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Abstract—Link adaptation technologies, such as Adaptive
Modulation and Coding (AMC) and Multiple Input Multiple
Output (MIMO), are used in advanced wireless communication
systems to achieve high spectrum efficiency. Communication
performance can be improved significantly by adaptive trans-
missions based on the quality of received signals, i.e., the signal-
to-interference-plus-noise ratio (SINR). However, for multi-hop
wireless communications, most link scheduling schemes have
been developed under simplified interference models that do not
account for accumulative interference, and cannot fully exploit
the recent advances in PHY-layer communication theory. This
paper focuses on developing link scheduling schemes that can
achieve optimal performance under the SINR model. One key
idea is to treat an adaptive wireless link as multiple parallel
virtual links with different signal quality, building on which
we develop throughput-optimal scheduling schemes using a two-
stage queueing structure in conjunction with recently developed
carrier-sensing techniques. Furthermore, we introduce a novel
three-way handshake to ensure, in a distributed manner, that all
transmitting links satisfy their SINR requirements. We evaluate
the proposed schemes through rigorous analysis and simulations.

Index Terms—Multi-hop wireless networks, link scheduling,
CSMA, SINR model.

I. INTRODUCTION

MULTI-HOP wireless networks have recently attracted
significant attention due to their potential to achieve

substantial gains over their single hop counterparts [1], [2].
Over the past few years, a cross-layer optimization-based
framework has emerged that can be used to maximize the
network utility (see [3] and the references therein). The so-
lution to such utility maximization problems involves solving
congestion control, link scheduling, and routing components.
The link scheduler determines which link has to be active at
what time and at what power level. The congestion control
adjusts the amount of data injected into the network based on
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congestion information, which can be obtained by feedback
from the receiver. The routing determines which path(s) should
be taken by packets on a given flow (or source-destination
pair). It has been shown that the queue length information
plays an important role in the interactions between these
components. Moreover, under this cross-layer optimization
based framework, the scheduling component often turns out
to have the highest complexity, and has thus been the focus
of attention.
In their seminal work [4], Tassiulas and Ephremides studied

joint routing and link scheduling for packet radio networks, as-
suming no a priori information of input traffic, and developed
a throughput-optimal solution, so called the back-pressure
algorithm. The back-pressure idea has since been applied to
various fields such as input-queued switch [5] and cellular
data networks [6]. Also, it has been reformulated as a dy-
namic power control scheme under time-varying channels [7],
and shown to maximize the network utility as a scheduling
component [3], [8].
Back-pressure, although throughput-optimal, is a central-

ized algorithm with high computational complexity, and can
be shown to be an NP-hard problem for most interference
models [9], [10]. In general, centralized schemes would not
work well for multi-node wireless networks due to high
complexity for exchanging control messages, and the lack of
scalability. Thus, researchers have expended significant effort
in developing distributed counterpart of high-performance
centralized back-pressure schemes, e.g., [11]–[17]. To this
end, many studies employ simple combinatorial models for
wireless interference, where the interference relationship be-
tween wireless links is binary. Notably, the k-hop interference
model, under which two links cannot transmit simultaneously
if their distance is within k hops [9], has been extensively
studied. The so-called maximal scheduling1 scheme has been
shown to attain a certain fraction of the optimal throughput
for certain combinatorial channels [12], [15], and several
provably efficient distributed random access schemes have
been developed in [13], [14].
Recently, it has been shown that throughput optimality can

be achieved using traditional Carrier Sense Multiple Access
with Collision Avoidance (CSMA/CA) protocols in a new way.
In [18], it had been shown that the stationary distribution of
link activations can be derived in a product form. This result
has been recently exploited in [19] to develop fully distributed
scheduling schemes to achieve throughput optimality under

1Also referred to as maximal matching
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combinatorial channel models. The main idea has been gener-
alized to more practical scenarios in a time-slotted system [20],
and to utility maximization for multi-channel systems [21].
The combinatorial channel models greatly simplify the inter-

ference relationship and make the problem relatively tractable.
However, they do not fully capture some fundamental features
of wireless channels. Indeed, the link rate is usually a function
of the received SINR that hinges heavily on the accumu-
lative interference from all other transmitters. Under simple
combinatorial models, this global property of interference is
ignored and, thus, a transmitting link considered feasible under
those channel models may experience strong interference in
practice, and fail to deliver data. It has been shown that
scheduling schemes that guarantee a certain fraction of the
optimal throughput under the k-hop interference model may
attain zero-throughput in the worst case under the SINR-based
model [22].
In developing CSMA scheduling under the SINR interfer-

ence model, one main difficulty is to ensure the feasibility of a
schedule in a distributed manner while maintaining the desired
product-form stationary distribution of schedules, whereas this
can be easily done under the combinatorial interference mod-
els [19]–[21]. To this end, the authors in [23] have developed
a conservative combinatorial model that conforms the SINR
requirements, which results in performance degradation while
requiring for each link to have a priori knowledge of the set
of links that it can coexist with. In this work, we develop
algorithms that provide feasibility test of a schedule under the
SINR interference model, which is the key component of the
CSMA scheduling to achieve throughput optimality without
any priori knowledge on the network topology.
There are also a few works that have been developed non-

CSMA scheduling under the SINR channel model. In [24],
the greedy maximal scheduling has been modified to operate
under SINR channels at the cost of performance degradation.
It has been shown that the modified greedy scheme achieves
non-diminishing performance. Power control for utility max-
imization in saturated networks has been developed in [25],
which, however, does not take into account traffic dynamics
and has substantial overhead of control message exchanges
since each link requires global channel information.
In this paper, we develop resource allocation schemes

in multi-node2 wireless networks that not only achieve the
optimal throughput under SINR channel models, but are also
amenable to distributed implementation. The main contribu-
tions of our paper are summarized as follows.

• We model a single physical link as multiple virtual links
with different SINR requirements, and are able to for-
mulate the resource allocation as a standard optimization
problem. By introducing a two-stage queueing structure,
we successfully decompose the overall problem into two
subproblems.

• By studying the duality problem, we develop resource
allocation schemes that consist of two components: traffic

2Here, by multi-node wireless systems, we mean wireless systems, where
multiple nodes can transmit to multiple destination in a single or multi-hop
fashion.

Fig. 1. Transmission rate of link l vs. SINR.

splitter and link scheduler. We provide an optimal traffic
splitter, and characterize the property of an optimal link
scheduler.

• We develop practical solutions by using CSMA tech-
niques that are amenable to distributed implementation.
We introduce a novel three-way handshake to satisfy the
SINR requirements of each active link in a distributed
manner.

• Finally, we show through rigorous analysis that the pro-
posed schemes follows the same Markov chain evolution
as the optimal solution, and provide simulations to sup-
port our evaluations.

The rest of this paper is organized as follows. In Section II,
we describe the system and channel models. In Section III,
we develop a fully distributed throughput optimal resource
allocation scheme using channel sensing. We evaluate our
proposed scheme through simulations and make some inter-
esting observations in Section IV. We conclude our paper in
Section V.

