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Abstract—We study the problem of maximizing the aggregated
information in sensor networks with deadline constraints.Our
model is that of a sensor network that is arranged in the
form of a tree topology, where the root corresponds to the
sink node, and the rest of the network detects an event and
transmits data to the sink over one or more hops. We assume
a time-slotted synchronized system and a node-exclusive (also
called a primary) interference model. We formulate this problem
as an integer optimization problem and show that for unit
capacity links, the optimal solution involves solving a Bipartite
Maximum Weighted Matching problem at each hop. We propose
a polynomial time algorithm that uses only local information at
each hop to obtain the optimal solution. Thus, we answer the
question of when a node should stop waiting to aggregate data
from its predecessors and start transmitting in order to maximize
aggregated information within a deadline imposed by the sink.
We extend our model to allow for practical considerations such
as arbitrary link capacities, and also for multiple overlapping
events. Further, we show that our framework is general enough
that it can be extended to a number of interesting cases such
as incorporating sleep-wake scheduling, minimizing aggregate
sensing error, etc.

I. I NTRODUCTION

A wireless sensor network is a wireless network consisting
of a number of sensors that are distributed in a region in order
to cooperatively monitor certain physical or environmental
conditions. These networks are used in a number of civilian
and military applications, such as environment and habitat
monitoring, battlefield surveillance, and traffic control.Due to
size and cost constraints, sensor nodes have limited energy,
processing, memory, and bandwidth capabilities. Typically,
these nodes sense a desired aspect of the region in which they
are deployed and occasionally report the sensed data to those
sinks that have subscribed for that data. The sensed data is
prone to error due to resource constraints and environmental
factors. Therefore, sinks cannot rely on the data sensed by
a single sensor. Moreover, since there is usually a certain
degree of redundancy in the data sensed by different sensors,
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in many applications, the sinks only desire an aggregated form
of the data sensed by different sensor nodes. Examples include
finding the average temperature in a region, determining
whether pressure in a region is below a certain value, and
determining the average location and velocity of a target.
It is known that when sinks require an aggregated form of
the sensed data, performing in-network computation greatly
reduces the communication overhead [2].

One of the key issues in data aggregation in sensor networks
is the trade-off between energy, delay, and the quality of data
obtained by the sink. This can be viewed as follows. Consider
a data aggregation tree in which each parent aggregates data
from all of its children before forwarding it to the next hop.
Assuming error-free links and no collisions, each parent then
needs to make at most one transmission. However, each parent
will have to wait until it has received data from all its children.
On the other hand, if each parent decides to transmit every time
it receives a packet from one of its children, then this may
result in excessive transmissions, defeating the very purpose
of data aggregation. Therefore, in order to maximize the data
quality at the sink under deadline or energy constraints, one
needs to carefully control the number of transmissions a node
can make and the time that a node can wait to gather the data.

Thus, there is a delay-energy trade-off that needs to be care-
fully considered depending on the level of delay an application
can tolerate. Moreover, the quality of data reported at the sink
is also important. In particular, we are interested in finding
the maximum amount of aggregated information that can be
obtained by a sink under deadline and energy constraints. Our
goal in this paper is to maximize the aggregated information
in a given data aggregation tree with the sink as the root.
“Aggregated information” can be thought of in a number of
ways. For example, if each packet has a priority associated
with it, we can maximize the sum of the priorities of packets
accounted for at the sink. If each node senses data with a
certain accuracy, we can think of maximizing the accuracy of
the aggregated data at the sink. For simplicity of presentation,
we will first define aggregated informationas the number
of nodes whose packets have been accounted for at the sink
within the imposed deadline. It is important to note that this
definition is also motivated by practical considerations. For
instance, suppose that a set of sensor nodes desire to obtainthe
average temperature in a region. Assuming that the nodes make
independent observations, and that each of their observations
has the same error variance (σ2), the estimate of the average
temperature will then have an error variance ofσ2

n
, wheren

is the number of source nodes whose data has been used to
estimate the average. Thus, the greater the number of source
nodes, the better the estimate.



We now briefly examine the related work in this area.
Currently, there exist a number of techniques addressing
the formation of data aggregation trees [3]–[5]. In all these
works, constructing an optimal data aggregation tree has been
shown to be NP-Hard for a number of cases such as lifetime
maximization, minimizing the total number of transmissions
etc. These works then develop heuristic algorithms to construct
trees that are provably efficient. A second category of works
study trade-offs between energy, data accuracy, and delay for
data aggregation in wireless sensor networks. Boulis et al.,
[6] study trade-offs between energy and data accuracy in data
aggregation trees. In [7], Yu et al., study trade-offs between
energy and latency in data aggregation trees assuming a time-
slotted synchronized system. As mentioned in [7], enforcing
the latency constraint requires time-synchronization schemes
such as [8]. Bechchetti et al., [9] study the problem of mini-
mizing energy in the presence of latency constraints for data
aggregation. In [10], Ye et al., study the fundamental energy-
delay trade-off for distributed data aggregation in wireless
sensor networks. Their goal is to maximize a certain parameter
called the “discounted reward” at each node, where the reward
is due to data aggregation and the discount is due to the time
for which the node waits in order to aggregate data from
its predecessors. They propose two learning-based distributed
approximation algorithms that empirically perform close to
the optimal solution. The common drawback of these works
is that interference is not a part of the optimization frame-
work even though it is a critical component of the wireless
environment. Lai et al. [11] study an interesting problem of
minimizing a weighted sum of the expected energy consumed
and an exponent of the latency probability. Compared to hard
deadlines studied in this work, they consider the probability
that the latency exceeds a threshold.

In this work, we propose an optimization framework that
can be used to study trade-offs between aggregated informa-
tion, energy and latency, in a time-slotted system, under a
one-hop interference model.

The main contributions of this work are as follows.

• We develop an optimization framework for maximizing
the aggregated information that is accounted for at the
sink from all source nodes in a given data gathering tree,
within a deadline. This optimization framework explicitly
account for interference.

• We provide a distributed optimal solution that consists
of two components - an optimal data aggregation policy,
and an optimal scheduling policy. For unit capacity links,
we show that the scheduling problem can be reduced
to a well-known Maximum Weighted Matching problem
(MWM). The key fact here is that this Maximum Weighted
Matching is only within a single hop (because of the data
aggregation policy), and not the entire network, and thus
it has a significantly lower complexity than the traditional
Maximum Weighted Matching problem in scheduling.

• We extend our solution to account for arbitrary link
capacities, and also for multiple overlapping events.

The rest of this paper is organized as follows. In Section 2,
we list our assumptions and describe the system model. In

Section 3, we formulate the problem for data aggregation trees
as an integer optimization problem. In Section 4, we describe
the optimal solution for unit capacity links. In Section 5,
we analyze the complexity of this solution. In Section 6,
we discuss various interpretations and applications of our
problem. In Section 7, we extend our solution to account
for arbitrary link capacities, and multiple overlapping events.
Finally, in Section 8, we conclude the paper.

