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Abstract—The adaptive bitrate selection (ABR) mechanism,
which decides the bitrate for each video chunk is an important
part of video streaming. There has been significant interest in
developing Reinforcement-Learning (RL) based ABR algorithms
because of their ability to learn efficient bitrate actions based on
past data and their demonstrated improvements over wired, 3G
and 4G networks. However, the Quality of Experience (QoE),
especially video stall time, of state-of-the-art ABR algorithms
including the RL-based approaches falls short of expectations
over commercial mmWave 5G networks, due to widely and
wildly fluctuating throughput. These algorithms find optimal
policies for a multi-objective unconstrained problem where the
policies inherently depend on the predefined weight parameters
of the multiple objectives (e.g., bitrate maximization, stall-time
minimization). Our empirical evaluation suggests that such a
policy cannot adequately adapt to the high variations of 5G
throughput, resulting in long stall times.

To address these issues, we formulate the ABR selection
problem as a constrained Markov Decision Process where the
objective is to maximize the QoE subject to a stall-time constraint.
The strength of this formulation is that it helps mitigate the stall
time while maintaining high bitrates. We propose COREL, a
primal-dual actor-critic RL algorithm, which incorporates an
additional critic network to estimate stall time compared to
existing RL-based approaches and can tune the optimal dual
variable or weight to guide the policy towards minimizing stall
time. Our experiment results across various commercial mmWave
5G traces reveal that COREL reduces the average stall time by
a factor of 4 and the 95th percentile by a factor of 2.

I. INTRODUCTION

Video traffic accounts for about 70% of mobile data traffic
and is expected to rise to 80% by 2028 [1]. The emergence of
5G networks, especially millimeter-wave (mmWave) 5G, with
their ultra-high bandwidth capabilities, have positioned them
as key enablers for bandwidth-intensive applications, such as
4K/8K video, 360 video, and volumetric video streaming.

Video streaming today typically involves dividing the video
into smaller chunks, each encoded at various bitrates. An
important functionality of video streaming is adaptive bitrate
selection (ABR), which decides the appropriate bitrate for each
video chunk. The goal of ABR algorithms is to find a bal-
ance between increasing video quality and avoiding playback
stalls. Designing an optimal ABR algorithm with hand-tuned
heuristics is difficult, due to hard-to-model network dynam-
ics and hard-to-balance video QoE objectives. Facing these
challenges, recent ABR algorithms [2]–[4] leverage statistical
and machine-learning techniques to make bitrate selections

based on historical data about throughput, buffer occupancy,
and download time. Among these approaches, reinforcement
learning (RL) based ABR algorithms (e.g., Pensieve [3]) have
shown promise by optimizing policies utilizing the perfor-
mance of past decisions to enable the discovery of superior
policies compared to algorithms that use fixed heuristics or
inaccurate system models.

However, the QoE performance, especially video stall time,
of state-of-the-art ABR algorithms over commercial mmWave
5G networks falls short of expectation, as shown in a recent
measurement study [5]. Although commercial mmWave 5G
can indeed offer ultra-high bandwidth (e.g., up to 2 Gbps) [6],
[7], the wild fluctuations in 5G throughput, caused by factors
such as the directional nature of mmWave signals and envi-
ronmental conditions, pose significant challenges for existing
ABR algorithms to achieve satisfactory QoE performance,
especially in mobile scenarios. Interestingly, Pensieve, which
outperforms other ABR algorithms in 3G and 4G networks,
exhibits the highest bitrate as well as the highest stall time un-
der 5G. In summary, the primary concern for video streaming
over mmWave 5G lies in the high video stall time.

To mitigate video stall time caused by the volatile nature of
5G throughput while effectively utilizing the high bandwidth,
this paper proposes to employ constrained reinforcement learn-
ing to design an ABR algorithm for mmWave 5G. In par-
ticular, we formulate the optimization of the ABR algorithm
as a constrained Markov decision process (CMDP). Unlike
existing ABR algorithms [2], [3], [8] that directly optimize
a pre-defined weighted multiple-objective QoE metric that is
agnostic to the network environment, our approach focuses on
optimizing a single objective (i.e., maximizing bitrate ) while
maintaining a controlled level of performance degradation
in other objectives (i.e., minimizing stall time to satisfy a
constraint). To solve the proposed CMDP, we propose a
primal-dual RL algorithm, called COREL. In particular, we
tune the dual variable (i.e., the weight parameter for the stall-
time) based on the stall time estimated by the critic network, as
well as tune the policy parameter based on the performance on
the corresponding QoE simultaneously. This approach allows
us to find the policy that aims to satisfy the stall time constraint
while maintaining overall good throughput utilization.

