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Abstract—In this paper, we investigate the utility maximization
problem for a sensor network with energy replenishment. Each
sensor node consumes energy in its battery to generate and
deliver data to its destination via multi-hop communications.
Although the battery can be replenished from renewable energy
sources, the energy allocation should be carefully designed in
order to maximize system performance, especially when the
replenishment profile is unknown in advance. In this paper, we
address the joint problem of energy allocation and routing to
maximize the total system utility, without prior knowledge of the
replenishment profile. We first characterize optimal throughput
of a single node under general replenishment profile, and extend
our idea to the multi-hop network case. After characterizing the
optimal network utility with an upper bound, we develop a low-
complexity online solution that achieves asymptotic optimality.
Focusing on long-term system performance, we can greatly
simplify computational complexity while maintaining high per-
formance. We also show that our solution can be approximated by
a distributed algorithm using standard optimization techniques.
In addition, we show that the required battery size isO(ln( 1

ξ
)) to

constrain the performance of our scheme withinξ−neighborhood
of the optimum. Through simulations with replenishment profile
traces for solar and wind energy, we numerically evaluate our
solution, which outperforms a state-of-the-art scheme that is
developed based on the Lyapunov optimization technique.

I. I NTRODUCTION

Wireless sensor networks have been shown to be immensely
useful for monitoring a wide range of environmental param-
eters, such as earthquake intensity, glacial movements, and
water flow. Unattended operation of sensor networks for a
long period is highly desirable due to typical remoteness and
harshness of the environment. One of the main obstacles in
developing long-lived networks is limited battery of sensor
nodes. Energy harvesting from various natural sources, such
as solar and vibration [1]–[3], has been shown to be effective in
alleviating this problem by allowing sensor nodes to replenish
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their batteries. However, energy management still remains
critical, in particular, when one cannot forecast the amount
of energy replenishment. Keeping a high battery level may
result in low network performance, while maintaining a low
battery level increases risk of energy depletion.

There are several works that address the energy allocation
problem in sensor networks with energy replenishment. In [5],
a solution has been developed to maximize the total utility
for a satellite with energy replenishment, based on dynamic
programming (DP) technique. In [6], the authors consider a
network where nodes with and without replenishment coexist,
and propose two heuristic routing schemes to exploit renew-
able energy: one scheme looks for the path with minimum
number of nodes without replenishment, and the other scheme
allows one relaying node to deviate from the shortest path
and forward packets opportunistically to nodes with energy
replenishment. A battery recharging and discharging model
has been developed in [7] for energy replenishment sensor
networks. A threshold-based policy has been proven to guar-
antee at least34 of the optimal performance. In [8], the authors
have developed an energy-adaptive scheme that achieves order-
optimal performance for a single node with energy replenish-
ment. Lexicographically maximum rate assignment and rout-
ing for perpetual data collection has been studied in [9]. The
authors have proposed a centralized solution, which can obtain
the optimal lexicographic rate assignment, and a distributed
solution, which reaches the optimum only in tree networks
with predetermined routing paths. Task scheduling problem is
considered for a single node with energy replenishment in [10].
The authors have developed two heuristic schemes that smooth
the energy consumption over the running period. In [11], a
power-aware routing policy has been developed. Computing a
path with the least cost, the solution asymptotically achieves
optimal competitive ratio as the network scales. Also, there are
a few works that exploit the Lyapunov optimization technique
to achieve asymptotic optimality [12], [13]. However, they
require the replenishment processes to be i.i.d. or Markovian,
which may not be true in practice due to fluky characteristics
of renewable energy sources.

In this work, we are interested in developing low-complexity
solutions that maximize the total user utility for a recharge-
able sensor network, in particular, when future replenishment
profile is unknown a priori.The problem can be formulated
as a standard convex optimization problem with energy and
routing constraints as in [4]. However, the solution requires
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centralized control and full knowledge of replenishment pro-
files in the future, which are hardly available in practice. In
this paper, we characterize optimal performance and obtain
insight into the asymptotical properties. Based on the time-
invariant properties, we develop a low-complexity solution
that is asymptotically optimal and can be approximated by
a distributed algorithm. We summarize our main contributions
as follows:

1) We characterize an upper bound for the utility perfor-
mance of a sensor network with energy replenishment,
by constructing an infeasible scheme that outperforms
the optimal scheme.

2) We develop a low-complexity online solution that jointly
takes into account energy allocation and routing. With-
out advance knowledge of the future replenishment pro-
file, our solution is provably efficient using estimation
of replenishment rate and supply-demand mismatch.
We show that the performance gap between our online
solution and the infeasible solution for the upper bound
diminishes as time tends to infinity.

