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Abstract—Recent studies have shown that power-proportional
data centers can save energy cost by dynamically “right-sizing”
the data centers based on real-time workload. More servers
are activated when the workload increases while some servers
can be put into the sleep mode during periods of low load.
In this paper, we revisit the dynamic right-sizing problem for
heterogeneous data centers with various operational cost and
switching cost. We propose a new online algorithm based on
a regularization technique, which achieves a better competitive
ratio compared to the state-of-the-art greedy algorithm in [17].
We further introduce a switching cost offset into the model
and extend our algorithm to this new setting. Simulations based
on real workload and renewable energy traces show that our
algorithms outperform the greedy algorithm in both settings.

I. INTRODUCTION

Internet-scale services like web-mail, live streaming, online
gaming and social networks usually have millions or even bil-
lions of active users everyday. Providers like Google, Amazon
and Facebook, in order to maintain the reliability, accessibility
and guaranteed performance of their systems, have deployed
numerous large data centers including massive number of
servers, causing a huge amount of electricity and cooling cost.
Based on [16], the electricity consumption of large data centers
has accounted for 1.3% of all the electricity use of the world
and almost 2% of the United States in 2010.

Recent research [20]–[23] shows that the energy cost can be
significantly reduced by dynamically distributing the workload
to various data centers based on the idea of “Geographical
Load Balancing” (GLB) and “Right-sizing” to make the data
center more power-proportional [4], [9], [18]. Specifically, the
central load balancer dynamically dispatches the workload
requests to geographically located data centers that consist of
thousands of servers. Each data center dynamically adjusts the
number of active servers to serve the requests so that during
low-load period, servers that do not have jobs transfer to the
power-saving mode or are shut down completely after data
and operation states are reserved.

In [17], [18], Lin et al., propose a cost minimizing model
for the “right-sizing” of data centers incurring both operational
cost and switching cost. Their model is a general convex
optimization problem where the objective function consists
of two parts representing the operational cost and switching
cost, respectively. Examples are given to show how concrete
energy and delay costs of data centers can fit into their model.
The operational cost is modeled as a time-dependent convex
function and a linear function is used to represent the switching
cost of switching certain number of servers from power-saving
mode to active mode to serve the increasing workload [6]. The

switching cost is incurred only when the number of active
servers increase. Such switching cost not only includes the
total energy cost, but also delay in data migration, increased
wear-and-tear on servers and the risk involved in server mode
toggling. A 3-competitive online algorithm [18] is proposed
for the case of a single server. In [17], Lin et al. consider
a more general setting with multiple heterogeneous servers
and look-ahead information, and propose the AFHC online
algorithm that is (1+ β

e0
)-competitive where β is the maximum

value of unit switching cost and e0 refers to the minimum unit
operational cost of all data centers. The algorithm reduces to
the simple greedy algorithm when the look-ahead window size
is zero. The two online algorithms are the first attempts to deal
with the online convex right-sizing problem with switching
cost and provide performance guarantees. However, the 3-
competitive algorithm only works for the single-server setting,
while the greedy algorithm can have a large competitive ratio
when the minimum value of the unit operating cost e0 is very
small compared to the switching cost.

In this paper, we revisit the right-sizing problem studied
in [17] and propose a better algorithm. We consider a system
with multiple data centers located in different places. The
operational cost and switching cost of each data center vary
based on the local energy prices, the availability of renewable
energy, and other factors such as energy storage and servers’
wear-and-tear cost. The information of the workload and cost
functions of each data center are both revealed only at the
beginning of each time slot. There is no look-ahead window,
meaning that information for future time slots is not available
at the central load balancer. Real-time workload demand is
dispatched to different data centers at each time slot by the
central load balancer which tries to minimize the total cost for
all time slots.

We develop a new online algorithm based on the regulariza-
tion technique proposed in [8] for the right-sizing problem. We
show that our online regularization algorithm achieves a better
competitive ratio compared to the greedy algorithm in [17].
We further extend our system model by introducing a new
time-dependent parameter, called switching cost offset, which
enables a data center to serve the increase in workload demand
without incurring any switching cost when the increase is less
than the offset parameter. This new parameter is meaningful s-
ince each data center may have access to some local renewable
energy source or energy storage, which allows it to activate
some number of sleeping servers by paying a negligible cost.
In addition, the switching cost offset also includes the delay
tolerance during data migration when servers are activated or



turned down and the cost compensation by certain protection
mechanism to reduce the server state toggling cost. To the best
of our knowledge, this is the first work that considers such a
switching cost offset. We propose another online regularization
algorithm with guaranteed performance.

Our main contribution can be summarized as follows:
1) We propose an online regularization algorithm for the

right-sizing problem of multiple heterogenous data cen-
ters with various operational cost and switching cost.
We prove a competitive ratio of our algorithm in terms
of the switching cost and the operational cost functions,
which is always better than that of the greedy algorithm
in [17].

2) We consider an extension of the right-sizing problem
by introducing a switching cost offset into the model,
and propose an online algorithm with guaranteed per-
formance. Our algorithm is the first attempt to deal with
this important extension.

The rest of the paper is organized as follow: Section II
discusses the related work on energy cost minimization of data
centers and the regularization method. Section III introduces
our general system model and the online algorithm is proposed
in Section IV. We then discuss the model with switching
cost offset and the corresponding algorithm in Section V.
Numerical results are given in Section VI and we conclude
the paper in Section VII.