II. MODEL DESCRIPTION

A. System model
We model a wireless network by a graph G = (N,L),

where N is the set of nodes and L is the set of directed links.
We assume the reciprocity of wireless channels for any pair
of nodes a and b, i.e., if node a is connected to node b by a
link, there always exists a link in the opposite direction from
node b to node a. A session is a stream of data in the network
from a source node to a destination node. We assume that all
sessions traverse one hop only, and there is at most one session
per link. This one-hop model is only for ease of exposition and
can be extended to multi-hop sessions following the approach
in [19].
The system operates in a time-slotted and synchronized

fashion. At the beginning of time slot t, data bits are injected
into link l at its source, and wait in the queue until they
are served in a first-come first-served manner. When the link
is activated, backlogged bits are transmitted and leave the
network (since they have reached the destination). The amount
of served bits is determined by the transmission rate of link
l, depending on the SINR. Let Al(t) denote the amount of
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data bits injected into link l in time slot t. We assume that the
arrival process {Al(t)}∞t=0 is stationary and i.i.d. across time
and, further, the first and second moments of Al(t) are finite.
The average arrival rate of data bits at link l is denoted by
λl := limT→∞

1
T

∑T−1
τ=0 Al(τ).

B. Channel model
Let Pl denote the transmission power of (the transmitting

node of) link l. We assume that the transmission power is
fixed. Let Glm represent the channel gain from the transmitter
of link l to the receiving node of link m, and let Gll denote
the channel gain of link l itself. When the transmitter of
link l sends a signal, the corresponding receiver attains signal
strength of PlGll, and the receiver of another link m(!= l)
experiences interference of PlGlm.
Let γl denote the received SINR at link l. We assume

that each link can support V different transmission rates
based on the value of γl. To elaborate, we group the domain
of γl into V + 1 fixed intervals using positive constants,
Γ1 < Γ2 < · · · < ΓV +1(= ∞). At the v-th interval for
each v ∈ {1, 2, . . . , V }, i.e., when γl ∈ [Γv,Γv+1), link l can
achieve transmission rate of clv(> 0). When γl ∈ [0,Γ1), the
transmission rate is 0. If link l transmits data with higher rate
transmission mode than clv , then the probability the receiver
can decode the data correctly decreases to an unacceptably
low level. The v-th transmission mode with rate clv may
correspond to a different AMC scheme and/or a different
MIMO antenna configuration [23]. Fig. 1 depicts an example
of the rate curve of a link, which is an (unequal) staircase
function due to the quantization of the SINR level. Note that in
our definition, the transmission rate monotonically increases,
but does not strictly increase with the SINR level, as shown
for v = 2 and 3 in the figure. This piecewise constant rate
model is more realistic than continuous rate models such as
the Shannon capacity formula, since practical communication
systems support only a finite number of transmission modes.
Moreover, by increasing the number of modes V , our model
can closely approximate the Shannon capacity formula. We
assume heterogeneous link rate curves, i.e., each link has its
own curve.
We represent each v-th transmission mode of (physical) link

l by a virtual link [l, v], as first introduced in [23]. Virtual link
[l, v] is said to be active when link l transmits data using the v-
th mode. Let xlv ∈ {0, 1} represent the activity of virtual link
[l, v], i.e., xlv = 1 if virtual link [l, v] is active, and xlv = 0
otherwise. We call x := (xlv) as the virtual link activation
vector. For a given x, the received SINR of virtual link [l, v]
can be calculated as

γlv(x) =
xlvPlGll

∑

m,w xmwPmGml − xlvPlGll + ηl
, (1)

where ηl is the background noise power at the receiver of
link l. Note that for a single link, only one virtual link can be
activated at any given time, and the SINR of active virtual link
[l, v] is equivalent to the SINR of physical link l at that time.
Hence, if virtual link [l, v] is active and satisfies the SINR
requirement γlv ≥ Γv, the transmission rate of the virtual link
is clv , and otherwise, 0. We denote the average transmission

lλ

lVµ

lVr

1lµ

2lµ
2lr

1lr

Fig. 2. Queueing structure of link l. The solid arrow indicates an example
processing path of data bits.

rate of virtual link [l, v] by rlv := limT→∞
1
T

∑T−1
t=0 clvxlv(t),

where xlv(t) represents the activity of [l, v] at time slot t.

C. Queueing structure
Based on the fact that a physical link accommodates mul-

tiple virtual links, we develop a two-stage queueing structure
as shown in Fig. 2. A similar queueing structure has been
used for scheduling with multi-channel wireless links [26]. All
incoming bits are put into the first-stage session queue, and
then distributed to V virtual link queues at the second stage,
each of which is associated with a virtual link. Data bits arrive
at the session queue at rate λl (bits/slot), and move from the
session queue to the v-th virtual link queue at service rate µlv .
Since the data movement between queues are internal, it does
not rely on the SINR of the channel. The data bits in the v-th
virtual link queue will be transmitted to the next node at rate
clv when the associated virtual link is active.
This two-stage queueing structure may result in some un-

desirable effect: a packet should wait until a virtual queue
is consumed, and it may experience long delay if the virtual
queue that it moves to remains inactive for a long period.
We can address the problem by implementing the queueing
structure with a single FIFO queue and (1 + V ) counter
variables at each link. Each counter variable maintains the
queue length of the session queue and the virtual queues.
When a packet arrives at a link, the packet is physically
enqueued into the FIFO queue and the counter variable for
the session queue increases. Whenever a packet needs to move
from the session queue to a virtual link queue, the counter
variable is decreased accordingly for the session queue and
the counter corresponding to the virtual link queue is increased
by the same amount. Note that the physical packet does not
move and still wait for service in the FIFO queue during
this process. When a virtual link is scheduled to transmit,
we transmit the head-of-line packet in the FIFO queue and
decrease the counter for the virtual link queue.

D. Capacity region
We begin with specifying the feasible virtual link activation

vectors. For a virtual link activation vector x, the associated
link activation vector is defined as x̂ := (x̂l), where x̂l :=
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∑

v xlv , and link l is active if
∑

v xlv = 1, and inactive if
∑

v xlv = 0. The received SINR of link l can be calculated as

γl(x̂) =
x̂lPlGll

∑

m x̂mPmGml − x̂lPlGll + ηl
. (2)

Based on the reciprocity of wireless channel, if link l connects
node a to node b, there always exists a reverse link in the
opposite direction from node b to a. For x̂, we denote its
reverse link activation vector as rev(x̂) := (revl(x̂)), where
revl(x̂) = 1 if and only if link l is the reverse link of any
active link in x̂, and 0 otherwise.
Definition 1: A virtual link activation vector x is feasible if

1)
∑

v xlv ≤ 1 for all links l,
2) γlv(x) ≥ Γv for all active virtual links [l, v] of x, and
3) γl(rev(x̂)) ≥ Γctrl for all active links l in rev(x̂),
where x̂ is the link activation vector associated with
x, and Γctrl is the minimum SINR requirement for the
reverse links.

The first condition implies that at most one virtual link
can be activated in a physical link. The second condition
requires that all the active links have a large enough SINR to
support the transmission mode used. The third condition means
that the reverse links should satisfy the minimum requirement
on SINR, and is needed to guarantee that each receiver can
feedback control packets to the transmitter through the reverse
link. Owing to the tiny size of control packets, small value of
Γctrl would be sufficient under the protection of strong channel
coding schemes. Without loss of generality, we assume that
Γctrl ≤ Γ1. The second and third conditions imply that
under any ‘feasible’ activation vector, control packets can be
successfully delivered through both the forward and reverse
links.
Let F denote the collection of all the feasible virtual link

activation vectors in a network. We consider a link scheduling
policy that chooses a virtual link activation vector x among
F and activates the virtual links [l, v] with xlv = 1, satisfying
the SINR requirements of links. Since the active virtual link
[l, v] has the transmission rate of clv , we denote the virtual link
transmission rate vector for x by c ·x, where c := (clv), using
the component-wise multiply, i.e., c · x = (clvxlv). Then, any
achievable vector of average virtual link transmission rates
r := (rlv) can be obtained by time-interleaving of feasible
virtual link activations, i.e., by a certain combination of c ·
x over F . Now we define the capacity region Λ as the set
of arrival rate vectors λ := (λl) that is no greater than an
achievable transmission rate vector component-wise, i.e.,

Λ := {λ | λl ≤
∑

v

rlv ∀l, for some r ∈ Co(c · x), x ∈ F},

(3)
where Co(·) represents the convex hull. Clearly, if an arrival
rate vector is not in the set Λ, it cannot be accommodated in the
network with any scheduling policy. If a link scheduling policy
supports any traffic that is strictly within the capacity region,
the scheduler is said to be throughput optimal. In this work,
we are interested in developing throughput-optimal scheduling
schemes that are amenable to distributed implementation.

