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Abstract—We study the problem of maximizing the aggregated in many applications, the sinks only desire an aggregatexd fo
information in sensor networks with deadline constraints.Our  of the data sensed by different sensor nodes. Exampleslsclu
model is that of a sensor network that is arranged in the finding the average temperature in a region, determining

form of a tree topology, where the root corresponds to the . S .
sink node, and the rest of the network detects an event and whether pressure in a region is below a certain value, and

transmits data to the sink over one or more hops. We assume determining the average location and velocity of a target.
a time-slotted synchronized system and a node-exclusivel§a It is known that when sinks require an aggregated form of
called a primary) interference model. We formulate this priblem  the sensed data, performing in-network computation greatl
as an integer optimization problem and show that for unit reduces the communication overhead [2].

capa}city Iinks., the optimall solution involves solving a Biprtite One of the kev issues in data agareaation in sensor networks
Maximum Weighted Matching problem at each hop. We propose y ggreg

a polynomial time algorithm that uses only local information at IS the trade-off between energy, delay, and the quality ¢d da
each hop to obtain the optimal solution. Thus, we answer the obtained by the sink. This can be viewed as follows. Consider
question of when a node should stop waiting to aggregate data a data aggregation tree in which each parent aggregates data
from its predecessors and start transmitting in order to mavimize from all of its children before forwarding it to the next hop.
aggregated information within a deadline imposed by the sik. Assuming error-free links and no collisions, each pareahth
We extend our model to allow for practical considerations soh 9 - ’ p
as arbitrary link capacities, and also for multiple overlapping Needs to make at most one transmission. However, each parent
events. Further, we show that our framework is general enoug  will have to wait until it has received data from all its chridah.
that it can be extended to a number of interesting cases such On the other hand, if each parent decides to transmit evesy ti
as incorporating sleep-wake scheduling, minimizing agg@ate it receives a packet from one of its children, then this may
sensing error, etc. result in excessive transmissions, defeating the very qaap
of data aggregation. Therefore, in order to maximize tha dat
quality at the sink under deadline or energy constraintg, on
) _ _ ~needs to carefully control the number of transmissions a&nod

A wireless sensor network is a wireless network consistingin make and the time that a node can wait to gather the data.
of a number of sensors that are distributed in a region inrorde Thys, there is a delay-energy trade-off that needs to be care
to cooperatively monitor certain physical or environmdant@u”y considered depending on the level of delay an apyibcat
conditions. These networks are used in a number of civiligiyn tolerate. Moreover, the quality of data reported at ihie s
and military applications, such as environment and habigt also important. In particular, we are interested in figdin
monitoring, battlefield surveillance, and traffic contiidlie to  the maximum amount of aggregated information that can be
size and cost constraints, sensor nodes have limited enegptained by a sink under deadline and energy constraints. Ou
processing, memory, and bandwidth capabilities. Typicallgoal in this paper is to maximize the aggregated information
these nodes sense a desired aspect of the region in which fey given data aggregation tree with the sink as the root.
are deployed and occasionally report the sensed data te thaggregated information” can be thought of in a number of
prone to error due to resource constraints and environheR{an it, we can maximize the sum of the priorities of packets
factors. Therefore, sinks cannot rely on the data sensed g8tounted for at the sink. If each node senses data with a
a single sensor. Moreover, since there is usually a certaigrtain accuracy, we can think of maximizing the accuracy of
degree of redundancy in the data sensed by different sensg{g aggregated data at the sink. For simplicity of presiemtat

, _ we will first define aggregated informatioras the number
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We now briefly examine the related work in this are&ection 3, we formulate the problem for data aggregatiastre
Currently, there exist a number of techniques addressiag an integer optimization problem. In Section 4, we describ
the formation of data aggregation trees [3]-[5]. In all #theghe optimal solution for unit capacity links. In Section 5,
works, constructing an optimal data aggregation tree ham bave analyze the complexity of this solution. In Section 6,
shown to be NP-Hard for a number of cases such as lifetime discuss various interpretations and applications of our
maximization, minimizing the total number of transmissionproblem. In Section 7, we extend our solution to account
etc. These works then develop heuristic algorithms to coast for arbitrary link capacities, and multiple overlappingeets.
trees that are provably efficient. A second category of worksnally, in Section 8, we conclude the paper.
study trade-offs between energy, data accuracy, and detay f
data aggregation in wireless sensor networks. Boulis et al.
[6] study trade-offs between energy and data accuracy i dat
aggregation trees. In [7], Yu et al., study trade-offs bewe We model the system as a grapiV, E) whereV is the
energy and latency in data aggregation trees assuming a tiget of nodes and? is the set of links. The system ha$
slotted synchronized system. As mentioned in [7], enfagrcimodes and a sink. When an event occurs, nodes sense some
the latency constraint requires time-synchronizatioresoés desired quantity and send an aggregated form of the data to
such as [8]. Bechchetti et al., [9] study the problem of minthe sink.G is a tree rooted at the sink. A node may or may
mizing energy in the presence of latency constraints foa daiot be a source for a particular event. We assume that the
aggregation. In [10], Ye et al., study the fundamental epergsystem is time-slotted and synchronized. During each time
delay trade-off for distributed data aggregation in wissle slot, a node can perform only one of the following: sending
sensor networks. Their goal is to maximize a certain parame& packet, receiving a packet, or remaining idle. The sink
called the “discounted reward” at each node, where the gewadmposes an event-dependent deadline within which it should
is due to data aggregation and the discount is due to the tingéeive data from the sensor nodes. We assume that events
for which the node waits in order to aggregate data froAre static events in which each source node associated with
its predecessors. They propose two learning-based ditgdb that event knows that some parameter needs to be sensed at a
approximation algorithms that empirically perform close tparticular time. For example, sensor nodes could peritigica
the optimal solution. The common drawback of these worléense temperature in a region and report some aggregated for
is that interference is not a part of the optimization framef the data to the sink.
work even though it is a critical component of the wireless The aggregation function we consider, can be any divisible
environment. Lai et al. [11] study an interesting problem dfinction [12]. Divisible functions are those that can be eom
minimizing a weighted sum of the expected energy consumpdted in a divide and conquer fashion. For example, assume
and an exponent of the latency probability. Compared to haiftht the sink desires the functigifz:, 22, ..., zn), wherex,
deadlines studied in this work, they consider the probgbiliz2, ..., zy are the raw data measurements of fiesensor
that the latency exceeds a threshold. nodes. LetS denote the sef{xy,zs,...,zx} and let f(S)

In this work, we propose an optimization framework thaenotef(z1, zz, ..., zn). The functionf is divisible if, given
can be used to study trade-offs between aggregated inforray partition,P(S) = {51, ..., S;}, of S, there exists a function
tion, energy and latency, in a time-slotted system, underg&'®, such thatf(S) = g”*)(f(S1), f(S2), ..., f(S;)) for
one-hop interference model. any zi,...,z,. The complete definition of divisible func-