II. SYSTEM MODEL AND ASSUMPTIONS

We model the system as a graphG(V,E) whereV is the
set of nodes andE is the set of links. The system hasN
nodes and a sink. When an event occurs, nodes sense some
desired quantity and send an aggregated form of the data to
the sink.G is a tree rooted at the sink. A node may or may
not be a source for a particular event. We assume that the
system is time-slotted and synchronized. During each time
slot, a node can perform only one of the following: sending
a packet, receiving a packet, or remaining idle. The sink
imposes an event-dependent deadline within which it should
receive data from the sensor nodes. We assume that events
are static events in which each source node associated with
that event knows that some parameter needs to be sensed at a
particular time. For example, sensor nodes could periodically
sense temperature in a region and report some aggregated form
of the data to the sink.

The aggregation function we consider, can be any divisible
function [12]. Divisible functions are those that can be com-
puted in a divide and conquer fashion. For example, assume
that the sink desires the functionf(x1, x2, ..., xN ), wherex1,
x2, ..., xN are the raw data measurements of theN sensor
nodes. LetS denote the set{x1, x2, ..., xN} and let f(S)
denotef(x1, x2, ..., xN ). The functionf is divisible if, given
any partition,P (S) = {S1, ..., Sj}, of S, there exists a function
gP (S), such thatf(S) = gP (S)(f(S1), f(S2), ..., f(Sj)) for
any x1, ..., xn. The complete definition of divisible func-
tions can be found in [12]. Examples of divisible func-
tions include MIN, MAX, Sum, Median, Mode, etc. Con-
sider the MAX function for instance. Suppose the sink
desiresMAX(1, 2, 3, 4, 5). Then, given a partition, (say)
{{1, 2}, {3, 4}, {5}} of {1, 2, 3, 4, 5}, MAX(1, 2, 3, 4, 5) =
MAX(MAX(1, 2),MAX(3, 4),MAX(5)). We illustrate
this example in Figure 1. In Figure 1, the source nodes
(denoted by filled circles) hold the measurements 1,2,3,4, and
5. The intermediate nodes sendMAX(1, 2), andMAX(3, 4)
rather than sending 1,2,3,4 separately. As commonly used
in the literature, we refer to this computation performed by
intermediate nodes asin-network computation. The sink can
finally still computeMAX(1, 2, 3, 4, 5) because MAX is a
divisible function.

While Average is not a divisible function, it can also be
computed if the total number of source nodes is known (or
transmitted) at the sink.

We consider the one-hop or node exclusive interference
model. In the one-hop interference model, any two links that
share a node cannot be active at the same time, which captures
one of the key attributes of practical wireless transmission.
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Fig. 1: In-network Computation of MAX

Relaxable Assumptions
In order to illustrate our problem and solution, we make the

following additional assumptions. We later explain how our
solution can be modified when these assumptions are relaxed.

We assume that the aggregation delay (the time required to
aggregate data from different sensors) is negligible. We assume
that the capacity of each link is fixed and equal to 1. We
assume that packet sizes are equal and that it takes one time
slot to transmit one packet. For each event, we assume that all
the source nodes that are associated with the event, sense this
event and are ready to transmit their observation at time zero.
We assume that the next event occurs only after the deadline
for the current event expires.

III. PROBLEM FORMULATION

We now consider a network, modeled as a tree with the sink
being the root, and formulate the problem of maximizing the
aggregated information at the sink when the sink imposes a
deadline. As mentioned earlier, we define aggregated informa-
tion at the sink as the number of source nodes whose data has
been accounted for at the sink.

We next provide some notations and definitions.
• V - Set ofN sensor nodes and a sink,S.
• E - Set of edges.
• P (i) - Parent of nodei.
• PATH(i) - The set consisting ofi and all its ancestors

in its path to the sink, but not including the sink, i.e.,
PATH(i) = {i, P (i), P (P (i)), ...}, andS /∈ PATH(i).

• Ti - Denotes whether nodei is a source for a particular
event, i.e., it denotes whether nodei has its own packet
to send for a particular event. Hence,

Ti =

{

1, nodei has its own packet to send
0, otherwise

(1)

• ni - An indicator variable representing whether childi is
allowed to transmit to its parent, i.e.,ni = 1 if child i is
allowed to transmit to its parentj, and0 otherwise..

• Wi - The time that nodei waits to aggregate packets
from its predecessors for a particular event. AfterWi

time units, nodei will no longer accept packets from
its predecessors. Also, untilWi expires, nodei will
not transmit any aggregated packet to its parent. As
mentioned before, we assume that the event is sensed
by each source node at time zero.

• VL - Set of all leaf nodes in the tree.
• D - The deadline by which packets must reach the sink.

Now the optimization problem can be framed as follows.
We call this problemY .
Problem Y:

max
~n, ~W

∑

i∈V

Ti

∏

j:j∈PATH(i)

nj (2)

s.t. For eachi ∈ V \VL: ∀C ⊆ {(j, i) : (j, i) ∈ E},
∑

j:(j,i)∈C

nj ≤ Wi − min
j:(j,i)∈C

Wj (3)

ni ∈ {0, 1} ∀(i, j) ∈ E (4)

Wi ∈ {0, 1, ..., D − 1} ∀i ∈ V \{S},WS = D (5)

The goal of problemY is to determine the control variables,
ni, for each link(i, j) ∈ E, andWi, for each nodei ∈ V \{S},
such that the aggregated information is maximized at the sink.

Now, before we present the optimal solution toY , it is
illustrative to understand the constraints inY . The constraints
in (4) and (5) are straightforward to interpret. The constraint
in (3) explains the relationship between interference and delay,
in data aggregation trees. Under the one-hop interference
model, a parent node can only receive packets from one of its
children nodes during a particular slot. However, when a child
node transmits to its parent, the other children (of the same
parent) can receive data from their children (by the definition
of the one-hop interference model). For example, consider
Figure 2(a) with nodeP receiving data from its childrenC1,
C2 andC3. This figure represents a single hop in a large data
aggregation tree. During a slot in whichC1 transmits toP , C2

andC3 can receive data from their children. However, no two
children ofP can transmit toP in the same slot. Let nodeP
have a waiting timeW , andC1, C2 andC3 have waiting times
W1, W2 andW3, respectively. LetW1 < W2 < W3 < W .
Then, the total number of transmissions that can be made
from all the children nodes to the parentP is limited by the
difference betweenW andW1 (since the first transmission can
occur only afterW1 and the last transmission can occur only
beforeW , by the definition of waiting time). Also, the total
number of transmissions that can be made fromC2 andC3 to
P is limited byW −W2. So, (3) says that for any subset of
children nodes, the total number of transmissions made by this
subset of nodes is bounded above by the difference between
the waiting time of the parent and the waiting time of the child
that has the least waiting time in the chosen subset. We will
use these observations when we develop an optimal algorithm
to solveY .

Note that we have made two important assumptions while
formulating the problem (which will be shown to not affect
the optimal solution).

1) The data aggregation policy does not allow any node to
transmit more than once.

2) In our data aggregation policy, a node cannot accept
packets once its waiting time expires. For example,
consider a nodei with waiting timeWi. Consider the
sub-tree rooted at nodei. ThenWi serves as a deadline



by which source nodes in the sub-tree rooted at nodei
should send their packets toi.

Note: We have made these assumptions only in order to
assist in formulating the optimization problem. It can be
readily shown that these assumptions do not affect the optimal
solution of the general problem,Z, that is defined below.
Problem Z:

Consider an optimization problem,Z, whose objective is
to maximize the number of source nodes accounted for at the
sink, within a deadline imposed by the sink, under the one-hop
interference model. LetZ allow for multiple transmissions and
also allow a node to accept packets irrespective of the current
time.