3) We approximate our solution by a distributed algorithm
and evaluate it through simulations based on replenish-
ment profile traces for solar and wind energy. The results
show that the solution performs close to the upper bound
after a short time period, and outperforms a state-of-
the-art scheme that is developed based on the Lyapunov
optimization technique.

Unlike the previous works, we consider a larger class of
replenishment processes, which only require the existence of
a mean value rather than assumptions of i.i.d. or Markovian.
To the best of our knowledge, our solution is the first one that
achieves asymptotic optimality under general replenishment
profiles. Also note that although the solution in [4] achieves
optimal performance by making use of fluctuations of the
energy replenishment process, it requires future knowledge
of the replenishment profile. In contrast, our online solution
here does not require such knowledge and achieves asymptotic
optimality by relying on long-term characteristic of the energy
replenishment process. Through successfully removing time
dependency in decisions, we significantly reduce the compu-
tational complexity.

Our paper is organized as follows: In Section II, we
formulate our problem as a standard utility maximization
problem. In Section III, we propose a simple solution that
maximizes throughput for a single node. In Section IV, we
extend our results to the network case, and develop a low-
complexity online solution that achieves asymptotic optimality,
and approximate it by an even simpler distributed algorithm.
After presenting simulation results in Section V, we conclude
our paper in Section VI.

II. SYSTEM MODEL

We consider a static sensor network, denoted byG =
(N ,L), whereN is the set of nodes andL is the set of
links. We assume a time-slotted system for a period ofT
time slots. Each node has a battery whose size is assumed
to be infinite. (We will relax the infinite-battery assumption in

Section III.C.) Letrn(t) denote the amount of replenishment
energy that arrives at noden in time slott, while en(t) denotes
the allocated energy of noden in time slot t. Without loss of
generality, we assume that the energy replenishment occurs
at the beginning of each slot and the harvested energy is
immediately stored in the battery. LetBn(t) denote the battery
level of noden at the beginning of time slott, which is
assumed to be initially empty for simplicity of exposition, i.e.,
Bn(0) = 0. The energy dynamics can be depicted as follows:

Bn(t+ 1) = max {Bn(t) + rn(t)− en(t), 0} . (1)

We assume that the replenishment process has a finite mean
value r̄n, i.e.,

r̄n , lim
T→∞

1

T

T∑

t=1

rn(t), (2)

which is a mild assumption including a larger class of replen-
ishment processes than those used in the prior works [12],
[13], wherern(t) is assumed to be an i.i.d. process.

There areS flows in the network, and each flows is
associated with a source nodefs and a destination nodeds. Let
S denote the set of the source nodes. During a time slot, the
data transmission of a node is characterized by a continuously
nondecreasing and strictly concave rate-power functionµ(P ),
satisfyingµ(0)= 0. Note thatµ(P ) represents the amount of
data that can be transmitted usingP units of energy in a
time slot under a given physical layer modulation and coding
strategy. (see [21] for details.)

Let xs(t) be the amount of data that is delivered from the
sourcefs to the destinationds in time slott over possibly mul-
tiple hops and multiple paths. Each users is associated with a
utility functionUs(x̄s), which reflects the “satisfaction” of user
s when it transmits at average data ratex̄s , 1

T

∑T
t=1 x

s(t).
We assume thatUs(·) is a strictly concave, non-decreasing and
continuously differentiable function.

A. Problem Formulation

Our objective is to develop a low-complexity online solution
to the joint problem of energy allocation and data routing
to maximize aggregate utility for the rechargeable sensor
network. Since the rate of energy replenishment is usually
much slower than the rate of energy consumption, we assume
that the reduction of energy is instantaneous for all the
nodes along the path as in [11]. In our work, we do not
explicitly consider wireless interference. Thus, our techniques
can directly handle cases when adjacent nodes operate on
orthogonal channels. An open question is whether one can
develop a unified strategy that incorporates the simplicity of
our scheme with the many excellent works in the literature that
have focused on scheduling in the presence of interference,
such as [14], [17] and the references therein. While this is
beyond the scope of this work, it will form the basis of our
future work.

We start with the definition ofrate regionfor a node under
energy replenishment profile~rn = (rn(1), rn(2), · · · , rn(T )).

Definition 1 (Rate region): The rate region Λn of
node n is defined as the set of all vectors~vn =
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(vn(1), vn(2), · · · , vn(T )), such that for any~vn ∈ Λn, there
exists some energy allocation~en that achieves~vn, i.e.,vn(t) =
µ(en(t)), for all t ∈ (1, · · ·T ).