The main contributions of this work are as follows. tions can be found in [12]. Examples of divisible func-

o ~__ tions include MIN, MAX, Sum, Median, Mode, etc. Con-

- We develop an optimization framework for maximizingsjqer the MAX function for instance. Suppose the sink
the aggregated mformatloq that_ls accounted fqr at ﬂ&%sires MAX(1,2,3,4,5). Then, given a partition, (say)
5|_nk_from all source r_10des_ in a given data gatherm_g _tre{a{l’ 2},13,4),{5}} of {1,2,3,4,5}, MAX(1,2,3,4,5) =
within a deagllme. This optimization framework eXpI'C'tlyMAX(MAX(l, 2), MAX(3,4), MAX(5)). We illustrate
account for interference. , _ this example in Figure 1. In Figure 1, the source nodes

« We provide a distributed opumal solution that_ Cons'_Stﬁjenoted by filled circles) hold the measurements 1,2,3d, a
of two components - an optimal data aggregation policy, the intermediate nodes seMdAX (1,2), andM AX (3, 4)
and an optimal scheduling pollcy. For unit capacity linksgther than sending 1,2,3,4 separately. As commonly used
we show that the scheduling problem can be reducgfhe jiterature, we refer to this computation performed by

to a well-known Maximum Weighted Matching problemyermediate nodes d@a-network computationThe sink can
(MWM). The key fact here is that this Maximum Welghteﬁha"y still compute MAX(1,2,3,4,5) because MAX is a
Matching is only within a single hop (because of the datgyisible function.

aggregation policy)and not the entire network, and thus i Average is not a divisible function, it can also be

it hag asigniﬁ(_:antly lower c_omplexity thqn the tradi_tional:omputed if the total number of source nodes is known (or
Maximum Weighted Match|ng problem in schgdullng_ transmitted) at the sink.
.« We e>§t_end our solution tolaccount for_arbltrary link We consider the one-hop or node exclusive interference
capacities, and also for multiple overlapping events. model. In the one-hop interference model, any two links that
The rest of this paper is organized as follows. In Section 2hare a hode cannot be active at the same time, which captures
we list our assumptions and describe the system model.dne of the key attributes of practical wireless transmissio

II. SYSTEM MODEL AND ASSUMPTIONS



MAX

o Vi - Set of all leaf nodes in the tree.
o D - The deadline by which packets must reach the sink.
Now the optimization problem can be framed as follows.
We call this probleny.
Problem Y:

max Z T; H n; 2

i€V j:jePATH(3)
s.t. For each € V\V.: VC C {(j,1) : (4,4) € E},

1 2 3 4 > ny<Wi- . (I;lii)lé Wi (3)
Fig. 1: In-network Computation of MAX 730 EeC '
n; € {07 1} V(Z,]) ek (4)

W; €{0,1,....,D -1} Vi € V\{S},Ws = D (5)

Relaxable Assumptions

In order to illustrate our problem and solution, we make the
following additional assumptions. We later explain how our The goal of problenY” is to determine the control variables,
solution can be modified when these assumptions are relaxed for each link(z, j) € E, andW;, for each node € V\{S},

We assume that the aggregation delay (the time requiredstech that the aggregated information is maximized at the sin
aggregate data from different sensors) is negligible. \¥arag Now, before we present the optimal solution ¥q it is
that the capacity of each link is fixed and equal to 1. Wdustrative to understand the constraintsYin The constraints
assume that packet sizes are equal and that it takes one timé&t) and (5) are straightforward to interpret. The coristra
slot to transmit one packet. For each event, we assume thatiral3) explains the relationship between interference aeidyd
the source nodes that are associated with the event, séaseith data aggregation trees. Under the one-hop interference
event and are ready to transmit their observation at time.zemodel, a parent node can only receive packets from one of its
We assume that the next event occurs only after the deadlafeldren nodes during a particular slot. However, when &chi

for the current event expires. node transmits to its parent, the other children (of the same
parent) can receive data from their children (by the definiti
I1l. PROBLEM FORMULATION of the one-hop interference model). For example, consider

We now consider a network, modeled as a tree with the siffi@ure 2(a) with node” receiving data from its childred’,
being the root, and formulate the problem of maximizing the2 @ndCs. This figure represents a single hop in a large data
aggregated information at the sink when the sink imposesg@dregation tree. During a slot in which transmits toP, C
deadline. As mentioned earlier, we define aggregated irdforn@NdC3s can receive data from their children. However, no two

tion at the sink as the number of source nodes whose data fédren of P can transmit toP in the same slot. Let nodg
been accounted for at the sink. have a waiting timéV’, andC;, Cy andC5 have waiting times

We next provide some notations and definitions. Wi, W, and W, respectively. Letl; < W, < W5 < W.

Then, the total number of transmissions that can be made

from all the children nodes to the pareRtis limited by the

« P(i) - Parent of node. difference betweell” andWW; (since the first transmission can
occur only afterit; and the last transmission can occur only

o« PATH/(i) - The set consisting of and all its ancestors bef by the definiti £ waiting ti Al h I
in its path to the sink, but not including the sink, i.e.”€ are W, by the definition of waiting fime). Also, the tota

PATH(i) = {i, P(i), P(P(i)), ...}, andS ¢ PATH(i). number of transmissions that can be made fi@dmandCs to

« T; - Denotes whether nodeis a source for a particular P is limited by W — W5. So, (3) says that for any subset of
event, i.e., it denotes whether nodl@as its own packet children nodes, the total number of transmissions madeiby th

to send for a particular event. Hence subset of nodes is bounded above by the difference between
' ’ the waiting time of the parent and the waiting time of the ahil

e V - Set of N sensor nodes and a sin¥,
o FE - Set of edges.

T { L, nodei has its own packetto send ;,  that has the least waiting time in the chosen subset. We will
’ 0, otherwise use these observations when we develop an optimal algorithm
« n; - An indicator variable representing whether chilgs  t0 solveY".
allowed to transmit to its parent, i.ex; = 1 if child 7 is Note that we have made two important assumptions while
allowed to transmit to its parerjt and0 otherwise.. formulating the prOblem (Wthh will be shown to not affect
« W; - The time that node waits to aggregate packetsthe optimal solution).
from its predecessors for a particular event. Afté 1) The data aggregation policy does not allow any node to
time units, nodei will no longer accept packets from transmit more than once.
its predecessors. Also, untilV; expires, nodei will 2) In our data aggregation policy, a node cannot accept

not transmit any aggregated packet to its parent. As packets once its waiting time expires. For example,
mentioned before, we assume that the event is sensed consider a node with waiting time 1W;. Consider the
by each source node at time zero. sub-tree rooted at node ThenW; serves as a deadline



by which source nodes in the sub-tree rooted at node
should send their packets fo G
Note: We have made these assumptions only in order to
assist in formulating the optimization problem. It can be
readily shown that these assumptions do not affect the aptim

solution of the general problent, that is defined below. @ @ @
Problem Z: W W w
Consider an optimization problen¥;, whose objective is ! ’ o ’
to maximize the number of source nodes accounted for at the () ParentP waits until time
. L . . slot W to receive packets from
sink, within a deadline imposed by the sink, under the one-ho children Cy, Cs and Cs

interference model. LeX allow for multiple transmissions and
also allow a node to accept packets irrespective of the gurre
time.

Theorem 1ll.1. Any optimal solution to probleri is also an
optimal solution to problen¥.