III. LINK SCHEDULING UNDER SINR MODEL

We first formulate the problem formally and provide a
throughput-optimal solution using the standard optimization
techniques. For practical implementation, we develop a dis-
tributed resource allocation scheme with the two-stage queue-
ing structure and a novel three-way handshake, and show that
the proposed distributed link scheduling scheme still achieves
the optimal throughput.

A. Problem formulation
Recall that λl is the arrival rate of data bits at link l, µlv

is the internal service rate from its session queue to the v-th
virtual link queue, and rlv is the average service rate of the
v-th virtual link queue. At each time slot, the link scheduler
chooses a feasible virtual link activation vector and serves the
chosen virtual links.
For feasible virtual link activation vectors in F , denote

the i-th feasible vector by x(i) := (x(i)
lv ). Suppose that

a scheduling policy chooses feasible virtual link activation
vectors following a stationary distribution, and let αi denote
the selection probability of the i-th feasible vector. It has been
shown in [19] that the scheduling policy achieves the optimal
throughput performance if {αi} is the solution to the following
optimization problem P:

P: maximize
α≥0, µ≥0

−
∑

i

αi logαi

subject to λl ≤
∑

v

µlv, ∀l,

µlv ≤ rlv , ∀l, v,
∑

i

αi = 1,

(4)

where α := (αi) and µ := (µlv), and 0 is a zero vector.
The first and second constraints are the stability conditions for
session queues and for virtual link queues, respectively. The
average service rate rlv is a linear function of α and can be
written as clv

∑

i αix
(i)
lv . The last constraint along with α ≥ 0

comes from the fact that α is a probability distribution. The
objective of the problem is to maximize the entropy of α.
Problem P has a unique optimizer as long as it is feasible

because the objective function is strictly convex and the
constraint set is convex. Suppose that an arrival rate vector
λ is within the capacity region. According to (3), we can find
non-negative numbers (α̃i) such that λl ≤

∑

v

(
∑

i α̃iclvx
(i)
lv

)

and
∑

i α̃i = 1. Let µ̃lv :=
∑

i α̃iclvx
(i)
lv . It is easy to see that

(α̃i) and (µ̃lv) satisfy all the constraints of problem P and the
constraint set is not empty. Hence, for any λ ∈ Λ, problem P
is solvable since it is a convex optimization problem.

B. Throughput-optimal scheduling
We next solve the dual problem of P rather than solving

the more challenging primal problem directly. Let q := (ql)
denote the vector of Lagrange multipliers associated with the
first constraint, and qv := (qlv) represent the vector of La-
grange multipliers associated with the second constraint. From
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the standard optimization techniques, a partial Lagrangian can
be defined as
L(α,µ;q,qv)

= −
∑

i

αi logαi +
∑

l,v

qlvrlv +
∑

l,v

µlv(ql − qlv)−
∑

l

qlλl,

(5)

and the dual problem D of problem P can be formulated as
D: minimize sup

α≥0,µ≥0,
∑

i
αi=1

L(α,µ;q,qv)

subject to q ≥ 0,qv ≥ 0.
(6)

Given q and qv, the objective function of problem D can be
decoupled into the following two subproblems, since the last
term

∑

l qlλl is a constant.

SubD1: maximize
µ≥0

∑

l,v

µlv(ql − qlv), (7)

SubD2: maximize
α≥0,

∑
i
αi=1

−
∑

i

αi logαi +
∑

l,v

qlvrlv. (8)

In SubD1, we introduce an additional constraint on the
average internal service rates µlv , i.e.,

∑

v µlv ≤ C, where
C is a constant no smaller than V ·maxl,v clv. Note that from
the second constraint of P, any solution will satisfy that

∑

v

µlv ≤
∑

v

rlv ≤ V ·max
l,v

rlv ≤ V ·max
l,v

clv ≤ C, (9)

indicating that the new constraint does not affect the solution
space. We can now rewrite SubD1 as

maximize
µ≥0,

∑
v
µlv≤C

∑

l

∑

v

µlv(ql − qlv). (10)

The solution to this subproblem can be obtained as follows.
First, each link l finds the virtual link v∗ such that

v∗ = argmax
v

(ql − qlv), (11)

and sets each internal transmission rate µlv as

µlv =

{

C, if v = v∗ and ql > qlv∗ ,
0, otherwise. (12)

It is noteworthy that problem SubD1 can be solved in a
distributed manner by each link with only local information.
In SubD2, the optimal solution will maximize the entropy

of the probability distribution α for the feasible virtual link ac-
tivation vectors, plus the queue weighted rate sum

∑

l,v qlvrlv .
We consider a stationary link scheduling policy that chooses
the i-th member x(i) of feasible set F with probability

πi(qv) =
1

Z
exp

(

∑

l,v

clvqlvx
(i)
lv

)

, (13)

where Z is a normalization constant such that
∑

i πi(qv) =
1. It has been shown in [19] that a scheduling policy that
achieves the stationary distribution (13) is an optimal solution
to SubD2.
Therefore, at each time slot t, we can use (12) and (13)

to optimally solve SubD1 and SubD2 given q(t) and qv(t),
and maximize the value of the objective function of problem

Algorithm 1 Traffic splitter of link l at time slot t.
1: Find v∗ = argmaxv(Ql(t)−Qlv(t)).
2: if Ql(t)−Qlv∗(t) > 0 then
3: /* Move min(C,Ql(t)) bits from Ql(t) to Qlv∗(t) */
4: Ql(t+ 1) = [Ql(t)− C]+;
5: Qlv∗(t+ 1) = Qlv∗(t) + min(C,Ql(t)).
6: end if

D. Subgradient algorithm for a convex optimization problem
asserts that we can attain the optimal solution of problem D
by adjusting q(t) and qv(t) as follows: For small enough κ,
each Lagrange multiplier is adjusted as

ql(t+ 1) =
[

ql(t) + κ
(

λl −
∑

v

µlv

)

]

+
, (14)

qlv(t+ 1) =
[

qlv(t) + κ
(

µlv − rlv
)

]

+
, (15)

where [x]+ := max(x, 0).
Finally, we confirm that the strong duality holds for prob-

lems P and D, when the arrival rate vector λ is strictly within
the capacity region Λ. From (3), there are non-negative (α̃i)
such that λl =

∑

v

(
∑

i α̃iclvx
(i)
lv

)

and
∑

i α̃i < 1. Let h be
a constant between 1 and (

∑

i α̃i)−1. We set αi = α̃i/
∑

i α̃i,
and µlv = h

∑

i α̃iclvx
(i)
lv . Clearly, these α and µ satisfy all

the inequality constraints of P with strict inequality as well as
the equality constraint. Hence the Slater’s condition holds, and
the strong duality ensures that the optimal value of problem
P equals to the optimal value of problem D.