Theorem III.1. Any optimal solution to problemY is also an
optimal solution to problemZ.

Proof: Suppose that in the optimal solution to problem
Z, a nodeQ makesk “useful” transmissions. By “useful”, we
mean that the transmitted packet reaches the sink within the
deadlineD. Specifically, let nodeQ transmit packetpi at slot
Wi, 1 ≤ i ≤ k (W1 < W2 < ... < Wk).

Since the packetsp1, ..., pk can be aggregated into a single
packet, the same optimal solution could have been achieved
if Q had simply aggregated these packets and transmitted the
aggregated packet at slotWk instead of makingk separate
transmissions. However, this is equivalent toQ having a
deadlineWk and transmitting it exactly once.

Thus, it is clear that any optimal solution toZ can be
transformed into a solution satisfying the constraints ofY , and
with both solutions resulting in the same value of the objective
function. Therefore, any optimal solution to problemY is also
an optimal solution to problemZ.

From Theorem III.1, it is enough to solve ProblemY in
order to obtain an optimal solution to problemZ.

We now provide a few examples to explain howY can be
solved in simple cases. Consider a tree network with six nodes,
C1, C2, C3, P1, P2, P3, with corresponding waiting timesW1,
W2, W3, W4, W5, W6, and a sinkS, as shown in Figure 2(b).
Let all nodes other than the sinkS be sources for a particular
event. If the deadline imposed byS is 1, i.e.,D = 1, then the
maximum aggregated information that reaches the sink is one
since in the given single time slot, only one ofP1, P2 and
P3 can transmit toS under the one-hop interference model).
If D = 2, then the maximum aggregated information that
reaches the sink is 3. In the first slot, one ofP2 andP3 will
transmit toS. In the same slot, one ofC1, C2 andC3 will
transmit toP1. In the second slot,P1 will aggregate its own
data with the data received from its child in the first slot and
send the aggregated data toS. Thus,P1 will account for two
source nodes. Similarly it can be shown that ifD = 3, then
the maximum aggregated information that reaches the sink is
5.

IV. SOLUTION

In this section, we provide an algorithm (AlgorithmA) that
solves problemZ and prove that this algorithm provides an
optimal solution toZ. Note that whenD ≥ N , the problem

P
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(a) ParentP waits until time
slot W to receive packets from
childrenC1, C2 andC3
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Fig. 2: Examples

is trivial, since irrespective of the order of transmission,
all source nodes will be accounted for at the sink, by the
deadline. So we will only consider the case whenD < N .

Algorithm A:

1) LetX [i,W ] denote the maximum number of nodes that
node i can account for if its waiting time isW , 0 ≤
W ≤ D − 1. For every leaf nodel and for eachW ,
X [l,W ] = Tl.

2) Consider any nodej other than the sink and leaf nodes.
Suppose it hask children,C1, C2, ..., Ck. For everyW ,
0 ≤ W ≤ D − 1, calculateX [j,W ] as follows.

a) If W ≥ k, assign waiting timesW1,W2, ...,Wk

to C1, C2, ..., Ck, respectively, such that eachWi,
1 ≤ i ≤ k, takes a value in the set{W −
1,W − 2, ...,W − k}, where no two nodes can
have the same waiting time, and such that the

sum
k

∑

i=1

X [Ci,Wi] is maximized. This is a Max-

imum Weighted Matching (MWM) problem in
the bipartite graph(A,B, P,Q), where A =
{C1, C2, ..., Ck}, B = {W −1,W −2, ...,W −k},
P is the set of edges{(a, b) : a ∈ A, b ∈ B}, and
Q is the set of weights of each edge. An edge
(a, b) ∈ P has a weightX [a, b].

b) If W < k, assign waiting times from the set{W −
1,W−2, ..., 0} toW out of thek children such that
no two children that have been assigned a waiting
time from this set have the same waiting time,



and such that the sum
∑

i:Ci is assigned

X [Ci,Wi]

is maximized. This is an MWM problem in
the bipartite graph(A,B, P,Q), where A =
{C1, C2, ..., Ck}, B = {W −1,W −2, ..., 0}, P is
the set of edges{(a, b) : a ∈ A, b ∈ B}, andQ is
the set of weights of each edge. An edge(a, b) ∈ P
has a weightX [a, b].

3) Finally, at the sink, calculateX [S,D] as illustrated in
Step 2. Thus, we calculateX [·, ·] from the leaves to the
root.

4) KnowingD at the sink, assign waiting times to the sink’s
children based on howX [S,D] is obtained. Proceed
from root to leaves and assign waiting times.

Algorithm A calculatesX [·, ·] from the leaves to the root
and assigns waiting times from the root to the leaves. Note
that a general brute force approach for Step 2 would result in
a complexity ofO(Dk). Identifying the Maximum Weighted
Matching reduction, and also the set of possible waiting times,
is key in reducing the complexity of the solution.

We now prove that this algorithm provides an optimal
solution to problemY , and hence, to problemZ. Before we
do this, we first rewrite the objective function of ProblemY
in the following recursive manner.

It is clear that for a leaf nodel, X [l,W ] = Tl for any
waiting timeW .

Lemma IV.1. X [S,D] provides the optimal solution to Prob-
lem Y , where for any non-leaf nodei with k children
(C1,...,Ck), and for any waiting timeW , X [i,W ] is calculated
recursively by the equation

X [i,W ] = Ti +max
Q

Ck
∑

j=C1

X [Cj,Wj ]nj , (6)

where Q is the set of constraints including constraint (3)
for node i, nj ∈ {0, 1}, and Wj ∈ {0, ..., D − 1}, for
j ∈ {C1, ..., Ck}.

Proof: We show this result by induction.
Consider a nodei such that all its children are leaf nodes.

Then the maximum number of sources thati can account for if
it waits for a timeW is simply its own data, and the maximum
number of children ofi (that are sources) that can transmit
their data toi by timeW . This is becausei’s children are all
leaf nodes, and thereforeX [Cj ,Wj ] = TCj

for eachCj and
for eachWj . Therefore, (6) holds for nodes that have only
leaf nodes as children.

Assume that the result is true for nodes that are at heighth
from nodes that have only leaf nodes as children.

Consider a nodei at heighth + 1. We need to show (6)
for this node. Clearly, nodei will account for its own dataTi

irrespective of the waiting time. Further, since the children of
i are at heighth from leaf nodes,X [Cj,Wj ] represents the
maximum number of sources thatCj can account for if its
waiting time isWj . Further, observe that for a givenW , the
constraints in ProblemY that affect the calculation ofX [i,W ]
are only those mentioned in (6). Therefore, by maximizing
over these constraints, we obtain the maximum of the sum

of the aggregated information from the children ofi. Hence,
X [i,W ] is given by (6).

This lemma illustrates that one can obtain a distributed
solution by solving forX [·, ·] at each hop.

Lemma IV.2. For any nodei ∈ V , X [i,W ] cannot decrease
asW increases.

Proof: Clearly, if a node waits for a longer time to
accumulate packets from its children, then it should be able
to accumulate at least as many packets as it had accumulated
when it had waited for a shorter period of time.