Proof: Suppose that in the optimal solution to problem
Z, a node) makesk “useful” transmissions. By “useful”, we
mean that the transmitted packet reaches the sink within the
deadlineD. Specifically, let nod&) transmit packep; at slot
Wi,lgigk(Wl<Wg<...<Wk).
Since the packetg,, ..., pr can be aggregated into a single
packet, the same optimal solution could have been achieved

if @ had simply aggregated these packets and transmitted the (b) ProblemY - Example
aggregated packet at sldt;, instead of makingt separate _
transmissions. However, this is equivalent ¢ having a Fig. 2: Examples

deadlinel,, and transmitting it exactly once.

Thus, it is clear that any optimal solution t8 can be
transformed into a solution satisfying the constraint¥’oaind is trivial, since irrespective of the order of transmission
with both solutions resulting in the same value of the ofject all source nodes will be accounted for at the sink, by the
function. Therefore, any optimal solution to probléfris also deadline. So we will only consider the case when< V.

an optimal solution to probler¥. ]
From Theorem lIl.1, it is enough to solve Problérmin Algorithm A:
order to obtain an optimal solution to probleth 1) Let X[i, W] denote the maximum number of nodes that
We now provide a few examples to explain haivcan be noded can account for if its waiting time i§V, 0 <
solved in simple cases. Consider a tree network with six siode W < D — 1. For every leaf nodé and for eachiV,
C1, Cq, Cs3, P1, Py, P53, with corresponding waiting timeid’,, X[, W] =T,.
Wa, W3, Wy, W5, We, and a sinkS, as shown in Figure 2(b).  2) Consider any nodg other than the sink and leaf nodes.
Let all nodes other than the sirtkbe sources for a particular Suppose it hag children,Cy, Cs, ..., Cy. For everyW,
event. If the deadline imposed §is 1, i.e.,D = 1, then the 0 <W < D —1, calculateX [j, W] as follows.
maximum aggregated information that reaches the sink is one a) If W > k, assign waiting timesVy, W, ..., W
since in the given single time slot, only one 6f, P, and to 01’62’ ..., O, respectively, such that ead#r;,
P3 can transmit toS under the one-hop interference model). 1 < i < k takes a value in the sefiW —
If D = 2, then the maximum aggregated information that LW -2, W— k}, where no two nodes can
reaches the sink is 3. In the first slot, one/f and P; will have the same waiting time, and such that the
transmit toS. In the same slot, one afy, C> and Cs will k
transmit to P;. In the second slotP; will aggregate its own sumZX[CZ-, W;] is maximized. This is a Max-

data with the data received from its child in the first slot and
send the aggregated dataSo Thus, P; will account for two (et
source nodes. Similarly it can be shown thatlif= 3, then the bipartite graph(4, B, P,Q), where A =

the maximum aggregated information that reaches the sink is {0_17027 v Oty B= AW -1, W=2,....,W—k},
5 P is the set of edge$(a,b) : a € A,b € B}, and

Q is the set of weights of each edge. An edge
(a,b) € P has a weightX|a, b].

imurr%:%Neighted Matching (MWM) problem in

IV. SoLuTion b) If W < k, assign waiting times from the s€W/ —
In this section, we provide an algorithm (Algorithd) that 1,W—-2,...,0} to W out of thek children such that
solves problemZ and prove that this algorithm provides an no two children that have been assigned a waiting

optimal solution toZ. Note that whenD > N, the problem time from this set have the same waiting time,



and such that the sum Z X[C;,W;] of the aggregated information from the childreniofHence,

i:c, is assigned X[i, W] is given by (6). u
is maximized. This is an MWM problem in This lemma illustrates that one can obtain a distributed
the bipartite graph(A, B, P,Q), where A = solution by solving forX[-, ] at each hop.

{Cl, Cy, ..., Ck}, B = {W— 1L,W-=-2, ..., 0}, Pis
the set of edge¢(a,b): a € A,b € B}, andQ is
the set of weights of each edge. An edgeb) € P
has a weightX|[a, b]. Proof: Clearly, if a node waits for a longer time to
3) Finally, at the sink, calculat&([S, D] as illustrated in @ccumulate packets from its children, then it should be able
Step 2. Thus, we calculat&[-, ] from the leaves to the t0 accumulate at least as many packets as it had accumulated
root. when it had waited for a shorter period of time. [ |

children based on howX[S, D] is obtained. Proceed trée to the root. We will use induction to prove the optimalit

from root to leaves and assign waiting times. Lemma IV.3. Consider a nodeP whose children are all

Algorithm A calculatesX |-, -] from the leaves to the root leaf nodes. Let there bé children, C;,...Cx. For a given
and assigns waiting times from the root to the leaves. Not&, X [P, W] is obtained by allocating waiting time$}) —
that a general brute force approach for Step 2 would resultiifin(W, k),... W/ — 1, in the order of decreasing’c, for
a complexity ofO(D¥). Identifying the Maximum Weighted j = 1,2, ..., k (i.e., by first allocating slots to nodes wiff,
Matching reduction, and also the set of possible waitingim = 1, and then allocating remaining slots to nodes with, =
is key in reducing the complexity of the solution. 0).

We now prove that this algorithm provides an optimal
solution to problemY’, and hence, to probled. Before we
do this, we first rewrite the objective function of Problém
in the following recursive manner.

It is clear that for a leaf nodé, X|[I,W] = T; for any
waiting time .

Lemma IV.2. For any nodei € V, X[i, W] cannot decrease
as W increases.

Proof: Clearly, if P has a waiting timéV, then at most
min(W, k) children can transmit among thechildren within

the deadlinell’ at P. The proof is now obvious since leaf
nodes will account for one packet if they are sources and
no packets otherwise. Therefot®[P, W] is obtained by first
allocating slots to nodes that have a packet, and then &hgca
Lemma IV.1. X[S, D] provides the optimal solution to Prob-any remaining slots to nodes that do not have a packem

lem Y, where for any non-leaf nodé with & children Thus, we can find the optimal solution for any deadlifie
(C4,...Ck), and for any waiting timéV, X [i, W] is calculated at each parent having only leaf nodes as children. Now, assum

recursively by the equation that we can find the optimal solution for any deadliié at
Cr each parent node that ishops away from the sink.
X[, W]=T,; + max > X(Cy Wilng, (6) Lemma IV.4. Consider a node? that is » — 1 hops from the
j=C1 sink havingk children C4,...C%. Let P have a waiting time

where @ is the set of constraints including constraint (3/. Then, at least one of the solutions for the optimal waiting

for nodei, n; € {0,1}, and W; € {0,...,D — 1}, for times ofCy,...C}, will satisfy the following conditions.

je{C,..,Ci}. o If W >k, thenn; =1V ie {Cy,Cy,...,C}, and each
child C4,...C transmits in one of the slots in the set
{W —1,...,W — k} where no two nodes transmit in the
same slot.

o If W < K, thenn; = 1 for exactlyWW children among the
k children. TheséV children transmit in one of the slots
in the set{0, 1, ..., W — 1} and no two nodes transmit in
the same slot.

Proof: We show this result by induction.

