
Deadline Constrained Scheduling for Data

Aggregation in Unreliable Sensor Networks

Srikanth Hariharan and Ness B. Shroff

Abstract—We study the problem of maximizing the aggregated
information in a wireless sensor network. We consider a sensor
network with a tree topology, where the root corresponds to the
sink, and the rest of the network detects an event and transmits
data to the sink. We formulate an integer optimization problem
that maximizes the aggregated information that reaches the sink
under deadline and interference constraints. This framework
allows using a variety of error recovery schemes to tackle link
unreliability. We show that the optimal solution involves solving a
Job Interval Selection Problem (JISP) which is known to be MAX
SNP-Hard. We construct a sub-optimal version, and develop
a low complexity, distributed optimal solution to this version.
We investigate tree structures for which this solution is optimal
to the original problem. Our numerical results show that the
sub-optimal solution outperforms existing JISP approximation
algorithms even for general trees.

I. INTRODUCTION

A wireless sensor network is a wireless network consisting

of a number of sensors that sense a desired aspect of the region

in which they are deployed. These networks are used in a

number of military and civilian applications, such as target

tracking and environment monitoring. Sensor measurements

are prone to errors due to environmental factors and resource

constraints. Therefore, sinks cannot rely on the data sensed by

a single sensor. In many applications, the sinks only desire a

certain function of the data sensed by different sensor nodes

(e.g., average temperature, maximum pressure, detect a signal,

etc.). When sinks require certain classes of functions of the

sensed data, performing in-network computation (intermediate

nodes in the network aggregate data from all their predeces-

sors, and only transmit the aggregated data) greatly reduces

the communication overhead [1].

A tree structure is commonly used for data aggregation in

wireless sensor networks [2], [3]. In this paper, we consider

a tree topology with the sink as the root of the tree. An

event is observed by a subset of nodes in the tree called the

source nodes. All source nodes transmit their data about the

event to the sink. Our goal is to maximize the information

obtained by the sink. The information obtained by the sink is

a representation of the quality of the data that reaches the sink.

This work was supported in part by ARO MURI Awards W911NF-07-
10376 (SA08-03) and W911NF-08-1-0238, and NSF Awards 0626703-CNS,
0635202-CCF, and 0721236-CNS.

S. Hariharan is with the Department of Electrical and Computer Engineer-
ing, The Ohio State University, 2015 Neil Ave., Columbus, OH 43210, USA
harihars@ece.osu.edu

N. B. Shroff is with the Department of Electrical and Computer En-
gineering and the Department of Computer Science and Engineering,
The Ohio State University, 2015 Neil Ave., Columbus, OH 43210, USA
shroff@ece.osu.edu

For example, it could be the sum of the inverses of the error

variances of the data from various sources that reaches the

sink [4]. It could also represent other relevant metrics such as

the Log-Likelihood Ratio if detection is being performed by

the network, distortion, etc. Since the information obtained at

the sink corresponds to data that has been “aggregated” within

the network (as opposed to being transmitted separately from

individual sources), we call the information obtained at the

sink “aggregated information”.

Delay is also an important parameter in a wireless sensor

network. While most works focus only on energy, minimizing

the delay can help save a huge amount of energy. For instance,

suppose that a sensor network is tracking a target. In order to

ensure good tracking quality, the sink must obtain previous

measurements in a timely manner so that the best subset of

sensors for the next measurement is chosen. If the sink does

not get the measurements in a timely manner, the target might

have moved too far resulting in a poor measurement quality

during future measurements. On the other hand, if the sink

decides to ensure good tracking quality by activating a large

number of sensors at all times, a large amount of energy could

be wasted. Therefore, it is critical that the sink obtains sensor

measurements in a delay efficient manner.

The main contributions of this work are summarized as

follows:

• We develop an optimization based framework to maxi-

mize the aggregated information that is received at the

sink from all the source nodes in the data gathering

tree. This optimization framework explicitly accounts for

unreliable links, deadlines, and interference. Further, it

allows to tackle link unreliability using a variety of

error-recovery schemes as long as errors across links are

independent.

• We show that solving this optimization problem involves

solving a single-server Job Interval Selection Problem

(JISP) which is known to be MAX SNP-Hard (which

means that unless P = NP , a Polynomial Time Approx-

imate Scheme (PTAS) does not exist for the problem).

Note that a PTAS is an algorithm which takes an instance

of an optimization problem and any ǫ > 0, and produces

a polynomial time solution that is within a factor ǫ of

being optimal.

• We study the structural properties of this problem,

and develop a sub-optimal version. We provide a low-

complexity, distributed optimal solution to this sub-

optimal version. This solution is optimal to the original

problem for certain tree structures.



• We evaluate the performance of the sub-optimal al-

gorithm for general tree structures through numerical

evaluations, and show that it not only performs close

to the optimal solution but also outperforms existing

approximation algorithms for JISP.

The rest of this paper is organized as follows. In Section II,

we overview related work. In Section III, we describe our

system model and assumptions. In Section IV, we formulate

our problem. In Section V, we study the structural properties

of the deadline constrained problem, and prove that it is

MAX SNP-Hard. In Section VI, we study a sub-optimal

version of the deadline constrained problem, and provide an

optimal algorithm for this problem. In Section VII, we provide

simulation results comparing the performance of our sub-

optimal algorithm with that of the optimal solution for general

tree structures. Finally, in Section VIII, we conclude the paper.