We now build the optimal solution from the leaves of the
tree to the root. We will use induction to prove the optimality.

Lemma IV.3. Consider a nodeP whose children are all
leaf nodes. Let there bek children, C1,...,Ck. For a given
W , X [P,W ] is obtained by allocating waiting times,W −
min(W,k),...,W − 1, in the order of decreasingTCj

for
j = 1, 2, ..., k (i.e., by first allocating slots to nodes withTCj

= 1, and then allocating remaining slots to nodes withTCj
=

0).

Proof: Clearly, if P has a waiting timeW , then at most
min(W,k) children can transmit among thek children within
the deadlineW at P . The proof is now obvious since leaf
nodes will account for one packet if they are sources and
no packets otherwise. Therefore,X [P,W ] is obtained by first
allocating slots to nodes that have a packet, and then allocating
any remaining slots to nodes that do not have a packet.

Thus, we can find the optimal solution for any deadlineW
at each parent having only leaf nodes as children. Now, assume
that we can find the optimal solution for any deadlineW at
each parent node that ish hops away from the sink.

Lemma IV.4. Consider a nodeP that ish− 1 hops from the
sink havingk children C1,...,Ck. Let P have a waiting time
W . Then, at least one of the solutions for the optimal waiting
times ofC1,...,Ck will satisfy the following conditions.

• If W ≥ k, thenni = 1 ∀ i ∈ {C1, C2, ..., Ck}, and each
child C1,...,Ck transmits in one of the slots in the set
{W − 1, ...,W − k} where no two nodes transmit in the
same slot.

• If W < k, thenni = 1 for exactlyW children among the
k children. TheseW children transmit in one of the slots
in the set{0, 1, ...,W − 1} and no two nodes transmit in
the same slot.

Proof: We prove both the cases in this result by contra-
diction.

Case 1:W ≥ k
Supposeni 6= 1 for some nodeCi. Then there is at least

one slot during which there is no transmission. By scheduling
nodeCi to transmit in this slot, we can obtain at least as much
aggregated information as whenCi was not provided a slot to
transmit.

Suppose some nodeCi does not transmit in one of the slots
in the set{W − 1, ...,W − k}, i.e.,{W − 1, ...,W − k} is not
a set of optimal waiting times forC1, C2, ...., Ck. Suppose
Ci transmits in the slotW − k − α, α > 0. Then there exists
at least one slot in the set{W − 1, ...,W − k} during which



no transmission takes place. If the nodeCi had transmitted
during this slot, the aggregated information that we would
have obtained would be at least as much as what would have
been obtained if it had transmitted during the slotW − k −
α (by Lemma IV.2), thus contradicting our assumption that
{W − 1, ...,W − k} is not a set of optimal waiting times for
C1, C2, ....,Ck.

Case 2:0 ≤ W < k
If ni = 1 for more thanW nodes, then the solution is

infeasible since it is not possible to schedule more thanW
nodes inW slots. In particular, the constraint in (3) is violated.

On the other hand, ifni = 1 for less thanW nodes, then by
a similar argument as made in Case 1, we can obtain at least
as much aggregated information by makingW nodes transmit.

Similarly, the rest of the proof follows from the same
argument as made in Case 1.

Theorem IV.5. AlgorithmA results in an optimal solution to
problemZ.

Proof: We have found the set of optimal waiting times
for the childrenC1, ..., Ck. We now only need to assign these
slots to thek children.

SupposeX [i,W ] represents the optimal number of nodes
that nodei can account for if its waiting time isW , 0 ≤ W ≤
D − 1. Then the problem of findingX [i,W ] is an MWM
problem in a bipartite graph with node-exclusive interference.
Consider the bipartite graph in Figure 3. The nodes at the top
of the graph represent the children nodes and the nodes at
the bottom represent waiting times. If a child nodeCi(say)
has a waiting time ofW − j, 1 ≤ j ≤ min(W,k), the edge
connectingCi andW − j has a weightX [Ci,W − j]. No two
nodes can have the same waiting time and a particular node
can be allotted at most one waiting time. The goal is to assign
waiting times to the children nodes such that the sum of the
weights on the edges assigned is maximized. This is clearly
an MWM problem and can be solved in polynomial time for
a one-hop interference model.
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Fig. 3: Maximum Weighted Matching Solution

Hence we have now solved the optimization problem for
nodes that areh− 1 hops from the sink. By induction, from
Lemmas IV.3 and IV.4, given the waiting time of the parent
node at any hop, the optimal waiting times and the optimal
number of transmissions of the children nodes in that hop can
be determined using algorithmA. Hence, at the sink,X [S,D]
can be determined. Thus, algorithmA results in an optimal
solution to problemY .

Now from Theorem III.1, the theorem is proved.

V. COMPUTATIONAL COMPLEXITY OF ALGORITHM A

In this section, we analyze the computational complexity of
algorithmA described in Section4. Let the farthest node (in
terms of number of hops) beh hops away from the sink. Let
the in-degree of each node in the tree (apart from leaf nodes)
be bounded byk. By this, we mean that each non-leaf node has
at mostk children. LetD represent the deadline imposed by
the sink. Let the total number of sensor nodes (not including
the sink) beN .

Theorem V.1. The time complexity of algorithmA is
O(hk2(D + k)logk).

Proof: At every nodei, we need to calculateX [i,W ],
0 ≤ W ≤ D − 1.

W = 0 ⇒ Time = 0

W = 1 ⇒ Time ≤ k

W = 2 ⇒ Time ≤ k(k − 1)

3 ≤ W ≤ k ⇒ Time ≤ (k +W )2log(k +W )

k ≤ W ≤ D − 1 ⇒ Time ≤ (2k)2log(2k) (7)

We obtain (8) from the fact that the MWM problem in a
bipartite graph can be solved inO(V 2logV +V E) time [13],
whereV is the number of vertices andE is the number of
edges. WhenW ≥ k, the vertices and edges remain the same
but the edge weights change.

Therefore the total time required at nodei is bounded by

k+k(k−1)+

k−1
∑

W=3

(k+W )2log(k+W )+(D−k)(2k)2log(2k).

Since for 3 ≤ W ≤ k, log(k + W ) ≤ log(2k), the time
required is bounded by

k2 +

k−1
∑

W=3

(k +W )2O(logk) + 4k2(D − k)O(logk)

= k2 +O(logk)(4k2(D − k) +

k−1
∑

W=3

(k +W )2)

= k2 +O(k2Dlogk) +O(k3logk)

= O(k2(D + k)logk)

Since nodes that are equal number of hops away from the
sink can perform this computation in parallel and since we
haveh hops, the complexity of algorithmA is O(hk2(D +
k)logk).

VI. I NTERPRETATIONS ANDAPPLICATIONS

In this section, we discuss a number of different interpreta-
tions of problemY .

The optimization framework that we have described in
Section 3 is general and can be interpreted in a number of
ways. A few such interpretations are listed below.



1) Priority : Suppose that each source nodei has a priority,
or more specifically an importance metricρi associated
with the packet that it generates. Then, instead of
maximizing the number of source nodes accounted for at
the sink, we can maximize the total priority of packets
accounted for at the sink within a deadline. This can
be done by appropriately modifyingX [·, ·] so that for
a nodei with waiting timeW , X [i,W ] represents the
maximum sum priority of packets that can be accounted
for by nodei if it waits for a timeW .

