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Abstract—In this paper, we aim to design an optimal sampler
for a system in which fresh samples of a signal (source) are
sent through an unreliable channel to a remote estimator, and
acknowledgments are sent back over a feedback channel. Both the
forward and feedback channels could have random transmission
times due to time varying channel conditions. Motivated by
distributed sensing, the estimator can estimate the real-time value
of the source signal by combining the signal samples received
through the channel and the noisy signal observations collected
from a local sensor. We prove that the estimation error is a
non-decreasing function of the Age of Information (AoI) for the
received signal samples and design an optimal sampling strategy
that minimizes the long-term average estimation error subject
to a sampling rate constraint. The sampling strategy is also
optimal for minimizing the long-term average of general non-
decreasing functions of the AoI. The optimal sampler design
follows a randomized threshold strategy: If the last transmission
was successful, the source waits until the expected estimation
error upon delivery exceeds a threshold and then sends out a
new sample. If the last transmission fails, the source immediately
sends out a new sample without waiting. The threshold is the
root of a fixed-point equation and can be solved with low
complexity (e.g., by bisection search). The optimal sampling
strategy holds for general transmission time distributions of
the forward and feedback channels. Numerical simulations are
provided to compare different sampling policies.

Index Terms—Age of information, unreliable transmissions,
two-way delay, and sampling.

I. INTRODUCTION

Timely updates are crucial in many applications such as
vehicular networks, wireless sensor networks, and UAV navi-
gations. To achieve timely updates, we require the destination
to receive fresh information from the remote source as quickly
as possible. The information freshness is measured by age of
information, or simply age, which has been widely explored
in recent years (e.g., [2]–[23]). Age of information with the
function of current time t is defined as ∆t = t−Ut, where Ut is
the generation time of the freshest information data. In several
different queueing systems, the Last-Generated, First-Served
(LGFS) policy is shown to achieve age-optimality [2]–[4].
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Scheduling policies in various wireless networks are studied
to minimize age [5]–[9]. A literature review of recent works
in age of information is provided in [10].

In [11] and [12], a connection between age of information
and remote estimation of time-varying processes (e.g., Wiener
process or Ornstein-Uhlenbeck (OU) process) was established.
One of the remote estimation objectives in these early studies
was to design an optimal sampling policy to minimize the
long-term average minimum mean square error (MMSE). The
MMSE is a function of the age if the sampling policy is
independent of the signal being sampled [11]–[14]. Among
these studies, the estimator obtains the exact signal samples
subject to delay. However, the estimator neglects the instant
and inexact signal samples. For example, in vehicular net-
works, the estimator can estimate a signal via both the exact
signal samples from the remote sensor and the instant camera
streaming from the close vehicle sensor over time. To consider
both the delayed and instant signal samples, we will apply
the Kalman Filter [24, Chapter 7] and study the relationship
between the MMSE and age of information.

The desire for timely updates and the study of the new re-
mote estimation problem necessitates considering general non-
linear age functions in the development of optimal sampling
policies. To reduce the age, we may require the source to wait
before submitting a new sample, i.e., the zero-wait policy may
not be age-optimal1 [15]. The study in [16] generalized the
result in [15], proposed an optimal sampling policy under a
Markov channel with sampling rate constraint, and observed
that the zero-wait policy is far from optimal if, for example,
the transmission times are heavy-tail distributed or positively
correlated. In [17], the authors provided a survey of the age
penalty functions related to autocorrelation, remote estimation,
and mutual information. The optimal sampling solution is a
deterministic or randomized threshold policy based on the
objective value and the sampling rate constraint. However, in
real-time network systems, both the forward direction and the
feedback direction have a random delay. Such a random two-
way delay model was considered in e.g., [18], [19]. In [18], the
paper proposed a low complexity algorithm with a quadratic
convergence rate to compute the optimal threshold. In [19], an
optimal joint cost-and-AoI minimization solution was provided
for multiple coexisting source-destination pairs with heteroge-
neous AoI penalty functions. Although the above studies have
developed optimal sampling strategies, they assume that the
transmission process is reliable. However, due to the channel

1We refer to a policy as zero-wait if the source takes the sample and
transmits as soon as it receives the acknowledgement.
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fading, the channel conditions are time-varying, and thus the
transmission process is unreliable.

Recent studies [20], [21] investigate sampling strategies
while considering unreliable transmissions. In [20], the authors
considered quantization errors, noisy channel, and non-zero
receiver processing time, and they established the relationship
between the MMSE and age. For general age functions, they
provided optimal sampling policies, given that the sampler
needs to wait before receiving feedback. When the sampler
does not need to wait, they provided enhanced sampling
policies that perform better than previous ones. In [21], the
authors chose idle or transmit at each time slot to minimize
joint age penalty and transmission cost. The optimality of a
threshold-based policy is shown, and the policy’s threshold
is computed efficiently. Nevertheless, in practice, transmission
delays are random rather than constant because of congestion,
random sample sizes, etc, which is a critical challenge facing
the design of sampling strategies.

To address the aforementioned challenges, we investigate
how to design optimal sampling strategies in wireless networks
under the following more realistic (and general) conditions that
have largely been unexplored: unreliable transmissions and
random delay in both forward and feedback directions. Early
studies on optimizing sampling assuming reliable channels
with random delays have shown that the sampling problem is
decomposed into a per-sample problem. The per-sample prob-
lem can be further solved by optimization theory (e.g., [15]–
[18]) or optimal stopping rules (e.g., [11]–[13]). Similarly, our
problem assuming an unreliable channel is equivalent to a per-
epoch problem containing multiple samples until successful
packet delivery. Therefore, the per-epoch problem is a Markov
Decision Process (MDP) with an uncountable state space,
which is a key difference with past works, (e.g., [11]–[13],
[15]–[18]) and faces the curse of dimensionality.2 The main
contributions of this paper are stated as follows:

• We first formulate the problem where the estimator esti-
mates a signal in real-time by combining noisy signal
observations from a local sensor and accurate signal
samples received from a remote sensor. We show that if
the sampling policy is made independently of the signal
being sampled, the MMSE equals an increasing function
of the age of the received signal samples.

• For general nonlinear age functions, or simply age penalty
functions, we provide an exact solution for minimizing
these data freshness metrics. The optimal sampling policy
has a simple threshold-type structure, and the threshold
can be efficiently computed by bisection search and fixed-
point iterations. We uncover the following interesting
property: if the last transmission is successful, the op-
timal policy may wait for a positive time period before
generating the next sample and sending it out; otherwise,
no waiting time should be added. The key technical
approach developed in our results is given as follows:
(i) The value function of the proposed policy is an exact
solution to the Bellman equation. (ii) Under the contrac-

2We further compare our technical differences with past works in Sec-
tion V-D.

!"#$%&'$%(&

)%*"+%&,(-.'$%(&

Ot

(Si,j , OSi,j )

Bt/(%#0

12'&&"3

4'567'-*+12'&&"3

8'&*(.+!"3'0

98"3%':3";+

<1=>/<1=

?(-7'-*+12'&&"3

8'&*(.+!"3'0

9@&-"3%':3";+

)'.A3"-

Figure 1: System model.

tion mapping assumption, the solution to the Bellman
equation is unique, which guarantees optimality of our
proposed threshold-based policy. Our results hold for (i)
general non-decreasing age penalty functions, (ii) general
delay distributions of both the forward and feedback
channels, (iii) sampling problems both with or without
a sampling rate constraint. Therefore, our paper extends
previous studies on sampling for optimizing age (e.g.,
[15]–[18], [20], [21]). Although our sampling problem
is in continuous time, it can be easily reduced to be in
discrete time.