C. Distributed link scheduling
Based on the studies above, we next devise practical

distributed algorithms that solve the problems SubD1 and
SubD2 in a dynamic setting. The solution is divided into two
parts: Traffic splitter associated with SubD1 distributes the
data bits from the session queue to virtual link queues, and
link scheduler associated with SubD2 achieves the stationary
distribution (13) for the virtual link activation vectors.
Traffic splitter can be performed at each link in a distributed

fashion with only local information; Ql(t) and Qlv(t), where
Ql(t) denotes the length of session queue at link l and Qlv(t)
denotes the length of the v-th virtual link queue at link l
at time slot t. At each time slot t, the internal service rate
µlv(t) is set to either 0 or constant C of equation (12),
which is larger than V ·maxl,v clv. The detailed algorithm is
outlined in Algorithm 1. Basically, the algorithm implements
(12). First, each physical link finds the virtual queue with the
smallest queue length. Then, if the session queue has a larger
queue length than this smallest virtual link queue, it transfers
backlogged data bits to the virtual link queue by at most C
bits. Otherwise, it does not transfer data during t.
To describe our distributed link scheduler, we begin with

the time slot structure for scheduling in our time-slotted
system. We divide a single slot into a control subslot and a
data subslot, as shown in Fig. 3. During the control subslot,
which is further divided into RTS, CTS, and REJECT parts,
nodes exchange control packets with each other to determine
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Fig. 3. Time slot structure.

the set of active virtual links distributedly. Then during the
data subslot, a sender can transmit data to the corresponding
receiver using the activated virtual link. We assume the control
subslot is substantially small compared to the data subslot and
thus throughput loss due to the control subslot is negligible.
We also ignore the processing time and the overhead from the
packetization of data bits.
A key step is to choose a feasible virtual link activation

vector x(t) in a distributed manner such that its distribution
follows (13). To this end, we combine two virtual link activa-
tion vectors, i.e., the virtual link activation vector x(t − 1)
at the previous slot t − 1 and a randomly chosen vector
at the beginning of time t, to determine a feasible virtual
link activation vector at time slot t. A challenge here is to
ensure that the resultant virtual link activation vector is feasible
under the SINR interference model. We solve the problem
by three-way handshake of control packets: Ready-To-Send
(RTS), Clear-To-Send (CTS), and REJECT.
The overall procedure for distributed link scheduling can be

described as follows. At the beginning of time slot t, each link
decides if it changes its activity or not with some probability.
Once a link wants to change its activity state, it randomly
chooses a virtual link. The set of the selected virtual links in
the network is called as the decision vector. Then the active
virtual links in x(t − 1)3 and a subset of virtual links in the
decision vector participate in feasibility tests by exchanging
control packets. As depicted in Fig. 3, the transmitter of each
participating virtual link first sends an RTS in the control
subslot. The RTS (and also CTS) packet contains link id l and
virtual link id v to be activated. The receiver of the RTS returns
an CTS in the CTS part, only if the received SINR is large
enough to support the designated virtual link. The CTS packet
is also used to test if the SINR of the reverse link is acceptable.
If any active virtual link in x(t− 1) fails to meet the required
SINR, it broadcasts a REJECT signal in the REJECT part and
invalidates the new link activity state. If no REJECT signal
is broadcasted, we obtain new schedule x(t) from the virtual
links participated in the feasibility tests, and otherwise, the
schedule remains unchanged, i.e., x(t) = x(t− 1). Once x(t)
is determined, during the following data subslot, the virtual
links in x(t) transmit data packets.
Detailed descriptions for the selection of the decision vector

and the feasibility tests using the three-way handshake are
as follows. (Also refer to Algorithms 2 and 3, where Tx(l)
and Rx(l) denote the transmitter and the receiver of link l,
respectively.) At the beginning of the control subslot, each
3We say that virtual link [l, v] is in the vector, e.g., x if the associated

indicator function xlv is 1.

link decides whether it changes the activity in a probabilistic
way. This probability ptrial(> 0), called the trial probability,
can be different for each link. A link l, if it is to change
the activity, chooses a virtual link at random. The selection
probability need not be uniform for all the virtual links in
the link. However, each virtual link should have a non-zero
probability, and the probability should be fixed across time
slots. We denote the decision vector by m(t) := (mlv(t)),
where mlv(t) ∈ {0, 1} specify the selected virtual links, i.e.,
mlv(t) = 1 if virtual link [l, v] is chosen, and mlv(t) = 0 oth-
erwise. The virtual links in the decision vector can potentially
change its activity from ‘active’ to ‘inactive’ or vice versa. If
no virtual link of link l was active at time t − 1, virtual link
[l, v] in the decision vector will be active with probability plv
(0 < plv < 1) at time t, and remains silent with probability
p̄lv := 1 − plv. If a virtual link of link l was active at time
t− 1, virtual link [l, v] in the decision vector checks whether
it is the active virtual link during the previous time slot. If it
is, it remains active with probability plv and will be inactive
with probability p̄lv. If it is not, the virtual link in the decision
vector remains silent and the previously active sibling virtual
link will be active in the current slot, where we say two virtual
links are siblings if they belong to the same physical link.
Now we have a set of virtual link candidates that can

potentially be active during time slot t, which consist of the
virtual links in the decision vector that decides to be active and
the virtual links in x(t−1) that are not in the decision vector.
We proceed to test feasibility of these virtual links candidates.
We call the candidates that were not active at t − 1 as new
applicants. To represent new applicants, we use the indicator
function nlv(t) and its vector n(t) := (nlv(t)). Naturally,
nlv(t) = 1 when virtual link [l, v] is a new applicant, and
nlv(t) = 0 otherwise. All the active virtual links in x(t − 1)
as well as all the new applicants in n(t) participate in the
feasibility test. Note that some in x(t− 1) are not candidates,
but participate in the test. The inclusion of all active virtual
links of x(t−1) in the test is crucial to ensure the reversibility
of Markov chain described in the next section.
In the RTS part of the control subslot, each participating

virtual link’s transmitter sends an RTS, and its corresponding
receiver measures the SINR from the RTS. Suppose that a
virtual link [l, v] transmits an RTS. If the receiver passes the
test, i.e., if the SINR is large enough to support virtual link
[l, v], the receiver returns a CTS to the transmitter in the
subsequent CTS part. If the receiver fails the test, i.e., if the
SINR requirement is violated, the receiver takes a different
action depending on its activity during the previous time slot.
If virtual link [l, v] was not active at time t−1 (equivalently, if
virtual link [l, v] is in n(t)), the receiver does nothing4, and it
remains inactive during time t. If virtual link [l, v] was active
at time t− 1 (equivalently, if virtual link [l, v] is in x(t− 1)),
the receiver will broadcast a REJECT signal5 in the REJECT
part later, and invalidates the new activation vector. This ends
the forward feasibility test by RTS.
Note that the above feasibility test is conservative, since not

4Line 22 in Algorithm 2.
5Lines 24 and 32 in Algorithm 3.
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TABLE I
TYPES OF CONTROL PACKETS AND SIGNAL THAT CAN BE GENERATED BY
LINK l. (YES) IMPLIES THAT THE CONTROL PACKET OR SIGNAL WILL BE
GENERATED CONDITIONALLY, BASED ON THE PASS OR FAIL OF THE

FEASIBILITY TESTS.