2) Observation Errors: The data observed by sensor nodes
may not be accurate. Suppose we associate a certain
“confidence index” to each node’s observation, we can
then maximize the data accuracy at the sink by maxi-
mizing the total confidence index.

3) Energy Constraint: Suppose we have an additional
constraint that the number of time slots during which a
nodei can transmit/receive is limited tori (say). Nodes
go to sleep during other slots. Then, since each node
transmits at most once, we can modify the constraint
in (3) to

∑

j:(j,i)∈E

nj ≤ min(ri − 1,Wi − min
j:(j,i)∈E

Wj)

∀i ∈ V \VL. This problem can be solved by modifying
Step 2 of algorithmA. Specifically, in order to calculate
X [i,W ] for a nodei with k childrenC1, C2, ...Ck, the
waiting times of the children can now only take values in
the set{W−1,W−2, ...,max(0,W−k,W−(ri−1))}
which is a subset of{W−1,W−2, ...,max(0,W−k)}.

4) The Dual Problem: The dual problem ofY is to
determine the minimum deadlineD by which at least
a certain number of sources (K) are accounted for at
the sink. This problem can be solved by combining
algorithmA with a binary search algorithm as follows.
It uses the fact thatX [S,D] is a non-decreasing function
of D.

a) InitializeD = ⌊N
2 ⌋, Dleft = 0, Dright = N . Cal-

culateX [S,D] andX [S,D − 1] using Algorithm
A.

b) If X [S,D] < K, setDleft = D.
c) If X [S,D − 1] ≥ K and X [S,D] ≥ K, set

Dright = D.
d) If X [S,D − 1] < K andX [S,D] ≥ K, returnD

and stop.
e) SetD = 1

2 (Dleft +Dright), and go to Step b).

The above algorithm will terminate and return aD for
which X [S,D − 1] < K and X [S,D] ≥ K. Thus, it
determines the minimum deadline by which at leastK
packets reach the sink. The complexity of this algorithm
is O(logN) times the complexity of algorithmA.

VII. E XTENSIONS

In this section, we explain the structure of the solution when
some of the assumptions that we made in Section II are re-
laxed. Some of these extensions are relatively straightforward
while others require a more careful investigation.

A. Different Observation Instants

In our previous discussion, we had assumed that source
nodes simultaneously observe the event at time zero. Suppose
that each node observes the event at a certainknowntime and
that the deadline is measured from the instant the first source
node observes the event. For example, each node could be
periodically observing an event. However, a source node close
to the sink could observe the event as late as possible (and still
send its data to the sink) so that its data is fresher than the
data observed by nodes farther away from the sink. Algorithm
A can clearly be applied in a straightforward manner to solve
this problem. For a source nodei, X [i,W ] will account for
the data from nodei only if W is larger than the time instant
at whichi observes the data. The rest of the algorithm remains
the same.

B. Arbitrary Link Capacities

In Section II, we assumed unit link capacities for each
link in the network. We now study the case where each
link has an arbitrary fixed capacity. We first observe that
Theorem III.1 does not depend on the link capacity. This
implies that the optimal aggregation policy remains the same
even when each link has an arbitrary fixed capacity. Therefore,
to solve problemZ with arbitrary link capacities, we only
need to optimally determineX [·, ·] and assign waiting times
to nodes.

Let us begin with a simple case. Suppose that within
a hop in the tree, each link (connecting the given parent
to its children) has the same capacity (not necessarily 1).
Link capacities may be different across hops. For example,
consider a parentP having four children with each of the
link capacities being equal to12 . It takes two slots for each
child to transmit a packet. Then, for a waiting timeW for the
parent, the optimal waiting times of the children falls in the
set {W − 2,W − 4,W − 6,W − 8}, where no two children
can be assigned the same waiting time and no two waiting
times can be assigned to the same child. For instance, if a
child is assigned a waiting timeW − 2, it uses slotsW − 2
and W − 1 for transmitting its packet. Then,X [P,W ] can
be calculated using the same Maximum Weighted Matching
algorithm described in Section IV. Note that the transmission
slots assigned to a child here are consecutive. This turns out
to be one of the optimal solutions (Lemma VII.1).

Now, let us consider a more general case in which each
node requires an arbitrary fixed integral number of time slots
to transmit its packet. In this case, we cannot calculateX [·, ·]
using a Maximum Weighted Matching algorithm. Calculating
X [i, ·] for any leaf nodei is still straightforward, since
X [i,W ] = Ti for all W ∈ {0, 1, ..., D − 1}. We now provide
an algorithm for determiningX [i,W ] for any nodei that is
not a leaf node, and for any givenW . Assume thati hask
children,C1,...,Ck, and that nodeCj requiresαj time slots
(j = 1, 2, 3, ..., k) to transmit a packet to its parent.

Algorithm A1:
1) Construct an interference graph,G′, as follows. For

each childCj , we construct
k
∑

l=1,l 6=j

αl nodes labeled



(Cj ,W−
k
∑

l=1

αl), (Cj ,W+1−
k
∑

l=1

αl), ...,(Cj ,W−αj),

respectively. Here the second term of the label of each
node denotes the time at whichCj starts transmitting. In
other words, it denotes the waiting time ofCj . A node
labeled(Cj ,Wj in this interference graph is assigned a
weightX [Cj,Wj ]. Consider two nodes,(Cm,Wm) and
(Cn,Wn). There exists an edge between these two nodes
if and only if (a) {Wm,Wm + 1, ...,Wm + αm − 1} ∩
{Wn,Wn + 1, ...,Wn + αn − 1} 6= ∅, or (b) Cm = Cn.
1

2) Find a Maximum Weighted Independent Set inG′.
X [i,W ] is given by the weight of this Maximum
Weighted Independent Set.

We will now show that the above algorithm yields the
maximum amount of aggregated information that can be
accounted for by nodei if it waits for W slots. We will

assume thatW −
k

∑

l=1

αl ≥ 0. Note that if this is not true,

we can replaceW −
k

∑

l=1

αl by max(0,W −
k

∑

l=1

αl), and our

results will still hold.

Lemma VII.1. Assume that a nodei needs to makek
transmissions to send a packet to its parentP (i.e., the link
capacity is1

k
). LetW ∗

1 < W ∗
2 < ... < W ∗

k be thek time slots
during whichi makes these transmissions. IfW ∗

1 ,W
∗
2 , ...,W

∗
k

are optimal transmission slots for nodei for problemZ, then
W ∗

1 ,W
∗
1 + 1, ...,W ∗

1 + k − 1 are also optimal transmission
slots for nodei for problemZ.

Proof: Before we describe the details of the proof, it is
important to note that since nodei is sending an aggregated
packet, it cannot modify the aggregated information once it
has started transmitting the packet. Therefore, the amountof
aggregated information accounted for by nodei is given by
X [i,min(W ∗

1 , ...,W
∗
k )] = X [i,W ∗

1 ]. We now prove the result
by induction onk.
k = 2: We show the result fork = 2 by contradiction.