We have trained and tested COREL on various commercial
mmWave 5G network conditions. To obtain extensive network



… …

…

…

…

Chunk	# 1 2 N

Bitrates
b1
b2
…
bM

HTTP	GET
Chunk	n,	Bitrate	b ABR	

Controller

Playback	
BufferVideo	Chunk	n

Rendered	Chunks

Throughput	
EstimatorChunk	

Download	
Info

Throughput	
Info

Buffer
Info

Video	Server

Fig. 1: An overview of HTTP adaptive video streaming.

traces, we augment the existing Lumos5G dataset [7], which
consists of 20 hours of mmWave 5G traces, by collecting
an additional 169 hours of mmWave 5G traces. Compared
to state-of-the-art ABR algorithms, COREL achieves an out-
standing balance between high bitrate and low stall time. It
outperforms the best existing schemes with a reduction in
average stall time ranging from 40.63% to 75.27% and a
reduction in tail stall time at 95-percentile from 25.24% to
58.44%, at a similar bitrate level. In summary, COREL reduces
the stall-time significantly while maintaining the high bitrate
needed to sustain video streaming services.

II. BACKGROUND & RELATED WORK

A. Basics of Adaptive Video Streaming

HTTP-based adaptive video streaming has become the most
prevalent method for video on demand (VoD) streaming. Fig. 1
illustrates the process of VoD streaming over HTTP. The video
server needs to serve multiple clients with diverse and unpre-
dictable connection performance. Therefore, the server divides
the video into chunks, usually 2-6 seconds long, and encodes
each chunk independently at a few different bitrates. On the
client side, the client requests chunks one by one and employs
an adaptive bitrate (ABR) algorithm to select a suitable bitrate
for each chunk. The ABR algorithms make decisions based
on recent experience and predictions about the future (e.g.,
playback buffer occupancy, throughput estimation). The goal
of an ABR algorithm is to reduce the stall time, maximize
the quality of chunks, and minimize variation in quality over
time. After chunks are downloaded and stored in the playback
buffer, they are played back to the client. Note that the
playback of a chunk cannot begin until the entire chunk has
been downloaded. By using an ABR algorithm, the client can
switch between different bitrates at chunk boundaries to adapt
to the changing network connections.

B. Related Work

Existing video streaming algorithms can be broadly clas-
sified into four categories: buffer-based, throughput-based,
control theoretic and reinforcement-learning based methods.

Buffer-based approaches [4], [9] solely consider the play-
back buffer occupancy to determine the bitrates. On the other
hand, throughput-based algorithms [10], [11] focus on match-
ing the video bitrate to the estimated network throughput.
Researchers have also explored approaches that consider both
buffer and throughput information. A straightforward approach

is to combine buffer-based and throughput-based algorithms,
e.g., DYNAMIC [12]. A more advanced approach is control-
theoretic schemes that aim to maximize QoE over a receding
horizon, given the buffer occupancy, predictions of future
throughput, and upcoming chunk sizes. A notable example is
MPC [2]. Since MPC is sensitive to throughput estimation
accuracy, more advanced methods have been proposed to
employ machine learning and deep learning for throughput
prediction [13] and transmission time prediction [8].

Different from control theoretic-based approaches that are
prone to errors in modeling complex and stochastic networking
environments, an alternative approach is to apply reinforce-
ment learning (RL) to infer ABR algorithms by maximize
QoE over an entire trajectory in a model-free way [3], [14].
To adapt RL-based ABR algorithms to heterogeneous network
environments, Huang et al. [15] introduced the use of Meta-
Reinforcement Learning to tailor ABR policy.

In contrast, our work employs constrained RL to cus-
tomize ABR algorithms over mmWave 5G by maximizing
bitrate while limiting performance degradation via minimizing
stalls. Rather than optimizing a pre-defined weighted multiple-
objective QoE/reward metric [2], [3], [8], [14], COREL en-
ables efficient exploration of optimal reward weights, resulting
in a better balance between high bitrate and low stall time.

