
sensor network applications, the sink only requires an ag-
gregated form of the data sensed by different nodes (e.g.,
average temperature, maximum pressure, an indication of
whether a target is present, etc.). In such cases, performing
in-network computation (i.e., intermediate nodes perform-
ing a functional computation of the data that they receive
from multiple sources) is known to greatly reduce the com-
munication overhead [8]. Since sensors are typically battery
operated, it is important to conserve energy so that the net-
work can function for a long period of time without requiring
much maintenance.
The energy spent by sensors is primarily because of two

operations - sensing and communication; the latter involves
transmissions and receptions. We are interested in max-
imizing the information that reaches the sink subject to
energy constraints. For sensor networks, the information
that reaches the sink can be a measure of the quality of the
actual data that reaches the sink. For instance, it can be
the sum of the inverses of the error variances of the source
nodes whose data reaches the sink (this is a measure of the
overall variance obtained when the measurements are inde-
pendent [17]). On the other hand, if the network is de-
tecting a signal, the information could be the sum of the
Log-Likelihood Ratios obtained from the source nodes. Con-
trary to existing works, we also explicitly model the effects
of unreliable links in our framework. Therefore, the “in-
formation” depends not only on which sensors monitor a
particular event but also on the successful transmission of
the data to the sink. We develop algorithms that allocate
energy to each sensor node so that they can perform sensing
and end-to-end communication in an efficient manner.
Target tracking is a widely studied application of sensor



networks. While innumerable approaches study this prob-
lem from a signal processing perspective, very few works
study this problem considering multi-hop wireless networks,
unreliable links, and communication energy. As a target
moves through the network, the set of sensors that track
the target also need to dynamically change because there
may exist better sensors to take a measurement during the
next sampling instant compared to the current ones. Also,
there may exist sensors that have large amounts of energy
left over compared to others. Therefore, in order to maxi-
mize the information that the sink obtains considering these
energy constraints, we need to select sensors appropriately.

All these optimization problems are naturally integer pro-
gramming problems. For instance, selecting a sensor can be
modeled by an indicator variable, and the communication
energy spent depends on the number of transmissions and
receptions. Although many integer programming problems
are NP-Hard, we show that the problems that we consider
here can be efficiently solved by low-complexity, distributed
algorithms.

The main contributions of this work are as follows.

• We develop an integer programming based optimiza-
tion framework for solving the problem of maximiz-
ing the information for sensor networks with unreliable
links under energy constraints, considering non-linear,
and potentially non-concave objective functions. This
framework explicitly accounts for general error recov-
ery schemes when links are unreliable, as long as errors
across links are independent.

• We prove that the optimal solution is obtained by
finding aMaximum Weight Increasing Independent Set
(MWIIS) in rectangle graphs, which can be found in
polynomial time. We apply this technique to develop
a low-complexity, distributed optimal solution to our
problem.

• We apply our framework to a target tracking problem,
and provide an algorithm that selects sensors to acti-
vate for sensing and communicating information about
a target during each sampling period. This algorithm
maximizes the information received by the sink while
explicitly accounting for unreliable links, and per-node
energy constraints.

• We provide extensive numerical validations that illus-
trate the importance of including unreliability in links
in the problem framework.

The rest of this paper is organized as follows. In Section 2,
we overview related work. In Section 3, we describe our sys-
tem model and assumptions. In Section 4, we discuss graph
theoretic fundamentals that are of importance to this pa-
per. In Section 5, we study our energy constrained problem
for known source nodes, and provide a distributed optimal
solution. In Section 6, we apply our techniques to select
sensors for tracking targets in an energy efficient manner.
In Section 7, we provide numerical results that illustrate the
importance of considering link unreliability in the problem
framework. Finally, in Section 8, we conclude the paper.

2. RELATED WORK
A number of interesting problems arise in convergecasting

in wireless networks. In [2], [4], the authors have considered

the problem of minimizing the number of time slots required
to send all the packets in a wireless network to a sink under
different interference constraints. While these works do not
consider in-network computation, in [7], the authors have
studied this problem for a one-hop interference model with
deadline constraints and in-network computation. Zhang
et. al., [22] study reliable convergecasting in wireless net-
works. They provide heuristic algorithms to increase end-
to-end packet delivery ratio and decrease delay.
Tree structures are optimal data gathering structures in

a number of cases. However, constructing an optimal tree
is an NP-Hard problem in many of these cases. Construct-
ing efficient data gathering trees has been studied in [19] for
maximizing network lifetime, in [6] for minimizing the ex-
pected cost of the tree, and in [13] for minimizing the total
number of transmissions.
There also exist a number of works studying the trade-offs

between energy, latency, and data quality. Yu et. al., [21]
study trade-offs between energy and latency in data gath-
ering trees. In [20], Ye et. al. use a decision process ap-
proach to study energy-delay trade-offs. In [14], the authors
attempt to balance the communication load on all nodes
using network flow optimization techniques. None of these
works explicitly consider the effect of unreliable links in their
framework.
The sensor activation problem for target tracking is also

a well studied problem from a signal processing perspective.
For example, [3] studies the problem of minimizing the to-
tal energy of activating sensors such that the error variance
(computed according to an Extended Kalman Filter) is less
than a threshold. This problem is computationally hard to
solve, and the authors propose heuristic integer program-
ming algorithms. Joshi et. al., [12] investigate the problem
of minimizing the error variance of the estimate (for a set of
linear measurements) such that the number of sensors acti-
vated is constrained. They solve this problem using convex
relaxation techniques. In [18], Williams et. al., provide a dy-
namic programming approach that integrates the informa-
tion obtained and the associated communication cost. These
works provide interesting techniques when fusing informa-
tion from multiple sensors results in an overall information
that is not a sum of the information from individual sen-
sors. However, these works do not consider unreliable links
in their framework. While [3] and [12] do not even consider
multi-hop transmissions, the communication model in [18]
could result in certain nodes transmitting many more times
than others.