Consider a node such that all its children are leaf nodes.
Then the maximum number of sources thaain account for if
it waits for a timeW is simply its own data, and the maximum
number of children ofi (that are sources) that can transmit
their data toi by time W. This is becausé’s children are all
leaf nodes, and therefot® [C};, W;] = T¢, for eachC; and
for eachW;. Therefore, (6) holds for nodes that have only  Proof: We prove both the cases in this result by contra-

leaf nodes as children. diction.
Assume that the result is true for nodes that are at héight Case 1:W > k
from nodes that have only leaf nodes as children. Supposen; # 1 for some nodeC;. Then there is at least

Consider a nodé at heighth + 1. We need to show (6) one slot during which there is no transmission. By schedulin
for this node. Clearly, nodéewill account for its own datd; nodeC; to transmit in this slot, we can obtain at least as much
irrespective of the waiting time. Further, since the cldldof aggregated information as whéf) was not provided a slot to
i are at height, from leaf nodes X [C;, W;] represents the transmit.
maximum number of sources that; can account for if its  Suppose some nodeg does not transmit in one of the slots
waiting time isW;. Further, observe that for a givéir, the inthe set{W —1,...,. W —k}, i.e., {W —1,..,W —k} is not
constraints in Problerl that affect the calculation oX[i, W] a set of optimal waiting times fo€;, Cs, ...., Cx. Suppose
are only those mentioned in (6). Therefore, by maximizing; transmits in the slotV — & — o, a > 0. Then there exists
over these constraints, we obtain the maximum of the suahleast one slot in the s¢¥W — 1,...,W — k} during which



no transmission takes place. If the no@e had transmitted = Now from Theorem lIl.1, the theorem is proved. ]
during this slot, the aggregated information that we would
have obtained would be at least as much as what would have/. COMPUTATIONAL COMPLEXITY OF ALGORITHM A

been obtained if it had transmitted during the sigt— & — In this section, we analyze the computational complexity of
a (by Lemma 1V.2), thus contradicting our assumption thafigorithm A described in Section. Let the farthest node (in
{W —1,..,W —k} is not a set of optimal waiting times for terms of number of hops) be hops away from the sink. Let
C1, Ca, ..o, Ck. the in-degree of each node in the tree (apart from leaf nodes)
Case 20 < W <k be bounded by. By this, we mean that each non-leaf node has
If n; = 1 for more than nodes, then the solution isat mostk children. LetD represent the deadline imposed by

infeasible since it is not possible to schedule more than the sink. Let the total number of sensor nodes (not including
nodes inl¥ slots. In particular, the constraint in (3) is violatedihe sink) beN.

On the other hand, ifi; = 1 for less thari’’ nodes, then by ) ) ) )
a similar argument as made in Case 1, we can obtain at |e-£Q?Ogem V.1. The time complexity of algorithmd is
as much aggregated information by makifgnodes transmit. O(hk*(D + k)logk).

Similarly, the rest of the proof follows from the same  Pproof: At every nodei, we need to calculate [i, W],

argument as made in Case 1. B 0<W<D-1.
Theorem IV.5. Algorithm A results in an optimal solution to
problem 7. W =0 = Time =0

Proof: We have found the set of optimal waiting times W=1 = Time <k
for the childrenC', ..., C,. We now only need to assign these W =2 = Time < k(k—1)
slots to thek children. , B 9

: <W < <
SupposeX [i, W] represents the optimal number of nodes SsWsk = Tfme < (k +2W) log(k + W)

that nodei can account for if its waiting time i, 0 < W < k<W<D- = Time < (2k)7log(2k) )

D — 1. Then the problem of finding{[:, W] is an MWM
problem in a bipartite graph with node-exclusive interfere We obtain (8) from the fact that the MWM problem in a

Consider the bipartite graph in Figure 3. The nodes at the t . o :
of the graph represent the children nodes and the nodesB tarute graph can be solved @(V"logV" + V ) time [13],

the bottom represent waiting times. If a child node(say) where V' is the number of vertices anfl' is the number of
has a waiting time of¥’ — j, 1 < j < min(IV, k), the edge edges. WhenV > k, the vertices and edges remain the same

: ) ’ ! but the edge weights change.
connecting”; andW —j has a weightX [C;, W' —j]. NO WO~ 0 otre the total time required at nodés bounded by

nodes can have the same waiting time and a particular node k—1
can be allotted at most one waiting time. The goal is to assign-k(k—1)+ Z (k+W)Xog(k+W)+(D—k)(2k)*log(2k).
waiting times to the children nodes such that the sum of the W=3

weights on the edges assigned is maximized. This is cleafijnce ford < W < k, log(k + W) < log(2k), the time
an MWM problem and can be solved in polynomial time fofequired is bounded by
a one-hop interference model.

k—1
K2+ > (k+ W)?O(logk) + 4k*(D — k)O(logk)
W=3
k—1
= K2+ O0(logh)(4k*(D — k) + Y (k+W)?)
W=3
= k* + O(k? Dlogk) + O(k3logk)
= O(K*(D + k)logk)
w-l W-2 Ww=3 W-min(W.k) Since nodes that are equal number of hops away from the
Fig. 3: Maximum Weighted Matching Solution sink can perform this computation in parallel and since we
have h hops, the complexity of algorithml is O(hk?(D +
Hence we have now solved the optimization problem fdi)logk). =
nodes that aré — 1 hops from the sink. By induction, from
Lemmas IV.3 and IV.4, given the waiting time of the parent VI. INTERPRETATIONS ANDAPPLICATIONS

node at any hop, the optimal waiting times and the optimal In this section, we discuss a number of different interpreta
number of transmissions of the children nodes in that hop céons of problemy'.

be determined using algorithr. Hence, at the sinkX[S, D] The optimization framework that we have described in
can be determined. Thus, algorithm results in an optimal Section 3 is general and can be interpreted in a number of
solution to probleni’. ways. A few such interpretations are listed below.



1) Priority : Suppose that each source nadeas a priority, A. Different Observation Instants

or more specifically an importance metyi¢ associated | our previous discussion, we had assumed that source
with the packet that it generates. Then, instead @bdes simultaneously observe the event at time zero. Seppos
maximizing the number of source nodes accounted for gt each node observes the event at a cekiainvntime and
the sink, we can maximize the total priority of packetgat the deadline is measured from the instant the first sourc
accounted for at the sink within a deadline. This cagode observes the event. For example, each node could be
be done by appropriately modifying[-,-] so that for periodically observing an event. However, a source nodgeclo
a nodei with waiting time W, X[i, W] represents the {5 the sink could observe the event as late as possible (#ind st
maximum sum priority of packets that can be accounteg@ng its data to the sink) so that its data is fresher than the
for by node: if it waits for a time W' data observed by nodes farther away from the sink. Algorithm
2) Observation Errors: The data observed by sensor nodeg can clearly be applied in a straightforward manner to solve
may not be accurate. Suppose we associate a Cerigj problem. For a source node X[i, W] will account for
“confidence index” to each node’s observation, we cafie data from node only if W is larger than the time instant

then maximize the data accuracy at the sink by maxt whichi observes the data. The rest of the algorithm remains
mizing the total confidence index. the same.