II. RELATED WORK

The problem of evacuating all the packets in a multi-hop

wireless network in minimum time is quite related to what

we are studying. Different works [5], [6] have studied this

problem for error-free channels. They propose polynomial-

time algorithms for tree structures for the one-hop interference

model. These works do not consider in-network computation.

Other existing work in this area can be broadly characterized

into two classes - constructing efficient data aggregation trees

[2], [7] and approaches to study the trade-offs between energy,

delay and the quality of aggregated data [8], [9], [10], [11].

Constructing an optimal data aggregation tree is NP-Hard

for a number of cases such as minimizing the number of

transmissions [7], maximizing the lifetime [2], etc.

Several existing works use optimization approaches to study

energy-delay trade-offs and energy-quality trade-offs under

data aggregation. Boulis et. al., [8] study trade-offs between

energy and data accuracy in data aggregation trees. In [9],

Yu et. al., study trade-offs between energy and latency in

data aggregation trees, assuming a time-slotted synchronized

system. In [10], Ye et. al., study the fundamental energy-delay

trade-off for distributed data aggregation in wireless sensor

networks. Their goal is to maximize a certain parameter called

the discounted reward at each node, where the reward is due to

data aggregation and the discount is due to the time for which

the node waits in order to aggregate data from its predecessors.

The common drawback in all of these works is that they do

not take link errors and interference constraints into account

while framing their optimization problem. We have previously

studied the problem of maximizing aggregated information in

data gathering trees under deadline and one-hop interference

constraints, for error-free links [11]. For this problem, a dis-

tributed optimal solution was developed that involved solving

a localized Maximum Weighted Matching (MWM) problem

at each hop. Since the matching only involved neighboring

nodes, the algorithm had a low computational complexity.

However, the inclusion of link errors, as done in this work,

substantially increases the difficulty of the problem.

III. SYSTEM MODEL AND ASSUMPTIONS

We model the system as a graph G(V ∪{S}, E) where V is

the set of active nodes, S is the sink, and E is the set of links.

The graph G is a tree rooted at the sink. An active node is

one that is either a source node or has at least one source node

in its sub-tree. Sensors take measurements for events (such as

tracking a target, measuring the temperature, etc.), and send

an aggregated form of the data to the sink within a deadline.

A node may or may not be a source for a particular event.

We make the following assumptions: (i) “perfect” aggrega-

tion - intermediate nodes can gather data from predecessors,

and aggregate them into a single packet [1], [7], (ii) time-

slotted and synchronized system, (iii) integer number of time

slots to transmit a packet over a link, (iv) negligible time

required to perform in-network computation, (v) each source

has data ready at time zero (for simplicity of exposition), (vi)
each source has a single data packet for an event, (vii) the

next event occurs only after the deadline for the current event

has expired, (viii) a primary (or one-hop) interference model

where no two links that share a node can be active at the same

time, and (ix) unreliable links in the network where errors are

independent across links.

We refer to the actual sensor measurements as data. We

define information as the quality of the data. For example,

data could be temperature, location, etc., while information

could be error variance, distortion, Log-Likelihood Ratio, etc.

By aggregated data (or information), we mean the in-network

computed data (or the information provided by the in-network

computed data). Let wi represent the information provided

by a source node i. wi, for example, could represent the

inverse of the predicted variance of a Kalman filter if node i

is tracking a target.

Since links are unreliable, we can employ a number of

known error-recovery techniques such as retransmissions, cod-

ing, etc. We model the link reliability of a link i as a function

fi(n), where n is the number of time slots consumed on trans-

missions over link i. For instance, if we use retransmissions,

fi(n) could denote the probability that information is success-

fully transmitted over link i if a maximum of n transmissions

(including retransmissions) are allowed. Note that fi(n) can

be any arbitrary function (that is of practical importance),

and hence can model any known error-recovery technique for

that particular link. Similarly, it can account for different link

capacities. For instance, if 2 time slots are required to transmit

data over link i, and n = 1, fi(1) can be set to zero.

We consider two definitions of the information received at

node B from a particular source node A.

Definition 1: Product of the information provided by node A

and the product (or weighted product) of the link reliabilities

over all the links from node A to node B. For example, if

PA,B represents the path from A to B, then the information

received at B from A is wA

∏
j∈PA,B

fj(nj).

Definition 2: Product of the information provided by node A

and the sum (or weighted sum) of the link reliabilities over all

the links from node A to node B. For example, the information



received at B from A (over a path PA,B from A to B) is

wA(
∑

j∈PA,B
fj(nj)).

We model the aggregated information received at node B as

a (weighted) sum of the information received at B from indi-

vidual source nodes, where the latter is obtained from Defini-

tion 1 or Definition 2. Note that when B is the sink, we obtain

the aggregated information received at the sink. This metric is

of importance especially when sensor measurements are fused.

For instance, the sum of the inverses of the error variances of

individual sensors represents the overall error variance of the

fused measurements when measurements are independent [4].

IV. PROBLEM FORMULATION

We now formulate our optimization problem. We first

describe our forwarding policy for data aggregation.