3. SYSTEM MODEL
We model the system as a graph G(V ∪ {S}, E) where V

is the set of active nodes, S is the sink, and E is the set of
links. The graph G is a tree rooted at the sink. An active
node is one that is either a source node or has at least one
source node in its sub-tree. Except for the target tracking
problem considered in this paper, we assume that source
nodes are known. When an event occurs, nodes sense some
desired quantity, and send an aggregated form of the data
to the sink. A node may or may not be a source for a par-
ticular event. For notational convenience, we consider only
one event for this problem. However, it is straightforward
to extend it to multiple events when the total information
is expressed as a weighted sum of the information from each
event.



We refer to the actual sensor measurements as data. We
define information as the quality of the data. For example,
data could be temperature, location, etc., while information
could be error variance, distortion, Log-Likelihood Ratio,
etc. Let wi represent the information provided by a source
node i. wi, for example, could represent the inverse of the
predicted variance of a Kalman filter if node i is tracking a
target.

Every node can perform in-network computation of the
data that it receives. We assume “perfect” aggregation, i.e.,
nodes can transmit aggregated data in a single transmission.
Even a single transmission could consume a large amount of
energy depending on the size of the data. For example, the
data could be a high-resolution image. Therefore, when-
ever it is possible to combine data from multiple sensors
in a meaningful manner, one should do so in order to save
energy [8]. This model of aggregating and transmitting is
also suitable for function computation. In particular, we can
use this setup if the sink requires any divisible function [5]
of the sensor measurements. Divisible functions are those
that can be computed in a divide and conquer fashion. The
complete definition can be found in [5]. Examples of di-
visible functions include MIN, MAX, Sum, Mean, Higher
Order Statistics, etc. In this paper, we do not consider “im-
perfect” aggregation, i.e., the data aggregated from multiple
sensors requires a certain number of transmissions that is
a function of the number of sensors, and the type of data
that is aggregated. While our model can be extended to
allow for “imperfect” aggregation, the computational com-
plexity of the solution significantly increases. It is beyond
the scope of this paper to discuss elaborately on these issues,
and hence we leave it for future work. We note that the no-
tion of “perfect” aggregation has been used in a number of
works in the literature addressing data aggregation in sensor
networks [6–8,10,13,19,20].

We assume per-node energy constraints, where the en-
ergy spent by a node is the sum of the transmission and
reception energy expended at that node. We allow for un-
reliable links in the network. We assume that errors are
independent across links. Since links are unreliable, we can
employ a number of known error-recovery techniques such
as retransmissions, coding, etc. We assume a function fi(t)
for each link i, where fi(t) is the link reliability of link i

if t units of energy is expended on transmissions over link
i. For instance, if we use retransmissions, fi(t) could de-
note the probability that a packet is successfully transmit-
ted over link i if a maximum of t transmissions (including
retransmissions) are allowed. From a practical point of view,
fi(t) must be an increasing function of t. Since there are no
other restrictions on fi(·), it can model any practical error
recovery scheme for known channel conditions. We consider
two definitions of the information received at node B from
a particular source node A.

Definition 1 : Product of the information provided by node
A and the product (or weighted product) of the link reliabili-
ties over all the links from node A to node B. For example, if
PA,B represents the path from A to B, then the information
received at B from A is wA

∏
j∈PA,B

fj(tj).

Definition 2 : Product of the information provided by node
A and the sum (or weighted sum) of the link reliabilities
over all the links from node A to node B. For example, the
information received at B from A (over a path PA,B from A

to B) is wA(
∑

j∈PA,B
fj(tj)).

We model the information received at node B as a (weighted)
sum of the information received at B from individual source
nodes, where the latter is obtained from Definition 1 or Def-
inition 2. Note that when B is the sink, we obtain the
information received at the sink.
Both the definitions have practical implications. While

Definition 1 could represent the probability that a packet
from the source reaches the sink if errors are independent
across links, Definition 2 could represent the utility gained
by using a particular link. Further, the overall informa-
tion is also of importance in practice for performing fusion
(see Section 3.1). Note that expressing the overall infor-
mation as a sum of individual sensor information has been
assumed in a number of works in the data aggregation liter-
ature [7,9,10,13,16,20]. While these metrics of information
model a large class of practical information metrics, they
may not be suitable if the information gathered from mul-
tiple sensors is not a weighted sum of the individual sensor
information. For example, the information gathered from a
magnetic sensor, and a video sensor may not be a weighted
sum of the individual sensor information. When the overall
information is an arbitrary function of the information from
individual sensors, the function may no longer be separable,
and hence the problem becomes NP-Hard. One may have to
individually deal with each such non-separable function (as
done in [3], [12] for error-free links, and single-hop networks).
Extensions to arbitrary functions for the overall informa-
tion corresponding to specific sensor network applications is
therefore another open problem for future research. Our fo-
cus in this paper is to deal with the large class of cases when
our metric is relevant and to consider energy allocation in a
multi-hop sensor network with unreliable links.
It is important to note here that while the overall infor-

mation received at the sink is the sum of individual sensor
information, the overall aggregated data packet received is
just an aggregated version of raw data measurements of sen-
sors. For instance, if the sink desires the maximum tempera-
ture in a region, the aggregated data packet just contains the
maximum temperature. The information provided by this
aggregated data packet is the sum of the information (e.g.,
the inverse of the measurement error variance) provided by
individual temperature sensors in the network.
Since our definitions are abstract, we now provide an ap-

plication of our model in wireless sensor networks.