II. RELATED WORK

There are multiple recent works [9], [11], [13], [14], [20]–
[24] discussing the “Geographical Load Balancing” and the
“Right-sizing” problem for data centers. The most relevant
works are [17], [18]. In [18], Lin et al., considered the case
of a single data center where the data center determines the
workload (number of active servers) based on general convex
operational cost function and linear switching cost. They
proposed the “Laze Capacity Provisioning” online algorithm
by utilizing the structure of the optimal offline solution, which
achieves a competitive ratio of 3. Later, Bansal et al. [5]
improved the competitive ratio to 2 by proposing a new
randomized online algorithm. However, the online algorithms
in both [18] and [5] only work for the single data center
case and their performance can be arbitrarily bad for the case
with multiple heterogenous data centers. In [17], Lin et al.,
considered the “right-sizing” problem for the heterogeneous
data center model and proposed the “Averaging Fixed Horizon
Control” algorithm. They proved that their algorithms achieves
a competitive ratio that depends on the switching cost and the
convex operational cost function. In this work, we revisit the
heterogeneous case and propose a new online algorithm with
a better performance guarantee.

There are extensive studies on online algorithm design for
cloud resource management [15], [26] and real-time dispatch
[10], [30], [31]. More specifically, [8] first introduced the
concept of regularization for online algorithm design and
proved that the online algorithm with a regularization term
can achieve a competitive ratio proportional to logN where
N is number of variables. The same technique is also applied
in [7] to study the problem of online restricted caching

and matroid caching. In [29], Zhang et al. investigate on-
line resource management for Cloud-based content delivery
networks. They proposed an efficient online algorithm by
using the regularization technique and proved its performance
guarantee. However, the cost function is linear in all these
works and none of them take the switching cost offset into
consideration. In this work, we consider the more general
and practical case of convex operational cost and compare
the performance of regularization based online algorithms and
the greedy algorithms.

III. SYSTEM MODEL

In this section, we discuss our system model of multiple
heterogeneous data centers located in various places and the
overall optimization problem.

We study a system consisting of a central load balancer and
N heterogeneous data centers, each with thousands of servers
located in different places. The servers in each data center are
assumed to be homogeneous as in previous work. The central
load balancer distributes the workload to data centers and each
data center either activates or deactivates a certain number of
servers to serve the workload. The cost of each data center
for serving the workload consists of two parts, operational
cost and switching cost, both may vary across data centers.

In this paper, we consider general classes of cost functions.
The operational cost is modelled by a time-dependent non-
decreasing convex function fi,t(·), where fi,t(si(t)) refers to
the total operational cost for data center i with workload si(t)
at time t, which includes the energy cost for serving the
workload as well as the cost associated with data transmis-
sion and delay, etc. We assume that fi,t(·) is continuously
differentiable. In [18], Lin et al. provided concrete examples
to show how the real data center cost can be fitted into this
general convex operational cost model.

In addition to operational cost, data centers incur a switch-
ing cost when servers are switched on, which includes the
energy cost of transferring server states, data migration latency,
server state toggling risk, and the wear-and-tear cost [18].
In addition, by reducing the number of active servers and
computing resources, the user experience may be degraded,
resulting a decline in revenue [19], which can also be captured
by the switching cost. We only take into consideration the
switching cost when the workload increases, incurring a cost
of βi(si(t) − si(t − 1)) since turning off servers usually has
a negligible cost as in [18], [25].

We further extend the model to the situation where each
data center has access to local renewable energy, or has a
certain protection mechanism and delay tolerance. For in-
stance, protection mechanisms can reduce the wear-and-tear
cost and the corresponding risk involved in the state toggling
of servers [12], while delay tolerant workload is less sensitive
to the latency for toggling servers out of power-saving mode.
On the other hand, timing-varying renewable energy supply
can help reduce both the operational and switching costs.1
To model these effects, we introduce a time-dependent offset

1In this work, we assume that the allocation of renewable energy for
reducing operating cost and that for reducing switching cost follows a pre-
determined scheme, and incorporate the former into the operational cost
function.



parameter ri(t) into our model such that no switching cost is
incurred when the increase of workload is less than or equal
to ri(t). Such an offset parameter allows each data center
to activate a certain number of servers without incurring any
switching cost.

We consider a time-slotted system from t = 1 to t = T , and
an online setting where all the future information including
the operational costs, switching costs, and the workload is
unknown. The central load balancer is only aware of all the
parameters at the current and past time slots. Our objective is
to minimize the overall cost by dynamically dispatching the
workload to each data center at the beginning of each time slot
under the constraint that the total demand must be satisfied at
each time slot.

At the beginning of each time-slot t, the workload D(t), op-
erational cost function fi,t(·), and the offset ri(t) are revealed.
The central load balancer then distributes workload si(t) to
data center i, incurring a operational cost

∑N
i=1 fi,t(si(t)) and

a switching cost
∑N
i=1 βi(si(t) − si(t − 1)) at time slot t.

Note that we do not explicitly include a capacity constraint
for each data center in (1). This can be easily modeled by
setting the operational cost fi,t to infinity when the workload
assigned to data center i exceeds its capacity. As long as
fi,t(s) is continuously differentiable when s is within the
capacity region, all the results in this paper remain valid. The
objective of the central load balancer is to minimize the overall
operational cost and switching cost among all time slots as in
(1).

min
si(t)

T∑
t=1

N∑
i=1

[
fi,t(si(t)) + βi(si(t)− si(t− 1)− ri(t))+

]
s.t.