III. PROBLEM SETTING

In this section, we highlight the challenges in streaming
videos over mmWave 5G networks and outline the rationale
for our proposed ABR algorithm over mmWave 5G networks.

A. Video Streaming over mmWave 5G Networks

a) Benefits mmWave 5G brings to video streaming:
Recent measurement studies [6] demonstrate that commercial
mmWave 5G can indeed offer ultra-high bandwidth, making it
well-suited for supporting bandwidth-intensive video stream-
ing applications, such as ultra-HD (UHD) 4K/8K videos [16].
For example, streaming 8K videos requires a bandwidth rang-
ing from 80 to 300 Mbps. This bandwidth requirement can
be easily met by mmWave 5G. Fig. 3 shows the throughput
distributions of our mmWave 5G traces (see §V-A1 for details).
The mean throughput of mmWave 5G is about 439 Mbps,
which far exceeds the bandwidth requirements for UHD 8K
video streaming. Consequently, one may expect a smooth QoE
when watching UHD videos over mmWave 5G. However, the
QoE of video streaming over mmWave 5G is found to fall
short of the expectation [5].

b) Challenges mmWave 5G poses to video streaming:
The wild fluctuations in mmWave 5G throughput, coupled
with the presence of 5G “dead zones”, pose two significant
challenges for video streaming applications. Due to its con-
siderably shorter wavelength, mmWave is widely recognized
for its susceptibility to factors such as mobility and blockage.
The throughput of mmWave 5G is highly variable over time,
with fluctuations ranging from 100 Mbps to 1 or 2 Gbps due
to slight changes in orientations and locations, or blockages
caused by moving objects in the surroundings [7], [16].



Moreover, mmWave 5G throughput may plummet to nearly
zero, leading to what is commonly known as “5G dead zones”.

The impact of mmWave 5G on the performance of ABR
algorithms has been investigated in [5]. The research reveals
that state-of-the-art ABR algorithms that work well under
4G do not maintain high performance under 5G. Despite the
capability of existing ABR algorithms to achieve high bitrates
in 5G networks, they tend to experience significantly higher
stall times. Therefore, the primary concern for video streaming
over 5G lies in the video stall time. For example, Pensieve [3],
an ABR algorithm based on Reinforcement Learning (RL),
outperforms all other ABR algorithms in 3G and 4G, but
exhibits the highest video stall time under 5G. The poor
performance of Pensieve in terms of stall time is also evident
in our experimental results, as detailed in §V.

B. Constrained RL-based ABR Design over mmWave 5G

Two factors contribute to the ineffectiveness of existing
RL-based ABR algorithms under 5G. First, due to the high
variability in network throughput, it is difficult for RL to tell
whether the observed QoE feedback of two ABR decisions
differs due to the disparate network conditions, or due to the
quality of the learned policy [17]. The second factor lies in the
multiple-objective reward function. Typically, ABR algorithms
necessitate the co-optimization of multiple objectives, such
as maximizing bitrate while minimizing stalls. However, RL
algorithms require a single reward value for training. Existing
RL-based ABR algorithms merge these multiple objectives by
utilizing specific pre-defined weighted sums, leading to their
performance being inherently reliant on the chosen reward
weights. In practice, this predefined trade-off (i.e., the reward
weights) between different sub-goals does not consistently
perform well in dynamic networks, such as Facebook’s video
streaming platform [18] and mmWave 5G networks [5].

To improve the performance of RL-based ABR algorithms
under 5G, we propose formulating the ABR algorithm op-
timization as a constrained optimization task. Instead of
optimizing a pre-defined weighted multiple-objective reward
metric, we aim to optimize one objective (i.e., maximizing
bitrate) while ensuring a bounded degradation in performance
across the other objectives (i.e., minimizing stalls to satisfy
a constraint). This approach allows us to efficiently search
optimal reward weights for 5G networks, as well as to help the
RL to evaluate the quality of the learned ABR policy in terms
of constraint satisfaction. Further, we specifically estimate the
stall-time duration in order to guide us to a policy that is more
likely to satisfy the constraint unlike the existing algorithms.

IV. DESIGN & IMPLEMENTATION

We first mathematically formulate ABR video streaming
as a constrained optimization problem. We then describe our
algorithm, named COREL, to solve this optimization problem.

