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Abstract—It has been known that scheduling algorithms de-
signed to achieve throughput optimality and good delay perfor-
mance often require solving the Maximum Weighted Independent
Set (MWIS) problem. However, under most realistic network
settings, the MWIS problem is known to be NP-hard. In non-
fading environments, low-complexity scheduling algorithms have
been provided that converge either to the MWIS solution in time
or to a solution that achieves at least a provable fraction of
the achievable throughput. However, in more practical systems
the channel conditions can vary at faster time-scales than
convergence occurs in these lower-complexity algorithms. Hence,
these algorithms cannot take advantage of opportunistic gains,
and may no longer result in achieving good performance. In
this paper, we propose a low-complexity scheduling scheme that
performs provably well under fading channels and is amenable to
implement in a distributed manner. To the best of our knowledge,
this is the first scheduling scheme under fading environments that
requires only local information, has a low complexity that grows
logarithmically with the network size (provided that the conflict
graph has bounded maximum vertex degree), and achieves
provable performance guarantees (arbitrarily close to that of the
well-known centralized Greedy Maximal Scheduler). We verify
that the throughput and the delay of our proposed scheme are
close to those of the optimal MaxWeight that solves MWIS at
each time. Further, we implement our algorithm in a testbed by
modifying the existing IEEE 802.11 DCF. The experiment results
show that our implementation successfully accounts for wireless
fading, attains the short-term opportunistic gains in practice, and
hence substantially outperforms IEEE 802.11 DCF.

Index Terms—Distributed algorithm, wireless scheduling with
fading channels, maximum weighted independent set.

I. INTRODUCTION

Scheduling is one of the most fundamental functionalities of
wireless networks. It determines which links should transmit
at what time and at what data rate. It is well-known that
solving the scheduling problem is inherently difficult because
the interference relationship is often non-convex and even
combinatorial in nature [2]. Further, for large networks it is
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imperative that the scheduling algorithm is of low complexity
and can be implemented in a fully distributed manner. Such
requirements make it highly challenging to design easy-to-
implement scheduling algorithms.

In the literature, it is well-known that the so-called Max-
Weight algorithm is throughput optimal [3]. For graph based
interference models, where whether two links interfere or
not can be specified by a binary parameter, the MaxWeight
algorithm corresponds to the solution to a Maximum Weighted
Independent Set (MWIS) problem in the conflict (or inter-
ference) graph as follows. In the conflict graph, each link is
mapped onto a vertex and two vertices (links) that interfere
with each other are connected by an edge. A set of non-
connected vertices, which is called an independent set, can
transmit data simultaneously. Further, each vertex of the con-
flict graph is given a weight, which is typically the product
of the link rate and its queue length, and which varies across
time due to changing queue lengths and time-varying channels.
The MaxWeight algorithm then computes an independent set
that has the largest total weight (i.e., solution to the MWIS
problem). Although the MaxWeight algorithm is throughput
optimal, the MWIS problem is NP-Hard in general [2]. Hence,
the MaxWeight algorithm incurs high complexity, and further,
it is a centralized algorithm that requires global information.
Thus, the MaxWeight algorithm is not amenable to practical
implementation.

In the literature, there have been many efforts to develop
low-complexity and distributed scheduling algorithms with
provably good throughput performance [4]–[15]. These algo-
rithms differ in terms of their throughput guarantee, com-
plexity, and delay performance. They can be classified into
two categories, depending on whether or not they account for
channel fading.

There have been many more scheduling solutions for
wireless systems without fading. Low-complexity scheduling
algorithms have been developed with complexity that grows
significantly slower than the network size, and can yet guaran-
tee a non-negligible fraction of the optimal system capacity.
As a point of comparison, the Greedy Maximal Scheduling

(GMS) algorithm (also known as Longest Queue First (LQF)
algorithm) can provably attain a fraction of the optimal capac-
ity, with complexity that grows linearly with the total number
of links L [16]. Other algorithms can reduce the complexity
even further. For example, the Maximal Scheduling algorithm
can attain at least 1

∆ of the optimal capacity, with O(logN)
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complexity [17], where ∆ denotes the maximum conflict
degree (see (2) for the definition) and N denotes the number
of nodes. The Constant-time scheduling algorithms, instead,
can achieve a comparable capacity with O(1) complexity, i.e.,
the complexity does not grow with the network size [11].
Further, both the Pick-and-Compare algorithm [4], [5] and
Carrier Sensing Multiple Access (CSMA) algorithm [6], [7]
have been shown to achieve the optimal throughput. They
incur O(L) and O(1) complexity, respectively. We note that
these two algorithms have been observed to lead to poor delay
performance [8], [9], and hence the utility of the throughput
gain may be debatable, especially for delay-sensitive applica-
tions. Nonetheless, these results indicate that good throughput
performance may be attained for non-fading environments
using algorithms with very low complexity.

In practice, however, most wireless systems experience
some level of channel fading. When link rates vary across time
due to fading, the system throughput can be further improved
by scheduling links when their rate is high. This is known
as the opportunistic gain [18]. Exploiting opportunistic gain
has been extremely popular in cellular systems. For ad hoc
wireless networks, the MaxWeight algorithm can exploit this
opportunistic gain and in fact achieve the optimal throughput
even with fading. However, as we will elaborate in Sec-
tion II-A, many of the low-complexity scheduling algorithms
described in the previous paragraph cannot exploit the oppor-
tunistic gain, and their performance in fading environments
will be much worse. Recently, there have been a few other
low-complexity schemes that are provably efficient with fading
channels. However, they are also either limited to single-
hop networks [15] or their performance guarantees are much
lower [14].

An exception is perhaps the GMS scheduling algorithm,
which computes an approximation to the MWIS problem by
choosing the highest weight vertex first, and can guarantee 1

∆
fraction of the optimal capacity in both fading and non-fading

environment [19]. Other greedy approximations have also been
proposed in [20], [21]. However, they require centralized
operations and linear complexity O(L). Although distributed
greedy approximation algorithms have been developed [22],
[23], they still incur a worst case time-complexity of O(L).
This high complexity has become a major obstacle preventing
these algorithms from being used in practical system because
the channel conditions can vary at faster time-scales than
O(L). Given that fading is a prevalent phenomenon in most
modern wireless systems, an interesting open question is how
one can develop distributed scheduling algorithms with even
lower complexity and yet guarantee good performance.