N∑
i=1

si(t) ≥ D(t) ∀t

si(t) ≥ 0 ∀i, t
si(0) = 0 ∀i

(1)
where (x)+ = max{0, x}.

We use competitive ratio as the performance metric through-
out this paper. Denote A(1 : t) as the input information (e.g.,
the workload D(t), the operational cost function fi,t(·) and the
switching cost offset ri(t)) from time slot 1 to time slot t. For
an online algorithm π, the decision si(t) ∀i at each time slot
t can only be based on input A(1 : t). Let Cπ(A(1 : T ))
be the total cost of algorithm π and we compare it with
the total cost of the optimal offline solution Copt(A(1 : T ))
which is obtained by solving (1). Then, the competitive ratio
of algorithm π is given by

CRπ = max
A(1:T )

Cπ(A(1 : T ))

Copt(A(1 : T ))

Table I summarizes the notations used in the paper.

IV. ONLINE REGULARIZATION ALGORITHM

In this section, we study the right-sizing problem without
switching offset, that is ri(t) = 0 ∀i, t. We first review the
greedy algorithm (a.k.a the AFHC algorithm in [17] without
look-ahead information) and its performance guarantee. Then,

TABLE I
LIST OF NOTATIONS

Symbol Meaning
T Number of time slots
N Number of data centers
D(t) Total workload demand at time t
Dmax maxtD(t)

fi,t(·) Operational cost of data center i at time t
βi Coefficient of switching cost for data center i
β maxi βi

ri(t) Switching cost offset for data center i at time t
si(t) Workload dispatched to data center i at time t

we present our online regularization based algorithm and
compare the competitive ratios of the two algorithms.

A. The Greedy Algorithm

Lin et al. [17] proposed the AFHC algorithm and analyzed
the pros and cons of AFHC compared to the classic Receding
Horizon Control (RHC) algorithm. They claimed that the
AFHC algorithm can outperform the RHC algorithm when
there are multiple heterogeneous data centers. Both AFHC and
RHC work for the case with look-ahead information. When
there is no look-ahead information as we consider in the paper,
both algorithms reduce to the simple greedy algorithm. That is,
both algorithm compute the load assignment s̃i(t) by solving
the following optimization problem in each time-slot.

s̃i(t) = argminsi(t)

N∑
i=1

[
fi,t(si(t)) + βi(si(t)− s̃i(t− 1))+

]
s.t.

N∑
i=1

si(t) ≥ D(t) ∀t

si(t) ≥ 0 ∀i, t
(2)

Let e0,i denote the minimum positive constant such that
fi,t(x) ≥ e0,ix, ∀x, t. The following result is proved in [17]:

Theorem IV.1. The greedy algorithm is (1 + β/e0)-
competitive where β = maxi{βi} and e0 = mini{e0,i}.

We note that since fi,t(x)/x may approach to 0 when x is
close to 0, e.g. when fi,t(x) = xα for α > 1, the value of β/e0
can be huge. Moreover, our simulation results using real data
from Google Cloud platform (see Section VI) indicate that
the greedy algorithm may cause unnecessary frequent server
switching, leading to bad performance. To tackle these issues,
we present a new online algorithm based on a regularization
technique for problem (1) in the following subsection, which
achieves a better competitive ratio and shows better empirical
performance.

B. Online Regularization Algorithm

Our algorithm adopts the novel framework proposed in [8]
for designing competitive online algorithms. The algorithm is
essentially greedy by solving a convex optimization problem
in each round, where the objective function includes both



Algorithm 1 Online Regularization with Convex Operational
Cost

1: Input: ε > 0 and η = ln(1 +NDmax/ε)
2: Initialization: s̃i(0) = 0 for all i = 1, · · · , N
3: for t = 1 to T do

s̃i(t) = argminsi(t)∈Pt

{
fi,t(si(t))

+
1

η

N∑
i=1

βi

[
(si(t) + ε/N) ln

(
si(t) + ε/N

s̃i(t− 1) + ε/N

)
− si(t)

]}
(3)

where Pt , {si(t)|
∑T
i=1 si(t) ≥ D(t), si(t) ≥ 0 ∀i}

4: end for

the operating cost and the regularized switching cost. As
in [8], we use the relative entropy plus a linear term as the
regularizer. The regularizer for two (discrete) distributions θ
and u is defined as

∑
i θi ln(θi/ui) + θi − ui. But unlike

the regularization algorithm in [8] where the operational cost
function is linear and all the variables are within the range of
[0, 1], our algorithm deals with convex functions and general
non-negative domains for all the variables si(t). We present
our online algorithm in Algorithm 1.

In Algorithm 1, we assume that Dmax = maxtD(t) is
known in advance and N refers to the number of data centers.
We compute the workload dispatch s̃i(t) by solving the convex
optimization problem (3) in each time-slot, where ε is a
parameter that can be adjusted. Since (3) is a continuous
convex optimization problem, it can be solved in polynomial
time. Algorithm 1 computes s̃i(t) using only the information
available at the current time-slot and s̃i(t− 1).

To study the performance of our online algorithm, we adopt
a primal-dual analysis similar to [8]. Below we first provide
an overview of the main idea of the primal-dual technique
involved in the analysis. We start with the primal problem (1)
with ri(t) = 0 ∀i, t, which is equivalent to the following where
we introduce variables zi(t) so that the objective function is
continuous:

min
si(t)

T∑
t=1

N∑
i=1

(fi,t(si(t)) + βizi(t))

s.t.