RTS CTS REJECT
∃v s.t. [l, v] ∈ x(t− 1), [l, v] /∈ n(t) Yes (Yes) (Yes)
∃v s.t. [l, v] /∈ x(t− 1), [l, v] ∈ n(t) Yes (Yes) No
∀v s.t. [l, v] /∈ x(t− 1), [l, v] /∈ n(t) No No No

all the senders of RTS will transmit data during the data subslot
(even when there are no REJECT signals in the REJECT part):
Some virtual links in n(t) may fail the feasibility test and stay
inactive during the data subslot, and some virtual links that
were active in x(t−1) will voluntarily give up being active and
turn off their radio signal. This implies the receivers of active
links may achieve higher SINR than that in the feasibility test.
In the CTS part, the reverse feasibility test, which is similar

to the forward feasibility test of the RTS, proceeds and the
transmitter checks whether it receives a SINR higher than Γctrl

and successfully decodes the CTS. If the transmitter passes the
test and receives no REJECT signal before the data subslot, it
will transmit data bits during the data subslot. If the transmitter
fails the test, depending on its activity during the previous
time slot, the transmitter remains silent6 (if nlv(t) = 1), or
broadcasts a REJECT signal7 in the following REJECT part (if
xlv(t−1) = 1). This reverse feasibility test is also conservative
for the same reason as in the forward feasibility test.
In the REJECT part, the transmitter and receiver of links in

x(t − 1) may send REJECT signals if the SINR requirement
is violated. If a REJECT signal is broadcasted, all the links
will set their activities to the value of the previous time slot,
i.e., xlv(t) = xlv(t− 1) for all l, v. In this sense, the REJECT
signal invalidates the new virtual link activation vector. Since
the REJECT signal does not necessarily carry any specific
information, it would suffice to receive a signal with high
enough strength compared to the background noise level.
Similar ideas can be found in a different context of wireless
local area networks [27] and wireless mesh networks [28].
In a small network, we can assume that all nodes perceive a
signal from any node. In a larger network, we may need to
employ a flooding method to relay the signal over the network,
inevitably with additional control overheads. However, since
the signal does not carry data, multiple nodes can transmit
the REJECT signals at the same time, which enables quick
propagation of the signal throughout the network. In this work,
we assume that the REJECT signal is quickly relayed to all
nodes in the network within the period of the REJECT part.
Detailed implementation of the signal flooding is beyond the
scope of the paper.
Finally, in the data subslot, virtual link [l, v] transmits data

bits at rate clv if xlv(t) = 1. Table I summarizes the types
of control packets that can be generated by a link during the

6Line 25 in Algorithm 2.
7Lines 27 and 32 in Algorithm 3.

control subslot, based on its membership in x(t−1) and n(t).
A virtual link cannot belong to both x(t− 1) and n(t) at the
same time. Note that i) if a receiver sends a CTS packet, it will
not broadcast a REJECT signal, ii) it is possible for both the
transmitter and receiver of a link to broadcast REJECT signals
simultaneously, and iii) new applicants are not allowed to
generate REJECT signals, which is the key difference between
Algorithms 2 and 3.
Note that the flooding-like control (i.e., REJECT signal)

incurs additional overhead. However, a certain level of global
information is required for scheduling under the SINR-based
interference model, since even a small change of the trans-
mission power may cause a constraint violation of a far-away
transmission. In this work, we reduce the amount of control
overhead for link activity coordination under the SINR model
to a minimal level. Exchanging control messages often incurs
significant overhead due to inclusion of addresses, delimiters,
checksum, etc, in each message. We avoid such large overhead
by using a simple ‘signal’, which carries only a single bit
information. Thus it can be easily implemented without much
complexity, even without decoding, e.g., by using energy
detection, and can propagate through the network quickly by
simply repeating. All the other complex operations have been
designed to operate in a distributed manner.

D. Throughput optimality of distributed link scheduler
In this section, we show that the proposed link scheduler

indeed achieves optimal throughput. Specifically, we show
that the scheduler yields the same steady-state probability
distribution as (13), which implies an optimal solution to
SubD2. We represent the set of active virtual links in a virtual
link activation vector as the corresponding capital letter. For
example, we denote the decision set associated with decision
vector m = (mlv) by M := {∀[l, v] | mlv = 1}.
We begin with some properties of the stochastic process

{x(t)}∞t=0.
Lemma 1: {x(t)}∞t=0 is a Discrete-Time Markov Chain

(DTMC).
Proof: The inputs of Algorithms 2 and 3 are the previous

virtual link activation vector x(t−1), trial probability (ptrial),
activation probabilities (plv), and the fixed probabilities for
constructing the decision vector. Since the current state does
not depend on the history before time t− 1, the discrete time
process {x(t)}∞t=0 is a Markov Chain.
The following two lemmas assert that the Markov Chain walks
through all and only the feasible virtual link activation vectors
of the network.
Lemma 2: With a feasible initial virtual link activation

vector, e.g., x(0) = 0, the virtual link activation vector x(t)
under our proposed scheduler is feasible, i.e., x(t) ∈ F , for
all t ≥ 0.

Proof: A new set of virtual links is permitted to be active
at the same time only if it passes both the forward and reverse
feasibility tests. The tests guarantee that each virtual link of
the new activation vector satisfies the SINR requirements.
Moreover, the proposed algorithm allows for only a single
virtual link in a physical link to be active in a time slot.
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Algorithm 2 Link scheduling for previously inactive link l.
1: 1) At the beginning of control subslot:
2: Decide if link l will try to change its activity with
probability ptrial.

3: if Link l is to change the activity then
4: Select v∗ ∈ {1, 2, ..., V } at random.
5: xlv∗(t) = 1 with probability plv∗ ;
6: xlv∗(t) = 0 with probability p̄lv∗ = 1− plv∗ .
7: xlv(t) = xlv(t− 1) for v != v∗.
8: else
9: xlv(t) = xlv(t− 1) for all v’s.
10: end if
11:
12: 2) In RTS part of control subslot:
13: if xlv(t) = 1 then
14: Tx(l) sends RTS(l, v).
15: Rx(l) measures SINRl from RTS(l, v).
16: end if
17:
18: 3) In CTS part of control subslot:
19: if SINRl ≥ Γv then
20: Rx(l) sends CTS(l, v).
21: else
22: xlv(t) = 0.
23: end if
24: if Tx(l) fails to decode CTS(l, v) then
25: xlv(t) = 0.
26: end if
27:
28: 4) In REJECT part of control subslot:
29: if Tx(l) detects REJECT then
30: xlv(t) = xlv(t− 1) for all v’s.
31: end if
32:
33: 5) In data subslot:
34: if xlv(t) = 1 then
35: Tx(l) transmits data bits at the rate of clv.
36: end if

Therefore, the selected virtual link activation vector should
be feasible if it passes the feasibility tests. If the new set is
rejected, then the activation vector at time t should be also
feasible since x(t) = x(t− 1). Therefore, x(t) is feasible for
all t ≥ 0 by induction.
Lemma 3: In {x(t)}∞t=0, a state x can reach any x′ ∈ F

with positive probability in a finite number of steps.
Proof:We show that by the proposed scheduling, the null

state 0 can reach an arbitrary feasible link activation vector
with some positive probability in a single step, and vice versa,
where the null state implies that all links in the network are
inactive.
1) Suppose that the network is currently in the null state.
For any x′ ∈ F , if the decision set coincides with X ′

and all the virtual links in the decision set determine to
be active, then they will pass the feasibility tests and
clearly, x′ is accepted as the next virtual link activation
vector.

Algorithm 3 Link scheduling for previously active link l.
1: 1) At the beginning of control subslot:
2: Decide if link l will try to change its activity with
probability ptrial.