• When there is no sampling rate constraint, we provide
necessary and sufficient conditions on the optimality of
the zero-wait sampling policy [10] based on the choice of
age penalty function, forward and feedback channels. Fi-
nally, numerical simulations show that our optimal policy
can reduce the age compared with other approaches.

II. ESTIMATION AND THE AOI

A. System Model

Consider a status update system that is composed of a
source, a destination, a source-to-destination channel, and a
destination-to-source channel, as is illustrated in Fig. 1. The
source process Ot is sampled and delivered to the destination
via the forward channel. The forward channel suffers from
i.i.d. transmission failures, where α ∈ [0, 1) is the probability
of failure. Upon each delivery, the destination then sends an
1-bit feedback message denoting whether the transmission is
successful (ACK) or unsuccessful (NACK). The feedback is
sent via the feedback channel that is reliable with an i.i.d.
random delay.

To clarify the system model, we set i ∈ {1, 2, . . .} as the
label of a successful delivery in chronological order. Let us
denote the ith epoch to be the time period between the (i−1)th
and the ith successful deliveries. We denote Mi as the total
number of samples attempted during the ith epoch. Then, the
Mi’s are i.i.d. and has a geometric distribution with parameter
1 − α. We use j to describe the indices of samples at the
ith epoch, where we have 1 ≤ j ≤ Mi. The case j = 1
implies that the previous sample is successfully transmitted to
the destimation. Upon delivery, the destination immediately
sends the feedback to the sampler and arrives at time Ai,j
via the backward channel with an i.i.d. delay Xi,j , which
satisfies E[Xi,j ] <∞. Then, the jth sample in the ith epoch is
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Figure 2: Evolution of the age ∆t over time. The ith epoch
starts from Di−1,Mi−1 to Di,Mi .

generated at Si,j and is delivered at Di,j through the forward
channel with an i.i.d. delay Yi,j , which satisfies E[Yi,j ] <∞.

We assume that the backward delays Xi,j’s and forward
delays Yi,j’s are mutually independent. In addition, the source
generates a sample after receiving the feedback of the previous
sample3, i.e., Si,j ≥ Ai,j . In other words, we have a non-
negative waiting time Zi,j , Si,j − Ai,j for all epoch i and
sample index j. Thus, the forward channel is always available
for transmission at Si,j , and the delivery time Di,j satisfies
Di,j = Si,j + Yi,j . By Wald’s equation, the total transmission
delay needed in each epoch has a finite expectation:

E

Mi∑
j=1

(Xi,j + Yi,j)

 = E [Xi,j + Yi,j ]E [Mi] <∞. (1)

Age of information (or simply age) is the metric for evaluat-
ing data freshness and is equal to the time elapsed between the
current time t and the generation time of the freshest delivered
packet [23]. Let Ut = maxi{Si,Mi : Di,Mi ≤ t}. Note that
only the Mith sample is successfully delivered for the ith
epoch. Then, the age of information ∆t at the current time
t is defined as

∆t = t− Ut. (2)

We plot the evolution of the age (2) in Fig. 2. Upon each
successful delivery time Di,Mi , the age decreases to Yi,Mi ,
the transmission delay of the newly generated packet. At other
time, the age increases linearly over time. The age is updated
at the beginning of each epoch and keeps increasing during
the epoch. Hence, the age is also determined by

∆t = t− Si,Mi , if Di,Mi ≤ t < Di+1,Mi+1 . (3)
3This assumption arises from the stop-and-wait mechanism. When the

backward delay Xi,j = 0, the policy that samples ahead of receiving feedback
is always suboptimal. The reason is that such a policy takes a new sample
when the channel is busy and can be replaced by another policy that samples
at the exact time of receiving feedback [17]. When Xi,j 6= 0, however, it
may be optimal to transmit before receiving feedback, which is out of the
scope of this paper.

B. Remote Estimation and Kalman Filter

We first introduce some notations. For any multi-
dimensional vector O, we denote OT as the transpose of O.
We denote In×n,0n×m as the n×n identity matrix and n×m
zero matrix, respectively. For a given n×n matrix N , we set
tr(N) as the trace of N , i.e., the summation of the diagonal
elements of N .

In this subsection, the source process Ot is an n-dimensional
diffusion process that is defined as the solution to the following
stochastic differential equation:

dOt = −ΘOtdt+ ΣdWt, (4)

where Θ and Σ are n × n matrices, and Wt is the
n-dimensional Wiener process such that E[WtW

T
s ] =

In×n min{s, t} for all 0 ≤ t, s ≤ ∞. The process Ot
represents the behavior of many physical systems such as the
motion of a Brownian particle under friction and the motion
of the monomers in dilute solutions [25]. At the destination,
there is an estimator that provides estimations according to
the received samples. One key difference from previous works
(e.g., [11]–[13], [21]) is that the estimator not only receives
the accurate samples OSi,j at time Si,j but also has an instant
noisy observation Bt of the process Ot, as is illustrated in Fig.
1. The observation process Bt is an m-dimensional vector,
modeled as

Bt = HOt + Vt, (5)

where H is an n × m matrix and Vt is a zero mean white
noise process such that for all t, s ≥ 0,

E[VtV
T
s ] =

{
R t = s;
0m×m t 6= s,

(6)

R is an m×m positive definite matrix. We suppose that Wt

and Vt are uncorrelated such that for all t, s ≥ 0, E[WtV
T
s ] =

0n×m.
The estimator provides an estimate Ôt for the minimum

mean squared error (MMSE) E[||Ot − Ôt||2] based on the
causally received information. Compared to [12], the MMSE
in our study can be reduced due to the additional observation
process Bt. Using the strong Markov property of Ot [26,
Eq. (4.3.27)] and the assumption that the sampling times
are independent of Ot, as is shown by Appendix A in our
supplementary material, the MMSE estimator is determined
by

Ôt = E
[
Ot|{Bτ}Si,Mi≤τ≤t, OSi,Mi

]
, t ∈ [Di,Mi

, Di+1,Mi+1
).

(7)
By (7), we find that Ôt is equal to the estimate produced by the
Kalman filter [24, Chapter 7]. Therefore, in this work, we use
the Kalman filter as the estimator. At time t, the Kalman filter
utilizes both the exact sample OSi,Mi and noisy observation
Bt and provides the minimum mean squared error (MMSE)
estimation Ôt. Let Nt , E[(Ot − Ôt)(Ot − Ôt)

T ] be the
covariance matrix of the estimation error Ot − Ôt. Hence,
E[||Ot − Ôt||2] = tr(Nt).

According to (7), the estimation process works as follows:
Once a sample is delivered to the Kalman filter at time Di,Mi

,
the Kalman filter re-initiates itself with the initial condition
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Nt = 0n×n when t = Si,Mi
and starts a new estimation

session. Then, during the time period [Di,Mi , Di+1,Mi+1), the
Kalman filter uses the causal observations {Bτ : Si,Mi ≤ τ ≤
t} to estimate the process Ot.

Proposition 1. The MMSE tr(Nt) of the process Ot is a
non-decreasing function of the age ∆t.

Proof. See Appendix B in our supplementary material.

As a result of Proposition 1, when the sampling times Si,j’s
are independent of Ot, the MMSE is still a non-decreasing
function of the age ∆t. When Si,j’s are correlated to Ot, the
MMSE is not necessary a function of ∆t.