3.1 Motivating application - sensor networks
Consider a sensor network shown in Figure 1. Sensors send

their data over a tree network to a sink (red node). In order
to illustrate our definitions of information, consider a part
of this network (encircled in green) with three nodes and the
sink S. Suppose that all the three sensors are source nodes
measuring the location of a target. Let sensor i provide an
error variance Ri for the target location, i ∈ {1, 2, 3}. Then,
a metric for measuring the information provided by sensor
i is 1

Ri
. If data from sensors 1 and 2 is combined (say),

then one of the metrics for the overall variance, R12 of the
combined data is given by 1

R12
= 1

R1
+ 1

R2
, which is lower

than both R1 and R2 [17].
Suppose that retransmissions are used in order to ac-

count for unreliable links. If sensor i is allowed to make
ti transmissions, the probability that sensor i’s transmis-
sion is successful is given by fi(ti). When data aggrega-
tion is used at intermediate nodes, for example, node 1 can
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Figure 1: Motivating Example

combine data from node 3, and transmit both data simul-
taneously. Assuming that errors across links are indepen-
dent, the probability that node 1’s data reaches the sink is
f1(t1), the probability that node 2’s data reaches the sink
is f2(t2), and the probability that node 3’s data reaches the
sink is f3(t3)f1(t1). Now, the expected information received
at the sink is

∑
i∈{1,2,3}

1
Ri

P(i’s data reaches the sink) =
1
R1

f1(t1)+
1
R2

f2(t2)+
1
R3

f3(t3)f1(t1). One can clearly verify
that without taking the communication model into account,
we get the information 1

R1
+ 1

R2
+ 1

R3
. Note that this metric

of information for each sensor corresponds to Definition 1.
Definition 2 is also of importance in practice. Suppose

that we desire proportional fairness [15] when allocating
number of transmissions for nodes. This can be represented
by the function log(P(i’s packet reaches the sink)). Now, for
sensor 3, log(f3(t3)f1(t1)) becomes log(f3(t3))+log(f1(t1)),
which corresponds to Definition 2.

Table 1: Notations and Definitions
V Set of active sensor nodes.
S Sink.
VS Set of all source nodes.
VL Set of all leaf nodes in the tree.
E Set of edges.

P (i) Parent of node i.
C(i) Set of children of node i.
ti The number of transmissions made from i to its parent P (i).
ei The energy constraint on node i.

4. PRELIMINARIES
We use the following graph-theoretic notions.

1. Independent Set (IS): An Independent Set is a set of
vertices in a graph, no two of which have an edge between
them.
2. Maximum Weight Independent Set (MWIS): An
IS for a given graph such that the total weight of the vertices
is maximum over all ISs in that graph.
3. Interval Graphs: Let {I1, I2, ..., In} be a set of in-
tervals on the real line. Then, the interval graph G(V,E)
corresponding to this set of intervals is defined as follows.

a. V = {I1, I2, ..., In}. Each vertex is an interval.
b. For any y, z ∈ {1, 2, .., , n}, (Iy, Iz) ∈ E if and only if

the intervals intersect, i.e., Iy ∩ Iz 6= ∅.
4. Interval graph of interval number m: The defini-
tion is identical to that of the interval graph except that
each vertex can now be represented as a disjoint union of m
intervals. Two vertices will have an edge between them if
and only if at least one of the intervals corresponding to one
vertex have a non-empty intersection with at least one of
the intervals corresponding to the other vertex. An interval
graph of interval number 2 is called a double interval graph.

5. Rectangle graphs: Rectangle graphs are a subclass
of double interval graphs. A double interval graph can be
transformed into a rectangle graph by simply labeling the
vertices in the double interval graph as the set-product of
the two intervals instead of the union of the two intervals.
Thus, each vertex now represents a rectangle in R

2. Note
that two rectangles that do not overlap need not form an
IS in the corresponding double interval graph. On the other
hand, every IS in the double interval graph is an IS in the
rectangle graph.
6. An MWIS on interval graphs (order 1) can be found
in polynomial time. However, MWIS on interval graphs of
order m, m > 1, is still NP-Hard [1].
7. Increasing Independent Set (IIS) on rectangle
graphs: An Increasing Independent Set (IIS) on a rect-
angle graph is an IS that has the following property. Let
Z = {r1, r2, ..., rm} be an ordered set of rectangles ordered
in the following fashion. For any i, j ∈ {1, 2, ...,m} such that
i < j,
a. The maximum x-coordinate of any point in ri ≤ the

minimum x-coordinate of any point in rj .
b. The maximum y-coordinate of any point in ri ≤ than

the minimum y-coordinate of any point in rj .
Then, Z is an IIS on the given rectangle graph. The rect-

angles in Z are ordered such that the next rectangle is to
the right and to the top of the previous rectangle in the or-
der. Further, an IIS on a rectangle graph is an IS on the
corresponding double interval graph.

1
5

2

4

3

Figure 2: Rectangle Graphs and Independent Sets

The following example illustrates the definitions above
(Figure 2). Each rectangle in the figure represents a ver-
tex in a rectangle graph. There will be an edge between two
vertices only if the corresponding two rectangles intersect.
For instance, there will be an edge between rectangles 4 and
5. {1, 2, 3, 4} and {1, 2, 3, 5} are two maximal ISs of rectan-
gles. While {1, 4} is an IS in the rectangle graph, it does
not form an IS in the corresponding double interval graph
because its intervals on the y-axis intersect. Also, {1, 2, 3}
is an example of an IIS in the rectangle graph because rect-
angle 2 is to the right and to the top of rectangle 1, and
rectangle 3 is to the right and to the top of rectangle 2.

5. MAXIMIZING INFORMATION - KNOWN

SOURCES
In this section, we formulate and solve the problem of

maximizing information in sensor networks under per-node
energy constraints. Let λi represent whether a node is a
source for a particular event, i.e., λi = 1, if i is a source,
and λi = 0, otherwise.