N∑
i=1

si(t) ≥ D(t) ∀t

si(t) ≥ 0 ∀i, t
zi(t) ≥ si(t)− si(t− 1) ∀i, t
zi(t) ≥ 0 ∀i, t

(4)

The Lagrangian function of (4) is

L(µi,t, λt, li,t, ki,t, si(t), zi(t))

=

T∑
t=1

N∑
i=1

[fi,t(si(t)) + βizi(t)] +
∑
t

λt[D(t)−
∑
i

si(t)]

+
∑
t

∑
i

µi,t (si(t)− si(t− 1)− zi(t))

−
∑
t

∑
i

(li,tsi(t)− ki,tzi(t))

=
∑
t

∑
i

[fi,t(si(t)) + (µi,t − µi,t+1 − λt − li,t)si(t)]

+
∑
t

∑
i

(βi − µi,t − ki,t) zi(t) +
∑
t

λtD(t)

where λt, li,t, µi,t and ki,t are the Lagrangian multipliers for
the four constraints in (4). Thus, the dual function of (4) is

D(µi,t, λt, li,t, ki,t) = min
si(t),zi(t)

L(µi,t, λt, li,t, ki,t, si(t), zi(t))

= min
si(t)

∑
t

∑
i

[fi,t(si(t)) + (µi,t − µi,t+1 − λt − li,t)si(t)]

+ min
zi(t)

∑
t

∑
i

(βi − µi,t − ki,t) zi(t) +
∑
t

λtDt (5)

To establish a relation between the optimal offline solution
and the online solution, the main idea is to assign the dual
variables with values µ̂i,t, λ̂t l̂i,t and k̂i,t based on the optimal
online solution s̃i(t). The weak duality tells us

max
µi,t,λt,li,t,ki,t

D(µi,t, λt, li,t, ki,t) ≤ value of (1)

Therefore, if we can prove

Total Online Cost ≤ Λ ·D(µ̂i,t, λ̂t, l̂i,t, k̂i,t)

for some Λ > 1, then our online algorithm is Λ-compeitive,
that is,

Total Online Cost ≤ Λ · value of (1)

All the theorems in this section and Section V are based
on this idea. We first show that Algorithm 1 has a smaller
competitive ratio compared with the greedy algorithm.

Theorem IV.2. Algorithm 1 is (1 + β
e0+C

)-competitive where

C ,

∑T
t=1

∑N
i=1

βi

η ln
(

s̃i(t)+ε/N
s̃i(t−1)+ε/N

)
s̃i(t)∑T

t=1D(t)
(6)

and C ∈ [0, β].

Proof: To show C ∈ [0, β], we need two inequality
facts:

∑
i ai log(ai/bi) ≥ (

∑
i ai) log(

∑
i ai∑
i bi

) ∀ai, bi > 0 and
a ln(a/b) ≥ a − b ∀a, b > 0. Due to limited space, we omit
the details of this part. Please refer to [28] for a proof.

Next, we show that the competitive ratio of Algorithm 1 is
1+ β

e0+C
. We assign dual variables λ̃t and l̃i,t to the constraints∑

i si(t) ≥ D(t) ∀t and si(t) ≥ 0 ∀i, t in (3) respectively.
Since (3) is a convex optimization problem, by applying the
KKT conditions of (3), we have for any i and t,

βi
η

ln

(
s̃i(t) + ε/N

s̃i(t− 1) + ε/N

)
= λ̃t − f ′i,t(s̃i(t)) + l̃i,t (7)



By setting λt = λ̃t, µi,t = βi

η ln
(
Dmax+ε/N
s̃i(t−1)+ε/N

)
, ki,t = 0 and

li,t = l̃i,t, and using the fact that βi ≥ µi,t, the dual function
associated with the offline problem becomes

D(µi,t, λt, li,t, ki,t) =
∑
t

λtD(t)

+ min
si(t)

∑
t

∑
i

[fi,t(si(t)) + (µi,t − µi,t+1 − λt − li,t)si(t)]

=
∑
t

λtD(t) + min
si(t)

∑
t

∑
i

[fi,t(si(t))− f ′i(s̃i(t))si(t)]

=
∑
t

λtD(t) +
∑
t

∑
i

[
fi,t(s̃i(t))− f ′i,t(s̃i(t))s̃i(t)

]
(8)

where the last equation follows from the convexity of fi,t(·).
Putting (7) into (8) and using the weak duality and the fact
that s̃i(t)l̃i,t = 0, we have the following

Offline Cost ≥ value of (8)

=
T∑
t=1

N∑
i=1

[
fi,t(s̃i(t)) +

βi
η

ln

(
s̃i(t) + ε/N

s̃i(t− 1) + ε/N

)
s̃i(t)

]
Thus, the competitive ratio of Algorithm 1 becomes

CR =
Online Cost
Offline Cost

≤
∑T
t=1

∑N
i=1 [fi,t(s̃i(t)) + βi(s̃i(t)− s̃i(t− 1))+]∑T

t=1

∑N
i=1

[
fi,t(s̃i(t)) + βi

η ln
(

s̃i(t)+ε/N
s̃i(t−1)+ε/N

)
s̃i(t)

]
≤ 1 +

∑T
t=1

∑N
i=1 βis̃i(t)∑T

t=1

∑N
i=1

[
fi,t(s̃i(t)) + βi

η ln
(

s̃i(t)+ε/N
s̃i(t−1)+ε/N

)
s̃i(t)