In the one-dimensional case, where n = m = 1, we use
scalars θ, σ, h, r, nt to replace the matrices Θ,Σ,H,R,Nt,
respectively. The Ornstein–Uhlenbeck (OU) process is defined
as a one-dimensional special case of diffusion process (4)
where θ > 0 [27]. Then, we have

Proposition 2. Suppose that n = m = 1 and θ > 0. Then,
for t ∈ [Di,Mi

, Di+1,Mi+1
) and i = 0, 1, 2, . . ., the MMSE nt

of the OU process Ot is given by

nt = n̄− 1

l +
(

1
n̄ − l

)
e2

√
θ2+σ2h2

r ∆t

, (8)

where ∆t = t− Si,Mi ,

n̄ =
−θr +

√
(θr)2 + σ2rh2

h2
, (9)

l =
h2

2
√

(θr)2 + σ2rh2
. (10)

Moreover, nt in (8) is a bounded and non-decreasing function
of the age ∆t.

Proof. See Appendix C in our supplementary material.

When the side observation has zero knowledge of Ot, i.e.,
h = 0 for t ≥ 0, then the estimator Ôt is equal to that in [12].
Therefore, Proposition 2 reduces to [12, Lemma 4], i.e., the
MMSE nt is given by

nt =
σ2

2θ

(
1− e−2θ∆t

)
, (11)

moreover, nt for h = 0 is a bounded and non-decreasing
function of age ∆t.

III. PROBLEM FORMULATION FOR GENERAL AGE
PENALTY

The function in Proposition 2 is not the only choice of non-
linear age functions. In this paper, to achieve data freshness in
various applications, we consider a general type of age penalty
function. The age penalty function p : [0,∞)→ R is assumed
to be non-decreasing and need not be continuous or convex.

We further assume that E
[ ∫ δ+∑Mi

j=1(Xi,j+Yi,j)

δ p(t)dt
]
< ∞

and E
[
p
(
δ +

∑Mi

j=1(Xi,j + Yi,j)
)
dt
]
<∞ for any given δ.

We list another two categories of applications for the age
penalty functions. First, the age penalty functions can be linear,
polynomial, or exponential, depending on the dissatisfactions

of the stale information updates in multiple practical settings
such as the Internet of Things [28]. Second, some applications
are shown to be closely related to nonlinear age functions, such
as auto-correlation function of the source, remote estimation,
and information based data freshness metric [17].

We then define the sampling policies below. We denote Hi,j
as the sample path of the history information previous to Ai,j ,
including sampling times, forward channel conditions, and
channels delays. We denote Π as the collection of sampling
policies {Si,j}i,j such that Si,j ≥ Ai,j for each (i, j), and
Si,j(dsi,j |Hi,j) is a Borel measurable stochastic kernel [29,
Chapter 7] for any possible Hi,j . Further, we assume that
Ti = Si,Mi − Si−1,Mi−1 is a regenerative process: there
exists an increasing sequence 0 ≤ k1 < k2 < . . . of finite
random variables such that the post-kj process {Tkj+i, i =
0, 1, . . .} has the same distribution as the post-k1 process
{Tk1+i, i = 0, 1, . . .} and is independent of the pre-kj process
{Ti, i = 1, 2, . . . , kj − 1}; in addition, E [kj+1 − kj ] < ∞,
E
[
Sk1,Mk1

]
<∞ and 0 < E

[
Skj+1,Mkj+1

− Skj ,Mkj

]
<∞,

j = 1, 2, . . .4

The authors in [13] have stated that: to reduce the estimation
error related to the Wiener process, it may be optimal to wait
on both the source and the destination before transmission.
However, in this paper, it is sufficient to only wait at the source
to minimize the age. To validate this statement, consider any
policy that waits on both the source and the destination. We
first remove the waiting time at the destination. Then, at the
source, we add up the removed waiting time. The replaced
policy we propose has the same age performance as the former
one.

Our objective in this paper is to optimize the long-term
average expected age penalty under a sampling rate constraint:

popt = inf
π∈Π

lim sup
T→∞

1

T
E

[∫ T

0

p(∆t)dt

]
, (12)

s.t. lim sup
T→∞

1

T
E [C(T )] ≤ fmax. (13)

Here, C(T ) is the total number of samples taken by time
T , and fmax is the maximum allowed sampling rate. The
constraint (13) is added because in practice, the sensor may
need to keep working for a long time with limited amount of
energy. To avoid triviality, the optimal objective value popt in
(12) satisfies popt < p̄, where p̄ = limδ→∞ p(δ). Note that we
allow p̄ to be infinite.

A. An Additional Assumption and Its Rationale

We will utilize the following assumption in this paper.

Assumption 1. If α > 0, the backward delay Xi,j ∈ [0, x̄],
and the waiting time Zi,j ∈ [0, z̄] for all i, j. For any
positive x̄, z̄ (that can be sufficiently large), there exists an
increasing positive function v(δ) such that the function G(δ) =

4In this paper, we will optimize lim supT→∞(1/T )E
[∫ T

0 p(∆t)dt
]

.

However, a nicer objective is to optimize limn→∞ E
[∫Dn,Mn

0 p(∆t)dt
]

/E
[
Dn,Mn

]
. If Ti is a regenerative process, then the two objective functions

are equal [30], [31]. If no conditions are applied, they are different.
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E
[∫ δ+x̄+z̄+Yi,j
δ

|p(t)|dt
]

satisfies maxδ≥0 |G(δ)/v(δ)| < ∞.
In addition, there exists ρ ∈ (0, 1) and a positive integer m,
such that

αm
E
[
v(δ +mx̄+mz̄ +

∑m
j=1 Yj)

]
v(δ)

≤ ρ (14)

holds for all δ ≥ 0, where Y1, . . . , Ym are an i.i.d. sequence
with the same distribution as the Yi,j’s.

When the forward channel is reliable, i.e., α = 0, then
Assumption 1 is negligible by letting v(δ) = G(δ). Thus,
Assumption 1 restricts on the choices of age penalty p(·) when
α > 0. Note that the optimal sampling policy of the cases
α = 0 and Xi,j = 0 has been solved in [16], [17].

In the following corollary, we provide a list of age penalties
p(·) that Assumption 1 is satisfied for α > 0.

Corollary 1. For any one of the following conditions, Assump-
tion 1 holds:

(a) The penalty function p(·) is bounded, i.e., p̄ <∞.
(b) There exists n > 0 such that p(δ) = O(δn),5 and the

Yi,j’s have a finite n+ 1-moment, i.e., E
[
Y n+1
i,j

]
<∞.

(c) There exists a > 0 and b < 1 such that
∫ δ

0
p(t)dt =

O(eaδ
b

), and the Yi,j’s are bounded.

Proof. See Appendix D in our supplementary material.

Most of the literatures of MDP have shown that the value
function of an optimal policy is the solution to the Bellman
equation. In this paper, we figure out a policy and its value
function that is indeed the solution to the Bellman equation.
If the Bellman equation has a unique solution, then our pro-
posed policy is optimal. Otherwise, we cannot guarantee the
optimality of our proposed policy. Assumption 1 arises from
the contraction mapping assumption [32], [33] that guarantees
that the Bellman equation has a unique solution. In other
words, Assumption 1 is a sufficient condition for the Bellman
equation to have a unique solution. Corollary 1 implies that
there are a wide range of age penalty functions that satisfy
Assumption 1. For example, the age penalty function derived
in Proposition 2 satisfies Assumption 1. Indeed, Assumption 1
holds if the age penalty function grows exponentially at some
bounded intervals. For all cases of the age penalty functions
we have mentioned, the constants z̄, x̄ can be sufficiently
large. Therefore, in this paper, we set the constants z̄, x̄ to
be sufficiently large.

IV. OPTIMAL SAMPLING POLICY

In this section, we provide an optimal solution to (12).
The optimal solution is described by the waiting times Z ′i,js
throughout this paper.

A. Optimal Sampling Policy without Sampling Rate Constraint

When there is no sampling rate constraint, i.e., fmax = ∞,
we have the following result:

5We denote f(δ) = O(g(δ)) if there exists some nonnegative constants c
and δ′ such that |f(δ)| ≤ c|g(δ)| for all δ > δ′.