Forwarding Policy: For an event, each node will wait for

a certain time to aggregate data from its predecessors. Until

that waiting time expires, a node, even if it is a source node,

will not transmit its data to its parent. After the waiting time

expires, the node will no longer accept transmissions from its

children. The implication of this policy is that a node will

never transmit data that it receives from two or more nodes

separately. It will always aggregate the data that it receives

and transmit the aggregated data.

We now provide a few notations and formulate our

optimization problem. Let VL bet the set of leaf nodes, and

VS be the set of source nodes. Let nij be the number of time

slots allocated to node i to transmit to its parent j. Also,

βij is a known constant representing the maximum number

of slots that can be allocated to node i. This could depend

on a number of factors such as link unreliability, energy

expenditure, etc. Let Wi be the waiting time of node i (as

defined in the forwarding policy).

Note that the information received at the sink from a

particular source node can be obtained from either Definition 1

or Definition 2. Since the solution methodology is identical

for both definitions, WLOG the rest of the paper considers

Definition 1.

Problem ΠD:

max
~n, ~W

∑

i∈VS

Information received at S from i (Definition 1)

s.t. nij ∈ {0, 1, ..., βij} ∀(i, j) ∈ E

For each i ∈ V ∪ {S}\VL:

∀C ⊆ {(j, i) : (j, i) ∈ E},
∑

j:(j,i)∈C

nji ≤Wi − min
j:(j,i)∈C

Wj (1)

Wi ∈ {0, 1, ..., D − 1} ∀i ∈ V and WS = D

Problem ΠD is straightforward to interpret except for

constraint (1). The relation between one-hop interference and

delay is represented by (1). Under the one-hop interference

model, a parent node can only receive packets from one of

its children nodes during a particular slot. However, when a

child transmits to its parent, the other children (of the same

parent) can receive data from their children (by the definition

of the one-hop interference model). Constraint (1) says that

for any subset of the children nodes, the total number of

transmissions made by this subset of nodes is bounded above

by the difference between the waiting time of the parent and

the waiting time of the child that has the least waiting time

in the chosen subset.

For example, consider Figure 1 with node P receiving data

from its children C1, C2, and C3. This figure represents a

single hop in a large data aggregation tree. During a slot in

which C1 transmits to P , C2 and C3 can receive data from

their children. However, no two children of P can transmit to

P in the same slot. Let node P have a waiting time W , and C1,

C2 and C3 have waiting times W1, W2 and W3, respectively.

Let W1 < W2 < W3 < W . Then, the total number of

transmissions that can be made from all the children nodes to

the parent P is limited by the difference between W and W1

(since the first transmission can occur only after W1 and the

last transmission can occur only before W , by the definition

of waiting time). Also, the total number of transmissions that

can be made from C2 and C3 to P is limited by W −W2. So,

Equation (1) says that for any subset of the children nodes, the

total number of transmissions made by this subset of nodes is

bounded above by the difference between the waiting time of

the parent and the waiting time of the child that has the least

waiting time in the chosen subset.

P

C C C
1 2 3

W

W W W

1 2
3

Fig. 1. Parent P waits to receive packets from children C1, C2 and C3

V. STRUCTURAL PROPERTIES AND NP-HARDNESS

In this section, we study the properties of the optimal

solution of problem ΠD, and show that it is NP-Hard. These

properties will be used in formulating a sub-optimal problem

in the next section.

Theorem V.1. Consider any single hop in the data aggrega-

tion tree with parent node P having k children, C1, C2,...,

Ck. For problem ΠD, let an optimal waiting time of P be

W ∗
P and let W ∗

1 ,..., W ∗
k be optimal waiting times of the k

children, respectively. Let n∗1, n∗2,..., n∗k be an optimal solution

for the number of transmissions made by the k children,

respectively. WLOG, assume that W ∗
1 ≤ W ∗

2 ≤ ... ≤ W ∗
k .

For j ∈ {1, 2, ..., k}, define W ′
j recursively as follows.

W ′
1 = W ∗

1 (2)

W ′
j = max(W ∗

j ,W
′
j−1 + n∗j−1), if j ∈ {2, 3, ..., k}(3)



Then, for each j ∈ {1, 2, ..., k}, we have the following

properties:

1) W ′
j is also an optimal waiting time for node Cj .

2) W ′
j , W ′

j + 1, ..., W ′
j + n∗j − 1 are optimal transmission

slots for node Cj .

Proof: We show 1) and 2) by induction on j.

j = 1: By definition, W ′
1 = W ∗

1 , and hence W ′
1 is an

optimal waiting time for node C1. We prove 2) by contra-

diction. Suppose that W ′
1, W ′

1 + 1, ..., W ′
1 + n∗1 − 1 are

not optimal transmission slots for node C1. Since C1 cannot

transmit before W ′
1 because of the forwarding policy, and since

C1 needs to make n∗1 transmissions, C1 must transmit in at

least one time slot after W ′
1+n∗1−1. If there exists a time slot

in {W ′
1,W

′
1 + 1, ...,W ′

1 + n∗1 − 1} during which none of the

children of P transmit, then making C1 transmit during this

slot does not affect the optimality of the solution. Suppose that

there exists a time slot in {W ′
1,W

′
1+1, ...,W ′

1+n∗1−1} during

which a child of P other than C1 transmits. Once again, by

making C1 transmit during this slot, and scheduling the other

child to transmit in the time slot after W ′
1 + n∗1 − 1 (in which

C1 was originally transmitting), the optimality of the solution

is not affected. This can be reasoned as follows.