In this paper, we answer this open question by proposing
a novel low-complexity and distributed greedy approximation
algorithm, called DistGreedy, for both fading and non-fading
environments. In contrast to the known greedy approxima-
tions [20]–[23], our proposed DistGreedy algorithm incurs
a low logarithmic complexity that grows slowly with the
network size. Further, it requires only local information (such
as queue length and link rates of neighboring links) and
can be implemented in a distributed fashion. We analytically
show that our low-complexity distributed algorithm achieves

the fraction arbitrarily close to 1
∆ of the optimal throughput,

and demonstrate through simulations that DistGreedy often
achieves scheduling performance far better than the provable
bounds. Indeed, it empirically achieves throughput and delay
performance that is close to that of the MaxWeight scheduler.
We also conduct experiments with implementation in a real
testbed. We implement a new MAC protocol that captures
the essence of DistGreedy by modifying the IEEE 802.11
DCF. Performance comparison with the IEEE 802.11 DCF
under channel fading shows that the DistGreedy algorithm can
better exploit the opportunistic gains and thus substantially
outperform IEEE 802.11 DCF in fading environments.

The rest of the paper is organized as follows. The system
model is described in Section II. The DistGreedy algorithm is
proposed and analyzed in Section III. We numerically evaluate
its performance in Section IV, and provide experiment results
based on a testbed implementation in Section V. Then, we
conclude.

II. SYSTEM MODEL

We consider a wireless network with N nodes and L
directed links. We assume that time is slotted and that a single
frequency channel is shared by all the links. Multiple link
transmissions at the same time slot may fail due to wireless
interference. We assume that there is no link error, i.e., a
link transmission is successful if there is no simultaneous
interfering transmission.

The link rate of a successful transmission depends on its
channel state. We assume that the channel state is fixed during
a time slot, and changes across time slots. We denote the
(global) channel state by h. When the channel is in state h, link
l can transfer rhl unit of data if its transmission is successful.
Let H denote the set of all the channel states. We assume
that the channel state attains values from a finite set with
probabilities given by the distribution πh, with

∑

h∈H πh = 1.

In order to account for wireless fading, we employ a
channel-dependent interference model as follows. Let Ch

kl ∈
{0, 1} denote the interference relationship between link k and
link l when the channel state is h. We set Ch

kl = 0 if link l
does not interfere with link k (and therefore they can transmit
simultaneously), and Ch

kl = 1, otherwise. We assume that the
interference relationship is symmetric, i.e., Ch

kl = Ch
lk. We

note that the dependency on h represents a major departure
from existing works for non-fading environments. Specifically,
the interference relationship as well as the link rate may
change across time in our model. This model is not only a
simplified version that captures the fundamental characteristics
of the more accurate SINR interference model [24], but also
a general model that includes many interference models used
in the literature to model FH-CDMA, Bluetooth, and IEEE
802.11 DCF network systems [17], [25], as special cases.

Given a network system, our interference model admits a
unique conflict graph at each channel state h, which clearly
presents the underlying interference constraints. For each link
l ∈ L, we draw a vertex in the conflict graph, which is also
denoted by the same alphabet l. For every two vertices k, l with
Ch

kl = 1, we connect them with an edge in the conflict graph.
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Let Gh = (V,Eh) denote the conflict graph with the set V of
vertices and the set Eh of edges under channel state h. The
conflict graph explicitly shows the interference relationship of
any two vertices (i.e., links in the original network). In the
sequel, we deal with the conflict graph throughout the paper.

We now formally formulate the Maximum Weighted In-
dependent Set (MWIS) problem. Suppose that the channel
state is h at time slot t. We consider the conflict graph Gh

constructed from the interference constraints under channel
state h. We begin with some definitions. Vertex x is a neighbor

of vertex v, if they are connected by an edge in the conflict
graph. Let Ih(v) denote the set of neighbors of vertex v
including v, and let Ih(A) denote the set of neighbors of
vertices in A, i.e., Ih(A) := ∪v∈AIh(v). Let wv(t, h) denote
a weight associated with vertex v. In particular, we define the
weight of vertex v as the product of queue length Qv(t) and
transmission rate rhv . Let w∗(t, h) denote the largest weight,
i.e., w∗(t, h) := maxv∈V wv(t, h). Further, let w̄v(X ; t, h)
denote the largest weight in the neighborhood of vertex v
within X , i.e., w̄v(X ; t, h) := maxx∈X∩Ih(v) wx(t, h).

We say that a set S of vertices is an independent set (or a
feasible schedule) if no two vertices in the set are neighbors.
Further, an independent set is maximal if no extra vertex can
be added. Let Sh denote the collection of all the feasible
independent sets that are available in Gh. The MWIS problem
can be formulated as finding S∗ such that

S∗ ∈ argmax
S∈Sh

∑

v∈S

wv(t, h). (1)

It has been known that at each time t, given a channel state
h, the solution to the MWIS problem with weight wv(t, h) =
Qv(t)·rhv results in a throughput-optimal MaxWeight schedul-
ing scheme [26]. However, due to the high computational
complexity and the requirement of global information, such
a MaxWeight algorithm is difficult to implement in practice.
On the other hand, it has been shown in [19], [27] that an
imperfect scheduling solution that solves (1) within a factor
of γ at every time t, which is called as a γ-approximation al-
gorithm, achieves at least γ fraction of the optimal throughput.
To this end, our goal is to develop practical low-complexity
scheduling algorithm that can approximately solve (1) with a
provable fraction in a distributed fashion.

Remarks: In the above MaxWeight scheduling scheme, we
implicitly assume single-hop traffic, i.e., packets are trans-
mitted over a single link and leave the system immediately
after the transmission. For multi-hop traffic, the same Max-
Weight algorithm can be used by replacing the queue length
with a queue differential. (See [3] for the details.) Similarly,
our DistGreedy algorithm described in the next section can be
extended to multi-hop scenarios in a straightforward manner.

Finally, we define the vertex degree δ(h) := maxv∈V

|Ih(v)|, where | · | denotes the cardinality of the set, and the
maximum conflict (or interference) degree ∆(h) as

∆(h) := max
v∈V,S∈Sh

|Ih(v) ∩ S|. (2)

In the network, the maximum conflict degree represents the
maximum number of simultaneous transmissions in the neigh-
borhood of any link, which can be upper bounded by a

constant in many practical interference models [24], [28], and
denoted by ∆∗ = maxh∈H ∆(h).