]
≤ 1 +

β
∑T
t=1

∑N
i=1 s̃i(t)∑T

t=1

∑N
i=1

[
e0,is̃i(t) + βi

η ln
(

s̃i(t)+ε/N
s̃i(t−1)+ε/N

)
s̃i(t)

]
≤ 1 +

β

e0 + C

Theorem IV.2 shows that Algorithm 1 has a smaller compet-
itive ratio compared to the greedy algorithm whenever C > 0.
Although it is difficult to get the accurate value of C due to
the complex correlation between ε and s̃i(t), we have C = 0
when all si(t) are equal and C = β when N = T = 1 and
s̃i(1) = Dmax. Thus, the new bound in Theorem IV.2 can
be close to 1 + β

e0+β
, which is very helpful especially when

e0 is very small compared to β. Further, the regularization
algorithm outperforms the greedy algorithm in our real-data
based simulation in Section VI.

V. ONLINE REGULARIZATION ALGORITHM WITH
SWITCHING COST OFFSET

In this section, we consider the case when ri(t) > 0, that
is, when there is a non-zero offset for the switching cost. We
note that ri(t) can capture the saving from renewable energy
access, the delay tolerance of computing workload, as well as
the reduced server’s wear-and-tear cost and state-toggling risk
with certain protection mechanisms as discussed in Section III.
Further, we assume that the operational cost function is linear
in this section and let ci(t) denote the unit operational cost.

Algorithm 2 Online Regularization with Linear Operational
Cost and Switching Cost Offset

1: Compute

Kc = max{ 2(1 + ε/Dmin)Dmaxβi
mini,t{ri(t)}mini,t{ci(t)}

, 1} (10)

Ks =
1

1−
∑

i βi maxi,t{ri(t)}
mini,t{ci(t)}Dmin

(11)

2: For input ε > 0, set

η =

{
ln(1 +NDmax/ε) if 1 ≤ Ks ≤ Kc

Kc ln(1 +NDmax/ε) o/w

3: Initialize s̃i(0) = 0 for all i = 1, · · · , N
4: for t← 1 to T do
5: The ISO solves the following problem to obtain s̃i(t)

s̃i(t) = argminsi(t)∈Pt

{
ci(t)si(t)

+
1

η

N∑
i=1

βi

[
(z̃i(t) + ε/N) ln

(
z̃i(t) + ε/N

s̃i(t− 1) + ε/N

)
− z̃i(t)

]}
(12)

where Pt = {si(t)|
∑T
i=1 si(t) ≥ D(t), si(t) ≥ 0 ∀i}

and

z̃i(t) =

{
si(t) if 1 ≤ Ks ≤ Kc

max{si(t)− ri(t), s̃i(t− 1)} o/w

6: end for

Problem (1) then becomes

min
si(t)

T∑
t=1

N∑
i=1

[
ci(t)si(t) + βi(si(t)− si(t− 1)− ri(t))+

]
s.t.

N∑
i=1

si(t) ≥ D(t) ∀t

si(t) ≥ 0 ∀i, t
si(0) = 0 ∀i

(9)
The problem with a general convex operational cost and a
non-zero switching offset remains open.

We first note that Algorithm 1 may perform poorly in
the presence of ri(t) as shown in Section VI. Thus, we
have designed a new regularization based online algorithm as
shown in Algorithm 2. Compared with Algorithm 1, the main
difference is that Algorithm 2 distinguishes two cases when
solving the convex optimization problem (12) based on the
values of Kc and Ks. When 1 ≤ Ks ≤ Kc, meaning that
ri(t) is relatively small, Algorithm 2 runs the same convex
optimization as in Algorithm 1 since small ri(t) will not result
in a big performance loss. When Ks > Kc (e.g., when ri(t)
is large), Algorithm 2 sets a different value of η to utilize the
large switching offset for a more aggressive switching policy.
Note that, Algorithm 2 needs the bound of ci(t) and ri(t). As
a result, the competitive ratio of Algorithm 2 also depends on
these two parameters.



Theorem V.1. The optimal solution s̃i(t) of Algorithm 2
can achieve a competitive ratio of Λ(1 + 2 ln(1 + N Dmax

Dmin
))

compared to the offline optimal solution of (9) where

Λ =

{
Ks if 1 ≤ Ks ≤ Kc

Kc otherwise,
(13)

by setting ε = Dmin.

The main challenge of the proof is that the offline dual
function of (9) has an extra negative term that is related to
ri(t), leading to the coupling of workload dispatch decisions
across multiple time slots and data centers. Therefore, we
prove the competitive ratio in two cases based on the value
of Ks and Kc as in Algorithm 2. We assign two different
sets of dual variables in different cases. In case 1 where
1 ≤ Ks ≤ Kc, the dual variables of (12) are assigned to
the same values as in the proof of Theorem IV.2. In the other
case where Ks < 1 or Ks > Kc, we assign different values
for the dual variables. Please refer to [28] for a detailed proof.
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Fig. 1. Competitive Ratio with Switching Offset

The competitive ratio in Theorem V.1 depends on the values
of βi, ri(t) and ci(t), which we believe is necessary for all
online algorithms. We plot Λ versus ri(t) in Figure 1 with
the same setting as in Section VI, where we have five data
centers and use real data for unit electricity prices ci(t), as
well as actual workload trace from the Google Cloud Platform
as D(t) and β = 6. ri(t) ∀i, t in Figure 1 are all equal. The
blue solid line refers to the case when Λ = Ks and the red
dash line refers to the case when Λ = Kc. Figure 1 shows that
Λ increases first and goes down after a certain value as ri(t)
increases. When ri(t) = 0, we have Λ = 1 and the competitive
ratio is 1 + 2 ln(1 + N Dmax

Dmin
), similar to the bound in [8].