3) Energy Constraint: Suppose we have an additional
constraint that the number of time slots during which B Arbitrary Link Capacities

node: can transmitfreceive is limited tq (say). Nodes In Section Il, we assumed unit link capacities for each

go to s_leep during other siots. Then,.Since each NOfifk in the network. We now study the case where each
Fransmlts at most once,. we can modify the constralpf has an arbitrary fixed capacity. We first observe that
in (3) to (2): nj < min(r; — 1, W; T iOhes Wj)  Theorem III.L does not depend on the link capacity. This
. JEr ... implies that the optimal aggregation policy remains the sam
glteep ‘2/\0‘]{% Igohrlifhfr;fl)bgapne]c(i:ﬁgaﬁ); i?\oglrzirbt)é ?jg:}fﬁ?egeven when each link has an arbitrary fixed capacity. Theeefor
X[i, W] for a nodei With . childr,enC o Cn the to solve problemZ with arbitrary link capacities, we only
N . L2, -k .need to optimally determin&[-, -] and assign waiting times
waiting times of the children can now only take values 0 hodes.
the set{W —1, W2, .., max(0, W—k,W—(ri=1))} | o' begin with a simple case. Suppose that within
which is a subset O{W_l’W_2’""maX(O’W__k)}' a hop in the tree, each link (connecting the given parent
4) The Dgal Probl_em. The dual_ problem _OfY Is to to its children) has the same capacity (not necessarily 1).
determ|_ne the minimum deadlin® by which at least Link capacities may be different across hops. For example,
a cerFam number of source( are accounted for. qt consider a parenP having four children with each of the
the smk. Th"?‘ prob!em can be solvgd by combmmgnk capacities being equal té. It takes two slots for each
algorithm A with a binary _search algonthm_ as folloyvs.ch“d to transmit a packet. Then, for a waiting tiriié for the
It uses the fact thak [S, D] is a non-decreasmgfunctlonparent, the optimal waiting times of the children falls ire th
of D. set{W — 2, W — 4, W — 6, W — 8}, where no two children
a) Initialize D = |5 ], Dicst =0, Dyigne = N. Cal-  can be assigned the same waiting time and no two waiting
culate X[S, D] and X [S, D — 1] using Algorithm times can be assigned to the same child. For instance, if a

A. child is assigned a waiting tim#” — 2, it uses slotdV — 2

b) If X[S,D] < K, setDj.s; = D. and W — 1 for transmitting its packet. ThenX [P, W] can

c) If X[S,D — 1] > K and X[S,D] > K, set be calculated using the same Maximum Weighted Matching
Dyight = D. algorithm described in Section IV. Note that the transmoissi

d) If X[S,D—1] < K andX|[S,D] > K, returnD  slots assigned to a child here are consecutive. This turhs ou
and stop. to be one of the optimal solutions (Lemma VII.1).

e) SetD = 1(Djcsi + Drignt), and go to Step b). Now, let us consider a more general case in which each

The above algorithm will terminate and returnzafor Nnode requires an arbitrary fixed integral number of timessiot
which X[S,D — 1] < K and X[S,D] > K. Thus, it o transmit its packet. In this case, we cannot calculéfe |
determines the minimum deadline by which at leist USing a Maximum Weighted Matching algorithm. Calculating
packets reach the sink. The complexity of this algoritha¥ [¢,-] for any leaf nodei is still straightforward, since
is O(logN) times the complexity of algorithr. X[i, W] =T, forall W € {0,1,..., D — 1}. We now provide
an algorithm for determining{[:, W] for any node;i that is
not a leaf node, and for any givaly. Assume that hask
children, C1,...Cy, and that node”; requiresa; time slots

(j =1,2,3,..., k) to transmit a packet to its parent.

) ) ) ) Algorithm Aj:

In this section, we e_xplaln the structure (_)f the sqlutlon whe 1) Construct an interference grapl’, as follows. For
some of the assumptions that we made in Section Il are re- k

laxed. Some of these extensions are relatively straigligfiot each childC;, we construct Z oy nodes labeled
while others require a more careful investigation. ' I=1,1]

VIl. EXTENSIONS



i & for nodes.
(CJ’W_ZO”)' (@, W+1_Zal)’ - (G, W=ay), Case 2W"* < Wy +1
respectively. Here the second term of the label of each!n this case, by interchanging the schedules afdj, the
node denotes the time at whicl starts transmitting. In total aggregated information accounted for by nodesd j
other words, it denotes the waiting time 6f. A node IS given by X[i, Wy + X[j, W], which is the same amount
labeled(C;, W; in this interference graph is assigned @f total aggregated information that we get even without
weight X [C;, W;]. Consider two nodeg(,,, W,,) and interchanging schedules.
(C,, W,). There exists an edge between these two nodesl hus, combining cases 1 and 2, by interchanging the sched-
if and only if @) {Wom, Wy + 1, ..., Wi + i — 1} 0 ules of i and j, we get at least as much total aggregated
W, Wy + 1, Wy 4+ — 1} # 0, 0r (b) Cpy = Ch. information from: and j as that of the original schedule.
1 This contradicts the fact thdd’}", W} + 1 are not optimal

2) Find a Maximum Weighted Independent Set @4. transmission slots for nodifor problemz.

X[i,W] is given by the weight of this Maximum & = m: Assuming that the result is true fdr = m, i.e.,
Weighted Independent Set. if node ¢ needs to maken transmissions to send a packet to

é’ts parentP, and if W}, W5, ..., W} are optimal transmission
géots for node for problemZ, thenWy, Wi +1, ..., Wi +m—
1 are also optimal transmission slots for nadéor problem
Z.
assume that? — Zo‘l > 0. Note that if this is not true, & =m + 1: Since the result is true fot = m, W7, Wi +
=1 1,...,W{ 4+ m — 1 are optimal transmission slots for node
k k for problemZ. We now need to show that if the node (that
we can replacél’ — Zaz by max (0, W — Z a;), and our interferes withi) that transmits at¥’; + m is now made to
results will still hoId.lZl =1 transmit a_tW;;?, andz’ transmits atiw;* + m, the re§ulting .
schedule is still optimal. Note that the proof for this case i
Lemma VIL.1. Assume that a nodé needs to make: identical to that for the cask = 2.
transmissions to send a packet to its paréhfi.e., the link Hence, the result follows by induction. ]
capacity is%). Let Wy < W5 < ... < W} be thek time slots
during whichi makes these transmissionsi*, Wy, ..., W
are optimal transmission slots for noddor problem 7, then
Wi W+ 1,.., W+ k —1 are also optimal transmission
slots for nodei for problem 2.