• The new schedule is feasible.

• The value of the objective function does not decrease

because of interchanging the schedules. This is because

the expected number of packets aggregated by C1 does

not change after time slot W ′
1, and the expected number

of packets aggregated by any other node in that hop

cannot decrease since it now has greater time to gather

data from its predecessors.

This contradicts our assumption that W ′
1, W ′

1+1, ..., W ′
1+

n∗1 − 1 are not optimal transmission slots for C1.

Assume that 1) and 2) are true for node Cm.

j = m + 1: If max(W ∗
m+1,W

′
m + n∗m) = W ∗

m+1, then

clearly W ′
m+1 is an optimal waiting time for node Cm+1.

Suppose that W ∗
m+1 < W ′

m + n∗m. By 1) and 2) for node

Cm, node Cm+1 cannot start transmitting before W ′
m + n∗m.

If node Cm+1 waits until slot W ′
m + n∗m(> W ∗

m+1), it can

potentially aggregate more packets, and still make n∗m+1

transmissions. Therefore, the value of the objective function

cannot decrease if Cm+1 waits until W ′
m + n∗m. Hence, 1)

follows for node Cm+1.

The proof of 2) is virtually identical to that for the case

j = 1.

Thus, by induction, 1) and 2) are true ∀j ∈ {1, 2, ..., k}.
Theorem V.1 shows that in order to find a collision-free

optimal schedule, it is enough to know the optimal waiting

time of each node, and the optimal number of time slots to

be allocated for transmission over each link. Specifically, it

shows that if the optimal waiting time of a node i is Wi, and

the optimal number of time slots it is allocated is ni, then

the optimal collision-free schedule of i is the set of time slots

{Wi,Wi + 1, ...,Wi + ni − 1}.
We now show that finding the optimal waiting times, and the

optimal number of time slots to be allocated involves solving

a single server Job Interval Selection Problem (JISP) which

is known to be MAX SNP-Hard. We do this by rewriting

problem πD in a recursive manner.

Let X[i,W ] represent the maximum aggregated information

received at node i if node i waits for a time W . For any leaf

node l, for any W ∈ {0, 1, ..., D − 1}, we have X[l,W ] =
wlλl. (Here, λl = 1, if l is a source, and zero, otherwise).

Recall that wl is the information provided by l. Consider any

hop with parent node P having k children, C1, C2,..., Ck.

Then, for any W , X[P,W ] can be calculated recursively as

X[P,W ] = wPλP + max
{WCi

,nCiP
}

k∑

i=1

X[Ci,WCi
]fCiP (nCiP ),

(4)

where {WCi
, nCiP } satisfy the constraints of problem πD.

Further, X[S,D] provides an optimal solution to πD.

The next step is to show that finding X[i,W ] for any non-

leaf node i (with k children) and for a given W is equivalent

to solving a Maximum Weighted Independent Set (MWIS)

problem. Recall that an independent set is a set of vertices

in a graph, no two of which have an edge between them. A

Maximum Weighted Independent Set is an independent set

such that the sum of the weights of the vertices is maximum.

For the following results, we assume that W ≥
k∑

j=1

βCji. Note

that by replacing W −
k∑

j=1

βCji by max(0,W −
k∑

j=1

βCji), the

following results will hold for any W ∈ {0, 1, 2, ..., D − 1}.

Lemma V.2. Let C1, C2, ..., Ck be the children of node i that

is not a leaf node. If W ∗ is the optimal waiting time of node

i, then one of the optimal set of time slots during which the

children transmit is given by {W ∗−
k∑

j=1

βCji,W
∗−

k∑

j=1

βCji+

1, ...,W ∗ − 1}.

Proof: From Theorem V.1, we know that transmitting in

consecutive slots is optimal. We now prove this lemma by

contradiction.

Suppose that the set of slots given above is not optimal.

This means that at least one of the children makes a

transmission before W ∗−
k∑

j=1

βCji. Since the maximum total

number of transmissions for all the nodes in the hop is given

by

k∑

j=1

βCji, no child node makes a transmission in at least

one of the slots in the set above. If the child node that had

transmitted before the slot W ∗ −
k∑

j=1

βCji had waited until

this free slot, it could have potentially gathered more packets,

and still made a successful transmission, thus increasing

X[i,W ]. This contradicts the assumption that the above set

of time slots is not optimal.

Theorem V.3. X[i,W ] is obtained by finding a Maximum



Weighted Independent Set (MWIS) in the interference graph,

G′, constructed as follows. For each Cj , j ∈ {1, 2, ..., k},
for each nCji, nCji ∈ {0, 1, 2, ..., βCji}, construct nodes

labeled (Cj ,W−
k∑

j=1

βCji, nCji), (Cj ,W−
k∑

j=1

βCji+1, nCji),

..., (Cj ,W − nCji, nCji), respectively. The first term in the

label represents the child, the second term represents the

waiting time of the child, and the third term represents

the number of transmissions made by the child. A node

labeled (Cj ,WCj
, nCji) in this graph is assigned a weight

X[Cj ,WCj
](fCji(nCji)). For any two nodes (Cy,Wy, ny)

and (Cz,Wz, nz) in G′, there exists an edge if and only if

(a) {Wy,Wy + 1, ...,Wy + ny − 1} ∩ {Wz,Wz + 1, ...,Wz +
nz − 1} 6= ∅, or (b) Cy = Cz .