A. Related low-complexity scheduling algorithms

Before we describe our solution and evaluate its perfor-
mance, we illustrate using an example that many of the
previous low-complexity scheduling algorithms in the liter-
ature suffer from poor performance in systems with fading.
The Maximal Scheduling algorithm and the Constant-time
scheduling algorithms have been shown to achieve an approxi-
mation ratios around 1

∆∗ for system without fading. (Note that
this result is comparable to that of GMS.) However, as the
following example shows, their performance could be much
worse when there is fading.

Let us consider a simple example network with L links,
where all the links interfere with each other and only one
link can be active at a time. Suppose that there are L channel
states {h1, h2, . . . , hL}. In each state hi, link i has rate 1 and
the others have rate ϵ ≪ 1. Suppose that the channel state
changes independently across time and each state occurs with
equal probability. Thus, the transmission rate of each link is
either 1 with probability 1

L or ϵ with probability 1 − 1
L . The

average link rate is 1
L + ϵ(1 − 1

L). Suppose that the arrival
rate at all links are the same and all links are backlogged. In
this scenario, the Randomized Maximal Scheduling algorithm
may choose any backlogged link uniformly. As a result, the
expected transmission rate of the chosen link will also be
1
L + ϵ(1− 1

L ). Hence, the network will become unstable when
the arrival rate to each link is larger than 1

L(
1
L+ϵ(1− 1

L )). On
the other hand, at each channel state an optimal scheduler can
always choose the link with the rate 1. Thus the network can
be stable as long as the arrival rate to each link is less than 1

L .
From the above discussion, we can see that the approximation
ratio of the Maximal Scheduling could diminish toward 0 (or
an arbitrarily small value of ϵ) as L increases. In contrast, if
there were no fading and the link rates were fixed (e.g., if
all the link rates were 1), then the approximation ratio would
have been 1 regardless of the number (L) of links [29]. This
example shows that an algorithm that does not use the channel-
rate information will likely yield low approximation ratios
in systems with fading. Hence, there is a critical difference
between systems with fading and systems without fading. In
the case of the Constant-time scheduling algorithms in [11],
[12], although it could use the channel rates as an input to
the algorithm, a careful examination of the proof indicates
that the constant-rate assumption is critical, without which the
approximation-ratio proof will not work either.

In [30], two variants of the CSMA algorithm have been stud-
ied for system with fading. For the first variant, throughput-
optimality may be achieved when the speed with which the
CSMA algorithm updates states can be very large. In this case,
the CSMA algorithm will be able to track the maximum-
weight schedule as quickly as the channel state changes.
However, such results only hold under the perfect carrier-
sensing assumption. In practice, when there is an unavoidable
minimal length for the sensing interval, there will be an upper
bound on how fast the CSMA algorithm can update its states.
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In this case, as shown for the second variant in [30], the
approximation ratio of the corresponding CSMA algorithm
may be as low as 1

χ , where χ denotes the chromatic number
of the conflict graph.

We note that the chromatic number can be much larger than
∆∗. For example, in the above simple L-link network, the
chromatic number is χ = L, while the value of ∆∗ is 1 because
there can be at most 1 active link at any time. In a more
general setting, e.g., a network under the unit-disc interference
model [28], one can show1 that ∆∗ ≤ 8, but the chromatic
number (and the vertex degree in the conflict graph) can be
arbitrarily large as in the L-link network example.

In summary, it remains an important open question to design
low-complexity scheduling algorithms that can achieve an
approximation ratio closer to that of GMS for systems with
fading, but with much lower overhead and without the type of
perfect sensing assumption [30].

III. DISTRIBUTED GREEDY APPROXIMATION

In this section, we describe our distributed approximate
solution to (1) and analyze its performance. We emphasize
that the algorithm operates in a distributed manner and each
vertex (link) requires only local information from its neighbors
in the conflict graph. Throughout this section, we consider the
conflict graph Gh at time t under channel state h, and omit
the subscripts t and h if there is no confusion.

A. Algorithm description

We assume that each time slot has two parts: contention
and transmission. The contention part has several intervals,
and each interval is further divided into mini-slots. We de-
termine a feasible schedule during the contention part, and
with the computed schedule, transmits actual data during the
transmission part.

Our high-level idea is as follows. During the contention
part, each node v calculates the largest weight w̄v in its
neighborhood, and a maximal independent set is effected for
the links with weight greater than w̄v

α for some constant α. The
chosen (active) links and their neighboring (blocked) links are
removed from the conflict graph. The same process repeats
over the remaining conflict graph until the graph left becomes
empty.

We next present the detailed per-slot operation. At a time
slot, let B denote the feasible schedule (independent set of
vertices) chosen by our algorithm. We start with an empty set
and add vertices to B by executing an iterative algorithm as
shown in Algorithm 1.

At each interval i, some vertices are ‘determined’ as to
whether they belong to set B or not. Specifically, vertices in
Bi are ‘determined’ to be in B at interval i, and vertices in
(I(Bi)\Bi) are ‘determined’ not to be in B at interval i. Let

1Under the unit-disc interference model, the transmitter and the receiver of
any active link must be within a unit distance, and there should be no other
active nodes within a unit distance from either the transmitter or the receiver.
Thus, the interference is determined by node locations, independent of the
channel states. Under this interference model, if we turn off an active link, no
more than 8 links in its neighborhood can be activated at the same time [28],
and hence, we have ∆∗ ≤ 8.

Algorithm 1 DistGreedy algorithm.

V0 ← V , B0 ← ∅

1: for i = 1 to logα β|V | do

2: Vi ← Vi−1\I(Bi−1)
3: Ai ← ∅
4: for each v ∈ Vi do

5: calculate w̄v(Vi) := maxx∈Vi∩I(v) wx

6: if wv ≥
w̄v(Vi)

α then

7: Ai ← Ai ∪ {v}
8: end if

9: end for

10: Bi ← dist maximal(Ai)
11: end for

Vi denote the set of vertices that have not been determined yet
at the beginning of interval i, i.e.,

Vi := V \
(

∪i−1
j=1I(Bj)

)

,

which can be rewritten in a recursive form as

Vi = Vi−1\I(Bi−1).

We say that a vertex in Vi is eligible at interval i. Let Ai ⊂ Vi

denote the set of vertices that will be ‘determined’ during
interval i, from which we will compute Bi. We will soon
see how to find Ai and Bi. From the definitions, it is clear
that V0 = V and B0 = ∅. Finally, we have a couple of
configuration parameters α,β that will be explained later.

Suppose that each vertex v knows its neighbors’ weights.
In wireless networks, this can be obtained by piggyback-
ing/overhearing the information exchange or by explicitly
exchanging control messages.