We will now show that the above algorithm yields th
maximum amount of aggregated information that can
accounted for by nodeé if it waits for W slots. We will

k

Lemma VIL.2. Consider any node other than the leaf
nodes. Suppose that has k£ children, C,...Cy. Let node
C; require o; time slots to transmit its packet. W/* is
the optimal waiting time of node, one of the optimal
set of slots during which the children transmit is given by
Proof: Before we describe the details of the proof, it is k k

important to note that since nodds sending an aggregated{W* - a;, Wr+1- Z Qjs ey W =1},
packet, it cannot modify the aggregated information once it j=1 j=1
has started transmitting the packet. Therefore, the amofunt ~ Proof: From Lemma VII.1, we know that once a node
aggregated information accounted for by nadis given by starts transmitting, it transmits in consecutive slotsiluint
X i, min(W7, ..., W;)] = X[i, Wy]. We now prove the result finishes transmitting the entire packet. The proof now fefio
by induction onk. by contradiction.

k = 2: We show the result fok = 2 by contradiction.
Suppose thatV;f, Wi + 1 are not optimal transmission slots
for node: for problemZ. Consider the slotV +-1 inwhicha

nodej that interferes with is scheduled. Suppose that ngde Z aj,...,W* — 1} is not optimal. This implies that at least
is now scheduled &t/; instead ofiV;" + 1, and that nodeé is = ’

k
Suppose that the set of time sIqt8* — Z o, W*+1—

j=1

now scheduled &tV + 1. Note that this is a feasible schedule k

because of our aggregation policy, and because of the fact tone of the children transmits befovE* — Z a;. This means

we have a tree network with one-hop interference constaint j=1

Suppose thaf made its first transmission in the slgt’*. We k

consider two cases. that there exists at least one time slot{ivV* — Z o, W+
Case LW’ =Wy +1 =1

k
In this case, by interchanging the schedules ahd j, the 1— ZO" ..., W* — 1} during which none o, Cs, ..., G,
total aggregated information accounted for by notlesid j < I

is given by X [i, Wi+ X [j, W3] > X [i, W]+ X [j, W +1] makje:]? transmission. If the child that transmitted before

(by Lemma IV.2 sincéWy > Wi + 1). This contradicts our . ) o
assumption thal’, W +1 are not optimal transmission slots'V ~Y_ a; had waited until this free slot, the total aggregated

: J=1 . : .
N _ _ _ information accounted for by thé& children in this case
Note that a node scheduled to transmit at a 38t transmits during id h b | h hat in th iginal
the interval [W, W + 1). Thus, the set of transmission SIOf&V,,, Wy, + WOU ave been at least as much as that in the origina

1,...,Wm + am — 1} represents the intervdW,,, W, + am). case. This contradicts the assumption that the set of tiote sl



k k . .
. N N . . Computational complexity of A;
W= Zl a, W +1- z_; aj,-.., W” — 1} is not optimal. Finding a maximum weighted independent set is, in general,
! ’ m an NP-Hard problem. However, note that the number of nodes
k

Theorem VII.3. Algorithm A; yields the maximum amountin G’ is O(kZaj), where k is the number of children.

of aggregated information accounted for by nadi it waits j=1 ) ) . )
for W slots. The number of children is typically small. Therefore, insthi

_ _ S _ case, finding a maximum weighted independent set may not
Proof: First, we explain the intuition behind the conhe computationally complex. However, a maximum weight
struction of the mterf(lecrence graph id;. Within the set jndependent set algorithm for a general graph has a contplexi

k on . .
- Zaj,W+ 1 Zo‘j’ . W — 1}, we first determine o(2™) Wheric is a constant and is the number of nodes.

j=1 j=1 = i 2 i
the possible transmission slots for each child. For examp esren kZa] O(k”). Bven wherk: is a small constant,

. - j=1
consider C;. €y can start transmitting at any of W — it is computationally complex to find a maximum weight
independent set using a general algorithm. Therefore, wd ne
to find an algorithm with significantly lower complexity. It

J Jj=1 . . . .
transmissions until it finishes transmitting its packetteNthat 1S Well known that the complexity of the maximum weight
due to interference, no other child can transmit wi@nis independent set algorithm depends on the .structure .of the
making these consecutive transmissions. For examplé; if 9raph. We now show that /the problem of finding a maximum
starts transmitting &V’ — a1, then no other child can transmitWeight independent set i@" is equivalent to finding a profit-
during the slotsV — a1, W + 1 — a4, ..., andW — 1. maximizing schedule for a Job Interval Scheduling Problem

We construct the interference gragil as illustrated in (JISP). JISP is a well-studied problem in integer optimorat
Step 1 of algorithmA;. From the construction, it is cleartn€ory. It'is known to be MAX-SNP Hard, which implies
that two nodes i’ will be in an independent set (which isthat unless P=NP it is not possible to find a Polynomial-Time
a set of vertices in a graph, no two of which are adjacerfyPProximate Solution (PTAS) to JISP.

only if (a) the nodes represent different children, and (B)heorem VII.4. Determining X [i, W] for an arbitrary node
the transmission slots of the nodes do not intersect. Sincg Raving & children, and for an arbitrary waiting timéVv’ is

Maximum Weighted Independent Set is an independent set\pAX-SNP Hard when the input to the problemis

maximum total weightX[i, W] is obtained by finding such a ] . ]
set inG'. Proof: We briefly describe the Job Interval Scheduling

Example: Figures 4(a) and 4(b) give an example of thEroblem (JISF_’). In a single-server_ JISP,jobs need to be
construction ofG. In Figure 4(a), parent nod® has two served by a single machine. Each job amstances, where

children C; and Cs. It takes one time slot to send a packe‘?aCh instance is associated with an explicit time interuaing)
from C; to P, and it takes two time slots to send a packé’i’hiCh it must be scheduled, and a certain profit. The machine

from C; to P. Figure 4(b) shows the interference graph, which2n Only serve one instance of any job during each time slot.
will be used to calculateX [P, W] at parentP. Note thatC The goal is to find a schedule such that at most one instance of

cannot begin transmitting 4 — 1, since it cannot make two & job is present in the schedule, the instances in the sahedul

transmissions before the deadlifié expires. So we do not d0 not conflict in time, and the sum of the profits of the job
have a node labele@,, W —1). Each node in the interference!NStANCES Is maximum. _ . _

graph has a weight as explained before. For instance, the nodD€terminingX [i, W] for an arbitrary nodé and an arbitrary
labeled(Cy, W—3) has a weightX [C;, W —3]. Note that there waiting time W' is a JISP. This can be shown as follows. In
are three maximal independent sets for this graph, namély’ problem, the jobs correspond to the children nodes that
{(Cy, W —2)}, {(C1, W —3), (Co, W — 2)}, and {(Cy, W — need to be served by the parent. Each instance corresponds

1), (Cs, W — 3)}. The maximum independent set correspon&g a node in the interference grapt. Recall that a node in

to that maximal independent set that has the maximum to_%/l is associated with a child node, the interval during which

weight. This corresponds taax(X [Cy, W — 2], X[C1, W — it transmits, and a weight. The interval corresponds to the
3]+ X[Ch, W — 2], X[Ch, W — 1] + XiCQ W 3)). ’ interval of the job instance, and the node weight correspond

to the profit of the job instance. Thus, our problem is ideaitic

to JISP.
W@ Hence, when the input to the problem is the number of

k k
> a;, WH+1-) aj,...W—a1} and makey; consecutive
j=1

children k& (which corresponds to the number of johsin

JISP), determiningX [z, W] is MAX-SNP Hard. [ |
1 2 A polynomial time algorithm that provides a constant factor
approximation of% to JISP can be found in [14]. This means
e a & & that this algorithm guarantees that the total profit of the
schedule that it finds is at Iea%t of the total profit of the
(@) Arbitrary Link Ca-  (b) Interference Graph Construc- optimal schedule. However, while determiniagi, W] for a

i ti ; . o . .
pacties on given node and a given waiting tim&V” is a JISP, determining