Theorem 1. If fmax = ∞, p(·) is non-decreasing, the Yi,j’s
are i.i.d. with finite mean E[Yi,j ] < ∞, the Xi,j’s are i.i.d.
with finite mean E[Xi,j ] < ∞, the Yi,j’s and the Xi,j’s
are mutually independent, and Assumption 1 holds, then the
optimal solution to (12) is given by

Zi,1(β) = inf
z

{
z ≥ 0 :

EY ′
[
p(Yi−1,Mi−1 +Xi,1 + z + Y ′)

∣∣ Yi−1,Mi−1 , Xi,1

]
≥ β

}
,

(15)
Zi,j(β) = 0 j = 2, 3, . . . , (16)

Y ′ = Yi,1 +
∑Mi

j=2(Xi,j +Yi,j),6 and β is the unique solution
to

E

[∫ Yi−1,Mi−1
+Xi,1+Zi,1(β)+Y ′

Yi−1,Mi−1

p(t)dt

]
− βE [Xi,1 + Zi,1(β) + Y ′] = 0. (17)

Moreover, β = popt is the optimal objective value of (12).

Proof. See Section V.

In Theorem 1, the case j = 1 in (15) means that the previous
transmission (of the Mi−1th sample in the (i− 1)th epoch) is
successful, and the system starts the new epoch from i− 1 to
i. Since the age drops to Yi−1,Mi−1 at the successful delivery
time Di−1,Mi−1

, the current age state at arrival time Ai,1 is
Yi−1,Mi−1

+ Xi,1. The case j = 2, 3, . . . in (16) means that
the previous transmission is unsuccessful, and the system stays
within epoch i.

Theorem 1 provides an optimal policy with an interesting
structure. First, by (15), in each epoch, the optimal waiting
time for the first sample Zi,1(β) has a simple threshold type
structure on the current age Yi−1,Mi−1 + Xi,1. Since the
waiting times for j = 2, 3, . . . are zero, Y ′ is the remaining
transmission delay needed for the next successful delivery.
Note that β is equal to the optimal objective value popt in
problem (12). Therefore, the waiting time Zi,1(β) in (15) is
chosen such that the expected age penalty upon delivery is no
smaller than popt. Second, by (16), the source sends the packet
as soon as it receives negative feedback, i.e., the previous
transmission is not successful. This is quite different from most
of the previous works assuming reliable channels, e.g., [16]–
[19], where for all samples, the source may wait for some time
before transmitting a new sample.

We call a sampling policy to be stationary if each sampling
time is decided by the current age state and the previous
backward delay. We call a sampling policy to be deterministic
if each sampling time chooses a value with probability 1
(w.p. 1). We remind that the optimal policy we proposed in
Theorem 1 is stationary and deterministic. This stationary and
deterministic policy depends only on the current age state and
the previous backward delay, not on the sample index j. For
example, when j = 1, the previous backward delay is Xi,1,
and the current age state is Yi−1,Mi−1

+Xi,1. For general value
of j, the previous backward delay is Xi,j , and we suppose that

6In this paper, we set the summation operator
∑b

j=a to be 0 if b < a for
any given integers a, b.
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Algorithm 1: Bisection method for solving (17)

1 Given function f(β) = f1(β)− βf2(β). k1 close to p,
k2 close to p̄, k1 < k2, and tolerance ε small.

2 repeat
3 β = 1

2 (k1 + k2)
4 if f(β) < 0: k2 = β. else k1 = β
5 until k2 − k1 < ε
6 return β

the current age state is ∆i,j + Xi,j . Then, the stationary and
deterministic policy, which has an equivalent form of (15),(16)
in Theorem 1, is as follows:

Zi,j(β) = inf
z

{
z ≥ 0 :

EY ′
[
p(∆i,j +Xi,j + z + Y ′j )

∣∣ ∆i,j , Xi,j

]
≥ β

}
.

(18)

Here, Y ′j = Yi,j +
∑Mi

k=j+1(Xi,k + Yi,k), conditioned that
Mi ≥ j. Since Mi is geometrically distributed, Mi conditioned
that Mi ≥ j has the same distribution as Mi+j−1. Therefore,
Y ′j has the same distribution as Y ′ defined in Theorem 1,
which guarantees that the optimal decision Zi,j is stationary.

The root of β in (17) can be solved efficiently. According to
(17), we can use a low complexity algorithm such as bisection
search and fixed-point iterations to obtain the optimal objective
value popt. The bisection search approach to solving popt is
illustrated in Algorithm 1. For simplicity, we set

f1(β) = E

[∫ Yi−1,Mi−1
+Xi,1+Zi,1(β)+Y ′

Yi−1,Mi−1

p(t)dt

]
, (19)

f2(β) = E [Xi,1 + Zi,1(β) + Y ′] . (20)

Then, the function f(β) , f1(β) − βf2(β) satisfies the
following mathematical property:

Lemma 1. (1) f(β) is concave, and strictly decreasing in
β ∈ [p, p̄) ∩ R, where p = p(0) and p̄ = limδ→∞ p(δ).

(2) There exists a unique root β ∈ [p, p̄) ∩ R such that
f(β) = 0.

Proof. See Appendix L in our supplementary material.

Therefore, the solution to Algorithm 1 is unique.
One common sampling policy is the zero-wait policy, which

samples the packet once it receives the feedback, i.e., Zi,j = 0
for all (i, j) [10]. The zero-wait policy maximizes the through-
put and minimizes the delay. However, by Theorem 1, the
zero-wait policy may be suboptimal on age. The following
result provides the necessary and sufficient condition when
the zero-wait policy is optimal.

Corollary 2. If fmax = ∞, p(·) is non-decreasing, the Yi,j’s
are i.i.d. with finite mean E[Yi,j ] < ∞, the Xi,j’s are i.i.d.
with finite mean E[Xi,j ] < ∞, the Yi,j’s and the Xi,j’s are

mutually independent, and Assumption 1 holds, then the zero-
wait policy is optimal if and only if

ess inf EY ′ [p(Y +X + Y ′) | Y,X] ≥
E
[∫ Y+X+Y ′

Y
p(t)dt

]
E [X + Y ′]

,

(21)

where Y ′ = Yi,1 +
∑Mi

j=2(Xi,j + Yi,j), Y = Yi−1,Mi−1 , X =
Xi,1, and we denote essinf E = inf {e : P(E ≤ e) > 0} for
any random variable E.

Proof. See Appendix M in our supplementary material.

When the channel delays are constant, we can get from
Corollary 2 that

Corollary 3. If fmax =∞, p(·) is non-decreasing and satisfies
Assumption 1, and the Yi,j’s, Xi,j’s are constants, then the
zero-wait policy is the solution to problem (12).

Proof. See Appendix N in our supplementary material.

Theorem 1 is an extension to [17], [18]. When the forward
channel is reliable, i.e., Mi = 1 for all i or α = 0, Theorem 1
can be reduced to the result in [18]. Further, we extend [18] in
two ways: (i) The age penalty p(·) is allowed to be negative or
discontinuous. (ii) The channel delays Yi,1, Xi,1 have a finite
expectation and do not need to be bounded. Note that when
Mi = 1, Assumption 1 is negligible. When Mi = 1, and there
is no backward delay (Xi,1 = 0), our result reduces to [17,
Theorem 1].

The study in [20, Theorem 2] proves the optimality of
the zero-wait policy among the deterministic policies under
an unreliable forward channel. This result corresponds to
Corollary 3, a special case of Theorem 1. Our paper extends
[20] in two folds: (i) We allow the policy space Π to be ran-
domized. Among randomized policies, due to the disturbances
on the previous sampling times, the current sampling time
is dependent on the previous ones, which is different from
[20]. (ii) We consider random two-way delays, extending the
constant one-way delay in [20].