It has been shown that the rate regionΛn of node n is
convex (see Lemma 4 in [4]). Letwdij(t) denote the amount
of data on the outgoing link(i, j) ∈ L for destination
node d in time slot t, and we denote its vector as~wij =
(
∑
d w

d
ij(1),

∑
d w

d
ij(2), · · · ,

∑
d w

d
ij(T )). We formulate the

utility maximization problem as follows:

ProblemA: max
~wij ,~xs,~en

∑

s

Us

(
1

T

T∑

t=1

xs(t)

)

subject to wdij(t) ≥ 0, ∀t, ∀d, ∀(i, j) ∈ L,
T∑

t=1

∑

j

wdij(t)−
T∑

t=1

∑

j

wdji(t)−
T∑

t=1

∑

s:fs=i,ds=d

xs(t) ≥ 0,

∀d, and for alli 6= d,
∑

j:(i,j)∈L

~wij ∈ Λi, for all nodei ∈ N , (3)

where the second constraint means that total amount of data
for destinationd into node i is less than or equal to total
amount of data out of the node. If any node does not have
enough data for a flow to send over all outgoing links, null
bits are delivered.

The solution to ProblemA will determine i) the amount of
energyen(t) that should be spent for each noden ∈ N in time
slot t, ii) the amount of dataxs(t) that should be transmitted
by each flows ∈ S in time slot t, and iii) routing decisions
for each nodei, i.e., choosingwdij(t) for each link(i, j) and
each destination noded.

It has been shown in [4] that ProblemA is a convex
optimization problem and can be solved using the standard
convex duality approach if full knowledge of the replenishment
profile including for the future is provided. However, such
knowledge is difficult to obtain in practice. Furthermore, even
if such knowledge is assumed, this problem is computationally
highly complex. The culprit is the “time coupling property”,
which is reflected in the last constraint

∑
j:(i,j)∈L ~wij ∈ Λi. In

this paper, we show an upper bound on optimal performance
that can be obtained by solving ProblemA. We also provide
a low-complexity online solution, the performance of which
forms a lower bound. Moreover, we show that the lower bound
can get arbitrarily close to the upper bound, whenT tends
to infinity, which implies that our solution is asymptotically
optimal.

III. T HROUGHPUTMAXIMIZATION : A SINGLE NODE CASE

We first investigate throughput performance of optimal
energy allocation scheme for a single node. In this section,
we omit the subscriptn from all the notations defined in the
previous section, since all results are for a single noden.

Let ~e∗ = (e∗(1), e∗(2), . . . , e∗(T )) denote the optimal
energy allocation that maximizes throughput of a single node
under energy replenishment~r = (r(1), r(2), · · · , r(T )). Let
J∗one(T ) denote the optimal throughput achieved by~e∗, that

is,

J∗one(T ) ,
1

T

T∑

t=1

µ(e∗(t)). (4)

In the following, we provide an upper and a lower bound for
J∗one(T ), whose difference can be arbitrarily small asT tends
to infinity.

A. Upper Bound

Let r̄ denote the average replenishment rate, defined asr̄ ,
limT→∞

1
T

∑T
t=1 r(t).

Proposition 1: WhenT tends to infinity,J∗one(T ) is upper
bounded byµ(r̄).

Proof: From Eqn. (4) and Jensen’s inequality with the
concavity ofµ(·), we have that

J∗one(T ) =
1

T

T∑

t=1

µ(e∗(t)) ≤ µ(

∑T
t=1 e

∗(t)

T
) ≤ µ(

∑T
t=1 r(t)

T
),

(5)

where the second inequality holds because the total allocated
energy can be no greater than the total harvested energy. By
taking the limsup on both sides, we can obtain that

lim sup
T→∞

J∗one(T ) ≤ lim sup
T→∞

µ

(∑T
t=1 r(t)

T

)

= µ(r̄). (6)

Proposition 1 also implies that for any~v ∈ Λ, we have
lim supT→∞

1
T

∑T
t=1 v(t) ≤ µ(r̄). Hence, for anyε > 0, there

existsT0, such that for allT > T0, we have

1

T

T∑

t=1

v(t) ≤ µ(r̄(1 + ε)). (7)

This equation will be used later in the proof of the network
case.

B. Lower Bound

We consider the following energy allocation scheme, de-
noted by Scheme-LBONE:

• In each time slott, average harvested energy is estimated
as follows:

r̂(t) ,
1

t

t∑

τ=1

r(τ). (8)

• Using the estimation, energy is allocated as:

e(t) =

{
(1− ε)r̂(t), if B(t) + r(t) ≥ (1− ε)r̂(t),

B(t) + r(t), otherwise,
(9)

whereε > 0 is a system parameter that can be chosen to
be arbitrarily small.

We denote the throughput of Scheme-LBONE by
J lbone(T ) , 1

T

∑T
t=1 E[µ(e(t))], where the expectation is taken

with respect to the sample space of the replenishment process.
We will obtain a lower bound forJ∗one(T ) by the following
proposition.
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Proposition 2: WhenT tends to infinity,J∗one(T ) is lower
bounded byµ((1− ε)2r̄).