3: if Link l is to change the activity then
4: Select v∗ ∈ {1, 2, ..., V } at random.
5: if xlv∗(t− 1) = 1 then
6: xlv∗(t) = 1 with probability plv∗ ;
7: xlv∗(t) = 0 with probability p̄lv∗ = 1− plv∗ .
8: else
9: xlv∗(t) = 0.
10: end if
11: xlv(t) = xlv(t− 1) for v != v∗.
12: else
13: xlv(t) = xlv(t− 1) for all v’s.
14: end if
15:
16: 2) In RTS part of control subslot:
17: Tx(l) sends RTS(l, v).
18: Rx(l) measures SINRlv from RTS(l, v).
19:
20: 3) In CTS part of control subslot:
21: if SINRl ≥ Γv then
22: Rx(l) sends CTS(l, v).
23: else
24: Rx(l) constructs and holds REJECT.
25: end if
26: if Tx(l) fails to decode CTS(l, v) then
27: Tx(l) constructs and holds REJECT.
28: end if
29:
30: 4) In REJECT part of control subslot:
31: if Tx(l) or Rx(l) is holding REJECT then
32: REJECT is broadcasted.
33: end if
34: if Tx(l) detects REJECT then
35: xlv(t) = xlv(t− 1) for all v’s.
36: end if
37:
38: 5) In data subslot:
39: if xlv(t) = 1 then
40: Tx(l) transmits data bits at the rate of clv .
41: end if

2) Conversely, suppose that x is the current virtual link
activation vector. If the decision set coincides with X
and all the virtual links in the decision set intend to turn
off, the null state will become the virtual link activation
vector of the next slot.

From 1) and 2), a state x can reach any x′ ∈ F possibly via
the null state with a positive probability in a finite number of
steps.
We next show that the corresponding Markov Chain has

the same distribution as (13) under our proposed scheduler.
Since the Markov Chain is aperiodic and irreducible from
Lemma 3, it has a unique stationary distribution. Focusing
on the transition of two virtual link activation vectors, we
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characterize the probability distribution that satisfies detailed
balance conditions. Then the reversibility of the Markov Chain
indicates that it is the stationary distribution.
We consider a state transition at time slot t, and omit the

parameter t (or t−1) if there is no confusion. If any REJECT
signals are transmitted during the control subslot of time slot t,
then there is no state transition. Henceforth, we consider only
the case when new virtual link activation vector is accepted.
Suppose that at time slot t, the virtual link activation vector
changes from x to x′. Let X and X ′ denote the set of all the
active virtual links in x and x′, respectively. Let M denote
the decision set chosen in the process of the transition. Note
that for virtual link [l, v] ∈ X , all its sibling virtual links are
blocked from being active at time slot t under our scheduling
scheme, i.e., [l, w] /∈ X ′ for w != v. (See lines 3 − 14 in
Algorithm 3.) We denote the blocked virtual links by B([l, v]),
and extend the notation by letting B(A) denote the set of
virtual links blocked by the set of virtual links A. Further,
N represents the set of new applicants for activation, i.e.,
virtual links that were not active in the previous time slot but
participate in the feasibility tests in this time slot. Let subset
D ⊂ N denote the set of the virtual links discouraged from
being activated in the process of the feasibility tests, i.e., the
new applicants that could not meet the SINR requirement.
In this setting, the virtual links in the network can be

classified as shown in Table II, based on their action in the
time slot. Each virtual link belongs to either the decision set
M or its complement M c. The virtual links in M can be
further subdivided as follows. We also provide a diagram in
Fig. 4 to help readers understand the table, where the set M
is represented by grey areas and the set N is by slanted areas,
respectively.

• MX\X′ : Virtual links that were active at t − 1 and
are inactive at t. These links will exchange RTS/CTS
in the control subslot but do not transmit data in the
data subslot. Under our scheduling algorithms, for a
virtual link to change its state from ‘active’ to ‘inactive’,
it should be included in the decision set M . Hence,
X \X ′ ⊂ M , and thus MX\X′ = X \X ′.

• MX∩X′ : Virtual links that were active at t−1 and remain
active at t. These links will exchange RTS/CTS and do
transmit data bits in the data subslot. They can be also
written as MX∩X′ = M ∩ (X ∩X ′).

• MX′\X : Virtual links that were inactive at t− 1 and are
active at t. These links are new applicants, participate in
RTS/CTS exchange, and transmit data in the data subslot.
From X ′ \X ⊂ M , we have that MX′\X = X ′ \X .

• MB(X∪X′): Virtual links in M that are blocked to be
active at t due to some virtual link in X ∪X ′. They can
be written as MB(X∪X′) = M ∩B(X ∪X ′).

• MD: Virtual links that fail the feasibility tests. All the
virtual links in this set are new applicant since the state
transition is assumed to occur. They may fail either
the forward or reverse feasibility test, hence they can
exchange either RTS only or RTS/CTS depending on
cases. From D ⊂ N ⊂ M , we have MD = D.

• Mothers: The rest virtual links inM \((X∪X ′)∪B(X∪
X ′)∪D) that voluntarily give up trying to be active with

Fig. 4. An illustration for virtual link classification.

probability p̄lv. They do not participate in the feasibility
tests, and thus do not contribute to the state transition.

For a virtual link in M c, if the link was active at t − 1, it
will participate in the RTS/ CTS exchange and remain active
at t. We denote these virtual links by (M c)X , which equals
to M c ∩X . Since X \X ′ does not share any members with
M c, i.e., M c ∩ (X \X ′) = ∅, we can rewrite it as (M c)X =
M c∩(X∩X ′). On the other hand, if a virtual link in M c was
not active at t − 1, it does not exchange the control packets
and remains silent.
Given X and X ′, a decision set that triggers a transition

from X to X ′ may not be unique. Let M(X,X ′) denote the
collection of all such decision sets that can make the transition.
Also, for a decision setM ∈ M(X,X ′), there can be multiple
sets of new applicants that incur the transition from X to
X ′. Since N consists of two disjoint sets X ′ \ X and D,
it suffices to determine N using D, X , and X ′. Hence, we
describe the transition from X to X ′ using D instead of N .
Let D(X,X ′;M) denote the collection of all possible D’s that
make the transition from X to X ′ given M .
Now, we calculate the transition probability from X to X ′

as follows. Let β(M) denote the probability of a decision
set M ∈ M(X,X ′) being chosen randomly. Each virtual
link in MX\X′ switches to the inactive state voluntarily with
probability p̄lv and each virtual link in MX∩X′ stays active
with probability plv . Among M , virtual links in B(X ∪ X ′)
are blocked (with probability 1) and does not affect the state
transition probability. Lastly, each of the rest virtual links in
M\(X∪B(X∪X ′)) becomes a new applicant with probability
plv or voluntarily remains inactive with probability p̄lv . All the
new applicants try to be activated in the current slot. Among
them, virtual links in MX′\X pass the feasibility tests, while
the others in D ∈ D(X,X ′;M) fail the tests and are not
allowed to be active. We have denoted the virtual links that
voluntarily give up byMothers. We emphasize the dependency
of Mothers on D by Mothers(D). Naturally, virtual links of
M c have the same activity states as the previous time slot with
probability 1. Hence, the state transition probability from x to
x′ can be obtained as (16) in Fig. 5.
The following lemma and corollary lead to the main result
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TABLE II
CLASSIFICATION OF VIRTUAL LINKS.