B. Optimal Sampling Policy with Sampling Rate Constraint

For general values of fmax, we propose the following result
that extends Theorem 1:

Theorem 2. If p(·) is non-decreasing, the Yi,j’s are i.i.d.
with finite mean E[Yi,j ] < ∞, the Xi,j’s are i.i.d. with finite
mean E[Xi,j ] < ∞, the Yi,j’s and the Xi,j’s are mutually
independent, and Assumption 1 holds, then (15)-(17) is the
optimal solution to (12), if the following condition holds:

E [Xi,1 + Zi,1(β) + Y ′] >
1

fmax(1− α)
, (22)

where Y ′ = Yi,1 +
∑Mi

j=2(Xi,j + Yi,j). Otherwise, an optimal
solution is as follows:

Zi,1(β) =

{
Zmin(β) w.p. λ,
Zmax(β) w.p. 1− λ. (23)

Zi,j = 0, j = 2, 3, . . . ,Mi, (24)
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Zmin(β) and Zmax(β) are described as follows:

Zmin(β) = inf
z

{
z ≥ 0 :

EY ′
[
p(Yi−1,Mi−1 +Xi,1 + z + Y ′)

∣∣ Yi−1,Mi−1 , Xi,1

]
≥ β

}
,

(25)

Zmax(β) = inf
z

{
z ≥ 0 :

EY ′
[
p(Yi−1,Mi−1

+Xi,1 + z + Y ′)
∣∣ Yi−1,Mi−1

, Xi,1

]
> β

}
.

(26)

β is determined by

E [Xi,1 + Zmin(β) + Y ′] ≤ 1

fmax(1− α)

≤E [Xi,1 + Zmax(β) + Y ′] . (27)

The probability λ is given by

λ =
E [Xi,1 + Zmax(β) + Y ′]− 1

fmax(1−α)

E [Zmax(β)− Zmin(β)]
. (28)

Proof. See Section V.

According to Theorem 2, the proposed optimal policy may
be randomized or deterministic. When p(·) is strictly increas-
ing, we have Zmin(β) = Zmax(β). Similar to Theorem 1, the
optimal policy is stationary and deterministic in current age
and previous backward delay. When p(·) is not strictly increas-
ing, Zmin(β) and Zmax(β) may be different, so the optimal
policy at j = 1 is a random mixture of two deterministic
sampling times. Note that when Zmin(β) and Zmax(β) may be
different, the random optimal policy may be nonstationary.
In addition, we can solve (27) via low complexity algorithms
such as bisection search.

When Mi = 1 (or α = 0) and Xi,j = 0, Theorem 2 reduces
to [17, Theorem2]. Combined with the discussions in Section
IV-A, we conclude that our paper is an extension to some
recent studies on sampling for optimizing age, e.g., [15]–[18],
[20], [21].

V. PROOF OF THE MAIN RESULT

In this section, we provide the proof of our main results:
Theorem 1 and Theorem 2. In Section V-A, we utilize the
Lagrangian dual problem of the original long-term average
problem and reformulate the Lagrangian dual problem into a
per-epoch MDP problem. In Section V-B, we solve the per-
epoch MDP problem by formulating an exact optimal value
function to the Bellman Equation, which is the key challenge
to this paper. In Section V-C, we established zero duality gap
to the Lagrangian problem, which ends our proof. Finally, in
Section V-D, we summarize our technical contribution and
compare it with some related works.

A. Reformulation of Problem (12)

In this subsection, we decompose the original problem to a
per-epoch problem. The idea is motivated by recent studies that
reformulate the average problem into a per-sample problem
[11], [12], [16]–[18].

Since {Si,Mi
}i follows a regenerative process, by renewal

theory, [30, Section 6.1], [34],

lim sup
T→∞

1

T
E

[∫ T

0

p(∆t)dt

]
(29)

= lim
n→∞

E
[∫Dn,Mn

0
p(∆t)dt

]
E [Dn,Mn

]
(30)

= lim
n→∞

∑n
i=1 E

[∫Di,Mi
Di−1,Mi−1

p(∆t)dt
]

∑n
i=1 E

[
Di,Mi −Di−1,Mi−1

] . (31)

In addition,

lim sup
T→∞

1

T
E [C(T )] = lim

n→∞

E [
∑n
i=1Mi]

E [Sn,Mn
]

(32)

= lim
n→∞

n

(1− α)E [Dn,Mn
]
. (33)

From (29)-(33), the original problem (12) is equivalent to

popt = inf
π∈Π

lim
n→∞

∑n
i=1 E

[∫Di,Mi
Di−1,Mi−1

p(∆t)dt
]

∑n
i=1 E

[
Di,Mi

−Di−1,Mi−1

] , (34)

s.t. lim
n→∞

1

n

n∑
i=1

E
[
Di,Mi

−Di−1,Mi−1

]
≥ 1

fmax(1− α)
.

(35)

We consider the following MDP with a parameter c ∈ R:

h(c) = inf
π∈Π

lim
n→∞

1

n

n∑
i=1

E

[∫ Di,Mi

Di−1,Mi−1

p(∆t)dt

− c
(
Di,Mi

−Di−1,Mi−1

) ]
, (36)

s.t. lim
n→∞

1

n

n∑
i=1

E
[
Di,Mi

−Di−1,Mi−1

]
≥ 1

fmax(1− α)
.

(37)

By Dinkelbach’s method [35], we have

Lemma 2. [17, lemma 2]
(i) h(c) S 0 if and only if popt S c.
(ii) The solution to (34) and (36) are equivalent.

We define the Lagrangian with c = popt:

L(π; γ) = lim
n→∞

1

n

n∑
i=1

E

[∫ Di,Mi

Di−1,Mi−1

p(∆t)dt (38)

− (popt + γ)
(
Di,Mi

−Di−1,Mi−1

) ]
+

γ

fmax(1−α)
,

(39)

where γ ≥ 0 is the dual variable. The primal problem is

l(γ) , inf
π∈Π

L(π; γ). (40)

The dual problem is

d , max
γ≥0

l(γ). (41)
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Weak duality theorem [36], [37] implies that d ≤ h(popt). We
will later show that the duality gap is 0, i.e., d = h(popt). Note
that

Di,Mi
−Di−1,Mi−1

=

Mi∑
j=1

(Xi,j + Zi,j + Yi,j), (42)

E

[∫ Di,Mi

Di−1,Mi−1

p(∆t)dt

]
(43)

=E

[∫ Yi−1,Mi−1
+
∑Mi
j=1(Xi,j+Zi,j+Yi,j)

Yi−1,Mi−1

p(t)dt

]
. (44)

Recall that the age decreases to Yi−1,Mi−1 at time Di−1,Mi−1 .
Note that Yi−1,Mi−1

is independent of the history information
by the sampling time Si−1,Mi−1

. Thus, the age evolution at
the ith epoch is independent of the sampling decisions from
the previous epochs 0, 1, 2, ..., i− 1. Therefore, to solve (40),
minimizing each epoch separately is sufficient. We define
the policy space Πi as the collection of sampling decisions
(Zi,1, Zi,2, ...) at epoch i such that the stochastic kernel

Zi,j(dzi,j |yi−1,Mi−1
, xi,1, zi,1, yi,1, . . . , zi,j−1, yi,j−1, xi,j)

is Borel measurable. The difference between Πi and Π is that
the sampling decisions in Πi do not depend on the history
information from previous epochs (except Yi−1,Mi−1

). Hence,
it is easy to find that Πi ⊂ Π.