A. Problem Formulation of ABR Streaming

The video duration is denoted as T seconds and is equally
divided into K chunks. The set of available bitrates is R =

Fig. 2: Our NN architecture overview.

{R1, . . . , Rm}. After the (k− 1)-th chunk is downloaded, the
ABR algorithm selects the bitrate Rk from R for downloading
the k-th chunk. Assuming the ABR starts fetching the k-th
chunk at time tk and the throughput at time t be C(t), then
the download time for the k-th chunk at bitrate Rk is

tk(Rk) = inf{τ − tk|
∫ τ

tk

C(t)dt ≥ d(Rk)}. (1)

where d(Rk) is the chunk size at the bitrate Rk.
The downloaded chunks are stored in a playback buffer. Let

the buffer size at time t be B(t). Let Bk = B(tk) be the buffer
size when the player starts downloading the k-th chunk:

Bk+1 = max{Bk − tk(Rk), 0}+ T/K. (2)

The buffer has a maximum capacity Bmax. B(t) ≤ Bmax,
otherwise, any excess video is discarded. When tk(Rk) > Bk,
there will be a stall. Stall-time for the k-th chunk is

U(Rk) = max{tk(Rk)−Bk, 0}. (3)

Constrained MPC Formulation: The optimal bitrate se-
lection problem can be cast as a constrained model-predictive
control (MPC) as the following

P : max
Rk∈Rk

K∑
k=1

E[q(Rk)− λ|q(Rk)− q(Rk−1)|]

subject to E

K∑
k=1

[U(Rk)] ≤ δ (4)

where q(·) is a video quality function of bitrate and λ = 1
to penalize the bitrate difference between two consecutive
chunks. The constraint indicates that the total expected stall
time should be less than or equal to a threshold δ.

B. Constrained RL-based ABR Algorithm

The constrained MPC problem is challenging to solve. Due
to the unknown network throughput and hard-to-balance con-
flicting QoE objectives, we use the constrained RL technique
to solve it, and name our ABR algorithm as COREL.

COREL utilizes a neural network (NN), shown in Fig. 2, to
parametrize the policy as πθ(Rk|sk) ∈ [0, 1], which represents
the probability that bitrate Rk ∈ R is chosen at state sk ∈ S
for k-th chunk. The input state sk consists of three types of



information. 1) Playback Information: current buffer size Bk,
last selected bitrate Rk−1, past t chunks’ download time #»τk,
and the number of chunks remaining lk. 2) Network Infor-
mation: past t chunks’ throughput measurements and future
t̂ throughput predictions

#  »

Ck made by Lumos5G’s seq2seq
predictor [7]. 3) Content Information: chunk sizes

#        »

Nk+1 for
each bitrate of the next k+1-th chunk. The output of COREL
is an m-dimensional vector that represents the probabilities of
selecting different bitrates at the current state, sk.

The reward at the k-th chunk is r(sk, Rk) = q(Rk) −
λ|q(Rk)− q(Rk−1)|. The corresponding value function is

V πθ (s) = E

[
K∑

k=1

γk−1r(sk, Rk)|s1 = s

]
. (5)

where s is the initial state, γ is the discount-factor. The value
function represents the cumulative reward following the policy.
We further denote the realized stall-time at the k-th chunk by
u(sk, Rk) = U(Rk) and the corresponding value function is

Uπθ (s) = E

[
K∑

k=1

γk−1u(sk, Rk)|s1 = s

]
. (6)

We seek to obtain the policy πθ which solves the following

max
πθ

Es∼ρ(·)V
πθ (s) subject to Es∼ρ(·)U

πθ (s) ≤ δ (7)

where ρ(·) is the initial distribution of state.
To solve the above CMDP problem, we consider a primal-

dual-based RL approach. First, we describe the Lagrangian

L(θ, µ) = E [V πθ (s)] + µE [δ − Uπθ (s)] . (8)

where µ is the dual variable. Interchangeably, we also denote
µ as the rebuffer penalty. We then solve the min-max problem

min
µ≥0

max
θ

L(θ, µ). (9)

C. Training Methodology

We utilize the nested loop architecture (i.e., primal-dual
RL) to solve the min-max problem, as it has been proved
to converge under some regularity conditions [19].