Problem ΠE :

max
~e

∑

i∈VS

wi(Information received at S from i (Defn.1))

s. t. (1) tiT ≤ ei, i ∈ VL, (2)
∑

j∈C(S)

tjR ≤ eS

(3) tiT +
∑

j∈C(i)

tjR ≤ ei, for other nodes

(4) ti ∈ {0, 1, ..., βi}

In Problem ΠE , wi is a weight for source node i, T is the en-
ergy spent for one transmission, andR is the energy spent for
one reception. For notational convenience, we have assumed
that T and R are the same for all nodes in the network. It is
straightforward to extend this to the case where each node
has its own T and R. Also, while we have mentioned that
the information received at S from i is obtained according
to Definition 1, we can use Definition 2 as well. The solution
methodologies are identical for both definitions, andWLOG,
we use Definition 1 from now on. The first constraint is for
leaf nodes in the tree. These nodes do not make any recep-
tions. The second constraint is for the sink. The sink does
not make any transmissions. The third constraint represents
the energy constraint for an intermediate node in the tree.

Finally, for each j ∈ C(i), tj ∈ {0, 1, ..., βj}, where βj =
min(r, ⌊

ej
T
⌋). βj represents the maximum amount of energy

that can be spent over a link to achieve a certain reliability.
For example, if retransmissions are used, βj could represent
the maximum number of retransmissions that can be allowed
over a link. βj depends on the link characteristics. For
instance, if retransmissions are used, and the probability of
error of a link is 0.1, and we require a success rate of at least
0.99, βj can be obtained by solving 0.1βj ≤ (1− 0.99). This
gives βj ≥ 2.

We have used the following forwarding policy while formu-
lating ΠE . Due to this policy, each link (i, P (i)) is assigned
only one energy variable ti. This means that the node ag-
gregates packets from its sub-tree, and uses this energy to
transmit the aggregated packet.

Forwarding Policy: For an event, each node will wait to
gather data from its predecessors. It will perform in-network
computation on the data that it receives, and transmit the
aggregated data. The implication of this policy is that a
node will never transmit data from an event in separate
transmissions.

We now show that this forwarding policy is optimal.

Theorem 5.1. Consider an optimization problem Π′E for
maximizing the information in a data aggregation tree un-
der per-node energy constraints. Suppose that Π′E is not
restricted to a particular forwarding policy. Any optimal so-
lution to ΠE is also an optimal solution to Π′E.

Proof. We prove the result by contradiction. Suppose
that an optimal solution to ΠE is not optimal to Π′E . This
means that according to Π′E , there exists a node i that trans-
mits data from at least two different sources (say, 1 and 2) in
separate transmissions. Suppose that the optimal solution

to Π′E allocated energy t
(1)
i for source 1, and energy t

(2)
i for

source 2. Then, the link reliabilities over the link from i to its

parent for these sources are fi(t
(1)
i ) and fi(t

(2)
i ), respectively.

If i had aggregated data from sources 1 and 2, then it could

have allocated an energy t
(1)
i + t

(2)
i for the aggregated data.

Clearly, t
(1)
i + t

(2)
i is a feasible energy allocation since both

t
(1)
i and t

(2)
i are feasible energy allocations for node i. There-

fore, if i had aggregated data from sources 1 and 2, the infor-

mation received by i’s parent would have been fi(t
(1)
i + t

(2)
i )

for both the sources. Since f(·) is an increasing function,

fi(t
(1)
i + t

(2)
i ) ≥ fi(t

(1)
i ), and fi(t

(1)
i + t

(2)
i ) ≥ fi(t

(2)
i ). There-

fore, by gathering data, i would have accounted for at least
as much information as otherwise.

This contradicts our assumption that an optimal solution
to ΠE is not optimal to Π′E . Hence, the forwarding policy
is optimal.

We now develop a distributed optimal solution to ΠE .
We do this by rewriting the objective function in a recur-
sive manner. Let X[i, r] represent the maximum informa-
tion that can be received at node i from its sub-tree if it
allows r units of energy for reception. We wish to determine
X[S, ⌊ eS

R
⌋].

For i ∈ VL (i is a leaf node), X[i, r] can be calculated as
X[i, r] = wiλi.
For any non-leaf node, and for a given r, X[i, r] can be

represented in the following recursive manner.

X[i, r] = wiλi + max∑
j∈C(i) tj≤r

∑

j∈C(i)

X[j, ⌊
ej − tjT

R
⌋]fj(tj)

(1)
If Definition 2 is used in the objective function instead

of Definition 1, X[j, ⌊
ej−tjT

R
⌋]fj(tj) will be replaced by the

sum (X[j, ⌊
ej−tjT

R
⌋] + fj(tj)).

Theorem 5.2 shows the correctness of the recursion. Be-
fore we describe the details, we provide the intuition behind
this recursion. X[i, r] represents the maximum information
received at node i from the sub-tree rooted at node i if i

allows r units of energy for reception. This information is
the sum of i’s own information, given by wiλi, and the in-
formation received from i’s children. Since fj(tj) represents
the link reliability of the link from j to i, according to Defi-
nition 1, the information provided from j to i is the product
of the information it has and the link reliability of the link
(j, i). By choosing transmission and reception energies at
children carefully, one can maximize the information at i

while satisfying the constraint that i can allow at most r

units of energy for reception.
Further, it can be seen that as the amount of reception

energy, r, is varied, the amount of data that i’s children can
transmit to i, and hence the information that reaches i also
varies. As r increases, the energy allowed for reception at i

increases, and hence the information provided by i’s children
increases. Thus, X[i, r] increases. However, as r increases,
the amount of energy that i can allocate for transmission (to
its parent) decreases due to the per-node energy constraint
on i. Therefore, i may not have sufficient energy left for
transmissions if r is too high. The rest of the paper focuses
on how to choose transmission and reception energies at each
node optimally such that the information received at the
sink is maximized.

Theorem 5.2. For any node i, and for any given r, X[i, r]
(Equation (1)) maximizes the information received at node
i if i allows r units of energy for reception.

Proof. We prove this result by induction on the distance
(number of hops) of the node from the root.



It is straightforward to see that for a leaf node, Equa-
tion (1) reduces to X[i, r] = wiλi. Since a leaf node does
not have any children, this is the maximum information that
reaches a leaf node i for any value of r.