Proof: From the construction of G′, two nodes will have

an edge either if they represent the same children, or the

time slots during which the corresponding two children are

scheduled are conflicting (since in the one-hop interference

model, two children cannot simultaneously transmit to the

same parent). Further from Lemma V.2, no child needs to

transmit before W−
k∑

j=1

βCji. This implies that an independent

set in G′ will have the following properties.

• Each child will be represented in the independent set at

most once.

• The transmission schedules of no two children in the

independent set conflict with each other.

X[i,W ] is thus obtained by finding a MWIS in G′.

Figure 2(a) illustrates a hop with two nodes, A and B,

having parent P . Assume that βAP = 2, and βBP = 1. Then,

for a waiting time W for P , the interference graph for these

two children is shown in Figure 2(b). Note that a node having

label A as the first term interferes with all other nodes having

A as their first term. The same holds for B. This means that in

an independent set only one of the nodes having the same first

term can be chosen, i.e., a child can have only one schedule.

Further, if the schedules of A and B conflict, then there are

edges between these conflicting schedules in the interference

graph. This can also be seen in Figure 2(b).

P

A B

W

(a) Parent P with two chil-
dren

(A,W−3,1) (A,W−2,1) (A,W−1,1) (A,W−3,2) (A,W−2,2)

(B,W−3,1) (B,W−1,1)(B,W−2,1)

(b) Interference graph

Fig. 2.

We now show that finding a MWIS in G′ is NP-Hard. We

briefly review the single server JISP [12], [13]. In this problem,

k jobs need to be served by a single server. Each job has r

instances, where each instance is associated with an explicit

time interval during which it must be scheduled, and a certain

profit for the instance. The server can serve only one instance

of any job during each time slot. The goal is to find a schedule

such that at most one instance of a job is present in the

schedule, the instances in the schedule do not conflict in time,

and the sum of the profits of the job instances is maximum.

Finding X[i,W ], i.e., an MWIS in G′, is a JISP. This is

because each job j in the JISP corresponds to the child Cj of

node i. The set of instances of the job j corresponds to the

set of nodes in G′ whose first term is Cj . The schedule for

each instance of the job is given by the second and third terms

of the corresponding node in G′ which represent the interval

starting from the waiting time, and with a length equal to the

number of time slots allocated to the child. The profit of each

instance is the weight of the corresponding node in G′.

Thus, finding a MWIS in G′ is identical to solving JISP,

and hence problem πD is MAX SNP-Hard. JISP is a well-

studied integer programming problem [13], [12], and there

exists 1
2 -approximation algorithms for special cases of JISP.

However, JISP is a relatively small part of our problem.

While finding X[i,W ] for each node i and for each W

is a JISP, we ultimately need X[S,D]. If we use existing

JISP approximation algorithms, they would result in a very

poor performance (since if there are h hops in the tree, the

approximation factor of the overall problem could be as poor

as 1
2h

). Therefore, we take these issues into account, and

develop a new solution.

VI. SUB-OPTIMAL FORMULATION AND SOLUTION

The structural properties of πD imply that in any hop the

next node starts transmitting only after the previous node has

finished transmitting. This is because the optimal schedule for

each child in that hop is an interval, and the schedules of

any two children cannot conflict, i.e., no two intervals can

intersect. Therefore, in each hop, there is an order in which

children are allocated time slots for transmission. The idea of

the sub-optimal formulation is that we assume that in any hop,

the order in which children transmit to their parent is known.

We denote this problem πsub
D . It turns out that once the order

of transmission in each hop is known, the resulting problem

can then be solved in polynomial time. Note that we still need

to determine the waiting times and the number of time slots

allocated to each node. For instance, consider two children C1

and C2. They have waiting times W1 and W2, respectively, and

are allocated n1 and n2 time slots, respectively. Suppose we

know that C1’s schedule is before C2’s schedule. Then, from

Theorem V.1, we know that W1+n1−1 < W2. We now need

to determine W1, n1, W2, and n2, with the additional con-

straint that the order in which children are scheduled is known.

We now provide some graph theoretic prelimiaries required

to solve πsub
D .

A. Preliminaries

1) Interval graph: Let {I1, I2, ..., In} be a set of intervals

on the real line. Then, the interval graph G(V,E) cor-



responding to this set of intervals is defined as follows.

• V = {I1, I2, ..., In}. Each vertex denotes an inter-

val.

• For any y, z ∈ {1, 2, .., , n}, (Iy, Iz) ∈ E if and

only if the intervals intersect, i.e., Iy ∩ Iz 6= ∅.

2) Interval graph of interval number m: The definition

is identical to that of the interval graph except that each

vertex can now be represented as a disjoint union of

m intervals. An interval graph of interval number 2 is

called a double interval graph.