Inner-loop: For a given µl at the l-th outer-loop, we find
optimal policy for dual variable µl, π∗

θ(µl), i.e.,

πθ = argmaxE[V πθ (s)− µlU
πθ (s)] (10)

The expression inside the expectation can be represented as an
unconstrained composite value function V πθ

µl,U
(·) = V πθ (·) −

µlU
πθ (·). corresponding to the composite reward:

rµl
(sk, Rk) = r(sk, Rk)− µlu(sk, Rk) (11)

Hence, we can use the policy gradient mechanism to find
the optimal policy for a given µl. In particular, we use an
actor-critic-based algorithm. At step j inside the outer-loop l,
the policy parameter is updated as follows:

θj+1 = θj − ηθ∇θE[V πθ (s)− µlU
πθ (s)] (12)
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Fig. 3: The CDFs of our mmWave 5G throughput.

ηθ is the learning rate for updating θ. We use the critic network
to estimate the composite value function V πθ

µ,U and follow the
standard temporal difference method to train its parameter.

Outer-loop: When we obtain θ∗, µl is updated as follows

µl+1 = µl − ηµ(δ − E(Uπ∗
θ (µl)(s))) (13)

ηµ is the learning rate to update µ. We use an additional critic
network to estimate Uπ∗

θ (·), the value function for stall time.

V. EVALUATION

A. Evaluation Methodology

1) Network traces: The corpus of mmWave 5G traces
used in this paper comprises two components: 1) the publicly
available Lumos5G dataset [7] and 2) 5G traces collected
by the authors. After filtering out traces where selecting the
maximum bitrate is always the optimal solution or where
the network is unable to support any available bitrate for an
extended period, the corpus of network traces consists of 189
hours of mmWave 5G traces. The traces can be categorized
into three different scenarios: 1) walking scenario, where
traces were collected while walking; 2) driving scenario, where
traces were collected while driving; and 3) deadzone scenario,
which includes traces where the 5G throughput remains at 0
for an extended period (indicating entry into 5G cellular dead
zones). Fig. 3 show the distributions of our 5G network traces.
Unless otherwise noted, we use a random 80% of the traces
to train both Pensieve and COREL and the remaining 20% to
evaluate all ABR algorithms.

2) ABR algorithms: We compare COREL to the following
state-of-the-art ABR algorithms: 1) buffer-based: BBA [9] and
BOLA [4]; 2) throughput-based: simple rate-based (RB); 3)
hybrid-based: DYNAMIC [12], the default ABR algorithm
in the DASH player; 4) control theoretic: robustMPC [2]; 5)
reinforcement learning-based: Pensieve [3] 1.

3) Experimental setup: We employ trace-driven emulation
and the testbed comprises an Apache server that hosts the
video and a DASH.js video client. We use an 8K video [20]
from the Internet and encode it using FFmpeg in {360p,
720p, 1080p, 2K, 4K, 8K}. We implement COREL using
TensorFlow 2. We set the state input with a history length
of 8 and a future length of 4. The learning rates for the
actor and critic networks are 10−4 and 10−3 respectively.

1We compare to Pensieve because it is both the state-of-the-art RL-based
algorithm and open-source.

2The source code of COREL and our mmWave5G traces are available at
https://github.com/COREL-ABR.

https://github.com/COREL-ABR
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(a) Error bars of bitrate and stall time
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Fig. 4: Error bars and CDFs of bitrate and stall time on the random test traces. Error bars show 95% confidence intervals.
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(a) Walking scenario
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(b) Driving scenario
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(c) Deadzone scenario
Fig. 5: The bitrate and stall time tested on three different 5G network scenarios. Error bars show 95% confidence intervals.

The stall constraint δ is 0.01. The initial value of the dual
variable µ is 160. To ensure a fair comparison, we use the
same configurations to train Pensieve on our 5G traces.

B. COREL vs. Existing ABR Algorithms

Both Pensieve and COREL are trained using the training
dataset described in §V-A. Then, all ABR algorithms are
evaluated on the randomly held-out test traces. Fig. 4a shows
the average bitrate and video stall time of all ABR algorithms,
accompanied by error bars denoting 95% confidence intervals.
COREL achieves an outstanding balance between high bitrate
and low stall time, outperforming both Pensieve and BBA in
this regard. Specifically, when compared to Pensieve, COREL
achieves a slight decrease in average bitrate by 1.77%, but
significantly reduces the time spent on stall by 75.27%. This
trade-off of sacrificing a small portion of bitrate yields substan-
tial benefits in terms of reducing stall time. When compared
to BBA, COREL achieves a 4.58% increase in average bitrate
while simultaneously reducing stall time by 49.96%.