As ri(t) increases, Λ becomes significantly large due to (11).
When ri(t) keeps increasing, we eventually have Ks < 0
and Kc ≈ 1 from (10). Thus, Λ ≈ 1 and the competitive
ratio becomes close to the upper bound 1 + 2 ln(1 +N Dmax

Dmin
)

again. Thus, Λ is determined by Kc when ri(t) is large and
is determined by Ks when ri(t) is small as illustrated by
Fig 1. Note that if we directly apply Algorithm 1 to (9),
the performance can be very bad for large ri(t) as shown
in Section VI.

VI. NUMERICAL RESULTS

In this section, we evaluate the performance of our algo-
rithms in various circumstances using real-data based simula-
tions.

A. Simulation Setup

Our simulation is based on real-world data traces for da-
ta center locations, workload, energy prices, and renewable
energy supply as discussed below.

1) The workload: We use the workload trace in May 2011
from a Google Cluster of about 12.5k machines [27] shown
in Figure 2(a). We count the average number of jobs arrived
at the cluster every five minutes over two days.

2) The availability of renewable energy: We use traces with
5 minutes granularity from [1], [2] for solar and wind energy in
five states where Google data centers are located. Figure 2(b)
shows the normalized Global Horizontal Irradiance (GHI)
from five solar plants and Figure 2(c) shows the normalized
energy generation from five wind farms in the corresponding
states.

The renewable energy supply determines the switching cost
offset for each data center and is normalized with respect to
the average workload. Let ρ denote the ratio between average
renewable energy supply and average workload over two days.

3) The data center system: We consider a system with five
data centers located in CA, IL, OR, TX and NC where Google
has data centers. Each data center has access to the closet solar
plant and wind turbine farm. We consider two operating cost
functions in the simulation. In Figure 3, the operating cost
equals to the energy price plus an extra penalty term as the
following:

fi,t(x) = (pi +Mi,t)x (14)

where pi is the industrial electricity price in each of the five
states in May 2011 [3] and Mi,t is a cyclic penalty term

Mi,t =

{
10pi if t mod N ≥ i
0 otherwise

In Figures 4 and 5, we consider another operational cost
function consisting of the energy cost and delay cost. The
energy cost is defined as follows:

pi(x− εi,t)+ (15)

where pi is the same price as in (14) and εi,t is a fixed
normalized portion of the renewable energy with ρo = 0.2.
For the delay cost, we use a similar model as in [17]:

Di,t = δi +
1000ms

µi − x
where δi is the transmission delay between each data center
and the central workload balancer (CA) resulting in delays
between 10ms and 260ms. µi = 0.1(ms)−1 refers to the
average number of jobs processed per unit time.

We use the renewable energy in each state as the switching
offset ri(t) with normalized portion ρs = 0.3 in Fig 4 and
vary its value in Fig 5. For switching cost, we set β = 20 in
Figure 5 and vary β in Figures 3 and 4 to show its impact on
total cost in different algorithms.
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Fig. 2. Workload and the Renewable Energy Supply

B. Simulation Results

We perform several simulations to evaluate the impact of
the switching cost and the switching cost offset in various
circumstances. In Figure 3, we set the switching cost offset
ri(t) = 0 and compare the greedy algorithm and the regular-
ization algorithm. In Figures 4 and 5, we set ri(t) to be the
renewable energy supply at t and investigate its effect.
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Fig. 3. Regularization Algorithm vs. Greedy Algorithm

We first compare the performance of the greedy algorithm
and the regularization based algorithm when there is no
switching cost offset. In Figure 3, we vary the value of the
switching cost β while fixing all the other parameters. The top
two subfigures show the operational and switching cost of both
regularization algorithm and greedy algorithm respectively.
The bottom one compares the overall performance of the
two algorithms. Based on our analysis in Section IV, the
greedy algorithm has a larger competitive ratio. Moreover,
the real performance of the regularization algorithm is also
much better than the greedy algorithm when β increases as
shown in Figure 3. In addition, as β increases, the regular-

ization algorithm reduces the amount of workload switching
(difference of workload assigned to a data center between two
consecutive time slots) to each data center more dramatically
compared to the greedy algorithm. The workload switching
for regularization algorithm is more aggressive when β is
small and more conservative when β is large. We can see that
the switching cost of the regularization algorithm increases
much slower than the greedy algorithm, leading to a higher
operational cost than the latter.
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Fig. 4. Cost vs. β with Real Data

In Figure 4 and Figure 5, we consider a fixed normalizing
portion (ρo = 0.2) of the renewable energy is allocated to
the operational cost and the switching cost offset ri(t) is the
renewable energy with normalizing parameter ρs. In both fig-
ures, we plot the operational cost, switching cost and total cost
respectively. We compare the performance of Algorithm 2,
Algorithm 1 and the greedy algorithm to investigate the impact
of β and ri(t). In Figure 4, we vary the value of β. The top
two sub-figures show that the two regularization algorithms
(with and without considering ri(t)) have higher operational
cost and smaller switching cost, which is consistent with
the observation in Figure 3. The bottom sub-figure shows
that Algorithm 2 outperforms the other two as expected. In
Figure 5, we study the impact of ri(t) by varying the value
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Fig. 5. Cost vs. Switching Offset with Real Data

of ρ, which is linearly proportional to ri(t). We observe that
the total cost of Algorithm 2 is much smaller than the other
two algorithms and the gap increases as ri(t) becomes larger.
This is expected since Algorithm 2 utilizes ri(t) to adjust the
workload dispatch more aggressively to reduce the total cost.
For Algorithm 1 and the greedy algorithm, the decrease in the
total cost only comes from the increase of ri(t).