Then, by the analysis of the previous paragraph, we have
the following result:

Lemma 3. An optimal solution to (40) satisfies

inf
π∈Πi

E

[∫ Yi−1,Mi−1
+
∑Mi
j=1(Xi,j+Zi,j+Yi,j)

Yi−1,Mi−1

p(t)dt

− (popt + γ)

Mi∑
j=1

(Xi,j + Zi,j + Yi,j)
∣∣∣ Yi−1,Mi−1

, Xi,1

]
.

(45)

Thus, for any epoch i, we will solve Zi,1, Zi,2, ... according
to (45).

B. Solution to the Per-epoch Problem (45)

We will solve problem (45) given that Yi−1,Mi−1
= δ and

Xi,1 = x, where δ ≥ 0 and x ≥ 0. Since the epoch number
i does not affect problem (45), in this subsection, we will
remove the subscription i from Mi, Xi,j , Yi,j , Zi,j and replace
them by M,Xj , Yj , Zj for the ease of descriptions. In addition,
since we want to find out a solution to (34), we need to avoid
that l(γ) = −∞. Thus, we assume that γ satisfies infz≥0{z :
p(z) > popt + γ} <∞.7

Different from [11], [12], [16], [17], the per-epoch problem
(45) is an MDP with multiple samples and cannot be reduced
to the per-sample problem in the sense that the age is not
refreshed under failed transmissions. According to (45), we
define the value function Jπ,γ under a policy π ∈ Πi with an

7If infz≥0{z : p(z) > popt +γ} =∞, this subsection implies that waiting
for arbitrary large time can optimize (40). If such a policy optimizes (36), we
have popt = p̄, which contradicts to our assumption that popt < p̄.

initial age state δ ≥ 0 (at delivery time) and backward delay
x ≥ 0:

Jπ,γ(δ, x) =E

[∫ δ+
∑M
j=1(Xj+Zj+Yj)

δ

p(t)dt

− (popt + γ)

M∑
j=1

(Xj + Zj + Yj)
∣∣∣ X1 = x

]
(46)

=E

 M∑
j=1

gγ(∆j , Xj , Zj)
∣∣∣ ∆1 = δ,X1 = x

 ,
(47)

where the instant cost function gγ(δ, x, z) with state (δ, x) and
action z is defined as

gγ(δ, x, z)

=EY

[∫ δ+x+z+Y

δ

p(t)dt− (popt + γ)(x+ z + Y )

]
, (48)

where Y has the same delay distribution as the Yj’s and the
age state evolution is described as

∆j+1 = ∆j +Xj + Zj + Yj , j = 1, 2, ...M − 1, (49)

with initial age state ∆1 = δ and initial backward delay x.
Also, the policy π ∈ Πi has a Borel measurable stochastic
kernel Zj(dzj |δ1, x1, z1, . . . , δj , xj), and thus Jπ,γ(δ, x) is
Borel measurable [29, Chapter 9]. The above settings imply
that problem (45) is equivalent to a shortest path MDP
problem. Solving (45) is equivalent to solving

Jγ(δ, x) = inf
π∈Πi

Jπ,γ(δ, x). (50)

When the channel state is reliable, i.e., α = 0 or M = 1,
problem (45) (or equivalently, (50)) becomes a single-sample
problem, and there is no bound restriction to the instant cost
function gγ(δ, x, z). However, in the unreliable transmission
case where α > 0, problem (45) contains multiple samples. In
the case of multiple samples, most of the literature of dynamic
programming e.g., [29], [32], [33], [38]–[42] requires that the
instant cost function gγ(δ, x, z) is bounded from below. We
have such a requirement.

Lemma 4. There exists a value η such that gγ(δ, x, z) ≥ −η
and Jπ,γ(δ, x) ≥ −η/(1− α) for all (δ, x, z) and any policy
π ∈ Πi.

Proof. See Appendix E in our supplementary material.

Using Lemma 4 and Appendix F in our supplementary
material, Jπ,γ(δ, x) defined in (47) also equals to a discounted
sum with discount factor α:

Jπ,γ(δ, x) =

∞∑
j=1

αj−1E
[
gγ(∆j , Xj , Zj)

∣∣∣ ∆1 = δ,X1 = x
]
.

(51)

Note that (51) is motivated by [38, Chapter 5], illustrating
that the discounted problem is equivalent to a special case of
shortest path problem.



ix

Recall that uncountable infimum of Borel measurable func-
tions is not necessary Borel measurable. Problem (45) has
an uncountable state space. Thus, the optimal value function
Jγ(δ, x) defined in (50) may not be Borel measurable8, despite
that Jπ,γ(δ, x) is Borel measurable for all π ∈ Πi. Then, some
well known theories may not satisfy, such as the optimality
of the Bellman equation among Πi. One of the methods to
overcome this challenge is to enlarge the policy spaces. We
define a collection of policies Π′i such that the stochastic
kernel Zj(dZj |δ1, x1, z1, . . . , δj , xj) is universally measurable
[29]. Note that every Borel measurable stochastic kernel is a
universally measurable stochastic kernel, so we have Πi ⊂ Π′i.

Note that if π ∈ Π′i, we also denote Jπ,γ(δ, x) as the
discounted cost of π given in (51). For all given age state
δ and delay x, we define

J ′γ(δ, x) = inf
π∈Π′i

Jπ,γ(δ, x). (52)

It is easy to see that J ′γ(δ, x) ≤ Jγ(δ, x). In this subsection,
we will finally show that J ′γ(δ, x) = Jγ(δ, x).

By Lemma 4, it is easy to show that Jπ,γ ≥ −η/(1 − α)
for all π ∈ Π′. Using Jπ,γ ≥ −η/(1− α) and [29, Corollary
9.4.1], J ′(δ, x) is lower semianalytic [29]. Note that any real-
valued Borel measurable function is lower semianalytic. This
allows us to consider the Bellman operator based on a general
lower semianalytic function u(δ, x). For any deterministic and
stationary policy π ∈ Πi with Borel measurable decisions
π(δ, x), we define an operator Tπ,γ on a function u:

Tπ,γu(δ, x)

=gγ(δ, x, π(δ, x)) + αEY,X [u(δ + x+ π(δ, x) + Y,X)] ,
(53)

where Y and X have the same distribution as the i.i.d. forward
delay Yj’s and backward delay Xj’s, respectively. We also
define the Bellman operator Tγ on the function u:

Tγu(δ, x) = inf
z∈[0,z̄]

g(δ, x, z) +αEY,X [u(δ + x+ z + Y,X)] .

(54)
As is described in Assumption 1, the bound z̄ is taken
sufficiently large. Note that if the function u(δ, x) is Borel
measurable, Tγu(δ, x) is not necessary Borel measurable in the
sense that uncountable infimum of Borel measurable functions
is not necessary Borel measurable. However, if we extend
u(δ, x) to be lower semianalytic, then Tγu(δ, x) is also lower
semianalytic [29, Proposition 7.47], i.e., Tγ is well-defined
under lower semianalytic functions. Note that the expectation
on a lower semianalytic function has the same definition with
the expectation on a Borel measurable function. In all, we have

Lemma 5. If u(δ, x) is lower semianalytic, then Tπ,γu(δ, x)
and Tγu(δ, x) are both lower semianalytic.

Proof. See Appendix G in our supplementary material.

We denote u1 = u2 if u1(δ, x) = u2(δ, x) for all δ, x ∈
[0,∞). Using the definition of Tπ,γ and Tγ , the discounted
problem (52) has the following properties [29, Chapter 9.4]:

8see [29], [32] for counterexamples. In discrete-time system where the
system time is slotted, we do not have this challenge.