We further examine Pensieve, BBA, and COREL’s dis-
tributions of bitrate and stall time, as depicted in Fig. 4.
The CDFs show interesting patterns. In network traces with
low throughput, COREL tends to make more conservative
decisions compared to BBA and Pensieve. In network traces
with good throughput, COREL is more conservative than
Pensieve but utilizes the available throughput more effectively
than BBA. These bitrate decision patterns lead to COREL
achieving significantly lower stall time compared to Pensieve
and better tail performance (58.44% reduction of stall time at
95-percentile) compared to BBA.

C. Generalization

In this section, we investigate the impacts of different
5G network scenarios (i.e., walking, driving, and deadzone
scenarios) on the performance of ABR algorithms. Note that
both Pensieve and COREL are trained using randomly selected
traces as mentioned earlier. Fig. 5 shows the average bitrate
and video stall time of all ABR algorithms as well as the
error bars representing 95% confidence intervals. COREL
consistently outperforms state-of-the-art ABR algorithms by
achieving an excellent balance between high bitrate and low
stall time. In driving and dead-zone scenarios, compared to
Pensieve, COREL achieves a slight decrease in bitrate by
3.49% and 3.66% respectively. However, it demonstrates sig-
nificant improvements in stall time reduction, with reductions
of 70.85% and 69.93% in the driving and dead-zone scenarios,
respectively. Compare to DYNAMIC, which outperforms BBA
in these two scenarios, COREL achieves a slight increase in
bitrate by 3.89% and 5.60% respectively, while simultaneously
reducing stall time by 53.67% and 40.63% respectively. In the
walking scenario, COREL still achieves the smallest stall time
than existing ABR algorithms. While both COREL and BBA
exhibit stall times below 1 second, COREL selects bitrates
that are 5.25% higher than BBA.

D. Impact of optimal rebuffer penalty

In this section, we analyze the impact of optimal rebuffer
penalty µ on ABR algorithms that optimize for QoE metrics.
To this end, we plug the rebuffer penalty value, discovered by
COREL, into the QoE reward functions 3 of robustMPC and

3QoE =
∑

q(Rk) − µ
∑

Tk −
∑

|q(Rk + 1) − q(Rk)|, where Tk is
the stall time of k-th chunk at bitrate Rk and the default µ value is 160 [5].
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Fig. 6: Impact of rebuffer penalty on ABR algorithms.

Pensieve, and retrain Pensieve from scratch.
Fig. 6a shows the performance of Pensieve and robustMPC

with the default µ of 160 and with the µ of 191 which is
attained by our approach. COREL achieves a better balance
between high bitrate and low stall time compared to Pensieve
and robustMPC. When µ = 191 is used, COREL shows an
increase in bitrate by 1.07% and 2.66% respectively, along
with a decrease in stall time by 51.47% and 64.78% respec-
tively. We observe that Pensieve is sensitive to the rebuffer
penalty. The gap between Pensieve and COREL implies that
depending solely on the rebuffer penalty is insufficient to
effectively guide the RL algorithms to maintain low stall time
and high bitrate. The reason for this could be that optimizing
solely based on the feedback of QoE reward cannot distinguish
whether changes in QoE are caused by the bitrate changes,
stall time changes, or a combination of both. As shown in
Fig. 6b, where all the algorithms use the same QoE metric,
although the QoE performance of COREL and Pensieve is
close, COREL outperforms Pensieve, especially in terms of
stall time. This further indicates the benefits of constrained
training, which provides an additional evaluation criterion by
considering the satisfaction of the stall time constraint.

VI. CONCLUSION AND FUTURE WORK

We proposed a CMDP formulation for optimizing the ABR
algorithm, unlike existing approaches which consider finding
a policy for a pre-defined weighted QoE reward. We propose a
primal-dual RL algorithm, COREL, for simultaneously finding
the policy and tuning the weight parameter corresponding
to stall time. COREL outperforms state-of-the-art algorithms
on various mmWave 5G network scenarios and achieves a
superior balance between high bitrate and low stall time. In
particular, COREL reduces the average stall time by up to 75%
and reduces the tail stall time at 95-percentile by up to 58%
at the similar bitrate level of the best existing schemes.
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