VII. CONCLUSION

In this paper, we study the right-sizing problem in a sys-
tem consisting of a central workload balancer and multiple
heterogeneous data centers with different operational cost and
switching cost. We further introduce a switching cost offset to
our model. Two online regularization algorithms are proposed
for the case with and without the switching cost offset. For the
case without switching cost offset, we show that our algorithm
performs better than the greedy algorithm in terms of both the
competitive ratio obtained and the real performance in real
data based simulations. When considering the switching cost
offset, our algorithms achieves a competitive ratio proportional
to the logarithm of the number of data centers
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VIII. APPENDIX

Proof of Theorem IV.2



Proof: We show that C ∈ [0, β]. We have the following
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Inequality (a) follows from the fact that∑
i

ai log(ai/bi) ≥ (
∑
i

ai) log(

∑
i ai∑
i bi

) ∀ai, bi > 0

and inequality (b) follows from the fact that

a ln(a/b) ≥ a− b ∀a, b > 0 (16)

and s̃i(0) = 0. Thus, we have C ≥ 0. By noting that Dmax ≥
s̃i(t) ≥ 0 and η = ln(1 +NDmax/ε), we further have
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Proof of Theorem V.1

Proof: Similar to (4), we first convert the offline problem

(9) to an equivalent problem as follows:

min
si(t)

T∑
t=1

N∑
i=1

[ci(t)si(t) + βixi(t)]

s.t.

N∑
i=1

si(t) ≥ D(t) ∀t = 1, 2, · · · , T

xi(t) ≥ si(t)− si(t− 1)− ri(t) ∀i, t
xi(t) ≥ 0 ∀i, t
si(t) ≥ 0 ∀i, t

(17)

Introducing dual variables λt, µi,t, ki,k and li,t to the four
constraints in (17), respectively, the Lagrangian function of
(17) is

L =
∑
t

∑
i

(ci(t) + µi,t − µi,t+1 − li,t − λt) si(t)

+
∑
t

∑
i

[(βi − µi,t − ki,t)xi(t)− µi,tri(t)]

+
∑
t

λtD(t)

and the dual function of (17) is

D(µi,t, λt, li,t, ki,t) =
∑
t

λtD(t)−
∑
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µi,tri(t)

+ min
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(ci(t) + µi,t − µi,t+1 − li,t − λt) si(t)

+ min
xi(t)

∑
t

∑
i

(βi − µi,t − ki,t)xi(t) (18)

In Algorithm 2, we distinguish two cases based on the
values of Ks and Kc. Thus, our proof also consists of two
parts.

Case 1: 1 ≤ Ks ≤ Kc. In this case, we have η = ln(1 +
N Dmax

ε ) and z̃i(t) = si(t) in (12). Let λ̃t and l̃i,t denote
the dual variables associated with the constraints

∑
si(t) ≥

D(t) ∀t and si(t) ≥ 0 ∀i, t in (12), respectively. Applying the
KKT conditions to the dual problem of (12), we have:
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ln
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s̃i(t) + ε/N

s̃i(t− 1) + ε/N

)
= λ̃t − ci(t) + l̃i,t

s̃i(t)l̃i,t = 0

(19)

We set dual variables in the offline problem (17) as follows:
λt = λ̃t, µi,t = βi

η ln
(
Dmax+ε/N
s̃i(t−1)+ε/N

)
, li,t = l̃i,t and ki,t = 0.

It follows that µi,t ≤ βi from the definition of η, and µi,t −
µi,t+1 = βi

η ln
(

s̃i(t)+ε/N
s̃i(t−1)+ε/N

)
. Thus, ci(t) + µi,t − µi,t+1 −

li,t − λt = 0 from (19). We then have the following lower
bound for the dual function (by setting xi(t) = 0 in (18)):

D(µi,t, λt, li,t, ki,t) ≥
∑
t

λ̃tD(t)−
∑
t

∑
i

βiri(t) (20)

Denote Lt = {i|s̃i(t) > s̃i(t−1)+ri(t)}. We first consider



the moving cost Mt incurred by the online algorithm:
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where (a) follows from (16) and (b) follows from (19). We then
consider the operating cost S incurred by the online algorithm:
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where (a) follows from (19) and (b) follows from the fact that
C ≥ 0 as proved in Theorem IV.2. Thus, we have
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where (a) follows from (21) and (b) follows from the assump-
tion that Ks ≥ 1 > 0. It follows that
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where (a) follows from (21).
Case 2: Ks > Kc or Ks < 1. In this case, we have η =

Kc ln(1 + N Dmax

ε ). By assigning the same dual variables as
in Case 1 and applying the KKT conditions to (12), we have
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)
= 0 ∀i /∈ Lt, l̃i,t = 0 ∀i ∈ Lt and (19),

we must have λt ≥ 0 and ci(t) +µi,t−µi,t+1− li,t−λt ≥ 0.
Therefore, the dual function now becomes following