Suppose thatW ∗
1 ,W

∗
1 + 1 are not optimal transmission slots

for nodei for problemZ. Consider the slotW ∗
1 +1 in which a

nodej that interferes withi is scheduled. Suppose that nodej
is now scheduled atW ∗

2 instead ofW ∗
1 +1, and that nodei is

now scheduled atW ∗
1 +1. Note that this is a feasible schedule

because of our aggregation policy, and because of the fact that
we have a tree network with one-hop interference constraints.
Suppose thatj made its first transmission in the slotW ′∗. We
consider two cases.

Case 1:W ′∗ = W ∗
1 + 1

In this case, by interchanging the schedules ofi andj, the
total aggregated information accounted for by nodesi and j
is given byX [i,W ∗

1 ]+X [j,W ∗
2 ] ≥ X [i,W ∗

1 ]+X [j,W ∗
1 +1]

(by Lemma IV.2 sinceW ∗
2 ≥ W ∗

1 + 1). This contradicts our
assumption thatW ∗

1 ,W
∗
1 +1 are not optimal transmission slots

1Note that a node scheduled to transmit at a slotW transmits during
the interval [W,W + 1). Thus, the set of transmission slots{Wm,Wm +
1, ...,Wm + αm − 1} represents the interval[Wm,Wm + αm).

for nodei.
Case 2:W ′∗ < W ∗

1 + 1
In this case, by interchanging the schedules ofi andj, the

total aggregated information accounted for by nodesi and j
is given byX [i,W ∗

1 ] +X [j,W ′∗], which is the same amount
of total aggregated information that we get even without
interchanging schedules.

Thus, combining cases 1 and 2, by interchanging the sched-
ules of i and j, we get at least as much total aggregated
information from i and j as that of the original schedule.
This contradicts the fact thatW ∗

1 ,W
∗
1 + 1 are not optimal

transmission slots for nodei for problemZ.
k = m: Assuming that the result is true fork = m, i.e.,

if node i needs to makem transmissions to send a packet to
its parentP , and ifW ∗

1 ,W
∗
2 , ...,W

∗
m are optimal transmission

slots for nodei for problemZ, thenW ∗
1 ,W

∗
1 +1, ...,W ∗

1 +m−
1 are also optimal transmission slots for nodei for problem
Z.
k = m+ 1: Since the result is true fork = m, W ∗

1 ,W
∗
1 +

1, ...,W ∗
1 + m − 1 are optimal transmission slots for nodei

for problemZ. We now need to show that if the node (that
interferes withi) that transmits atW ∗

1 + m is now made to
transmit atW ∗

m, and i transmits atW ∗
1 + m, the resulting

schedule is still optimal. Note that the proof for this case is
identical to that for the casek = 2.

Hence, the result follows by induction.

Lemma VII.2. Consider any nodei other than the leaf
nodes. Suppose thati has k children, C1,...,Ck. Let node
Cj require αj time slots to transmit its packet. IfW ∗ is
the optimal waiting time of nodei, one of the optimal
set of slots during which the children transmit is given by

{W ∗ −
k
∑

j=1

αj ,W
∗ + 1−

k
∑

j=1

αj , ...,W
∗ − 1}.

Proof: From Lemma VII.1, we know that once a node
starts transmitting, it transmits in consecutive slots until it
finishes transmitting the entire packet. The proof now follows
by contradiction.

Suppose that the set of time slots{W ∗−
k

∑

j=1

αj ,W
∗+1−

k
∑

j=1

αj , ...,W
∗ − 1} is not optimal. This implies that at least

one of the children transmits beforeW ∗−
k

∑

j=1

αj . This means

that there exists at least one time slot in{W ∗−
k
∑

j=1

αj ,W
∗+

1−
k

∑

j=1

αj , ...,W
∗ − 1} during which none ofC1, C2, ..., Ck

make a transmission. If the child that transmitted before

W ∗−
k
∑

j=1

αj had waited until this free slot, the total aggregated

information accounted for by thek children in this case
would have been at least as much as that in the original
case. This contradicts the assumption that the set of time slots



{W ∗ −
k
∑

j=1

αj ,W
∗ + 1−

k
∑

j=1

αj , ...,W
∗ − 1} is not optimal.

Theorem VII.3. Algorithm A1 yields the maximum amount
of aggregated information accounted for by nodei if it waits
for W slots.

Proof: First, we explain the intuition behind the con-
struction of the interference graph inA1. Within the set

{W −
k
∑

j=1

αj ,W +1−
k
∑

j=1

αj , ...,W − 1}, we first determine

the possible transmission slots for each child. For example,
consider C1. C1 can start transmitting at any of{W −
k

∑

j=1

αj ,W +1−
k
∑

j=1

αj , ...,W −α1} and makeα1 consecutive

transmissions until it finishes transmitting its packet. Note that
due to interference, no other child can transmit whenC1 is
making these consecutive transmissions. For example, ifC1

starts transmitting atW −α1, then no other child can transmit
during the slotsW − α1, W + 1− α1, ..., andW − 1.

We construct the interference graphG′ as illustrated in
Step 1 of algorithmA1. From the construction, it is clear
that two nodes inG′ will be in an independent set (which is
a set of vertices in a graph, no two of which are adjacent)
only if (a) the nodes represent different children, and (b)
the transmission slots of the nodes do not intersect. Since a
Maximum Weighted Independent Set is an independent set of
maximum total weight,X [i,W ] is obtained by finding such a
set inG′.

Example: Figures 4(a) and 4(b) give an example of the
construction ofG′. In Figure 4(a), parent nodeP has two
childrenC1 andC2. It takes one time slot to send a packet
from C1 to P , and it takes two time slots to send a packet
fromC2 toP . Figure 4(b) shows the interference graph, which
will be used to calculateX [P,W ] at parentP . Note thatC2

cannot begin transmitting atW − 1, since it cannot make two
transmissions before the deadlineW expires. So we do not
have a node labeled(C2,W−1). Each node in the interference
graph has a weight as explained before. For instance, the node
labeled(C1,W−3) has a weightX [C1,W−3]. Note that there
are three maximal independent sets for this graph, namely,
{(C1,W − 2)}, {(C1,W − 3), (C2,W − 2)}, and{(C1,W −
1), (C2,W − 3)}. The maximum independent set corresponds
to that maximal independent set that has the maximum total
weight. This corresponds tomax(X [C1,W − 2], X [C1,W −
3] +X [C2,W − 2], X [C1,W − 1] +X [C2,W − 3]).
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Computational complexity of A1

Finding a maximum weighted independent set is, in general,
an NP-Hard problem. However, note that the number of nodes

in G′ is O(k

k
∑

j=1

αj), where k is the number of children.

The number of children is typically small. Therefore, in this
case, finding a maximum weighted independent set may not
be computationally complex. However, a maximum weight
independent set algorithm for a general graph has a complexity
O(2cn) wherec is a constant andn is the number of nodes.

Here,n = k

k
∑

j=1

αj = O(k2). Even whenk is a small constant,

it is computationally complex to find a maximum weight
independent set using a general algorithm. Therefore, we need
to find an algorithm with significantly lower complexity. It
is well known that the complexity of the maximum weight
independent set algorithm depends on the structure of the
graph. We now show that the problem of finding a maximum
weight independent set inG′ is equivalent to finding a profit-
maximizing schedule for a Job Interval Scheduling Problem
(JISP). JISP is a well-studied problem in integer optimization
theory. It is known to be MAX-SNP Hard, which implies
that unless P=NP it is not possible to find a Polynomial-Time
Approximate Solution (PTAS) to JISP.