Lemma 6. If p(·) is non-decreasing, the Yj’s are i.i.d. with
finite mean E[Yj ] < ∞, the Xj’s are i.i.d. with finite mean
E[Xj ] < ∞, the Yj’s and the Xj’s are mutually indepen-
dent, then the optimal value function J ′γ(δ, x) defined in (52)
satisfies the Bellman equation:

J ′γ = TJ ′γ , (55)

i.e., the optimal value function J ′γ is a fixed point of Tγ .

To derive an optimal policy, we first provide two stationary
and deterministic policies called µmin,γ and µmax,γ . Then we
will show that both µmin,γ and µmax,γ are the solution to
problem (45).

Definition 1. The stationary and deterministic policies µmin,γ

and µmax,γ are defined as

µmin,γ(δ, x) = max{bmin,γ − δ − x, 0}, (56)
µmax,γ(δ, x) = max{bmax,γ − δ − x, 0}, (57)
bmin,γ = inf

c
{c ≥ 0 : E [p(c+ Y ′)] ≥ popt + γ} , (58)

bmax,γ = inf
c
{c ≥ 0 : E [p(c+ Y ′)] > popt + γ} , (59)

Y ′ , Y1 +

M∑
j=2

(Xj + Yj). (60)

A randomized policy µ̃λ,γ = {Z1, Z2, ...} with λ ∈ [0, 1]
satisfies

Z1 =

{
µmin,γ(δ, x) w.p. λ,
µmax,γ(δ, x) w.p. 1− λ. (61)

Zj = 0, j = 2, 3, ...,Mi. (62)

Using the definition of Πi, we have µmin,γ , µmax,γ ∈ Πi, and
µ̃λ,γ ∈ Πi for all λ ∈ [0, 1] [29, Chapter 7].

Upon delivery of the first sample, age of µmin,γ and µmax,γ
increase to ∆2 = δ + x + µmin,γ(δ, x) + Y1 and δ + x +
µmax,γ(δ, x) + Y1, which are larger than max{δ + x, bmin,γ},
max{δ+x, bmax,γ}, respectively. Then, the waiting time for the
second sample is µmin,γ(∆2, X2) = 0 and µmax,γ(∆2, X2) =
0, respectively. Thus, the waiting time at stage 2,... is 0 under
µmin,γ and µmax,γ . Therefore, we have µmin,γ = µ̃0,γ and
µmax,γ = µ̃1,γ . Note that when we do not consider sampling
rate constraint, then γ = 0, and the policy µmin,γ is equivalent
to (15) and (16) in Theorem 1. It remains to show that µmin,γ
and µmax,γ are indeed optimal to problem (45).

Recall that we denote Jπ,γ(δ, x) to be the value function
with initial state δ, x under a policy π. Then, we have the
following key result:

Lemma 7. If p(·) is non-decreasing, the Yj’s are i.i.d. with
finite mean E[Yj ] < ∞, the Xj’s are i.i.d. with finite mean
E[Xj ] <∞, the Yj’s and the Xj’s are mutually independent,
then the value functions Jµmin,γ (δ, x) and Jµmax,γ (δ, x) satisfy

Jµmin,γ = TγJµmin,γ = Jµmax,γ = TγJµmax,γ . (63)

Moreover, for any λ ∈ [0, 1], we have Jµ̃λ,γ = Jµmin,γ =
Jµmax,γ .

Proof. We provide the proof sketch of Jµmin,γ = TγJµmin,γ here
and replace µmin,γ by µ for simplicity. We relegate the detailed
proof to Appendix H in our supplementary material.
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We define the q-function Qµ(δ, x, z) as the cost of starting
at state (δ, x), waiting for time z for the first sample, and then
following policy µ for the remaining samples [38, Section 6]
[43, Chapter 3]. It is easy to find that

Qµ(δ, x, z) = gγ(δ, x, z)+αE [Jµ(δ + x+ z + Y,X)] . (64)

From (64) and (54), showing Jµ = TγJµ is equivalent to
showing that Qµ(δ, x, z) ≥ Jµ(δ, x) for all the waiting time
z ≥ 0, age δ and x. We have stated that µ has a nice
structure: for any initial state, the waiting times of stage
2, 3... are 0. Thus, we can derive the closed form expression
of Jµ(δ, x) according to (46) (where Zj = 0 for j ≥ 2).
Also, given the definition of Qµ(δ, x, z), we can derive the
expression of Qµ(δ, x, z) with the similar form of (46). By
comparing Qµ(δ, x, z) and Jµ(δ, x), we can finally show that
Qµ(δ, x, z) ≥ Jµ(δ, x) for all (δ, x, z).

Lemma 7 tells that Jµmin,γ (or equivalently, Jµmax,γ ) is a fixed
point of Tγ . From Lemma 6, the optimal value function J ′γ
is also a fixed point of Tγ . To show that J ′γ = Jµmin,γ , it
remains to show that the fixed point of Tγ is unique. If the age
penalty p(·) is bounded, Jπ,γ(δ, x) is bounded for any policy
π ∈ Π′i. Then, according to the contraction mapping theorem,
the bellman equation (55) has a unique bounded solution [32],
[34], [42], i.e., Jµmin,γ = J ′γ . Note that there may be unbounded
solutions to (55) [40], [41]. If p(·) is unbounded, we will
utilize Assumption 1 to show the uniqueness.

Let us denote Λ = [0,∞)× [0, x̄], where x̄ is the bound of
Xj mentioned in Assumption 1. In Assumption 1, we have
defined an increasing function v(δ) : [0,∞) → R+ (also
called the weighted function). The weighted sup-norm ‖u‖ of
a function u : Λ→ R is defined as

‖u‖ = max
(δ,x)∈Λ

|u(δ, x)|
v(δ)

. (65)

Let B(Λ) denote the set of all lower semianalytic functions
u : Λ → R such that ‖u‖ < ∞. Note that any real-valued
Borel measurable function is lower semianalytic. From [32, p.
47], [29, Lemma 7.30.2], B(Λ) is complete under the weighted
sup-norm.

Lemma 8. If p(·) is non-decreasing, the Yj’s are i.i.d. with
finite mean E[Yj ] < ∞, the Xj’s are i.i.d. with finite mean
E[Xj ] <∞, the Yj’s and the Xj’s are mutually independent,
and Assumption 1 holds, then for all π ∈ Πi, Jπ,γ ∈ B(Λ).

Proof. See Appendix I in our supplementary material.

Then, the following result shows the uniqueness of the
Bellman equation Tγu = u.

Lemma 9. If p(·) is non-decreasing, the Yj’s are i.i.d. with
finite mean E[Yj ] < ∞, the Xj’s are i.i.d. with finite mean
E[Xj ] <∞, the Yj’s and the Xj’s are mutually independent,
and Assumption 1 holds, the following conditions hold:

(a) For any lower semianalytic function u : Λ→ R, if u ∈
B(Λ), then Tπ,γu ∈ B(Λ) for all deterministic and stationary
policy π ∈ Πi, and Tγu ∈ B(Λ).

(b) The Bellman operator Tγ has an m-stage contraction
mapping with modulus ρ, i.e., for all u1, u2 ∈ B(Λ),

‖Tmγ u1 − Tmγ u2‖ ≤ ρ‖u1 − u2‖, (66)

where constants ρ ∈ (0, 1) and m are mentioned in Assump-
tion 1, and the weighted sup-norm ‖ · ‖ is defined in (65).

(c) There exists a unique function u ∈ B(Λ) such that
Tγu = u.

Proof. See Appendix J in our supplementary material.