1) At each interval i, the set of eligible vertices Vi is
updated by excluding I(Bi−1) from Vi−1 (line 2 in
Algorithm 1), where Bi−1 denotes the set of vertices that
are chosen during interval i−1 and I(Bi−1) denotes the
set of neighbors for Bi−1 (including Bi−1 itself). For
this purpose, each vertex that belongs to Bi−1 should
notify its neighbors by broadcasting a control message
during interval i− 1. (See Step 4 below.)

2) Each vertex v in Vi calculates its local maximum weight
w̄v(Vi) := maxx∈Vi∩I(v) wx from the weight informa-
tion of its neighbors (in Vi). Then each vertex v sets
itself as one of Ai if wv ≥ w̄v(Vi)/α, where α > 1.
(Lines 5− 8.)

3) On the set Ai, we compute a maximal independent
set in a distributed manner (line 10), which requires
O(δ log2 |V |) complexity [31], [32] or O(δ) complexity
with precomputation [10], where δ is the vertex degree.
Let Bi denote the obtained set.

4) In the process of computing the maximal independent
set, each neighbor of vertex v ∈ Bi should be informed
that v belongs to Bi. Hence, the vertices in I(Bi) will
not participate in the next interval.

5) The above procedure repeats for J times, where J :=
⌈logα β|V |⌉. The set B(= ∪iBi) of vertices will be



5

L1

L2

L3

...

W*

W*/a

W*/a2

W*/a3

X

X

X

X

A1 B1 V2=V1\I(B1)X S*

Fig. 1. Conflict graph with vertices and edges in the layered format, where
vertices are partitioned into layers according to their weights.

returned as the final result. This is the set of links that
will transmit data packets during the time slot.

We have two configuration parameters α and β that will be
further discussed in the next section.

Note that our distributed greedy (DistGreedy) algorithm
requires O(δ) complexity at each interval and will run for
logα β|V | intervals (using the algorithm in [10]). Hence,
for fixed α and β, the worst-case complexity will be
O(δ logα β|V |). In some applications, e.g., in regular topolo-
gies where δ is a fixed constant, it grows logarithmically with
the network size (see further remarks under Proposition 6).
Hence, the complexity of DistGreedy is much lower than the
O(|V |) complexity of the known distributed implementation
of GMS [22], [23].

Remarks: Note that the previous greedy approximations to
the MWIS problem shown in [20] have a similar iterative
procedure as DistGreedy. However, their algorithm works
vertex-by-vertex sequentially, which results in linear complex-
ity in the worst case (e.g., consider a ring topology such that,
starting from a link, the link weights decrease in a clockwise
direction). Further, they have a different rule for selecting a
vertex at each interval, e.g., they select vertex v with the largest

wv

|Vi∩I(v)| or with wv ≥
∑

x∈Vi∩I(v)
wx

|Vi∩I(x)| . This selection
rule is the key to achieve the provable approximation ratio
of 1

δ . Unlike this previous work [20], DistGreedy reduces
the complexity significantly by considering multiple vertices
in parallel and do not follow the strict sequential ordering.
Further, the procedure stops after a certain number of inter-
vals. At each interval, DistGreedy selects the vertices v with
wv ≥ maxx∈Vi∩I(v)wx/α. The end result is a much better
approximation ratio (≈ 1

∆∗ ) and a much better complexity.
However, the parallel processing also makes it more difficult
to analyze the performance of DistGreedy. Nonetheless, in
the next section, we show that due to the selection rule of
DistGreedy, it can achieve the approximation ratio arbitrarily
close to 1

∆∗ .

B. Performance Analysis

We evaluate the performance of our distributed greedy (Dist-
Greedy) algorithm, and show that it can achieve arbitrarily

close-to 1
∆∗ fraction of the optimal performance. Motivated

by [21], we divide the vertices into layers L1, L2, . . . based
on the ratio of their weight to the maximum weight w∗, as 2

Li =
{

v ∈ V
∣

∣

∣

w∗

αi < wv ≤
w∗

αi−1

}

. (3)

Fig. 1 illustrates an example conflict graph in the layered
format.

We start our analysis with the following lemmas.

Lemma 1: For i ≤ logα β|V |, if vertex v ∈ Li, then v ∈
I(∪ij=1Bj), and thus

Li ⊂ I(∪ij=1Bj). (4)

Proof: If each vertex v ∈ Li selects itself for distributed
maximal independent set no later than the i-th interval, i.e., if
v ∈ Li implies v ∈ ∪ij=1Aj , then we can obtain the lemma,
since

v ∈ Li ⇒ v ∈ ∪ij=1Aj ⇒ v ∈ ∪ij=1I(Bj)⇒ v ∈ I(∪ij=1Bj),
(5)

where the second step comes from the fact Aj ⊂ I(Bj), since
Bj is a maximal independent set on Aj .

Now what remains to be shown is that v ∈ Li implies
v ∈ ∪ij=1Aj . We show this by induction. It is clear that when

i = 1, all vertices v ∈ L1 belong to A1, because wv > w∗

α .
Suppose that the statement is true for all i ≤ c. Note that all
vertices in ∪cj=1Aj are not eligible at interval c+1 since each
vertex in Aj belongs to I(Bj) for j = 1, 2, . . . , c under our
algorithm. Hence, at interval c + 1, no vertex in ∪cj=1Aj is
eligible, which immediately implies that no vertex in ∪cj=1Lj

is eligible since Li ⊂ ∪ij=1Aj for all i ≤ c. Now, if there is
a vertex v ∈ Lc+1 eligible at interval c + 1, i.e., v ∈ Vc+1,
then vertex v should be included in Ac+1, since all vertices e
with we > w∗

αc (i.e., e ∈ ∪cj=1Lj) are not eligible. Hence, the
induction hypothesis must hold for i = c+ 1. This completes
the proof.

Lemma 1 states that under DistGreedy, any vertex in layer
Li will be ‘determined’ after interval i ends. In the following
lemma, we show that each vertex in layer i must have a
neighboring vertex that has a similar or higher weight and
that is chosen by DistGreedy after interval i ends. Combining
these two lemmas, we can show that after interval i, every
vertex in Li or above is a neighbor of a vertex that is already
chosen by DistGreedy.

Lemma 2: For each vertex x ∈ Li (with i ≤ logα β|V |),
there exists v ∈ ∪ij=1Bj such that x ∈ I(v) and α ·wv ≥ wx.