Proof: From Eqn. (2), we havelimt→∞ r̂(t) = r̄, which
follows that for anyε > 0, there existsT1, such that|r̂(t) −
r̄| < εr̄ holds for all t > T1. Thus, we have that(1 − ε)r̄ <
r̂(t) < (1 + ε)r̄, ∀t > T1. It follows that

(1− ε)r̂(t) < (1 + ε)(1− ε)r̄ < r̄, ∀t > T1. (10)

From Eqn. (9), we consider the battery levelB(t) as
a queue, and Scheme-LBONE as a work-conserving server
with service rate(1 − ε)r̂(t), which is strictly less than the
average arrival ratēr, for t > T1. Hence, whenT tends
to infinity, the battery level will increase to infinity almost
surely. This implies that the probability that the available
energy is greater than̄r tends to one ast tends to infinity,
i.e., limt→∞ P (B(t) + r(t) ≥ r̄) = 1. Combining with Eqn.
(10), we can obtain

lim
t→∞

P
(
B(t) + r(t) > (1− ε)r̂(t)

)
= 1. (11)

From Eqn. (9), sincee(t) = min{(1 − ε)r̂(t), B(t) + r(t)},
together with Eqn. (11), together with(1 − ε)r̂(t) > (1 −
ε)2r̄, ∀t > T1, we have that

lim
t→∞

P (e(t) > (1− ε)2r̄) = 1. (12)

Eqn. (12) implies that the probability that the allocated
energy is great than(1− ε)2r̄ is one.

Next, we will use epsilon-delta arguments to show that
limT→∞

1
T

∑T
t=1 P (e(t) > (1−ε)2r̄) = 1. According to Eqn.

(12), it follows that, for anyφ > 0, there existsT2, such that
for all t > T2,

∣
∣P (e(t) > (1− ε)2r̄)− 1

∣
∣ < δ

2 .

Let T3 = 4T2

δ
, now ∀T > T3, we have

∣
∣
∣
∣
∣

1

T

T∑

t=1

P (e(t) > (1− ε)2r̄)− 1

∣
∣
∣
∣
∣

≤
1

T

T2∑

t=1

{ ∣∣P (e(t) > (1− ε)2r̄)
∣
∣+ 1

}

+
1

T

T∑

t=T2+1

∣
∣P (e(t) > (1− ε)2r̄)− 1

∣
∣

≤
2T2

T3
+

(T − T2)

T

δ

2

≤φ. (13)

Therefore, according to epsilon-delta arguments, it follows that

lim
T→∞

1

T

T∑

t=1

P (e(t) > (1− ε)2r̄) = 1. (14)

c

Fig. 1. Sensor node modeled by a G/G/1 queue with finite buffer size

Now we can obtain the performance bound of Scheme-
LBONE as follows:

J lbone(T ) =
1

T

T∑

t=1

E[µ(e(t))]

=
1

T

T∑

t=1

{
E[µ(e(t))|e(t) > (1− ε)2r̄] · P (e(t) > (1− ε)2r̄)

+ E[µ(e(t))|e(t) ≤ (1− ε)2r̄] · P (e(t) ≤ (1− ε)2r̄)
}

(15)

≥
1

T

T∑

t=1

E[µ(e(t))|e(t) > (1− ε)2r̄] · P (e(t) > (1− ε)2r̄)

> µ((1− ε)2r̄) ·
1

T

T∑

t=1

P (e(t) > (1− ε)2r̄). (16)

where Eqn. (15) holds because ofE[X] = E[X|A]P (A) +
E[X|Ac]P (Ac). By taking liminf on both sides of Eqn. (16),
we can obtain from Eqn. (14) that

lim inf
T→∞

J lbone(T ) ≥ µ((1− ε)2r̄). (17)

Since Scheme-LBONE is a feasible energy allocation scheme,
we have thatlim infT→∞ J∗one(T ) ≥ µ((1− ε)2r̄).

Comment:Note that Scheme-LBONE is an online scheme
and does not require knowledge of the future replenishment
profile. Hence, for a single node case, Propositions 1 and
2 imply that Scheme-LBONE can achieve the performance
arbitrarily close to the optimum by choosingε sufficiently
small.

C. Finite Battery Size

In the previous analysis, we assumed that the battery size
is infinite, which is impossible in reality. In this subsection,
we will first show that as long as the battery size is large
enough, although finite, we can still guarantee that the perfor-
mance of Scheme-LBONE is withinξ−neighborhood of the
optimum. Furthermore, we show that the required battery size
is O(ln( 1

ξ
)).