3) Rectangle graphs: Rectangle graphs are a subclass of

double interval graphs. A double interval graph can be

transformed into a rectangle graph by simply labeling

the vertices in the double interval graph as the set-

product of the two intervals instead of the union of the

two intervals. Thus, each vertex now represents a rect-

angle in R
2. It is important to note that two rectangles

that do not intersect need not form an independent set

in the corresponding double interval graph. On the other

hand, every independent set in the double interval graph

is an independent set in the rectangle graph.

4) Maximum Weight Independent Set on interval graphs

(order 1) can be found in polynomial time. However,

MWIS on interval graphs of order m, m > 1, is still

NP-Hard [14].

5) Increasing Independent Set (IIS) on rectangle

graphs: An Increasing Independent Set (IIS) on a rect-

angle graph is an independent set that has the following

property. Let A = {r1, r2, ..., rm} be an ordered set

of rectangles ordered in the following fashion. For any

i, j ∈ {1, 2, ...,m} such that i < j,

• The maximum x-coordinate of any point in ri ≤ the

minimum x-coordinate of any point in rj .

• The maximum y-coordinate of any point in ri ≤
than the minimum y-coordinate of any point in rj .

Then, A is an IIS on the given rectangle graph. Note

that the rectangles in A are ordered such that the next

rectangle is to the right and to the top of the previous

rectangle in the order. Further, an increasing independent

set on a rectangle graph is an independent set on the

corresponding double interval graph.

1
5

2

4

3

(a) Rectangle Graphs

A B

W−1

W−3

W

(b) IIS

Fig. 3. Rectangle Graphs and Independent Sets

We now provide an example to illustrate the definitions

above. Consider Figure 3(a). Each rectangle in the figure

represents a vertex in a rectangle graph. There will be an

edge between two vertices only if the corresponding two

rectangles intersect. For instance, there is an edge between

rectangles 4 and 5. {1, 2, 3, 4} and {1, 2, 3, 5} are two maximal

independent sets of rectangles. While {1, 4} is an independent

set in the rectangle graph, it does not form an independent

set in the corresponding double interval graph because its

intervals on the y-axis intersect. Also, {1, 2, 3} is an example

of an Increasing Independent Set (IIS) in the rectangle graph

because rectangle 2 is to the right and to the top of rectangle

1, and rectangle 3 is to the right and to the top of rectangle 2.

Figure 3(b) shows an IIS for the example illustrated in

Figure 2. Assuming that A transmits before B, an IIS is given

by A transmitting from W − 3 to W − 1, and B transmitting

from W − 1 to W . Clearly, the rectangle for B is to the top

and to the right of the rectangle for A.

B. Solution

We show that when the order of schedules of children in any

hop of the tree is known, finding X[·, ·] is equivalent to finding

a Maximum Weighted Increasing Independent Set (MWIIS) on

a rectangle graph.

Theorem VI.1. Consider any hop with parent i having k

children C1, ..., Ck. WLOG, assume that the order in which

the children are scheduled is C1 → C2 → ... → Ck. Assign

an interval [ai, bi] to child Ci, i ∈ {1, 2, ..., k}, such that

W < a1 < b1 < a2 < b2 < ... < ak < bk, and replace

the first term in the label of each node in G′ by this interval.

Then, G′ (defined in Theorem V.3) is a double interval graph,

and X[i,W ] can be obtained by finding a Maximum Weighted

IIS in the rectangle graph corresponding to G′.

Proof: Assign an interval [ai, bi] to child Ci, i ∈
{1, 2, ..., k}, such that W < a1 < b1 < a2 < b2 < ... <

ak < bk. Replace Ci by [ai, bi] in the first term of the label

of each node in G′. Note that the second and the third terms

in the label of each node of G′ is an interval which specifies

the time slots during which the child transmits. Each node

in G′ can now be represented as the union of two disjoint

intervals, the first interval corresponding to the child, and the

second interval corresponding to the time slots during which it

transmits. Further, for any two nodes in G′ that represent the

same child, there exists an edge between the two nodes since

the first interval in both the node labels have a non-empty

intersection. Therefore, G′ is a double interval graph.

G′ can now be transformed into a rectangle graph as defined

before. Let the x-axis represent the children, and the y-axis

represent the schedules. Consider any two children, Cl and

Cm. Let l < m, and hence Cl transmits before Cm. In the

rectangle graph, a non-conflicting schedule for Cl and Cm

can be achieved if and only if the rectangle corresponding to

Cm’s schedule is to the top and to the right of the rectangle

corresponding to Cl’s schedule. It cannot be to the left because

am > bl. It cannot be to the bottom because that would

contradict the assumption that Cl transmits before Cm.

Thus, X[i,W ] can be obtained by finding a Maximum

Weighted IIS in this rectangle graph corresponding to G′.



In [15], an algorithm has been proposed to determine a

Maximum Weighted IIS in a rectangle graph for determining

similarities in DNA sequences. For n rectangles in the rect-

angle graph, the complexity of this algorithm is O(n log n).
G′ has O(k2) vertices. Therefore, the complexity of finding

X[i,W ] in Theorem VI.1 is O(k2 log k).
So far, we have only provided an algorithm for calculating

X[i,W ] for a particular node i, and a particular waiting

time W . We ultimately need a procedure to find X[S,D].
Algorithm 1 (Table I) can be used for this purpose.