Proof: From Lemma 1, we have x ∈ I(∪ij=1Bj), and thus

there exists v ∈ ∪ij=1Bj such that x ∈ I(v). Let k ≤ i be the

smallest index such that x ∈ I(Bk). Then, x /∈ I(∪k−1
j=1Bj)

and there exists v ∈ Bk with x ∈ I(v). Since v ∈ Bk ⊂ Ak,
it should satisfy w̄v(Vk)/wv ≤ α from line 6 of Algorithm 1.
Also since x ∈ I(v) and x is eligible at interval k (because

2The algorithm in [21] computes a maximal independent set for each
layer, and thus requires for each node to know which layer it belongs to,
or equivalently to know w∗. However, knowing the maximum weight w∗

may take O(|V |) time to propagate in the worst case. In contrast, DistGreedy
works with local weight information and the layering structure is only for the
purpose of analysis.
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x /∈ I(∪k−1
j=1Bj)), we have w̄v(Vk) ≥ wx. Hence, we obtain

that α · wv ≥ wx.

We can also obtain the following corollary by applying
Lemma 2 for i = 1 and x = argmaxv∈V wv .

Corollary 3:

α
∑

v∈B1

wv ≥ w∗. (6)

Recall that S∗ denotes the maximum weighted independent
set over V . We define Di(v) as the set of vertices in S∗ ∩Li

that are connected to v by an edge in the conflict graph, i.e.,

Di(v) := {x | x ∈ S∗ ∩ Li, and x ∈ I(v)}. (7)

Then |Di(v)| denotes the number of vertices selected by the
MWIS solution in layer Li that conflicts with v. The following
lemma shows that the weight sum for S∗ within layer Li can
be bounded by the weight sum for the independent set chosen
by DistGreedy up to interval i, multiplied by α · |Di(v)|.

Lemma 4: At each interval i, we have
∑

v∈∪i
j=1

Bj

α · |Di(v)| · wv ≥
∑

x∈Li∩S∗

wx. (8)

Proof: From Lemma 2, we have that for each vertex x ∈
S∗ ∩ Li, there exists v ∈ ∪ij=1Bj such that x ∈ I(v) and
α · wv ≥ wx. However, multiple x may map to the same v.
Nonetheless, for each of such v, at most |Di(v)| vertices in
S∗∩Li can potentially be neighbor of v in the conflict graph.
Therefore, we can obtain the result.

By summing both sides of (8) for all i, we can bound
the maximum weight sum by the weight sum of the vertices
chosen by DistGreedy within a constant factor α∆. (See the
proof of Lemma 5 below.) However, if we were to terminate
after all vertices are considered, it would have resulted in
O(|V |) complexity (e.g., consider a fully connected graph
with vertices whose weights are 1, 1

α+ϵ ,
1

(α+ϵ)2 , ...). In the next

lemma, we show that even if DistGreedy stops after logα β|V |
intervals, the performance loss would still be negligible.

Lemma 5: Given α and β, Algorithm 1 is a 1
α(∆(h)+1/β) -

approximation algorithm.

Proof: Let B := ∪Jj=1Bj , where J := ⌈logα β|V |⌉. By
summing (8) from i = 1 to J , we can obtain that

J
∑

i=1

∑

x∈Li∩S∗

wx ≤
J
∑

i=1

∑

v∈∪i
j=1

Bj

α · |Di(v)| · wv

≤
∑

v∈B

J
∑

i=1

α · |Di(v)| · wv

≤
∑

v∈B

α ·∆ · wv.

(9)

Also, for i > J , we can obtain that

∞
∑

i=J+1

∑

x∈Li∩S∗

wx ≤
∞
∑

i=J+1

∑

x∈Li

wx ≤ |V | ·
w∗

αJ
≤

w∗

β
, (10)

where w∗ denotes the largest weight among all the vertices.
The last inequality holds since J = ⌈logα β|V |⌉.

Combining (9) and (10), we can obtain that

∑

x∈S∗

wx ≤ α∆
∑

v∈B

wv +
w∗

β
≤ α(∆+

1

β
)
∑

v∈B

wv, (11)

where the last inequality comes from (6) and B1 ⊂ B. Thus
our result follows.

It has been shown in non-fading environments that a
scheduling solution that is a γ-approximation to the MWIS
problem at each time slot can achieve at least γ fraction of
the optimal throughput [19], [27]. The result can be applied
to fading environment: a scheduling solution that is a γ(h)-
approximation to the MWIS problem under channel state h at
each time slot can achieve at least minh∈H γ(h) fraction of
the optimal throughput. Combining it with Lemma 5, we can
obtain the following Proposition.

Proposition 6: For any 0 < ϵ < 1, by choosing α = 1+ ϵ
3

and β = 3
ϵ , the corresponding DistGreedy algorithm achieves

a competitive ratio of 1
∆∗(1+ϵ) , where ∆∗ = maxh∈H∆(h).

Proof: With the above choice of α and β, we have from
Lemma 5 and ∆(h) ≥ 1 that

α

(

∆(h) +
1

β

)

≤ ∆(h)
(

1 +
ϵ

3

)2
≤ ∆(h)(1 + ϵ).

In other words, DistGreedy can achieve 1
∆(h)(1+ϵ) fraction of

the maximum weight sum at each time slot.
It has been shown through the standard Lyapunov stability

analysis that a scheduling scheme that solves the maximum
weighted independent set problem at each time, where the link
weight is the multiplication of its queue length and instanta-
neous link rate, can achieve the capacity region. Further, if the
weight of the schedule computed by an algorithm at each time
is at least γ times the maximum weight (i.e., γ-approximation
algorithm), the algorithm achieves an approximation ratio of
γ of the capacity region (Section V.B of [19]). The result of
the proposition follows immediately.

Remark: Recall that GMS achieves the approximation ratio
of 1

∆∗
. The above result indicates that, by choosing a suffi-

ciently small ϵ, DistGreedy can achieve an approximation ratio
arbitrarily close to 1

∆∗ . For any fixed ϵ > 0, the value of α
and β are independent of the network size. Thus, the number
of iterations of the corresponding DistGreedy algorithm will
be logarithmic with respect to |V |.

In developing a distributed low-complexity GMS algorithm,
one of the main difficulties lies in the requirement of the
strict global ordering of selected vertices. For example, if the
conflict graph is a linear graph, where the weights of vertices
monotonically decrease from the left to the right, then the
selection of the right-most vertex v with the smallest weight
can be made only after the selection of its left-side neighbor
u, which again can be made only after the selection of the
left-side neighbor of vertex u due to the linear topology. This
implies that the selection of the right-most vertex v needs to
be made after O(|V |) time.