XS, D] requires calculating([-, -] for all other nodes in the 10-10-20, the corresponding set of waiting times is given by
network. If the maximum number of hops in the network frodW — 40, W — 30, W — 10} and {W — 40, W — 30, W — 20},
a leaf node to the sink i, then the approximation factor byrespectively. For the arrangement 10-20-10, the secorid chi
directly applying the JISP approximation algorithm couddas is automatically assignetd” — 30, but the first and the third
poor asz,l. Hence, it is necessary to look at other approachekildren have to be matched to the 48t — 40, W — 10}.
than just using an existing JISP approximation scheme. This is accomplished by performing a Maximum Weighted
It is important to observe that even though our solution h&datching between these children and the waiting times. The
exponential complexity, the input is the number of childien explanation is similar for the other arrangement (10-1D-20
each hop (or, in other words, the degree of each node). In maxgte that there are a total of three possible arrangemengs he
cases, the number of children is a small constant. Therefonamely, 10-10-20, 10-20-10, and 20-10-10.
we also wish to find the complexity of an optimal algorithm
even if it has exponential complexity in the number of chelalr
We now provide arO(k!) algorithm for finding a Maximum

Weighted Independent Set i6’, where k& corresponds to
the number of children. We observe that given the order in
which children transmit, we can find an independent set in
G’ in constant time. For instance, if it is known that the
order of transmission is given b§; — Cy — ... = Ck,

10-20-10 10-10-20

then the C(;rresponding indeper}:dent setdh is given by W-30 W-40 W-10 W=20 W-40 -

{(Cy, W_ZO”)’ (027W+061—Zal)7 (Cs, WHaq+as— Fig. 4: Two ways of arranging link capacities and the
=1 =1 corresponding Maximum Weighted Matchings

Zal , (Cr, W — ) }. This follows from Lemmas VIL.1 e provide a procedure below that determin&g, W]

and VII.2. Since there aré children, there are exactly! when the link capacities of children take (m < k) distinct

ways in which the children can be ordered to transmit. Tﬁlglues 01,72, ..., 7m). FOr each possible arrangement of link

Maximum Weight Independent Set corresponds to the Omcéa}pacnms do the following to calculate its weight.

that has the maximum total weight. 1) Ass_,lgn wa|t|r!g times corresponding to this arrangement
The above derivation holds even when all the link capacities  ©f link capacities. o

(in any particular hop) are distinct from each other. In many 2) Split the children inton. classes, where each child in the

cases, it may turn out that there are only a few fixed set of ~ firSt class has link capacity;, each child in the second

rates at which a node can transmit. When the link capacities  ¢lass has link capacity,, and so on.

(within a hop) were identical, we showed that we can caleulat 3) Split the waiting times obtained in Step 2 infoclasses,

X[, -] using a Maximum Weighted Matching algorithm. where each waiting time in the first class corresponds to
Now suppose that there are only two distinct link capacities ~ @ link capacityy, that in the second class corresponds

(sayy andé), i.e.,a1, az, ..., ax € {v,5}. Then we can find an to a link capacityy,, and so on. _

algorithm with a complexity lower tha®(k!) to find X[-,-]. ~ 4) Perform a Maximum Weighted Matching between the

We do this as follows. children in thei*" class, and the waiting times in the
Suppose that out of k children have link capacityy, it cIass,z':. L,2,...,m _ .

and the rest have link capacit; The number of ways of 5) Add the weights of all then classes to obtain the weight

arrangingk items of whichr are of one type, and the rest of the arrangement.

are of a second type is given bﬁ’W Let us consider one Finally, determine the arrangement that provides the maxi-

such arrangement of link capacmes Each arrangementlof limum weight. _ _
capacities corresponds to an arrangement of waiting times¥e now analyze the complexity Of. this procgdure. *E_’?t
For example, consider three children requiring 10, 20, &hd e the number of nodes that have link capacjtyto their
transmission slots respectively. Then, given an arrangem - _

Eo ! arent,s = 1,2, ...,m. Note that i = k. The number of
10-20-10 (say), the waiting times are giveny—40, W —30, ep ! " ;T
andW — 10. Since the second child requires 20 transmissigftrangements of link capacities is now given 'f;' —.
SlOtS it transmits at W-30. However, we do not know Whethq’fhe Comp|ex|ty of the Max|mum We|ghted Match"']g for each
the first child transmits dt” — 10 or atWW —40. Thus, while we

obtain an arrangement of waiting times, we do n0t|mme(yatéPf these arrangements @(Z r;). Therefore, the overall
have an assignment of these waiting times to the children. i=1

This assignment can be done using a Maximum Weightegmplexity of the procedure i©( (i ——y — Zr

Matching algorithm. We know that only the first or the third s

child can transmit af’ — 40 and W — 10. So we match  To understand this complexity result, let us conmderttmca
these children to these waiting times so that the sum of the= 2. Consider the worst case. This corresponds to f|nd|ng
weights is maximized. Figure 4 illustrates this exampler Féhat maximizes; ;. We know that this is given by = §
two possible arrangements of link capacities, 10-20-10 amdhenk is even, and- = ’“;1 whenk is odd. Using St|rI|ngs



approximation, this maximum value is approximately eqoal the second event and still made a successful transmission.
27;. The Maximum Weighted Matching has a complexity oTherefore, the set of possible transmission slots for thers#
O(k?). Thus the overall complexity is given bg(k2-52%). eventis given by{Ws — k., W5 — k + 1,..., W, — 1} (since
Note that this is a significant reduction from th@(k!) W2—k=Wi+1).

complexity when the link capacities were distinct. For determining the set of possible transmission slotser t

Clearly, whenm = 1, the procedure has the same complefl'st event, we also need to consider the transmissions made

ity as that of AlgorithmA, and whenm = k, the procedure by the children of each child of This is because the second-

has the same complexity as that of Algorithty. hop children ofi could pe sen_ding packgts corr_esponding
to the second event while their parent is sending packets

C. Multiple Events corresppnding tq the first event to nodgFor simpli(_:ity of

' exposition, we will assume that each childidfask children.

In this section, we relax our earlier assumption that eventte that the sum of the number of transmissions madésby
must be non-overlapping, and extend our solution to meltipkhiidren beforgV, is at mostk, and each child of receives at
overlapping events. For the purpose of illustration, wel@Rp most2k transmissionsi( transmissions for each event) from its
the case with two overlapping events. This can be easyyjidren befordV,. Therefore, no child of needs to transmit
extended to a larger number of events. its packet corresponding to the first event befdfe— 3k. If a

We consider a tree with the sink as the root. The objeghild of ; transmits befordV; — 3k, then there exists a slot in
tive here is to maximize the total number of source node{@vl — 3k, Wy —3k+1,...,W, — 1} during which none of the
accounted for at the sink by both the events within thedhilgren ofi and none of the children afs children transmit.
respective deadlines (saf), and D). Note that packets of Therefore, that child could have waited until this free siot
two different events cannot be aggregated together. Wevess\till made a successful transmission, after having paitinti
unit capacity links and a one hop interference model. aggregated more packets. Note that we have assumed here that