From Lemma 8, Jµmin,γ ∈ B(Λ). From Lemma 9(c),
Lemma 7 and Jµmin,γ ∈ B(Λ), Jµmin,γ (or equivalently, Jµmax,γ )
is the unique solution to Tγu = u. From Lemma 6, Jµmin,γ =
J ′γ . Since µmin,γ , µmax,γ ∈ Πi and Πi ⊂ Π′i, µmin,γ and µmax,γ
are the optimal policies in Πi. Note that µmin,γ = µ̃0,γ and
µmax,γ = µ̃1,γ . Using Lemma 7, we immediately get the final
result:

Lemma 10. A collection of optimal policies to problem (45)
is {µ̃λ,γ : λ ∈ [0, 1]} described in Definition 1.

C. Optimal Solution to (36) When c = popt

Section V-B provides the optimal solution to (45) given the
initial states Yi−1,Mi−1

= δ and Xi,1 = x. Using Lemma 10
and strong duality, we have the following result.

Theorem 3. If p(·) is non-decreasing, the Yi,j’s are i.i.d.
with finite mean E[Yi,j ] < ∞, the Xi,j’s are i.i.d. with finite
mean E[Xi,j ] < ∞, the Yi,j’s and the Xi,j’s are mutually
independent, and Assumption 1 holds, then µmin,0 described
in Definition 1 is an optimal solution to (36) with c = popt, if
the following condition holds:

E
[
Xi,1 + µmin,0(Yi−1,Mi−1 , Xi,1) + Y ′

]
>

1

fmax(1− α)
,

(67)
where Y ′ = Yi,1 +

∑Mi

j=2(Xi,j + Yi,j). Otherwise, µ̃λ,γ is an
optimal solution to (36) with c = popt, where γ is determined
by

E
[
Xi,1 + µmin,γ(Yi−1,Mi−1

, Xi,1) + Y ′
]
≤ 1

fmax(1− α)

≤E
[
Xi,1 + µmax,γ(Yi−1,Mi−1 , Xi,1) + Y ′

]
, (68)

and the probability λ is given by

λ =
E
[
Xi,1 + µmax,γ(Yi−1,Mi−1 , Xi,1) + Y ′

]
− 1

fmax(1−α)

E
[
µmax,γ(Yi−1,Mi−1

, Xi,1)− µmin,γ(Yi−1,Mi−1
, Xi,1)

] .
(69)

Proof. See Appendix K in our supplementary material.

By taking β = popt + γ, Theorem 2 is directly shown by
Theorem 3.

In addition, note that Theorem 1 is directly shown by
Lemma 10, by taking β = popt and γ = 0. In other words,
µmin,0 is an optimal solution to (12) when fmax =∞.

D. Discussion

Many existing studies on AoI sampling assume that the
transmission channel is error-free, i.e., Mi = 1 for all i, e.g.,
[11]–[13], [15]–[18]. Due to the renewal property, their origi-
nal problems are reduced to a per-sample problem. Similarly,
our result is equivalent to the per-epoch problem illustrated
in (45). If Mi = 1, problem (45) reduces to a per-sample
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Figure 3: Average AoI versus the parameter σ1 of the forward
channel, where σ2 = 1.5 and α = 0.8.
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Figure 4: Average AoI versus the parameter σ2 of the back-
ward channel, where σ1 = 1.5 and α = 0.8.

problem, where there is only one decision Zi,1 and is solved
using convex optimization. However, when Mi 6= 1, problem
(45) is an MDP that contains multiple samples. This MDP
cannot be solved by convex optimization (e.g., [15]–[18]) or
optimal stopping rules (e.g., [11]–[13]).

Therefore, one of the technical contributions in this paper
is to accurately solve the MDP in (45). We summarize the
high-level idea of solving (45): First, in Lemma 6, among
the extended policy space Π′i with universally measurable
stochastic kernel [29, Chapter 7], the optimal policy satisfies
the Bellman equation (55). Then, in Lemma 7, we provide
the exact value function that is the solution to the Bellman
Equation. Finally, under Assumption 1 and Lemma 9, the
uniqueness of the Bellman equation is guaranteed.

In addition, although we focus on continuous-time systems
in this paper, our results can be easily reduced to the discrete-
time systems by removing the content of measure theory.

VI. NUMERICAL RESULTS

In this section, we compare our optimal sampling policy
with the following sampling policies:

1. Zero-wait: Let the waiting time Zi,j = 0, i.e., the source
transmits a sample once it receives the feedback.

2. One-way (1-way): It falsely assumes that the backward
delay Xi,j = 0 despite that Xi,j may not be zero. In other
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Figure 5: Average AoI versus 1/(1−α), where σ1 = 2.3 and
σ2 = 1.5.
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Figure 6: Average AoI versus 1/(1−α), where σ1 = 1.5 and
σ2 = 2.3.

words, it derives Zi,j by solving (15)—(17) and letting Xi,j =
0.

3. Two-way Error-free (2-wayEF) [18]: It assumes that the
forward channel’s probability of failure α = 0 despite that α
may not be zero. In other words, it derives Zi,j by solving
(15)—(17) and letting Mi = 1.

4. One-way Error-free (1-wayEF) [17]: It assumes that
Xi,j = 0 and α = 0.

Note that all of the four policies have a stationary thresh-
old structure. Therefore, similar to our optimal policy, each
policy may have a nonzero waiting time only if the previous
transmission was successful.

In this section, we consider linear age penalty p(δ) = 2δ
and lognormal distributions on both forward and backward
delay with scale parameters σ1, σ2, respectively. Note that the
lognormal random variable with scale parameter σ is expressed
as eσR, where R is the standard normal random variable. The
numerical results below show that our proposed policy always
achieves the lowest average age.

Fig. 3 and Fig. 4 illustrate the relationship between age
and σ1, σ2, respectively. In Fig. 3, we plot the evolution of
average age in σ1 given that σ2 = 1.5 and α = 0.8. As σ1

increases, the lognormal distribution of the forward channel
becomes more heavy tailed. We observe that Zero-wait policy
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evolves much quicker than other policies in σ1. In addition,
2-wayEF and 1-wayEF policies grow faster than the optimal
policy in σ1. Note that our optimal policy differs from the
other policies even if the average AoI is close. For example,
when σ1 = 2.0, the average AoI of 2-wayEF is close to that of
our optimal policy. However, we observe that the waiting time
of our optimal policy and 2-wayEF are 78 and 49, respectively,
if the current age state and the last backward delay are 2 and
1, respectively. In Fig. 4, we fix σ1 = 1.5 and plot the average
age of the listed policies in σ2. Unlike Fig. 3, 1-way and 1-
wayEF policies perform poorly since they fail to take highly
random backward delay into account.

Fig. 5 and Fig. 6 depict the evolution of average age
in 1/(1 − α), where (σ1, σ2) = (2.3, 1.5) and (σ1, σ2) =
(1.5, 2.3), respectively. Note that 1/(1 − α) is the average
number of samples attempted for a successful transmission. In
Fig. 5 and Fig. 6, when 1/(1−α) increases, the gap between
2-wayEF policy and our optimal policy increases. In Fig. 6,
since σ2 > σ1, the tail of backward delay is heavier than that
of forward delay. Thus, 1-way and 1-wayEF, which neglect
the knowledge of backward delay, fail to improve the age
performance.

In summary, when either one of the channels is highly
random, (i) Zero-wait policy is far from optimal, (ii) the age
performance of 1-wayEF or 2-wayEF policy gets worse if the
forward channel is more unreliable, (iii) 1-way and 1-wayEF
polices are far from optimal if the backward channel is highly
random.

VII. CONCLUSION

In this paper, we design a sampling policy to optimize data
freshness, where the source generates the samples and sends
to the remote destination via a fading forward channel, and the
acknowledgements are sent back via a backward channel. We
overcome the curse of dimensionality that arises from the time-
varying forward channel conditions and the randomness of the
channel delays in both directions. We reveal that the optimal
sampling policy has a simple threshold based structure, and
the optimal threshold is computed efficiently.
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