Our result implies that the strict global ordering in the
GMS algorithm is not required for high scheduling perfor-
mance. A loose ordering would be sufficient, which can
result in significant complexity reduction with negligible per-
formance degradation. We highlight that the state-of-the-art
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Fig. 2. Grid network topology.

“distributed” 1
∆(h) -approximation algorithm requires O(|V |)

complexity [22], [23], while our local greedy algorithm sig-
nificantly lowers the complexity to O(δ(h) log |V |).

IV. NUMERICAL RESULTS

We evaluate DistGreedy, Greedy, and MaxWeight through
simulations, where MaxWeight is the optimal scheduler that
solves the MWIS problem at each time slot. We simulate
two networks: one with a grid topology and the other with
a randomly generated topology.

We first consider a grid topology as shown in Fig. 2. Let
r̄l denote the average transmission rate of link l, i.e., r̄l :=
∑

h∈H rhl π
h. Each link l has an average transmission rate of

one, two, or three packets per time slot, which are signified in
the figures by the number of lines between two nodes, e.g., one
line implies one packet per time on average. At each time slot,
actual link rate changes and chosen uniformly at random from
the range [0, 2r̄l]. Since DistGreedy approximates the optimal
solution to the MWIS problem at each time slot, we focus on
the behavior of DistGreedy under static interference models,
where the interference relationship does not change across
time. In particular, we use one-hop (or primary) interference
model, under which two links that share a node cannot transmit
at the same time. We impose single-hop traffic of load ρ on
every link: at each time slot, each link has a packet arrival
with probability ρ. The arrivals are i.i.d. across time slots
and links. We set DistGreedy to have ⌈logα β|V |⌉ intervals
at each time slot. We use a link-coloring technique to find a
maximal independent set, under which (δ + 1) mini-slots are
sufficient [10]. Since δ = 6 in our grid topology, we use 10
mini-slots at each interval. The number of mini-slots are not
taken into account in the performance measurements. Each
result is an average of 10 simulation runs for 106 time slots.

Fig. 3 illustrates the performance of DistGreedy in terms
of total queue lengths with different α settings and β = 1.
Sharp increases of queue lengths imply the boundary of the
capacity region. Note that a larger α means thicker layers and
thus a smaller number of intervals. The results show that the
performance is not sensitive to the value of α in a range [1.1, 3]
and a small number of intervals (e.g., α = 2.0) would be
sufficient for high throughput performance.

While running DistGreedy, we also trace the maximum
weight sum, the weight sum of the schedule selected by
DistGreedy, and the weight sum of the schedule that would

Fig. 3. Performance of DistGreedy with different α.

(a) α = 2.0

(b) α = 1.1

Fig. 4. Ratio of the achieved weight sum to the maximum weighted sum.

be chosen by Greedy, at each time slot. Fig. 4 depicts the
ratio of each weight sum (from DistGreedy and Greedy)
to the maximum weight sum. It shows that both GMS and
DistGreedy typically achieve much higher ratios than the
analytical bound, which is 1

2 in the one-hop interference model
and shown in the figure using a dotted line. Also, as α
gets closer to 1, DistGreedy algorithm approaches Greedy
algorithm because layers become narrower and the number
of intervals increases.

In Fig. 5, we compare the performance of MaxWeight,
Greedy, DistGreedy (with α = 2, β = 1), and Q-
CSMA, where Q-CSMA is a CSMA algorithm known to
be throughput-optimal in non-fading environments. For Q-
CSMA, we use the version shown in [9], i.e., each link v
sets its access probability for the decision vector to 1

|I(v)|

and sets its weight for link activity to log(Ql(t) · rhl (t)).
The results in Fig. 5 illustrate that Q-CSMA, which has
the lowest complexity O(1) among the scheduling schemes,
has much poorer throughput and delay performance than the
others. In particular, its delay grows quickly at an offered
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Fig. 5. Performance comparison of scheduling schemes.
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Fig. 6. Performance comparison in a random topology.

load much lower than that in other algorithms, which suggests
that it is not throughput optimal in fading environments. In
contrast, DistGreedy has similar queue lengths to MaxWeight
and Greedy. In other words, it empirically achieves similar
throughput and delay performance to the optimal. Further,
the simulation results suggest that the actual performance of
DistGreedy could significantly outperform the analytical lower
bounds.

Next we consider a network that is randomly generated.
We place a total of 32 nodes at random within a 1 × 1
area. We connect two nodes with a link if they are within
a distance of 0.25. Each link has a time-varying link rate,
which is randomly chosen in the range of [0, 10] packets per
slot, and i.i.d. across links and time. We generated single-hop
traffic over 24 links, which are chosen at random as shown
in Fig. 6(a). Each source injects a random number of packets
in the range of [1, 5] at each time slot, with probability ρ.
Fig. 6(b) illustrates the performance of MaxWeight, Greedy,
DistGreedy, and Q-CSMA under different traffic loads. Again,
it shows that DistGreedy achieves similar throughput and delay
characteristics as MaxWeight and Greedy even though it has
a significantly lower complexity. In comparison, Q-CSMA
suffers poor throughput and delay performance.

V. EXPERIMENT RESULTS

In this section, we develop DistGreedy implementations
by modifying the standard IEEE 802.11 DCF, and provide

experimental results comparing their performance with the
IEEE 802.11 DCF. We show that the opportunistic gains of
wireless fading can indeed be achieved in practice.

We implement versions of DistGreedy in hardware driver
by modifying the medium access control of the standard IEEE
802.11 DCF. Specifically, we use the ath5k device driver [33]
over Voyage Linux [34] installed into the Alix 2D2 system
board [35]. We modified it such that each node maintains
information of queue lengths and transmission rates (link
capacity) of neighboring nodes. We use a part of the IP header
to report the queue length information of the transmitter. The
transmission-rate information can also be obtained from the
device if the frame is successfully received. Each node that
receives or overhears the frame updates the queue and rate
information of the transmitter from the header. Although the
physical layer of our devices is based on the IEEE 802.11b
standard, the same MAC can be used with IEEE 802.11a and
802.11g standards. Some experimental results with the 802.11a
physical layer can be found in [1].