Theorem VII.4. DeterminingX [i,W ] for an arbitrary node
i havingk children, and for an arbitrary waiting timeW is
MAX-SNP Hard when the input to the problem isk.

Proof: We briefly describe the Job Interval Scheduling
Problem (JISP). In a single-server JISP,n jobs need to be
served by a single machine. Each job hask instances, where
each instance is associated with an explicit time interval during
which it must be scheduled, and a certain profit. The machine
can only serve one instance of any job during each time slot.
The goal is to find a schedule such that at most one instance of
a job is present in the schedule, the instances in the schedule
do not conflict in time, and the sum of the profits of the job
instances is maximum.

DeterminingX [i,W ] for an arbitrary nodei and an arbitrary
waiting timeW is a JISP. This can be shown as follows. In
our problem, the jobs correspond to the children nodes that
need to be served by the parent. Each instance corresponds
to a node in the interference graphG′. Recall that a node in
G′ is associated with a child node, the interval during which
it transmits, and a weight. The interval corresponds to the
interval of the job instance, and the node weight corresponds
to the profit of the job instance. Thus, our problem is identical
to JISP.

Hence, when the input to the problem is the number of
children k (which corresponds to the number of jobsn in
JISP), determiningX [i,W ] is MAX-SNP Hard.

A polynomial time algorithm that provides a constant factor
approximation of12 to JISP can be found in [14]. This means
that this algorithm guarantees that the total profit of the
schedule that it finds is at least12 of the total profit of the
optimal schedule. However, while determiningX [i,W ] for a
given nodei and a given waiting timeW is a JISP, determining



X [S,D] requires calculatingX [·, ·] for all other nodes in the
network. If the maximum number of hops in the network from
a leaf node to the sink ish, then the approximation factor by
directly applying the JISP approximation algorithm could be as
poor as 1

2h
. Hence, it is necessary to look at other approaches

than just using an existing JISP approximation scheme.
It is important to observe that even though our solution has

exponential complexity, the input is the number of childrenin
each hop (or, in other words, the degree of each node). In many
cases, the number of children is a small constant. Therefore,
we also wish to find the complexity of an optimal algorithm
even if it has exponential complexity in the number of children.
We now provide anO(k!) algorithm for finding a Maximum
Weighted Independent Set inG′, where k corresponds to
the number of children. We observe that given the order in
which children transmit, we can find an independent set in
G′ in constant time. For instance, if it is known that the
order of transmission is given byC1 → C2 → ... → Ck,
then the corresponding independent set inG′ is given by

{(C1,W−
k
∑

l=1

αl), (C2,W+α1−
k
∑

l=1

αl), (C3,W+α1+α2−

k
∑

l=1

αl), ..., (Ck,W − αk)}. This follows from Lemmas VII.1

and VII.2. Since there arek children, there are exactlyk!
ways in which the children can be ordered to transmit. The
Maximum Weight Independent Set corresponds to the order
that has the maximum total weight.

The above derivation holds even when all the link capacities
(in any particular hop) are distinct from each other. In many
cases, it may turn out that there are only a few fixed set of
rates at which a node can transmit. When the link capacities
(within a hop) were identical, we showed that we can calculate
X [·, ·] using a Maximum Weighted Matching algorithm.

Now suppose that there are only two distinct link capacities
(sayγ andδ), i.e.,α1, α2, ..., αk ∈ {γ, δ}. Then we can find an
algorithm with a complexity lower thanO(k!) to find X [·, ·].
We do this as follows.

Suppose thatr out of k children have link capacityγ,
and the rest have link capacityδ. The number of ways of
arrangingk items of whichr are of one type, and the rest
are of a second type is given by k!

r!(k−r)! . Let us consider one
such arrangement of link capacities. Each arrangement of link
capacities corresponds to an arrangement of waiting times.
For example, consider three children requiring 10, 20, and 10
transmission slots respectively. Then, given an arrangement,
10-20-10 (say), the waiting times are given byW−40, W−30,
andW − 10. Since the second child requires 20 transmission
slots, it transmits at W-30. However, we do not know whether
the first child transmits atW−10 or atW−40. Thus, while we
obtain an arrangement of waiting times, we do not immediately
have an assignment of these waiting times to the children.
This assignment can be done using a Maximum Weighted
Matching algorithm. We know that only the first or the third
child can transmit atW − 40 and W − 10. So we match
these children to these waiting times so that the sum of the
weights is maximized. Figure 4 illustrates this example. For
two possible arrangements of link capacities, 10-20-10 and

10-10-20, the corresponding set of waiting times is given by
{W − 40,W − 30,W − 10} and{W − 40,W − 30,W − 20},
respectively. For the arrangement 10-20-10, the second child
is automatically assignedW − 30, but the first and the third
children have to be matched to the set{W − 40,W − 10}.
This is accomplished by performing a Maximum Weighted
Matching between these children and the waiting times. The
explanation is similar for the other arrangement (10-10-20).
Note that there are a total of three possible arrangements here,
namely, 10-10-20, 10-20-10, and 20-10-10.

10 − 10 − 2010 − 20 − 10

2 31 12 3

W − 30 W − 20 W − 40 W − 30W − 10W − 40

Fig. 4: Two ways of arranging link capacities and the
corresponding Maximum Weighted Matchings

We provide a procedure below that determinesX [i,W ]
when the link capacities of children takem (m < k) distinct
values (γ1, γ2, ..., γm). For each possible arrangement of link
capacities, do the following to calculate its weight.

1) Assign waiting times corresponding to this arrangement
of link capacities.

2) Split the children intom classes, where each child in the
first class has link capacityγ1, each child in the second
class has link capacityγ2, and so on.

3) Split the waiting times obtained in Step 2 intom classes,
where each waiting time in the first class corresponds to
a link capacityγ1, that in the second class corresponds
to a link capacityγ2, and so on.

4) Perform a Maximum Weighted Matching between the
children in theith class, and the waiting times in the
ith class,i = 1, 2, ...,m.

5) Add the weights of all them classes to obtain the weight
of the arrangement.

Finally, determine the arrangement that provides the maxi-
mum weight.

We now analyze the complexity of this procedure. Letri
be the number of nodes that have link capacityγi to their

parent,i = 1, 2, ...,m. Note that
m
∑

i=1

ri = k. The number of

arrangements of link capacities is now given by k!
r1!r2!r3!...rm! .

The complexity of the Maximum Weighted Matching for each

of these arrangements isO(

m
∑

i=1

r3i ). Therefore, the overall

complexity of the procedure isO( k!
r1!r2!r3!...rm! (

m
∑

i=1

r3i )).

To understand this complexity result, let us consider the case
m = 2. Consider the worst case. This corresponds to findingr
that maximizes k!

r!(k−r)! . We know that this is given byr = k
2

whenk is even, andr = k+1
2 whenk is odd. Using Stirling’s



approximation, this maximum value is approximately equal to
2k√
k

. The Maximum Weighted Matching has a complexity of

O(k3). Thus the overall complexity is given byO(k2.52k).
Note that this is a significant reduction from theO(k!)
complexity when the link capacities were distinct.

Clearly, whenm = 1, the procedure has the same complex-
ity as that of AlgorithmA, and whenm = k, the procedure
has the same complexity as that of AlgorithmA1.