Assume that the result is true for all nodes that are h hops
from the root.

Consider a node i which is h− 1 hops from the root. If i
allocates r units of energy for reception, then the transmis-
sions of i’s children is clearly constrained by the relation,∑

j∈C(i) tj ≤ r. For each child j ∈ C(i), if j allocates tj
units of energy for transmission, then due to the per-node

energy constraint on j, it can at most allocate ⌊
ej−tjT

R
⌋

units of energy for reception. By the induction hypothesis,

X[j, ⌊
ej−tjT

R
⌋] provides the maximum information that j can

account for if it allows ⌊
ej−tjT

R
⌋ units of energy for recep-

tion. According to Definition 1, the information that reaches

i from j is given by X[j, ⌊
ej−tjT

R
⌋]fj(tj). Since the infor-

mation received at i is the weighted sum of the individual
information (and the weights are accounted for at the source

nodes), by solving max∑
j∈C(i) tj≤r

∑

j∈C(i)

X[j, ⌊
ej − tjT

R
⌋]fj(tj),

we can obtain the maximum information at node i. Thus,
X[i, r] (Equation (1)) maximizes the information that reaches
node i if i allows r units of energy for reception.

The interesting and difficult part in solving problem ΠE

is to solve X[i, r]. We develop the solution as follows.

Lemma 5.3. X[i, r] can be obtained by finding an MWIS
in the graph G′ defined as follows.

• Create nodes labeled (j, Ij , tj) for each j ∈ C(i), Ij ∈
{max(0, r−

∑
j∈C(i) βj),max(0, r−

∑
j∈C(i) βj)+1, ..., r−

1}, and tj ∈ {0, 1, ..., βj}. The first term represents the
child, and the second and the third terms represent the
interval {Ij , Ij+1, ..., Ij+tj−1}. The length of this in-
terval, tj , is the transmission energy allocated to child
j.

• Assign a weight X[j, ⌊
ej−tjT

R
⌋]fj(tj), for a node labeled

(j, Ij , tj).

• Consider any two nodes (m, Im, tm) and (n, In, tn) in
G′. Create an edge between these two nodes either if
they represent the same child, or if the corresponding
intervals intersect, i.e., either if m = n, or if {Im, Im+
1, ..., Im + tm − 1} ∩ {In, In + 1, ..., In + tn − 1} 6= ∅.

Proof. From the construction of G′, an IS in G′ has
the following properties: (a) A child can have at most one
interval assigned to it. This is because of the fact that there
exists an edge between any two nodes that represent the
same child; (b) Two children cannot be assigned intervals
that have a non-empty intersection. This also follows from
the construction of edges in G′. Also, by construction, the
sum of the lengths of the intervals of all the nodes in any
IS in G′ cannot exceed r. Therefore, the sum of the energy
received by i is less than rR. Thus, every IS in G′ satisfies
the reception energy constraint of node i.

Further, for each possible allocation of energy to the chil-
dren that satisfy the reception energy constraint of i, there
exists an IS in G′ corresponding to that allocation. This
can be proven as follows. Suppose that |C(i)| = k, the en-
ergy allocation of child j is tj , and we have

∑
j∈C(i) tj ≤

r. Then, an IS corresponding to this energy allocation is
{(C1, I1, t1), ..., (Ck, Ik, tk)}, where I1 = r−

∑
j∈C(i) tj , I2 =

I1 + t1, ..., Ik = Ik−1 + tk−1. Clearly, Im ∩ In = ∅ for
m,n ∈ {1, 2, ..., k} and m 6= n. Thus, the constraint that
the energy allocated must be in intervals that do not in-
tersect is equivalent to the constraint that the sum of the
received energy must be at most r, and hence we can find
X[i, r] by finding an MWIS in G′.

We now provide an example explaining the construction of
G′. Figure 3 illustrates a hop with two nodes, A and B,
having parent P . Assume that βA = 2, and βB = 1. For
simplicity of illustration, assume that each transmission and
reception cost one unit of energy. Then, for a reception
energy constraint r for P , the graph G′ is shown in Figure 4.
The boxes in this figure represent cliques, i.e., there is an
edge between each node in a box and every other node in
the box. Edges between nodes in two different boxes are as
shown in the figure. The reason that we have these cliques is
that a node having label A as the first term conflicts with all
other nodes having A as their first term. The same holds for
B. Further, if the energy allocation intervals corresponding
to A and B have a non-empty intersection, then there are
edges between these intervals in G′.
Suppose that r = 3. (A, 1, 2) and (B, 0, 1) form an IS.

When the total reception energy at P is constrained to be
at most 3, one of the solutions is to allocate 2 units of energy
to A and 1 unit of energy to B. Thus, we see that an IS satis-
fies the total reception energy constraint. Consider another
example. We can observe that (A, 0, 2) and (B, 0, 1) do not
form an IS because they share the same first slot. However,
we can see that this can be used as a solution to the energy
problem since A is still allocated 2 units of energy and B is
allocated 1 unit of energy. Moreover, this solution achieves
the same amount of information at P as the IS solution.
While a set that is not an IS could also sometimes satisfy
the energy constraint, using this IS structure allows us to
develop an efficient algorithm for determining the optimal
solution to problem ΠE .

P

r

A B

Figure 3: Two children

(A,r−2,1) (A,r−1,1) (A,r−3,2) (A,r−2,2)

(B,r−3,1) (B,r−2,1) (B,r−1,1)

(A,r−3,1)(A,r−3,0) (A,r−2,0) (A,r−1,0)

(B,r−3,0) (B,r−3,0) (B,r−3,0)

Figure 4: Graph G′ (Boxes represent cliques)

Finding an MWIS is an NP-Hard problem in general graphs.



However, we now show that we can find an MWIS in G′ in
polynomial time.

Lemma 5.4. The order in which i’s children are allocated
energy does not affect the computation of X[i, r].