Unlike IEEE 802.11 DCF, the proposed DistGreedy algo-
rithm (see Algorithm 1) requires time synchronization be-
tween nodes. We avoid the synchronization overhead in its
implementation by approximating Algorithm 1 while capturing
its essential feature. In addition, we modify the original
DistGreedy scheme to operate with per-node queues like
IEEE 802.11 DCF (instead of per-link queues). Due to these
differences, we use w′

n(t) and w̄′
n(t) to denote node n’s weight

and its local maximum weight at time t, respectively.
Our DistGreedy implementation works just like IEEE

802.11 DCF, except for the operations of selecting the number
of contention slots. When transmitter n has a frame to send
(asynchronously with other nodes), it chooses the number of
contention slots at random within [0,CW min] and starts the
contention procedure. If the contention fails due to a collision,
the upper bound of the window is doubled (e.g., binary
exponential backoff) up to at most CW max and the contention
restarts. The upper bound is reset to CW min upon a successful
transmission. However, the main difference from IEEE 802.11
DCF is that we set CW min and CW max dynamically. Under
our DistGreedy implementation, each node maintains the local
maximum weight w̄′

n(t) from the information that it has

received from its neighbors, and estimates θ := ⌊ w̄′

n(t)
α·w′

n(t)
⌋.

When node n transmits a data frame, it sets CW min and
CW max according to the value of θ. For example, in one
version of our implementation (see DistGreedy-A7 in Table I),
the transmitting node sets (CW min, CW max) = (7, 31) if
θ = 0, (31, 1023) if θ = 1, (63, 1023) if θ = 2, and
(127, 1023) otherwise. In this way, our DistGreedy imple-
mentation effectively divides the contention period into four
intervals (see Section III-A for the definition of the interval).

Note that changing CW min and CW max can have a
direct impact on the contention overhead and the throughput
performance. For example, if there are only a few nodes in
the network, one can decrease CW min and CW max, which
effectively reduces the contention period and results in higher
throughput even when there is no channel fading. Since the
focus of this paper is on how to extract the fundamental
performance gains when there is channel fading, we would
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like to exclude the above effect from our experiments. Hence,
we first conduct a preliminary experiment for the case when
the nodes are stationary and when the channel states are static.
Here, our goal is to find a parameter setting for DistGreedy
such that its performance is close to IEEE 802.11 DCF
when the channel states are static, and thus later on we can
specifically measure the gain of DistGreedy due to its channel-
dependent scheduling. To this end, we evaluate the following
three versions of DistGreedy implementation shown in Table I.

TABLE I
DIFFERENT CONTENTION PARAMETERS OF (CW min, CW max) FOR

ASYNCHRONOUS DISTGREEDY APPROXIMATIONS.

θ = 0 θ = 1 θ = 2 θ ≥ 3

DistGreedy-A7 (7, 31) (31, 1023) (63, 1023) (127, 1023)
DistGreedy-A15 (15, 31) (31, 1023) (63, 1023) (127, 1023)
DistGreedy-A31 (31, 31) (63, 1023) (127, 1023) (255, 1023)

We conduct a simple experiment with these three asyn-
chronous approximations of DistGreedy and the IEEE 802.11
DCF in a network of 5 static nodes placed in a small area of
1x1 m2. Each of 4 nodes transmits packets to a single receiver.
We set α = 10/9 for DistGreedy schemes. Further, we set the
maximum buffer size to 100 frames, and the IP packet size to
512 bytes. We set all the nodes to transmit at the same rate,
and increase their transmit rate at the application level using
iperf [36].

The results are shown in Fig. 7. As we increase the
application transmission rate at each node, the queue lengths
grow and the capacity corresponds to the rate at which the
queue lengths become substantially large. (See Fig. 7(a).)
Alternatively, we can observe performance degradation from
the normalized throughput, which is the ratio of the achieved
rate to the transmitted rate at the application. (See Fig. 7(b).)
As expected, DistGreedy schemes with a smaller contention
window performs better in our small-sized network. By com-
paring their performance with that of the standard IEEE 802.11
DCF, we observe that DistGreedy-A15 achieves similar per-
formance as IEEE 802.11 DCF, which implies that they have
similar contention overhead. In the sequel, we continue our
experiments using DistGreedy-A15 and focus on performance
gains from channel-dependent scheduling. Note that finding an
optimal number of intervals and the contention window sizes
is still an interesting open question but is beyond the scope of
the paper.

We now focus on the performance of DistGreedy with
channel fading. We generate a network with three stationary
stations and a single mobile receiver, and let each station
transmit data to the receiver. Fig. 8 shows the topology in our
experiments deployed on the 5th floor of the ECE department
building in UNIST, South Korea. The receiver moves back and
forth between positions A and C via position B (starts from
A). Each one-way travel takes about 20 seconds, and each
experiment lasts for 120 seconds. Throughout the experiments,
each station can overhear the other’s transmissions. Since we
only have one receiver, for convenience, we will refer to
the channel from STA i to the receiver as ‘the channel of
STA i’. Overall, the channel of STA 1 is the best and the
channel of STA 3 is the worst. While the channel of STA 1

(a) Total queue length

(b) Normalized throughput

Fig. 7. Performance of asynchronous DistGreedy scheme with different
settings. DistGreedy-A15 achieves similar performance with IEEE 802.11
DCF.

502 503 504

507509510
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STA1
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STA3

B

Fig. 8. Experiment setup. Starting from A, the mobile receiver moves back
and forth between A and C, via B, for 120 seconds. Each one-way movement
takes 20 seconds. The channel of STA 1 is consistently good, while the
channel of STA 2 becomes bad at C and the channel of STA 3 becomes
bad at B.

is good when the receiver is at any position, the channel of
STA 2 becomes bad when the receiver is at position C and
the channel of STA 3 becomes bad when the receiver is at
position B (especially when the receiver enters B from C).
Note that the transmission rate of a link has a discrete value
in {1, 2, 5.5, 11} Mbps under the physical layer of the IEEE
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(a) Throughput of IEEE 802.11 DCF (b) Throughput of DistGreedy-A15

(c) Queue length of IEEE 802.11 DCF (d) Qeuue length of DistGreedy-A15

Fig. 9. Performance of IEEE 802.11 DCF and DistGreedy-A15 when the channel states change. Under IEEE 802.11 DCF, the stations of good channel (e.g.,
STA 3 at 60 sec) overwhelm the station of bad channel (e.g., STA 1 at 60 sec). In contrast, under DistGreedy-A15, the station of good channel cooperate
with the station of bad channel.

802.11b standard. Instantaneous link rate changes frequently
across time, and is chosen by the hardware depending on
the channel state at a given time. We have observed that the
transmission rate changes frequently, commonly between 5.5
and 11 Mbps, and often in an unpredictable manner. Since the
transmission rate is not under our control, it is a challenge
to maintain exactly the same channel environment when we
compare different MAC protocols. In our experiments, we
observe that the regular movement of the receiver is helpful
to keep overall channel states similar for each experiment
run. We have measured the queue lengths and throughputs3

of all the three stations, when each of them transmits data
at 950 Kbps. We present their time-averaged values (using
exponential weighted moving average) in Fig. 9.