C. Multiple Events

In this section, we relax our earlier assumption that events
must be non-overlapping, and extend our solution to multiple
overlapping events. For the purpose of illustration, we explain
the case with two overlapping events. This can be easily
extended to a larger number of events.

We consider a tree with the sink as the root. The objec-
tive here is to maximize the total number of source nodes
accounted for at the sink by both the events within their
respective deadlines (say,D1 andD2). Note that packets of
two different events cannot be aggregated together. We assume
unit capacity links and a one hop interference model.

The optimal aggregation policy for this problem is a simple
extension of the policy for a single event. For two events, a
node needs to make at most two transmissions, one for each
event. The problem can now be solved as follows.

Let X [i,W1,W2] represent the maximum total number of
source nodes, from both events, that nodei can account for if
it transmits the packet corresponding to the first event at time
slot W1, and the packet corresponding to the second event at
time slotW2. We need to calculateX [S,D1, D2] at the sink
(with a minor modification that the sink does not transmit
packets).

As described in the previous sections, we calculateX [·, ·, ·]
from leaves to root, and assign waiting times from root to
leaves. For any leaf nodel, X [l,W1,W2] = T

(1)
l + T

(2)
l for

everyW1 ∈ {0, 1, ..., D1 − 1}, W2 ∈ {0, 1, ..., D2 − 1}, and
W1 6= W2, whereT (i)

l = 1, if node l is a source for eventi.
Otherwise,T (i)

l = 0. Note thatW1 6= W2 because a node can
make only one transmission during a single time slot.

Now consider any nodei having k children,C1, C2, ...,
Ck. We need to calculateX [i,W1,W2] for every W1 ∈
{0, 1, ..., D1−1}, W2 ∈ {0, 1, ..., D2−1}, andW1 6= W2. We
explain how to perform this calculation whenW1 < W2. The
calculation can be done in a similar manner whenW2 < W1.
We now consider the following cases.

Case 1:W2 −W1 ≥ k + 1
This means that the deadline for the second event at node

i is at leastk time slots more than the deadline for the first
event at nodei. Note that slotW1 is allocated to nodei for
transmitting the packet corresponding to the first event. This
condition implies that the children of nodei need not start
transmitting their packets corresponding to the second event
beforeW1. This is because, if a child transmits its packet
corresponding to the second event beforeW1, then at least
one of the time slots in{W1 + 1,W1 + 2, ...,W2 − 1} is
empty. If that child had waited until this empty slot, it could
have potentially aggregated more packets corresponding to

the second event and still made a successful transmission.
Therefore, the set of possible transmission slots for the second
event is given by{W2 − k,W2 − k + 1, ...,W2 − 1} (since
W2 − k ≥ W1 + 1).

For determining the set of possible transmission slots for the
first event, we also need to consider the transmissions made
by the children of each child ofi. This is because the second-
hop children of i could be sending packets corresponding
to the second event while their parent is sending packets
corresponding to the first event to nodei. For simplicity of
exposition, we will assume that each child ofi hask children.
Note that the sum of the number of transmissions made byi’s
children beforeW1 is at mostk, and each child ofi receives at
most2k transmissions (k transmissions for each event) from its
children beforeW1. Therefore, no child ofi needs to transmit
its packet corresponding to the first event beforeW1−3k. If a
child of i transmits beforeW1− 3k, then there exists a slot in
{W1−3k,W1−3k+1, ...,W1−1} during which none of the
children ofi and none of the children ofi’s children transmit.
Therefore, that child could have waited until this free slotand
still made a successful transmission, after having potentially
aggregated more packets. Note that we have assumed here that
W1 − 3k ≥ 0. When this is not true, we can always replace
W1 − 3k by max(W1 − 3k, 0).

Given an optimal set of possible transmission slots, it is now
straightforward to computeX [i,W1,W2]. As in the previous
sections, we construct an interference graph,G′. The nodes in
G′ are labeled(Cj ,Wj1,Wj2), whereCj represents the child,
Wj1 represents the time slot during whichCj transmits its
packet corresponding to the first event, andWj2 represents the
time slot during whichCj transmits its packet corresponding
to the second event. Note that there are a total of3k3 nodes in
G′, corresponding to all combinations of{C1, ..., Ck}, {W1−
3k, ...,W1 − 1}, and {W2 − k, ...,W2 − 1}. A node labeled
(Cj ,Wj1,Wj2) is assigned a weightX [Cj ,Wj1,Wj2]. There
exists an edge between two nodes inG′ if and only if at least
one of the three terms in the names of the nodes are identical.
This means that there exists an edge between two nodes if and
only if both the nodes represent the same child, or, both the
nodes have the same transmission slot for the first event, or,
both the nodes have the same transmission slot for the second
event.

We now obtainX [i,W1,W2] by calculating the total weight
of a Maximum Weighted Independent Set ofG′. We can thus
computeX [S,D1, D2] at the sink and assign waiting times
for the two events from the root down to the leaves.

Case 2:W2 −W1 ≤ k
The main difference between the solution for this case and

that of Case 1 is that the set of possible transmission slots for
the two events are different. In this case, it may not be optimal
to begin transmissions for the second event after the deadline
for the first event expires, because there may not exist enough
time slots for all children to make transmissions corresponding
to the second event betweenW1 andW2. Based on the fact
that the total number of transmissions made byi’s children is
at most2k, and that the total number of transmissions made by
the children of any ofi’s children is also at most2k, one of the
optimal set of transmission slots for both events lies in theset



{W1−4k,W1−4k+1, ...,W1−1,W1+1,W1+2, ...,W2−1}.
This is because if a child ofi transmits beforeW1 − 4k,
then there exists a slot in the set above during which none of
i’s children and none of the children ofi’s children make a
transmission. Therefore, if that child ofi had waited until this
free slot, it could have potentially aggregated more packets
from its children, and still made a successful transmission.

Now, given this set of possible transmission slots,
X [i,W1,W2] can be computed as shown in Case 1.

We have thus solved the problem of maximizing the total
number of sources that can be accounted for at the sink by
two events (potentially overlapping with each other) within
their respective deadlines, under node-exclusive interference
constraints. It is also possible to extend this to an arbitrary
number of events. However, the complexity of finding a
Maximum Weight Independent Set will exponentially increase
in the number of events. Note that even when there are multiple
events, if the deadlines of the events are far enough from each
other that it is enough to start transmitting packets for the
next event after the expiration of the deadline for the previous
event, then this problem is significantly less complicated.One
just needs to apply the algorithm in Section 4 for each event
separately.

VIII. C ONCLUSION

In this paper, we have developed a general optimization
framework for solving the problem of maximizing aggregated
information in data aggregation trees when a deadline is
imposed by the sink. We considered a one-hop interference
model and proposed a polynomial time algorithm that uses
only local information at each hop to obtain the optimal solu-
tion. Extensions to general interference models, and finding
low complexity solutions for these models are challenging
problems, and are a part of our future research. We discussed
a number of interesting applications and interpretations to
our solution, such as, incorporating sleep-wake scheduling,
maximizing weighted aggregated information and maximiz-
ing accuracy. Finally, we extended our solution to account
for more general problems concerning multiple overlapping
events, and arbitrary link capacities.
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