The optimal aggregation policy for this problem is a simplgy;, _ 31 > 0. When this is not true, we can always replace
extension of the policy for a single event. For two events, @ _ 3k py max(W; — 3k,0).

node needs to make at most two transmissions, one for eacksijven an optimal set of possible transmission slots, it is no

event. The problem can now be solved as follows. straightforward to compute [i, Wy, Wa]. As in the previous

Let X[i, W1, W] represent the maximum total number oections, we construct an interference gragh,The nodes in
source n_odes, from both events, that nodan account for |f_ G’ are labeled C;, W;1, W;,), whereC; represents the child,
it transmits the packet corresponding to the first eventa ti 7, represents the time slot during whic; transmits its
slot W7, and the packet corresponding to the second even ket corresponding to the first event, dfigh represents the
time slot1,. We need to calculat&[S, Dy, D»] at the sink  time slot during whichC; transmits its packet corresponding
(with a minor modification that the sink does not transmif the second event. Note that there are a totakdfnodes in
packets). @', corresponding to all combinations o€, ..., Cy.}, {1 —

As described in the previ0u§ sectiqr)s, we calculate -] 3g. .. W, — 1}, and {Ws — k,...,W — 1}. A node labeled
from leaves to root, and assign wa|t|ngit|n(1$s fro(gm) root tEU_j,Wﬂ,sz) is assigned a WeighX[Cj,le,Wj.Q]- There
leaves. For any leaf node X[I, W1, Ws] =T, " + T, for exists an edge between two nodegihif and only if at least
everyW; € {0,1,..., Dy — 1}, W2 € {0,1,..., D2 — 1}, and  one of the three terms in the names of the nodes are identical.
Wi # Wa, whereTl(” =1, if node! is a source for event  This means that there exists an edge between two nodes if and
Otherwise,Tl(” = 0. Note thatiW; # W, because a node canonly if both the nodes represent the same child, or, both the
make only one transmission during a single time slot. nodes have the same transmission slot for the first event, or,

Now consider any node having & children, Cy, Cs, ..., both the nodes have the same transmission slot for the second
Crx. We need to calculateX[i, Wy, Ws] for every W; € event.

{0,1,...,D1—1}, W5 € {0, 1, ..., Da— 1}, andW; # Ws. We We now obtainX [i, W7, W5] by calculating the total weight
explain how to perform this calculation whé#; < W5. The of a Maximum Weighted Independent Set@®f. We can thus
calculation can be done in a similar manner wh&pn < ;. compute X [S, Dy, D»| at the sink and assign waiting times
We now consider the following cases. for the two events from the root down to the leaves.

Case 1. W, — W1 > k+1 Case 2:Wo, — W7 <k

This means that the deadline for the second event at nodd he main difference between the solution for this case and
1 is at leastk time slots more than the deadline for the firsthat of Case 1 is that the set of possible transmission sbots f
event at node. Note that slotl; is allocated to nodé for the two events are different. In this case, it may not be agtim
transmitting the packet corresponding to the first events ThHo begin transmissions for the second event after the deadli
condition implies that the children of nodeneed not start for the first event expires, because there may not exist dnoug
transmitting their packets corresponding to the secondtevéime slots for all children to make transmissions corresiyom
before W;. This is because, if a child transmits its packeb the second event betweé¥; and 1/,. Based on the fact
corresponding to the second event befdrg, then at least that the total number of transmissions madeiBychildren is
one of the time slots ifW; + 1,W; + 2,...,W5 — 1} is at most2k, and that the total number of transmissions made by
empty. If that child had waited until this empty slot, it cdul the children of any of’s children is also at mostk, one of the
have potentially aggregated more packets correspondingofimal set of transmission slots for both events lies ingbe



{Wh—4k, Wy —4k+1, ... . W1 —1, W1 +1,W1+2, ..., Wo—1}.
This is because if a child of transmits beforeV; — 4k,

then there exists a slot in the set above during which none
7’s children and none of the children @6 children make a
transmission. Therefore, if that child 6had waited until this

. . {9]
free slot, it could have potentially aggregated more packe
from its children, and still made a successful transmission

[7] Y. Yu, B. Krishnamachari, and V. K. Prasanna, “Energtefecy tradeoffs
for data gathering in wireless sensor networks,Pioceedings of IEEE
INFOCOM 2004.

] L. G. J. Elson and D. Estrin, “Fine-grained network timgshroniza-
tion using reference broadcasts,” Broceedings of the Symposium on
Operating Systems Design and Implementation (OSEUD2.

L. Becchetti, A. M. Spaccamela, A. Vitaletti, P. KortegyeM. Skutella,

and L. Stougie, “Latency-constrained aggregation in senstworks,”

ACM Transactions on Algorithmsol. 6, no. 1, pp. 13:1-13:20, 2009.

Now, given this set of possible transmission s|0t§0] Z. Ye, A. A. Abouzeid, and J. Ai, “Optimal stochastic pmés for

X|[i, W1, Ws] can be computed as shown in Case 1.

distributed data aggregation in wireless sensor netwollEEE/ACM
Transactions on Networkingrol. 17, no. 5, pp. 1494-1507, 2008.

We have thus solved the problem of maximizing the tota1] w. Lai and I. C. Paschalidis, “Optimally balancing eggrconsumption
number of sources that can be accounted for at the sink by versus latency in sensor network routingCM Transactions on Sensor

two events (potentially overlapping with each other) Withi[12]

their respective deadlines, under node-exclusive intenfse

constraints. It is also possible to extend this to an anyitr
number of events. However, the complexity of finding

Networks vol. 4, no. 4, pp. 21:1-21:28, 2008.
A. Giridhar and P. R. Kumar, “Computing and communicgtfunctions
over sensor networks/EEE Journal on Selected Areas in Communica-

D. Goldfarb, “Efficient dual simplex algorithms for thassignment
problem,” Mathematical Programmingvol. 33, no. 2, pp. 187-203,

ag tion, vol. 23, pp. 755-764, 2005.
13]

Maximum Weight Independent Set will exponentially increas  1985.
in the number of events. Note that even when there are maultip}4] A. Bar-Noy, R. Bar-Yehuda, A. Freund, J. (Seffi) Naorda@h Schieber,

“A unified approach to approximating resource allocatiod anhedul-

events, if the deadlines of the events are far enough from eac 5 journal of the ACMvol. 48, no. 5, pp. 735-744, 2001.
other that it is enough to start transmitting packets for the

next event after the expiration of the deadline for the resi

event, then this problem is significantly less complicatede

just needs to apply the algorithm in Section 4 for each event

separately.

VIIl. CONCLUSION

In this paper, we have developed a general optimizatit
framework for solving the problem of maximizing aggregat
information in data aggregation trees when a deadline
imposed by the sink. We considered a one-hop interfereri:
model and proposed a polynomial time algorithm that us¢

er =
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only local information at each hop to obtain the optimal solu
tion. Extensions to general interference models, and fqdin
low complexity solutions for these models are challenging
problems, and are a part of our future research. We discussed

a number of interesting applications and interpretatiams t
our solution, such as, incorporating sleep-wake schegulin
maximizing weighted aggregated information and maximiz
ing accuracy. Finally, we extended our solution to accoun
for more general problems concerning multiple overlapping

events, and arbitrary link capacities.
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