We first comment on Figs. 9(a) and 9(c), which show
the behavior of IEEE 802.11 DCF. Interestingly, although

3The throughput is measured at the MAC layer, and the average can be
greater than the rate transmitted from the application (since retransmissions
are counted). In our experiments, the channel of STA 3 is worse than those of
STA 1 and STA 2 overall. As a result, STA 3 achieves higher throughput than
STA 1 and STA 2 (on average) due to frequent retransmissions, as shown in
Fig. 9(b).

the protocol specification of IEEE 802.11 DCF does not
directly take channel condition into consideration, its behavior
shows some level of adaptivity to changing channel conditions.
For example, at the 60-th second, the receiver is located at
position C, where the channels of STA 1 and STA 3 are much
better than the channel of STA 2. In Fig. 9(a) (marked by
an arrow), it shows that STA 1 and STA 3 achieve good
throughput (≥ 950 Kbps) while STA 2 suffers from low
throughput. We conjecture that this channel adaptivity has
something to do with the binary exponential backoff of DCF.
Specifically, when a station experiences a packet loss and
exponentially backs off its contention window, the others will
be able to take advantage of the opportunity and transmit
data more greedily. Since the station with worse channel (i.e.,
STA 2) is likely to experience more packet losses, it achieves
lower throughput.

However, there are two limitations in the way IEEE 802.11
DCF adapts to changing channel conditions. First, it does
not take into account the backlog, which results in frequent
buffer overflows [37]. For example, we have observed from
Figs. 9(a) and 9(c) that STA 2 is starved from service at the
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60-th second and its backlog quickly grows. Also, afterwards
when the receiver moves to position B, the channel of STA 2
becomes better than that of STA 3 (around the 65-th second).
STA 2 now starts transmitting at higher rate and draining its
queue, while STA 3 is suffering from very low throughput and
its backlog increases significantly. Second, IEEE 802.11 DCF
fails to exploit short-term opportunistic gains. For example,
even though STA 2 on average has poor channel around the
60-th second, our traces show that its channel condition still
fluctuates rapidly. However, under IEEE 802.11 DCF, STA 2
is still prevented from accessing the medium even when its
channel state occasionally becomes good.

In contrast, we can observe from Figs. 9(b) and 9(d) that
DistGreedy-A15 does not suffer from such pitfalls. First,
DistGreedy-A15 is able to exploit short-term opportunistic
gains: if stations with a worse channel on average have a
good channel state temporarily, they would have a higher
priority due to larger queue lengths and can opportunistically
transmit data. This property prevents the medium from being
occupied by one or two stations. For example, around the
60-th second in Fig. 9(b), even though STA 2 has worse
channel on average, it still achieves similar throughput as the
others. This short-term opportunistic gain can be confirmed
indirectly by comparing the average throughput of the three
stations around the 60-th second: 917 Kbps for IEEE 802.11
DCF and 953 Kbps for DistGreedy-A15. Second, Fig. 9(d)
indicates the fact that DistGreedy-A15 takes into account the
backlog. Specifically, the station with smaller queue length
yields transmission opportunity to those with larger queue
lengths, and thus the queue lengths of all the stations are
somewhat synchronized (unlike IEEE 802.11 DCF). Finally,
we highlight that DistGreedy-A15 successfully supports the
transmission rate-vector regardless of the positions of the
receiver. In contrast, IEEE 802.11 DCF cannot support the
input rate-vector in certain positions (especially when one
station has a better channel than the other). This implies
that DistGreedy-A15 achieves a larger throughput region than
IEEE 802.11 DCF.

Next, we test backward compatibility of the proposed
scheme. Unless we create a brand-new service network, new
scheduling schemes will likely have to coexist with the IEEE
802.11 DCF standard. To this end, the old scheme and the new
scheme should be able to work together in the same network,
and none of them starves out of service. Further, it is desirable
that the new one may perform slightly better than the old
one as an incentive for upgrading to new MAC protocol. We
have conducted our experiments with four transmitters: two
with IEEE 802.11 DCF and two with DistGreedy-A15. Each
station transmits to a common stationary receiver at the same
transmission rate, which is set at the application level. As we
increase the application-level transmission rates, we measure
throughput and queue length. Fig. 10 shows the normalized
throughput and queue length, which are averaged across
stations with the same scheduling scheme. Red and black
marks are the results when either all the four stations use IEEE
802.11 DCF or they all use DistGreedy-A15, respectively. The
curves with blue marks show the results when two stations
use IEEE 802.11 DCF and the other two use DistGreedy-

(a) Queue length

(b) Normalized throughput

Fig. 10. Performance when IEEE 802.11 DCF and DistGreedy-A15 coexist
in a network (two stations for each scheme). Though DistGreedy-A15 out-
performs IEEE 802.11 DCF, the performance of IEEE 802.11 DCF slightly
degrades compared to the case when all the stations are IEEE 802.11 DCF.

A15. In particular, the curve with blue “x” marks represents
the performance of the stations using DistGreedy-A15 and the
curve with blue “+” marks represents the performance of the
stations using IEEE 802.11 DCF. The results demonstrate that
DistGreedy-A15 outperforms IEEE 802.11 DCF when they
coexist. The stations using IEEE 802.11 DCF do not starve
either, while they experience some performance degradation
compared to the case when all the stations use IEEE 802.11
DCF. On the other hand, the stations using DistGreedy-A15
make use of the medium more aggressively, suggesting an
incentive for upgrade to our proposed new protocol.

VI. CONCLUSION

In this paper, we develop a distributed scheduling scheme
that is provably efficient under wireless fading. In a network
graph with maximum conflict degree ∆∗, our local greedy
scheme achieves arbitrarily close-to 1

∆∗ fraction of the opti-
mal throughput. Further, it incurs O(log |V |) complexity (or
polylogarithmic complexity), where |V | is the number of links,
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provided that the conflict graph has bounded maximum vertex
degree.

We evaluate our scheme through simulations in grid net-
works and random networks. The results show that our dis-
tributed scheduling scheme is insensitive to parameter settings,
and achieves throughput and delay performance similar to
those of the optimal solution. We also implement our scheme
with hardware by modifying the existing IEEE 802.11 DCF.
The experimental results show that our modification results
in better throughput performance with low queue length by
taking into account time-varying link capacities.
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