Proof. The proof follows from the fact that the weight
of a node (j, Ij , tj) in G′ only depends on j and tj , and
not on Ij . Since Ij represents the beginning of the interval
assigned to child j, this means that the weight of the node
(j, Ij , tj) depends only on the length of the interval, and not
the end-points of the interval. Therefore, the order in which
children are allocated energy in a hop does not affect the
computation of X[i, r].

Theorem 5.5. Allocate intervals [ai, bi] to j ∈ C(i) such
that r < a1 < b1 < a2 < b2 < ... < ak < bk, where k =
|C(i)|. We then have the following results.

1. G′ is a double interval graph. Further, by representing
each node as a cross-product of two intervals instead
of a union, G′ becomes a rectangle graph.

2. X[i, r] can be obtained by finding an MWIIS in this
rectangle graph.

Proof. From Lemma 5.4, we know that the order in
which children are allocated energy does not affect the com-
putation ofX[i, r]. Therefore, if C(i) = {C1, ..., Ck}, WLOG
allocate energy starting from C1 to Ck. This means that the
energy interval allocated to a node Cj is to the left of the
energy intervals allocated to all nodes Cl such that l > j.
A node (Cj , Ij , tj) in G′ can now be represented as a union
of two disjoint intervals, [aj , bj ] and [Ij , Ij + tj − 1] (since
r < a1, these intervals are disjoint.) Thus, G′ is a double
interval graph, and by representing each node as a cross-
product of two intervals instead of a union of two intervals,
G′ becomes a rectangle graph.

By Lemma 5.3, finding an MWIS in G′ provides X[i, r].
An IIS in the rectangle graph corresponding to G′ will have
the following property. For any two children Cm and Cn

such that m < n, the rectangle corresponding to the energy
allocated to Cm will be to the bottom and to the left of
the rectangle corresponding to the energy allocated to Cn.
This is because bm < an, and Cm is allocated an energy
interval that is to the left of the energy interval allocated to
Cn in the double-interval graph. Therefore, by finding an
IIS of maximum weight in this rectangle graph, we can ob-
tain an IS of maximum weight in the double-interval graph.
Hence, X[i, r] can be obtained by this procedure. An MWIIS
in a rectangle graph can be found in polynomial time [11].
Hence, we can find X[i, r] in polynomial time.

Figure 5 shows an IIS for the example illustrated in Figure 3.
An IIS is given by A × {r − 3, r − 2}, and B × {r − 1}.
Clearly, the rectangle for B is to the top and to the right of
the rectangle for A.
Algorithm for finding an MWIIS on rectangle graphs:
In [11], the authors have studied the problem of modeling
similarities among DNA sequences, and have shown that
their problem can be solved by finding an MWIIS on rect-
angle graphs constructed appropriately. This is an entirely
different problem, and it turns out that both our problem,
and this problem of modeling DNA sequence similarities can
be approached in this manner. The authors have also pro-
vided an algorithm having a complexity O(n log n) for find-
ing an MWIIS.

A B

r−3

r−1

r

Figure 5: Increasing Independent Set

As of now, we have only provided an approach for calcu-
lating X[i, r] for a particular i and r. We now provide an
algorithm that calculates X[S, ⌊ eS

R
⌋].

Table 2: Algorithm 1
1 Start from the leaves. For a leaf node l, for each r, X[l, r] = wlλl.
2 Consider a non-leaf node i such that X[·, ·] has been determined for all

children of i. For each r, calculate X[i, r] by finding an MWIIS in the
rectangle graph as shown in Theorem 5.5.

3 Finally, determine X[S, ⌊ eS
R
⌋] at the sink.

4 Look up X[S, ⌊ eS
R
⌋] to optimally allocate transmission and reception

energy to the sink’s children.
5 Proceed down to the leaves allocating transmission/reception energy

to nodes in each hop from the root to the leaves.

Theorem 5.6. Algorithm 1 provides an optimal solution
to the problem ΠE.

Proof. From Theorem 5.5, we know that for any node i,
X[i, r] provides the maximum information received at node
i by the sub-tree rooted at i if i allows r units of energy for
reception. Thus, X[S, ⌊ eS

R
⌋] provides the maximum infor-

mation received at the sink S by the tree rooted at S. Since
X[S, ⌊ eS

R
⌋] is the optimal value, it is straightforward to see

that by looking up X[·, ·], we can obtain optimal energy al-
locations at each node.

We now study the computational complexity of Algorithm 1.
Consider a tree having a maximum of h hops and, a max-
imum of k children in each hop. Suppose that rmax is the
maximum number of times that X[i, ·] needs to be computed
for any node i in the network. rmax represents the maximum
number of values of the reception energy that any node in the
network can possibly take. Graph G′ has O(k2) nodes be-

cause there are k children and each child has O(
∑k

j=1 βj) =

O(k) nodes. Each node in G′ is mapped to a rectangle with
a certain weight. Thus, constructing the set of rectangles
requires O(k2) complexity. The complexity of finding an
MWIIS in this graph is O(k2 log(k)). Therefore, the com-
putational complexity of Algorithm 1 is O(hk2 log(k)rmax)
assuming that nodes at the same level of the tree can perform
computations in parallel. The computational complexity at
any node in the network is O(k2 log(k)rmax) which just de-
pends on the number of children and rmax. Typically, rmax

is a constant. We can see that Algorithm 1 has a very low
complexity, and is distributed.

6. APPLICATIONS TO TARGET TRACKING
We now discuss an application of our framework for “dy-

namic events” such as target tracking. When the event is
dynamic, in the sense that it traverses through the network
during each sampling period, the nodes that sense the event
need to change dynamically, and hence we cannot assume
that source nodes are known (as assumed in ΠE). Therefore,



not only do we need to consider unreliable links and com-
munication energy, but also the problem of selecting source
nodes appropriately, and the sensing energy that they con-
sume. We again consider a tree with the root as the clus-
ter head. Motivated by the fact that many filters including
Kalman filters can predict the information obtained (pre-
dicted location, predicted variance) by a future measure-
ment, we model a framework to select sensors during the
next sampling instant such that the predicted information
that reaches the sink is maximized. By repeating our model
for each measurement instant after updating the predicted
information, we can track targets in an energy-efficient man-
ner over a period of time.