Let M denote the battery size. From Eqn. (16), we can see
that the performance loss occurs whenB(t)+r(t) < (1−ε)2r̄.
Also note thatB(t) + r(t) < (1− ε)2r̄ leads toB(t+ 1) = 0.
Thus, the probability of the energy outage event is given by

PMω = lim
T→∞

1

T

T∑

t=1

1{B(t)=0},

where the subscriptω denotes the sample path, which the
probability is a function of. We will show thatPMω ≤ δ holds
almost surely, whereδ is an arbitrary control parameter, when
M is O(ln( 1

δ
)).
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First, the battery can be viewed as aG/G/1 queue system
with a finite buffer under fluid model, where the energy
harvesting processr(t) acts as the input and Scheme-LBONE
works as a work-conserving server with service rate(1−ε)r̂(t),
as shown in the left figure of Fig. 1. Note that the queue length
B(t) evolves as:

B(t+ 1) = min{max{B(t) + r(t)− e(t), 0},M}. (18)

Since the load intensityρ > 1, which is inconvenient to
analyze, we will instead consider a “flipped”G/G/1 queue,
where the input ise(t) and the service rate isr(t) as shown
in the right figure of Fig. 1. Now the flipped queue has a load
intensity ρ < 1. We denote the queue length of the flipped
queue asBc(t), which is initially assumed to beM . The queue
length evolution ofBc(t) is given by:

Bc(t+ 1) = min{max{Bc(t) + e(t)− r(t), 0},M}. (19)

We claim that for any time slott, we always haveBc(t) =
M −B(t). We now use mathematical deduction to prove it.

• For t=1, we haveBc(1) = M = M −B(1).
• Assume thatBc(τ) = M −B(τ) holds for time slotτ .
• When t = τ + 1, we have three cases:

Case 1) If0 < B(τ) + r(τ) − e(τ) < M , from Eqn.
(18), we haveB(τ + 1) = B(τ) + r(τ) − e(τ). On the
other hand, we have

Bc(τ + 1) = min{max{Bc(τ) + e(τ)− r(τ), 0},M}

= min{max{M −B(τ) + e(τ)− r(τ), 0},M}

= min{max{M − (B(τ) + r(τ)− e(τ)), 0},M}

= M − (B(τ) + r(τ)− e(τ))

= M −B(τ + 1).

Case 2) IfB(τ)+r(τ)−e(τ) ≤ 0, we haveB(τ+1) = 0.

Bc(τ + 1) = min{max{Bc(τ) + e(τ)− r(τ), 0},M}

= min{max{M −B(τ) + e(τ)− r(τ), 0},M}

= min{max{M − (B(τ) + r(τ)− e(τ)), 0},M}

= min{M − (B(τ) + r(τ)− e(τ)),M}

= M = M −B(τ + 1).

Case 3) IfB(τ)+r(τ)−e(τ) ≥M , we haveB(τ+1) =
M . And similarly we haveBc(τ + 1) = 0 = M −B(τ +
1).

Therefore, we have shown thatBc(t) = M − B(t). As a
result, we have

PMω = lim
T→∞

1

T

T∑

t=1

1{Bc(t)=M}. (20)

Now, the problem has become: how to find a bound on
battery sizeM , such thatlimT→∞

1
T

∑T
t=1 1{Bc(t)=M} ≤ δ

almost surely.
Next, we will compare the finite-bufferG/G/1 queue with

an infinite-bufferG/G/1 queue as shown in Fig 2, for both of
which the input process and server are exactly the same. We
denote the queue length for the infinite-buffer queueB′c(t).

c

Fig. 2. G/G/1 queue with infinite buffer size

c

2

Fig. 3. D/G/1 queue with infinite buffer size

From [15], we know thatB′c(t) ≥ Bc(t) for any sample path,
which follows

lim
T→∞

1

T

T∑

t=1

1{Bc(t)=M} ≤ lim
T→∞

1

T

T∑

t=1

1{B′c(t)≥M}. (21)

Thus, if we havelimt→∞
1
T

∑T
t=1 1{B′c(t)≥M} ≤ δ, it

follows that limT→∞
1
T

∑T
t=1 1{Bc(t)=M} ≤ δ almost surely.

Next, we compare the infinite-bufferG/G/1 queue with
an infinite-bufferD/G/1 queue, where the input rate is a
deterministic value(1− ε2

2 )r̄. We denote the queue length of
the infinite-bufferD/G/1 queue asB′′c (t). From Eqn. (10),
we know that thee(t) is always less than(1− ε2)r̄, ∀t > T1.
This means that the input of theG/G/1 queue is alwaysε

2

2
less than the input of theD/G/1 queue∀t > T1. Assuming
that r(t) is upper bounded byrmax, ∀t, it follows that
e(t) < rmax, ∀t, becausêr(t) ≤ rmax. Therefore, it can be
seen thatB′′c (t) ≥ B′c(t) after the timeT1 + 2rmaxT1

ε2
, which

implies thatB′′c (t) ≥ B′c(t) always holds after some transient
period.