TABLE I
ALGORITHM 1

1 Start from the leaves. For a leaf node l, for each W ∈ {0, 1, ..., D − 1},
X[l,W ] = λlwl.

2 For any non-leaf node i, for each W ∈ {0, 1, ..., D − 1}, calculate

X[i,W ] by finding an MWIIS in the rectangle graph corresponding to G′

(Theorem VI.1).

3 Finally, calculate X[S,D] at the sink. Use this to assign waiting times,

and time slots to the sink’s children.

4 Proceed from the sink’s children down to the leaves. In any hop, once the

waiting time of the parent P has been obtained (from its parent), the

parent can assign waiting times and time slots for its children by

looking up X[P, ·].
5 Finally, assign waiting times and time slots to the leaves.

Theorem VI.2. Algorithm 1 provides a collision-free sched-

ule, and is optimal for the problem πsub
D .

Proof: This result follows from the previous results in the

paper.

The computational complexity of Algorithm 1 for a tree

with a maximum of h hops where each hop has k children

on average can easily be calculated to be O(hDk2 log k),
where D is the deadline. One can thus see that the sub-

optimal version has a very low computational complexity.

The optimal solution for problem πD requires an additional

O(k!) complexity for optimally ordering the children, since

k children can be arranged only in k! ways. Hence, the

computational complexity of the optimal solution for πD is

given by O(hDk!k2 log k).
To summarize, we make the following observations.

• Problem πD is MAX SNP-Hard. However, in our prob-

lem, the exponential complexity (k!) is in the number of

children (k) in a hop.

• If k is small (which is typically the case), then with

O(hDk!k2 log k) complexity we can solve problem πD.

Otherwise, we can use the sub-optimal version that has

a complexity O(hDk2 log k).

C. Discussion

In certain tree structures, the order in which children are

scheduled does not affect the optimal solution of problem πD.

1) Single hop tree networks: Since all nodes apart from

the sink are leaf nodes, only the sink performs in-

network computation. Therefore, the order in which leaf

nodes are scheduled does not matter. Hence, the sub-

optimal solution is optimal in this case.

2) Symmetric trees: A symmetric tree is defined as one in

which nodes that are equal number of hops away from

the sink satisfy the following:

a) They have equal number of children.

b) Either all of them are source nodes or none of

them are source nodes, and they provide the same

amount of information.

c) Each incoming link has the same link reliability

function.

An example of a symmetric tree is given in Figure 4(a).

It is easy to see that the order of transmission of children

in any hop of a symmetric tree does not affect the

optimal solution to problem ΠD.

S

0.1 0.1

0.20.2
0.2

0.2

0.1

0.2 0.2

(a) Symmetric Tree

S

A B

0.1 0.2

0.25 1) 0.15
2) 0.9

Link 2
Link 1

0.1

0.2

0.15

0.05

(b) General Tree

Fig. 4.

Since the only difference between the sub-optimal and the

optimal problem is in determining the order in which nodes

transmit in a hop, one can use intelligent heuristics to come up

with a particular policy for scheduling. However, in general,

choosing the optimal order of transmission in any hop depends

on a number of factors such as the number of source nodes in

the sub-tree, the entire structure of the sub-tree, and the link

errors in the sub-tree.

VII. NUMERICAL RESULTS

In this section, we numerically investigate the performance

of the sub-optimal solution with the optimal solution for gen-

eral trees. For the purpose of ordering nodes in the sub-optimal

solution, we order nodes (having the same parent) to transmit

such that a node with a greater number of source nodes in its

sub-tree transmits later than a node with a lesser number of

source nodes in its sub-tree. We call this heuristic H . We use

retransmissions as the error-recovery scheme for these simula-

tions. The link reliability of a link (i, j) is given by fij(nij) =
(1−p

nij

ij ), where pij is the probability of error over link (i, j).
We consider the tree in Figure 4(b) with link error

probabilities as shown and source nodes represented by

filled circles. We consider two trees with the same structure

but with one of the links (Link 2 in Figure 4(b)) having a

different probability of error (shown in a box in Figure 4(b)).

The deadline is varied from 5 to 75. For each link (i, j), we

select βij such that the probability that a packet gets lost in

all the βij transmissions is less than 0.01.



10 20 30 40 50 60 70
2

3

4

5

6

Deadline

A
g
g
re

g
a
te

d
 I

n
fo

rm
a
ti
o
n

Optimum

Heuristic

JISP−approximation

(a) Link 2 with 0.15 error probability

5 10 15 20 25 30 35

4.6

4.8

5

5.2

5.4

Deadline

A
g
g
re

g
a
te

d
 I

n
fo

rm
a
ti
o
n

Optimum

Heuristic

(b) Link 2 with 0.9 error probability

0 0.2 0.4 0.6 0.8 1
0

0.02

0.04

0.06

Probability of Error

D
if
fe

re
n
c
e
 i
n

A
g
g
re

g
a
te

d
 I

n
fo

rm
a
ti
o
n

Link 1

Link 2

(c) Difference in aggregated information

Fig. 5. Numerical evaluations

We first set the probability of error of Link 2 to be 0.15.

From Figure 5(a), we can see that heuristic H is optimal for

this tree with the given link error probabilities. Note that the

JISP approximation algorithm in [13] performs very poorly

relative to our algorithms. This is because JISP is only a part of

our problem, and these algorithms cannot be directly applied

to our problem since we have a multi-hop network.