For a given mobility model for the target, let αi repre-
sent the information that sensor i can provide during the
next sampling instant, if sensor i is selected to track target
i, and sensor i successfully communicates its measurement
(over multiple hops) to the root of the tree. There is a per-
node energy constraint of ei at each node i where the energy
expended at node i comprises the sensing energy, and the
transmission and reception energy. Let ai be the indicator
variable representing whether sensor i is chosen to track the
target during the next sampling instant, i.e., ai = 1, if sensor
i is selected, and 0, otherwise.

Let fi(n) be the probability that i’s transmission is suc-
cessful if n units of energy is allocated for transmissions.
Under this setup, the expected amount of predicted infor-
mation that node i can provide during the next sampling
instant is given by αiaiP (i successfully sends its packet to
the root), where P (i successfully sends its packet to the root)
is given by Definition 1. Here, the expectation is related to
link unreliability, and the prediction is related to the target’s
mobility model.

We wish to maximize the sum of the expected amount
of predicted information over all the nodes in the network.
This metric, for example, could maximize the sum of the
Fisher information over all the nodes in the network when
the Fisher information can be represented as a scalar value
[17]. For example, consider a target moving according to a
linear mobility model given by x(t+1) = γx(t)+v(t), where
t represents the time-step, x represents the location of the
target, and v is AWGN with variance Q, and zero mean.
For simplicity, assume that x is a scalar. Then, if a linear
Kalman filter is used for obtaining the predicted variance
at time t + 1, this variance is given by γ2P (t) + Q, where
P (t) is the variance obtained at time t. The corresponding
information can be represented as 1

γ2P (t)+Q
. Note that this

is only an example, and we can accommodate a general mo-
bility model, and a general filtering technique to obtain the
predicted information αi for a sensor i, as long as αi is a
scalar.

Problem ΠT is shown below. M is the energy used for
sensing. As explained for Problem ΠE , the first constraint
represents the energy constraint for leaf nodes (no recep-
tions). The second constraint represents the energy con-
straint for the sink (no sensing and transmissions). The
third constraint represents the energy constraint for an inter-
mediate node in the tree that can perform sensing, transmis-
sions, and receptions. As in ΠE , for notational convenience,
we assume that sensors use the same amount of energy M

for sensing, R for receptions, and T for transmissions. In
general, each node can have its own sensing and communi-

cation energy, i.e., the sensors need not be homogeneous. It
is straightforward to modify our algorithms for this case.
Problem ΠT :
max
~a,~e

∑

i∈V

αiaiP (i’s data reaches the root)

s.t. (1)aiM + tiT ≤ ei, i ∈ VL,

(2)
∑

j∈C(S)

tjR ≤ eS

(3)aiM + tiT +
∑

j∈C(i)

tjR ≤ ei, other nodes

(4)ti ∈ {0, 1, 2, ..., βi}, ai ∈ {0, 1}

We solve ΠT as follows. Let X[i, r, ai] represent the max-
imum expected amount of predicted information obtained
by the sub-tree rooted at node i if node i expends r units of
energy on reception, and the activation state of i is ai.
For a leaf node i, X[i, r, ai] = aiαi. For any non-leaf node,

X[i, r, ai] =

αiai + max∑
j∈C(i) tj≤r

∑

j∈C(i)

X[j, ⌊
ej − tjT − ajM

R
⌋, aj ]fj(tj)

(2)
If node i is used for sensing, then only an energy of rR−M

is available at node i for receptions, and node i provides an
information of αi. If node i is not used for sensing, an energy
of rR is available for receptions but node i does not provide
any information.
For a given node i, and for a given r, we now have to

compute two values of X, where X[i, r, 1] corresponds to
the case where i is selected as a source, and X[i, r, 0] cor-
responds to the case where i is not selected as a source.
Further, in order to compute X[i, r, ai], we also need to de-
termine which of the children of i are selected as sources.
While a brute force approach for k children requires select-
ing from 2k choices, we can extend Algorithm 1 to obtain
a low complexity solution to this problem. The following
algorithm shows how to compute X[i, r, ai] for a given i, r,
and ai. Let C(i) = {C1, ..., Ck}.

Table 3: Algorithm 2
1 Assign an interval [aj , bj ] to each child Cj such that a1 < b1 < a2 < b2

< ... < ak < bk.
2 Modify graph G′ (Lemma 5.3) as follows. Since each child has two

possibilities (to be a source or not), construct two nodes for each node in
G′, one representing the case where the child is a source, and the other
where it is not a source. The two nodes will have different weights,
one corresponding to X[·, ·, 1] and the other corresponding to X[·, ·, 0].

3 Construct a rectangle graph by representing each node as a cross-product
of the interval corresponding to the child it represents and the interval
corresponding to its energy allocation.

4 Find an MWIIS in this graph.

Theorem 6.1. Algorithm 2 solves X[i, r, ai] for any node
i, and for any permissible value of r and ai.

Proof. The proof is similar to that of Theorem 5.5. The
key difference between the algorithms is that we now have
two rectangles (with two different weights) in this problem
for each rectangle in Theorem 5.5. One of the rectangles
corresponds to the case where the child is a source and the
other corresponds to the case where the child is not a source.
We can only select one of these rectangles at most since
a child cannot both be a source and not a source at the
same time. Clearly, since both these rectangles have the
same coordinates, only one of them can be chosen in the



IIS. Therefore, by finding an MWIIS, we obtain the optimal
solution to Equation (2). Thus, Algorithm 2 is optimal.