Note that the load intensity for theD/G/1 queues is less
than 1, and both input and output processes are stationary.
Thus the stationary distribution of the queue length exists.
Hence, we have the stationary distribution of theD/G/1
queue forms an upper bound, that is,

lim
t→∞

1

T

T∑

t=1

1{B′c(t)≥M}

≤ lim
t→∞

1

T

T∑

t=1

1{B′′c (t)≥M}

= lim
t→∞

P (B′′c (t) ≥M) (almost surely), (22)

where limt→∞ P (B′′c (t) ≥ M) denotes the stationary proba-
bility of the eventB′′c (t) ≥M .

Now our goal is to find a battery sizeM , such that
limt→∞ P (B′′c (t) ≥M) ≤ δ.

Note that if the replenishment process is Markovian or i.i.d.,
from [23], we have

lim
t→∞

P (B′′c (t) ≥M) ≤ exp(−γ∗M), (23)

whereγ∗ is a positive constant. It is worth pointing out that the
i.i.d. case coincides with the well-known Kingman’s Bound.
In fact, Eqn. (23) holds under more general replenishment
processes [24].
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By letting exp(−γ∗M) = δ, it follows that

M =
ln( 1

δ
)

γ∗
. (24)

Hence, from Eqns. (20) (21), (22), (23), (24), we have that
whenM =

log( 1
δ

)

γ∗
, the probability of the energy outage in the

original queue is less thanδ almost surely. This implies that
e(t) ≥ (1− ε)2r̄ with probability greater than1− δ.

By taking δ = ε = ξ
3 , we have

lim infT→∞ J lbone(T )

lim supT→∞ J∗one(T )
≥

(1− δ)µ((1− ε)2r̄)

µ(r̄)

≥
(1− δ)(1− ε)2µ(r̄)

µ(r̄)

= (1− δ)(1− ε)2 = (1−
ξ

3
)3

> (1− ξ). (25)

Combining with Eqn. (24), we can see that the required bat-

tery size under Scheme-LBONE is
ln( 1

ξ
)

γ∗
+ ln 3

γ∗
, i.e.,O(ln( 1

ξ
)),

which is better than the boundO( 1
ξ
) in [12], [13].

IV. U TILITY MAXIMIZATION : A NETWORK CASE

In this section, we investigate the problem of maximizing
utility over the network with energy replenishment. In our
formulation ProblemA, we denote the achievable maximum
utility by J∗(T ) , max

∑
s Us

(
1
T

∑T
t=1 x

s(t)
)

. We first

provide an upper bound onJ∗(T ) using an infeasible scheme,
and then propose a low-complexity online scheme that does
not require future knowledge of replenishment profile. We
show that the performance of our proposed scheme approaches
the upper bound as timeT tends to infinity.

A. Upper Bound

We consider a fictitious infeasible scheme, denoted by
Scheme-UB, which not only knows in advance the average
energy harvesting ratēri for all i ∈ N , but also can allocate
more energy than the harvested energy. Scheme-UB works as
follows:
• Energy allocation: each nodei spends a fixed amount of

energyr̄i(1 + ε) in all time slots, i.e.,

ei(t) = r̄i(1 + ε), for all i and t. (26)

Clearly, this is more than the average replenishment rate
and thus infeasible.

• Routing: the routing in each time slott is determined
by solving the following strictly convex optimization
problem:

max
~wij ,~xs

∑

s

Us
(
xs(t)

)

subject to wdij(t) ≥ 0, ∀d, ∀(i, j) ∈ L,
∑

j:(i,j)∈L

wdij(t)−
∑

j:(i,j)∈L

wdji(t)−
∑

fs=i,ds=d

xs(t) ≥ 0,

∀d, and∀i 6= d
∑

j:(i,j)∈L

∑

d

wdij(t) ≤ µ(r̄i(1 + ε)), ∀i ∈ N . (27)

In contrast to ProblemA, the third constraint in the
above problem is not coupled across time, which implies
that routing decision in each time slott can be solved
independently. We denote the unique solution to Eqn. (27)
by ~xub(t) = [xsub(t)]. Though Scheme-UB is an infeasi-
ble scheme, we will show that its performance, defined as
Jub(T ) ,

∑
s Us

(
1
T

∑T
t=1 x

s
ub(t)

)
, dominates the optimal

performanceJ∗(T ). Also since the energy allocation and
routing in Scheme-UB do not change over time, it follows that
xsub(t) is the same in all time slots, which we denote asxsubc.
By denotingJubc ,

∑
s Us (xsubc), we haveJub(T ) = Jubc .