We now change the probability of error of Link 2 to 0.9.

Now from Figure 5(b), we observe that heuristic H is actually

not optimal for certain deadlines. This is because for these

deadlines the optimal solution is for B to transmit before A.

However, when the deadline is small or large, the sub-optimal

solution is optimal. This can be reasoned as follows. When

the deadline is small (less than 10 time slots), the amount of

aggregated information that is obtained from node B is not

much since B accounts for only two nodes. Since A accounts

for four nodes, it is optimal for A to wait longer than B

to gather packets from its predecessors, and transmit after B

finishes transmitting. However, when the deadline is slightly

larger, A would have gathered packets by a certain time slot,

which occurs much before the deadline. However, since the

link from B’s child has a high probability of error, B might not

have gathered its child’s packet. Therefore, if A was scheduled

before B, B could have waited longer to give more time to

its child to transmit its packet. Therefore, the optimal order

of transmission here is to transmit B after A. Finally, when

the deadline is very large, the order of scheduling of A and B

no longer matters because each have sufficient time to gather

packets from their predecessors. Note that we do not show

the JISP algorithm in Figure 5(b) since the JISP provides an

aggregated information < 2, and the difference between the

sub-optimal and the optimal solution is very small that the dif-

ference cannot be observed if the JISP algorithm is included.

Furthermore, we observe that even if some links are bad,

the heuristic can still be close to optimal. For this experiment,

we vary the error probability of Link 1 from 0.05 to 0.95

while keeping that of Link 2 fixed, and vice versa. We fix the

deadline to be 15 time slots. From Figure 5(c), it is clear that

irrespective of the error probability of Link 1, the sub-optimal

solution is still optimal. However, for Link 2, as the error

probability increases above 0.35, the sub-optimal solution

begins to deviate from the optimal solution. Therefore, high

error probabilities do not necessarily change the optimal

order of transmission.

VIII. CONCLUSION

In this paper, we have studied the problem of maximizing

aggregated information in tree networks with unreliable links

in the presence of deadline constraints. We formulated an

integer programming problem that explicitly accounted for

interference, link errors, and deadlines. We showed that the in-

teger programming problem was MAX SNP-Hard, and looked

at a sub-optimal version. We provided a low complexity,

distributed optimal solution to the sub-optimal version, and

analyzed tree structures for which the sub-optimal solution

was actually optimal. Further, we studied the performance of

our algorithm for arbitrary tree structures through simulations,

and understood when it performs optimally and when it does

not. Future work involves extensions to general interference

constraints, and also to explicitly consider energy constraints.

REFERENCES

[1] W. Heinzelman, A. Chandrakasan, and H. Balakrishnan, “Energy-
efficient Communication Protocols for Wireless Microsensor Networks,”
in International Conference on System Sciences, 2000.

[2] Y. Wu, S. Fahmy, and N. B. Shroff, “On the construction of a maximum-
lifetime data gathering tree in sensor networks: Np-completeness and
approximation algorithm,” in IEEE INFOCOM, 2008.

[3] A. Goel and D. Estrin, “Simultaneous optimization for concave costs:
Single sink aggregation or single source buy-at-bulk,” in SODA, 2003.

[4] H. L. V. Trees, Detection, Estimation, and Modulation Theory: Part I.
John Wiley & Sons, 1968.

[5] L. Gargano and A. A. Rescigno, “Optimally fast data gathering in sensor
networks,” Lecture Notes in Computer Science, vol. 4162, 2006.

[6] C. Florens, M. Franceschetti, and R. McEliece, “Lower bounds on data
collection time in sensory networks,” IEEE JSAC, vol. 22, no. 6, 2004.

[7] B. Krishnamachari, D. Estrin, and S. B. Wicker, “The impact of data
aggregation in wireless sensor networks,” in ICDCSW ’02, 2002.

[8] A. Boulis, S. Ganeriwal, and M. B. Srivastava, “Aggregation in sensor
networks: An energy-accuracy trade-off,” in 1st IEEE Int’l. Wksp. on

Sensor Network Protocols and Applications, 2003.
[9] Y. Yu, B. Krishnamachari, and V. K. Prasanna, “Energy-latency tradeoffs

for data gathering in wireless sensor networks,” in IEEE INFOCOM,
2004.

[10] Z. Ye, A. Abouzeid, and J. Ai, “Optimal policies for distributed data
aggregation in wireless sensor networks,” in IEEE INFOCOM, 2007.

[11] S. Hariharan and N. B. Shroff, “Maximizing aggregated revenue in
sensor networks under deadline constraints,” IEEE CDC, 2009.

[12] J. Chuzhoy, R. Ostrovsky, and Y. Rabani, “Approximation algorithms
for the job interval selection problem and other related problems,”
Mathematics of Operations Research, vol. 31, 2006.

[13] F. C. R. Spieksma, “On the approximability of an interval scheduling
problem,” Journal of Scheduling, vol. 2, no. 5, 1999.

[14] R. Bar-Yehuda and M. M. Halldórsson, “Scheduling split intervals,”
SIAM J. Comput., 2006.

[15] D. Joseph, J. Meidanis, and P. Tiwari, “Determining dna sequence sim-
ilarity using maximum independent set algorithms for interval graphs,”
Lecture Notes in Computer Science, 1992.