Sets of virtual links Control packets Data transmission Equivalent form

M

MX\X′ RTS/CTS · X \X ′

MX∩X′ RTS/CTS Yes M ∩ (X ∩X ′)
MX′\X RTS/CTS Yes X ′ \X

MB(X∪X′) · · M ∩B(X ∪X ′)
MD RTS or RTS/CTS · D

Mothers · · M \ ((X ∪X ′) ∪B(X ∪X ′) ∪D)

M c (M c)X RTS/CTS Yes M c ∩ (X ∩X ′)
(M c)others · · M c \ (X ∩X ′)

P (x,x′) =
∑

M∈M(X,X′)



β(M)
∏

[l,v]∈M
X\X′

p̄lv
∏

[l,v]∈M
X∩X′

plv
∏

[l,v]∈M
X′\X

plv ·
∑

D∈D(X,X′;M)

(

∏

[l,v]∈D

plv
∏

[l,v]∈Mothers(D)

p̄lv
)





=
∑

M∈M(X,X′)



β(M)
∏

[l,v]∈X\X′

p̄lv
∏

[l,v]∈M∩(X∩X′)

plv
∏

[l,v]∈X′\X

plv ·
∑

D∈D(X,X′;M)

(

∏

[l,v]∈D

plv
∏

[l,v]∈Mothers(D)

p̄lv
)



 .

(16)

P (x′,x) =
∑

M∈M(X′,X)



β(M)
∏

[l,v]∈X′\X

p̄lv
∏

[l,v]∈M∩(X′∩X)

plv
∏

[l,v]∈X\X′

plv ·
∑

D∈D(X′,X;M)

(

∏

[l,v]∈D

plv
∏

[l,v]∈Mothers(D)

p̄lv
)





=
∑

M∈M(X,X′)



β(M)
∏

[l,v]∈X\X′

plv
∏

[l,v]∈M∩(X∩X′)

plv
∏

[l,v]∈X′\X

p̄lv ·
∑

D∈D(X,X′;M)

(

∏

[l,v]∈D

plv
∏

[l,v]∈Mothers(D)

p̄lv
)



 .

(17)

Fig. 5. Forward and reverse state transition probabilities.

of this section.
Lemma 4: M(X,X ′) = M(X ′, X).
Proof: Suppose that state X changes to X ′ with decision

schedule M ∈ M(X,X ′). The virtual links of M can be
classified as follows.

• Virtual links in MX∩X′ stays active.
• Virtual links in MX\X′ becomes in active.
• Virtual links in MX′\X becomes active.
• Virtual links in MB(X∪X′) remains inactive since
blocked.

• The set of the rest virtual links is denoted by Mrest.
We now focus onMrest. Among these virtual links, we denote
the set of virtual links that voluntarily become inactive by
Mothers, and the others should be inactive by failing the
feasibility test, in order to make the state transition from X to
X ′, and denoted by MD, i.e., Mrest = Mothers ∪MD. Note
that the virtual links participate in the feasibility test under our
algorithm include X , X ′ \ X , and MD = Mrest \ Mothers,
and all the virtual links in MD fail the feasibility test.
Let us consider the reverse transition, i.e., from X ′ to X .

Suppose that we have the same decision schedule M ′ = M
and the same set M ′

others = Mothers of virtual links becomes
inactive voluntarily. Since X ∪ X ′ ⊂ M ′ \ M ′

others, with a
certain probability:

• Virtual links in MX′∩X stays active.
• Virtual links in MX′\X becomes in active.
• Virtual links in MX\X′ becomes active.

• Virtual links in MB(X′∪X) remains inactive since
blocked.

• The set of the rest virtual links is denoted by M ′
rest.

In this case, we have M ′
rest = Mrest because M ′ = M

and M ′
others = Mothers. Also, the set of the virtual links

participate in the feasibility test would be X ′ ∪ (X \ X ′) ∪
(M ′

rest \M
′
others), which is identical to the set of virtual links

participated in the feasibility test for transition from X to X ′.
Hence, due to the identical interference relationship, all the
virtual links in M ′

rest \M
′
others = Mrest \Mothers should fail

the feasibility test. This completes the transition from X ′ to
X .
The proof of Lemma 4 immediately implies that in both
transitions, the set of the virtual links that fail the feasibility
test is also identical, which leads to the following corollary.
Corollary 1: D(X,X ′;M) = D(X ′, X ;M).

We now can obtain the following proposition.
Proposition 1: The probability distribution

π(x;qv) =
1

Z

∏

[l,v]∈X

plv
p̄lv

, (18)

where Z is the normalization factor, is the stationary state
distribution of the Markov Chain {x(t)}∞t=0. Further, by setting
plv = exp(clvqlv)

1+exp(clvqlv)
, we obtain the state probability

π(x;qv) =
1

Z
exp

(

∑

l,v

clvqlvxlv

)

. (19)
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Proof: We prove the proposition by showing that it
satisfies the local balance equation between two arbitrary
feasible virtual link activation vectors x and x′, i.e.,

π(x)P (x,x′) = π(x′)P (x′,x). (20)

If (20) holds, then the DTMC {x(t)}∞t=0 is reversible, which
would imply that π(x;qv) is its stationary distribution [29],
since it is irreducible and aperiodic from Lemma 3.
For M ∈ M(X,X ′), we have M ∈ M(X ′, X) by

Lemma 4. Since the decision set is selected independently of
the Markov state, the selection probability is the same β(M)
for the both transitions.
Also, according to Corollary 1, D(X,X ′;M) =

D(X ′, X ;M). Thus, the state transition probability from x′

to x can be calculated as (17) in Fig. 5.
For given M , D, X , and X ′, it is clear that Mothers(D) =
M \ ((X ∪X ′) ∪B(X ∪X ′) ∪D) is the same set of virtual
links for both the state transitions, since the set depends on
X ∪X ′ rather than individual sets X or X ′. Combining (16),
(18) and (17) yields that

π(x)P (x,x′) = π(x′)P (x′,x). (21)

Revisiting the adaptation algorithm (15) reveals that the
parameter qlv(t) is a scaled version of queue length of virtual
link [l, v]. Thus, in setting the probability plv in Proposition 1,
we can replace the Lagrangian multiplier qlv(t) with the
actual queue length Qlv(t). Actually we can use any function
flv(Qlv(t)) instead of qlv(t) to achieve the optimal throughput,
if flv(q) satisfies the following two conditions [20], [30]:
1) flv(q) is a non-decreasing continuous function with

limq→∞ flv(q) = ∞.
2) Given any M1, M2 > 0 and 0 < ε < 1, there exists

Q(< ∞) such that for q > Q,

(1−ε)flv(q) ≤ flv(q−M1) ≤ flv(q+M2) ≤ (1+ε)flv(q).
(22)

We now set probability plv to

plv(t) =
exp(clvflv(Qlv(t)))

1 + exp(clvflv(Qlv(t)))
(23)

with function flv(q) that satisfies the above conditions, and
obtain the product-form stationary distribution (18), which
immediately implies queueing stability under time-scale sep-
aration assumption [20]. The assumption means that the
probability plv(t) is relatively constant with respect to con-
vergence speed of the Markov Chain. It has been shown in
recent works [31], [32] that ‘without time-scale separation
assumption’, the system is stable for flv(q) = log log(q) and
for flv(q) = log(q)/g(q) with some slowly increasing function
g(q). Other empirical results also suggest that the time-scale
separation assumption is still valid for flv(q) = log(q) [20].
In the rest of the paper, we will use the function flv(q) =
log(1 + kq) with some constant k.
Remarks:

• We have assumed that each physical link has a single
session queue and V virtual link queues. This can be
extended to multiple sessions per physical link case by

increasing the number of queues in proportion to the
number of sessions.

• In choosing the set of active links, we take a different
approach from the traditional CSMA/CA protocol, where
the random back-off and the carrier-sensing functionality
are combined together. We first select a decision vector
using probability ptrial, which is similar to the random
back-off of 1/ptrial in the CSMA/CA protocol, and
obtain next schedule while checking its feasibility with
the carrier-sensing functionality. This two-step approach
is necessary to obtain the desired balance equations of
Markov Chain, and for the same reason, even the link
with no queue still needs to be selected in the decision
schedule.