Proposition 3: When T tends to infinity,J∗(T ) is upper
bounded byJub(T ), and we have thatlim supT→∞ J∗(T ) ≤
lim supT→∞ Jub(T ) = Jubc .

We refer to Appendix A for the proof.

B. Lower Bound

In this subsection, we propose a low-complexity online
scheme, denoted by Scheme-LB, and show that its perfor-
mance approaches the upper bound obtained in the previous
section, whenT tends to infinity. We begin with the algorithm
description of Scheme-LB:
• Energy allocation: as in Scheme-LBONE, in each time

slot t, each node estimates its average harvested energy
as:

r̂i(t) ,
1

t

t∑

τ=1

ri(τ). (28)

Then energy is allocated as

ei(t) =

{
(1− ε)r̂i(t), if Bi(t) + ri(t) ≥ (1− ε)r̂i(t),

Bi(t) + ri(t), otherwise.
(29)

• Routing: routing in each time slott is determined by
solving the following optimization problem.

max
~wij ,~xs

∑

s

Us
(
xs(t)

)

subject to wdij(t) ≥ 0, ∀d, ∀(i, j) ∈ L,
∑

j:(i,j)∈L

wdij(t)−
∑

j:(i,j)∈L

wdji(t)−
∑

fs=i,ds=d

xs(t) ≥ 0,

∀d, and fori 6= d
∑

j:(i,j)∈L

∑

d

wdij(t) ≤ µ(ei(t)), ∀i ∈ N . (30)

We denote the solution to Eqn. (30) by~xlb(t) = [xslb(t)].
Note that the difference from Scheme-UB is the energy
allocation, which is now based on the estimated average
replenishment rate. LetJ lb(T ) , E[

∑
s Us

(
1
T

∑T
t=1 x

s
lb(t)

)
],

where the expectation is taken over the sample space of
the replenishment process. Also, letxslbc denote the solution
to Eqn. (30) whenei(t) = (1 − ε)2r̄i for all i ∈ N
and J lbc ,

∑
s Us (xslbc). Then we can obtain the following

proposition.
Proposition 4: When T tends to infinity,J∗(T ) is lower

bounded byJ lb(T ), and we have thatlim infT→∞ J∗(T ) ≥
lim infT→∞ J lb(T ) ≥ J lbc .
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We refer to Appendix B for the proof.
Recall that bothJubc and J lbc are function ofε. Next we

show via the following proposition that the lower boundJ lbc
can be arbitrarily close to the upper boundJubc by settingε
sufficiently small.

Proposition 5: For anyδ > 0, there existsε > 0, such that
|Jubc − J

lb
c | < δ.

Proof: We define the ratio of two transmission rates:

k , min
i∈N

µ((1− ε)2r̄i)

µ((1 + ε)r̄i)
. (31)

Sinceµ(·) is an increasing concave function, we have from
Jensen’s inequality that

µ((1− ε)2r̄i) = µ((1− ε)2r̄i + (2ε− ε2)× 0) ≥ (1− ε)2µ(r̄i).

and similarly we haveµ((1 + ε)r̄i) ≤ (1 + ε)µ(r̄i) for all
i ∈ N . Hence, from the definition ofk, it follows that

(1− ε)3 <
(1− ε)2

(1 + ε)
≤ k ≤ 1. (32)

Let (~wd∗ij , ~x
s∗) denote an optimal solution to Eqn. (27).

Clearly, we have thatJubc =
∑
s Us

(
xs∗(t)

)
. Then we consider

another vector(k ~wd∗ij , k~x
s∗). Since (~wd∗ij , ~x

s∗) is an optimal
solution to Eqn. (27), it satisfies all the constraints of Eqn. (27).
From the first and the second constraints of Eqn. (27), we can
easily show that the constant-mulitplied vector(k ~wd∗ij , k~x

s∗)
satisfies the first two constraints of Eqn. (30). Also from the
third constraint of Eqn. (27) and the definition ofk, we have
that

∑

j

∑

d

kwd∗ij (t) ≤ kµ(r̄i(1 + ε)) ≤ µ((1− ε)2r̄i)).

Hence, the vector(k ~wd∗ij , k~x
s∗) also satisfies the third con-

straint of Eqn. (30) whenei(t) = (1 − ε)2r̄i for all i ∈ N .
SinceJ lbc is the achievable maximum utility of Eqn. (30) when
ei(t) = (1− ε)2r̄i for all i ∈ N , we have that

J lbc ≥
∑

s

Us
(
kxs∗(t)

)

≥ k
∑

s

Us
(
xs∗(t)

)
(33)

= kJubc

≥ (1− ε)3Jubc , (34)

where Eqn. (33) holds becauseUs(·) is an increasing concave
function andk ≤ 1, and Eqn. (34) comes from Eqn. (32).