D(µi,t, li,t, ki,t, λt) =
∑
t

λtD(t)−
∑
t

∑
i

µi,tri(t)

+ min
si(t)

∑
t

∑
i

(ci(t) + µi,t − µi,t+1 − li,t − λt) si(t)

+ min
xi(t)

∑
t

∑
i

(βi − µi,t − ki,t)xi(t)

=
∑
t

λ̃tD(t)−
∑
t

max
i

βi
η

ln

(
z̃i(t) + ε/N

s̃i(t− 1) + ε/N

)
D(t)

Then, for moving cost Mt, we have

Mt = η
∑
i∈Lt

βi
η

(s̃i(t)− s̃i(t− 1)− ri(t))

(a)

≤ η
∑
i∈Lt

(s̃i(t)− ri(t) +
ε

N
) ·
(
λ̃t − ci(t)

)
≤ η

∑
i

(s̃i(t) +
ε

N
)λ̃t −

∑
i∈Lt

ηλ̃tri(t)

(b)

≤ η(1 +
ε

Dmin
)λ̃tDt

−
∑
i∈Lt

ηri(t)

[
βi
η

ln

(
s̃i(t)− ri(t) + ε/N

s̃i(t− 1) + ε/N

)
+ ci(t)

]
where (a) follows from the same argument in Case 1 and (b)
follows from (22) and l̃i,t = 0 ∀i ∈ Lt. For the operating cost,
we have

S =
∑
t

∑
i

ci(t)s̃i(t)

(a)
=
∑
t

∑
i

λ̃ts̃i(t)−
T∑
t=1

N∑
i=1

βi
η

ln

(
z̃i(t) + ε/N

s̃i(t− 1) + ε/N

)
s̃i(t)

(b)

≤
∑
t

λ̃tD(t)

where (a) follows (22) and (b) follows the fact that z̃i(t) ≥
s̃i(t− 1). By denoting

P = η
∑
t

∑
i∈Lt

ri(t)

[
ci(t) +

βi
η

ln

(
s̃i(t)− ri(t) + ε/N

s̃i(t− 1) + ε/N

)]



we have

Total Online Cost = S +

T∑
t=1

Mt

≤ (1 + η(1 + ε/Dmin))
∑
t

λ̃tD(t)− P

≤ (1 + η(1 + ε/Dmin))

(∑
t

λ̃tD(t)− P

1 + η(1 + ε/Dmin)

)
(a)

≤ (1 + η(1 + ε/Dmin))

·

[∑
t

λ̃tD(t)−
∑
t

max
i

βi
η

ln

(
z̃i(t) + ε/N

s̃i(t− 1) + ε/N

)
D(t)

]
≤ Kc (1 + (1 + ε/Dmin) ln (1 +NDmax/ε))D(µi,t, li,t, ki,t, λt)

where (a) follows from

Kc = max{ 2(1 + ε/Dmin)Dmaxβi
mini,t{ri(t)}mini,t{ci(t)}

, 1}

≥ 2(1 + ε/Dmin)Dmaxβi
ri(t)ci(t)

∀i, t

⇒ ri(t)

2(1 + ε/Dmin)

[
ci(t)Kc

βi
+ 1

]
≥ D(t) ∀i, t

⇒ ri(t)

2(1 + ε/Dmin)

[
ci(t)Kc ln(1 +N Dmax

ε )

βi ln(1 +N Dmax

ε )
+ 1

]
≥ D(t) ∀i, t

⇒ ri(t)

2(1 + ε/Dmin)

[
ci(t)η

βi ln(1 +N Dmax

ε )
+ 1

]
≥ D(t) ∀i, t

⇒ ηri(t)

2η(1 + ε/Dmin)

[
ci(t)η

βi

βi
η

ln

(
z̃i(t) + ε/N

s̃i(t− 1) + ε/N

)
/ ln(1 +N

Dmax

ε
)

+
βi
η

ln

(
s̃i(t)− ri(t) + ε/N

s̃i(t− 1) + ε/N

)]
≥ βi

η
ln

(
z̃i(t) + ε/N

s̃i(t− 1) + ε/N

)
D(t) ∀i ∈ Lt, t

⇒ ηri(t)

1 + η(1 + ε/Dmin)

[
ci(t) +

βi
η

ln

(
s̃i(t)− ri(t) + ε/N

s̃i(t− 1) + ε/N

)]
≥ βi

η
ln

(
z̃i(t) + ε/N

s̃i(t− 1) + ε/N

)
D(t) ∀i ∈ Lt, t

⇒
η
∑
t

∑
i∈Lt

ri(t)
[
ci(t) + βi

η ln
(
s̃i(t)−ri(t)+ε/N
s̃i(t−1)+ε/N

)]
1 + η(1 + ε/Dmin)

≥
∑
t

∑
i∈Lt

βi
η

ln

(
z̃i(t) + ε/N

s̃i(t− 1) + ε/N

)
D(t)

(a)⇒ P

1 + η(1 + ε/Dmin)
≥
∑
t

max
i

βi
η

ln

(
z̃i(t) + ε/N

s̃i(t− 1) + ε/N

)
D(t)

where (a) holds by following reasons:

1) jt ∈ Lt where jt = argmaxi
βi

η ln
(

z̃i(t)+ε/N
s̃i(t−1)+ε/N

)
∀t

2) βi

η ln
(

z̃i(t)+ε/N
s̃i(t−1)+ε/N

)
= 0 ∀i /∈ Lt ∀t

Then, combining the two cases above, we have (13).