• Multiple control subslots can be adopted in a single
slot to improve delay performance. We recall that the
stochastic process {x(t)}∞t=0 describes the progress of
virtual link activation vectors under our scheduling policy.
With S control subslots in a slot, the evolution of the
virtual link activation vectors will be represented by
{x(S(t + 1) − 1)}∞t=0, which is a DTMC because it is
a periodic sampling of another DTMC {x(t)}∞t=0 [29].
Repeating the steps of this section, it follows that our
link scheduler is still throughput optimal with multiple
control subslots.

IV. SIMULATION STUDIES
In this section, we evaluate the performance of the proposed

scheduling algorithm from the perspective of throughput and
delay through simulations.

A. Simulation setup
We consider a network in a square area with unit-length

sides. We place total 12 nodes in the area, and connect any
two nodes by a link if their distance is no greater than 0.5.
We divide the area into four small squares of 0.5 × 0.5 as
shown in Fig. 6 (dotted lines), and in each subsquare, three
nodes are placed at random, reducing the likelihood of network
partitioning. We identify the links by link id, which is shown
beside each link. The links are two-way, but one-way traffic
sessions are generated for each link. The direction of traffic
is randomly chosen and shown by an arrow at each link. In
our simulations, every link has a session, and its reverse link
is implicitly assumed to exist for feedback.
The transmitting node of a link, when active, sends signal

at unit power, and the signal attenuates with the path loss
exponent of 4. At the receiving node, the background noise
is assumed to be negligible. Each link supports various trans-
mission rates as shown in Table III, depending on the received
SINR.
We generate traffic as follows. Let x̂ denote a link activation

vector, and let r(x̂) denote the link transmission rate vector
associated with x̂. We arbitrarily choose the following eight
activation vectors,

x̂1 = (1, 10, 13, 18), x̂2 = (1, 12, 17, 21),
x̂3 = (2, 13, 16, 21), x̂4 = (3, 8, 13, 19),
x̂5 = (4, 9, 11, 22), x̂6 = (5, 14, 17, 23),
x̂7 = (6, 11, 16, 23), x̂8 = (7, 10, 13, 20),

(24)
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TABLE III
TRANSMISSION RATES OF LINK l.

Virtual link id SINR requirement Transmission rate
(units per slot)

1 γl ∈ [0.5, 1.0) 1.0
2 γl ∈ [1.0, 2.0) 2.0
3 γl ∈ [2.0, 4.0) 3.0
4 γl ∈ [4.0,∞) 4.0

where each vector includes four active links. For each vector,
we estimate the SINR at the receiver, and can map it to a trans-
mission rate using Table III. The obtained link transmission
rate vectors present as follows.

r(x̂1) = (0, 2, 4, 4), r(x̂2) = (0, 4, 4, 4),
r(x̂3) = (4, 4, 3, 4), r(x̂4) = (1, 0, 3, 2),
r(x̂5) = (0, 2, 0, 4), r(x̂6) = (2, 3, 4, 4),
r(x̂7) = (0, 1, 0, 4), r(x̂8) = (1, 3, 4, 3),

(25)

where each element is the transmission rate of corresponding
active link in (24). We omit the elements of inactive links
since they are all zeros. For example, for x̂1, the vector r(x̂1)
shows that link 1 has rate 0, link 10 has rate 2, link 13 has
rate 4, link 18 has rate 4, and all the other links have rate 0.
Note that any convex combinations of these link transmission
rate vectors will be within the capacity region Λ. To guarantee
the offered traffic is strictly in the capacity region, we set the
arrival rate vector λ as
λ = ρ ·

(

0.1r(x̂1) + 0.2r(x̂2) + 0.1r(x̂3) + 0.2r(x̂4)

+ 0.1r(x̂5) + 0.1r(x̂6) + 0.1r(x̂7) + 0.1r(x̂8)
)

,
(26)

where ρ ∈ (0, 1) denotes the traffic intensity. As ρ increases,
the arrival rate vector gets closer to the boundary of the ca-
pacity region. For a given arrival rates, each session generates
data bits according to the geometric distribution at each time
slot.
We first simulate our schemes assuming that RTS/CTS

packets do not experience transmission errors and REJECT
signals are perceived by all the nodes in the network. We later
remove these assumptions in our extended simulations . The
internal transmission rate µlv are set sufficiently large to 109

(bits per slot) for all virtual links. Each simulation runs for
107 time slots to ensure convergence.

B. Performance evaluation
We use the time-scale separable function flv(Qlv(t)) =

log(1 + kQlv(t)) for simulations. The parameter k affects
the system performance: in general, smaller k implies less
changes of plv from (23) and thus a better time-scale sep-
aration. Since our analysis relies on the time-scale separa-
tion assumption, a smaller k will be preferred to improve
throughput performance. Fig. 7 illustrates average queue size
for k = 0.01, 0.001, 0.0001 with two different numbers of
control subslots in a slot, i.e., 10 and 40. The trial probability
ptrial is set to 0.1 for all the links. The results show that
under light traffic, the queue lengths are kept lower for larger
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Fig. 6. Network topology for simulations. The number asides of each link is
the link id, and the arrow indicates the direction of the link (or the session
on it).

Fig. 7. Impact of time-separable function flv(·) on the average queue size.
The trial probability is set to 0.1.

k. However, under heavy traffic, the queue length increases
more quickly for larger k. In particular, when k = 0.01,
the queues become unstable for ρ ≥ 0.8 with 10 control
subslots, and for ρ ≥ 0.9 with 40 control subslots. This
is because the time-scale separation assumption no longer
holds for k = 0.01. Hence, there is a trade-off between the
throughput and the delay performance. Hereafter, we will use
k = 0.001 considering both delay and throughput.
Next, we investigate the impact of control subslots on the

performance. We simulate our schemes changing the number
of control subslots from 10 to 40. We set the trial probability
ptrial to 0.1 for all the links. As the number of control subslots
increases, the underlying DTMC have richer connectivity
between states, which contributes to improvement in the delay
performance as shown in Fig. 8. We also conduct simulations
changing the trial probability ptrial. The results are shown
in Fig. 9. We can attain the best delay performance when
ptrial = 0.05 and ptrial = 0.1 in our settings. For smaller
ptrial (≤ 0.01), the state transition is not less likely to occur
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Fig. 8. Impact of the number of control subslots in a slot on the average
queue size. The trial probability is 0.1.

Fig. 9. Impact of the trial probability on the average queue size. The number
of control subslots is 20 at each slot.

in the DTMC due to lack of links that want to change its state.
This deteriorates the delay performance. On the other hand,
when ptrial ≥ 0.3, the transition is less likely to occur due to
frequent failures in the feasibility tests. Hence, to improve the
delay performance, we have to set the trial probability ptrail
as well as the number of control subslots accordingly. Precise
setting of these parameters remains open for future research.

V. CONCLUSION
We develop fully distributed link scheduling that achieves

throughput optimality under the SINR model. One key idea
is to model a single physical link as multiple virtual links
with different SINR requirements, and to associate this virtual
link model with a two-stage queueing structure. By employing
the recently developed CSMA techniques on this queueing
structure, we develop practical resource allocation schemes
that are amenable to implementation in a distributed manner
while achieving the optimal throughput. A fundamental chal-
lenge was to ensure that schedule changes (or state transitions)

occur between feasible schedules such that each virtual link
satisfies its own SINR requirement at any time, without a
centralized control. To this end, we develop a novel three-way
handshake of control messages and signals. We evaluate the
proposed schemes through rigorous analysis, and show that
the schemes achieve the same stationary distribution as the
optimal solution. The analytical results are verified through
extensive simulations under various parameter settings.
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