We can now use Algorithm 1 in conjunction with Algo-
rithm 2 to determine an optimal solution to problem ΠT .
This provides the optimal set of sensors for sensing the tar-
get during the next sampling instant, and the optimal trans-
mission and reception energy to be spent by each sensor in
the network.

7. NUMERICAL RESULTS
In this section, we investigate two interesting heuristic

algorithms, and study how our optimal solution performs
compared to these algorithms. For the results below, we use
retransmissions as the error recovery scheme. Specifically,
if a packet gets lost, a node can retransmit up to a cer-
tain number of times in order to improve the reliability of
the link. However, as mentioned earlier, our problem setting
and solutions are quite general and applicable to other types
of transmission strategies that allow for coding as well. We
consider the tree in Figure 6(a) with the black node as the
root. The probability of error of each link is shown in the
figure. All the nodes in the tree except the root are source
nodes. We initially assume that the information provided
by a source node is one. We also assume that each trans-
mission/reception takes one unit of energy. We consider
Definition 1 here. For a link (i, j), we take fi(ti) = (1− p

ti
ij)

where pij is the probability of error of (i, j). This metric pro-
vides us with the expected number of source nodes whose
data reaches the root. This is because for independent er-
rors, the probability that a packet is successful over link
(i, j) if ti retransmissions are allowed is (1 − p

ti
ij). Since a

source node accounts for unit information if successful, and
none otherwise, Definition 1 provides the expected number
of source nodes whose data reaches the root.

Consider the heuristic algorithms (H1 and H2) below.
No retransmissions (H1): Most existing works [3], [12]
assume that links are error-free. Therefore, they do not
account for retransmissions. In this case, each node can
make at most one transmission.
Equal energy (H2): This heuristic allows for retransmis-
sions but does not take the link errors or node weights into
account. Instead it equally splits the available energy at each
node starting from the root to the leaves. For instance, as-
sume that the per-node energy limit is 10 units for all nodes
in the network. Starting from the root, the root’s children
can make up to 5 transmission each. Since 5 units of energy
is allocated for transmissions, the root’s children can only
allocate 5 units of energy for reception from their children.
This is split equally among the children. This process con-
tinues down the tree till the leaves. This heuristic is very
simple to implement. However, if the per-node constraints
are not identical across nodes, many nodes may not be able
to make a transmission.

7.1 Maximum information
Figure 6(b) shows how H1 and H2 compare with our op-

timal solution. We assume that the per-node energy con-
straint is the same for all the nodes in the tree. Clearly, the
optimal solution performs better than the heuristics. Con-
sider H1. We see that when the per-node energy constraint
is low, the performance of this heuristic is close to that of
the optimal solution. However, when the energy constraint

is higher, this heuristic cannot make use of the additional
energy available, and hence the information is quite poor for
high energy constraints. On the other hand, H2 performs
close to the optimal solution when the per-node energy con-
straint is higher. The reason is that fi(ti) = (1 − p

ti
ij) is

a concave function of ti. Therefore, we get diminishing re-
turns as ti increases. So this solution is close to the optimal
solution for high energy constraints. However, when the en-
ergy constraint is low, we can see that H2 performs poorly
compared to both the optimal solution, and H1.

7.2 Non-uniform weights and link errors
In the above experiments, the information provided by

each source node is one. Further, while the links are unreli-
able, the probability of errors of links are close to each other.
This is the reason why the heuristics perform close to the op-
timal solution for particular values of the energy constraint.
We now modify the information provided by the red node
in the tree to 100, and the probability of error of the link
from the red node to its parent from 0.15 to 0.6. Figure 6(c)
now shows the maximum information obtained for various
energy constraints. It can be clearly seen that both H1 and
H2 perform poorly for all values of the energy constraints
when compared to our optimal solution. As before, H1 still
performs better than H2 when the energy constraints are
low, and the reverse happens when energy constraints are
high. However, compared to Figure 6(b), we can clearly
see that our optimal solution is significantly better than the
heuristics for all values of the energy constraint.

7.3 Sensor selection
We finally evaluate our sensor selection algorithm. We use

the same tree as before. We now assume that each sensor
has a random measurement error variance between 0 and
10, and that the inverse of the overall error variance is the
sum of the inverses of the individual error variances. For
the heuristics, we first allocate available energy for sensing
(which costs one unit), and the remaining energy for com-
munication. Figure 6(d) compares the overall error variance
that our algorithm obtains with that of the heuristics. We
can observe that the overall variance decreases as the en-
ergy constraint increases. When the energy constraint is low
(< 5), our algorithm outperforms both the heuristics. Even
when the constraint is high, the optimal solution performs
significantly better than the heuristics.
Thus, we observe the advantages of explicitly considering

unreliability in our optimization framework. Since the op-
timal solution is distributed, and has a low computational
complexity, it is worthwhile in using this solution to tackle
unreliability in links.

8. CONCLUSION
In this paper, we have investigated the problem of aggre-

gated convergecasting in unreliable wireless networks with
per-node energy constraints. We developed an optimization
framework based on integer programming that explicitly ac-
counts for unreliable links and per-node energy constraints.
This framework also allows for using a general error-recovery
mechanism as long as errors across links are independent.
We have developed a low complexity, distributed optimal so-
lution based on finding an MWIIS in rectangle graphs. We
also studied an application of this algorithm to track targets
in wireless sensor networks. Finally, we provided numerical
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Figure 6: Numerical Evaluations

results that showed the importance of including unreliability
in the problem framework. Future work involves accounting
for more general fusion functions, and a general energy met-
ric for fusing information from multiple nodes as this could
potentially increase the size of the packet that is being trans-
mitted, and may hence require more energy.

9. ACKNOWLEDGEMENTS
This work was supported in part by ARO MURI Awards

W911NF-07-10376 (SA08-03) and W911NF-08-1-0238, and
NSF Awards 0626703-CNS, 0635202-CCF, and 0721236-CNS.

10. REFERENCES

[1] R. Bar-Yehuda and M. M. Halldórsson. Scheduling
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