Therefore, we have(1 − ε)3Jubc ≤ J lbc ≤ Jubc , where the
latter inequality directly comes from Propositions 3 and 4.
Thus, for anyδ > 0, we can findε > 0, such that|Jubc −J

lb
c | <

δ.
Proposition 5 implies that ifε is chosen to be sufficiently

small, the performance of Scheme-LB approaches the optimal
performance, asT tends to infinity. Hence, Scheme-LB is
asymptotically optimal.

C. Distributed Algorithm Based on Duality

Note that Scheme-LB should solve a convex optimization
problem, i.e., Eqn. (30), in each time slott in a centralized
manner. In this section, we extend our solution and develop a
low-complexity distributed scheme that approximates Scheme-
LB using the standard optimization technique of duality [16],
[17].

From the dual counterpart to Eqn. (30), we can obtain
the following solution, denoted byDualNet, which can be
implemented in a distributed manner. Since the technique is
quite standard, we omit details and refer interested readers to
our technical report [21].

• At each timet, sources generates data at ratexs(t) by
solving

max
0≤xs(t)≤xmax

Us(x
s(t))− pdsfs (t)x

s(t), (35)

where xmax is a constant for the maximum data rate
andpdi (t) is the associated Lagrange multiplier for each
second constraint of Eqn. (30).

• Routing at each nodei is determined by solving

max
0≤
∑

j

∑
d
wd
ij

(t)≤µ(ei(t))

∑

j

∑

d 6=i

wdij(t)
(
pdi (t)− p

d
j (t)

)

(36)

• The Lagrange multipliers are updated as

pdi (t+ 1) =
[
pdi (t)− h

( ∑

j:(i,j)∈L

wdij(t)−

∑

j:(i,j)∈L

wdji(t)−
∑

fs=i,ds=d

xs(t)
)]+

, (37)

whereh is a small step size.

It is worthwhile pointing out that Eqn. (36) allocates energy
for node i to transmit the data of commodityd to nodej,
wherej andd are chosen for the largestpdi (t)− p

d
j (t), which

is similar to the well-known back-pressure scheme without in-
terference constraint. Note that using the standard optimization
technique, the performance of the dual solution gets closer to
the optimal by increasing the number of iterations. Hence, the
performance ofDualNet, which performs a single iteration in
each time slot, will improve if we embed multiple iterations
in each time slot. Nevertheless, we show via simulations that
DualNet with a single iteration still achieves good empirical
performance that is close to the upper bound.

In addition, we know from the previous discussion that
with probability one, the allocated energy of each nodei in
Scheme-LB tends to a static value, i.e.,(1−ε)r̂i. Therefore, the
convergence ofDualNetcan be always guaranteed irrespective
of the number of iterations per slot.

D. Finite Battery Size for the Network Case

In Section III.C, we showed that with a finite battery size
of O(ln( 1

ξ
)), the performance of Scheme-LBONE is within

ξ−neighborhood of the optimum. In this subsection, we will
extend this idea to the network case.

i). Proposition 3 still holds andJubc is an upper bound.
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Fig. 5. Measurement for solar and wind energy

ii). From Eqn. (47) in the proof of Proposition 4, we have
limt→∞ P (ei(t) ≥ (1 − ε)2r̄i, ∀i ∈ N ) = 1 under Scheme-
LB, which, however, does not hold any longer if the battery
size is finite. Extending the one node analysis in Section III.C,
we can find a battery sizeM such that , for anyδ > 0,
limt→∞ PM (e(t) > (1 − ε)2r̄) > 1 − δ, for all the nodes.
Hence, we have

lim
t→∞

P (ei(t) ≥ (1− ε)2r̄i, ∀i ∈ N ) > (1− δ)|N | > 1− |N |δ,

(38)

where|N | is the number of nodes in the network.
iii). Following the same lines as the proof of Proposition

4, we can obtain thatlim infT→∞ J∗(T ) ≥ (1 − |N |δ)J lbc .
Since|N | is bounded, the lower bound(1−|N |δ)J lbc , and the
bound on the required battery size is given by:

M =
ln 3 + ln |N |

γ∗
+

ln( 1
ξ
)

γ∗
, (39)

which remainsO(ln( 1
ξ
)).

V. NUMERICAL EVALUATION

We evaluate our schemes through simulations. We consider
a network with100 nodes, which are randomly deployed in
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a 1 × 1 field, as shown in Fig. 4. We connect each pair of
nodes within distance0.2 by a link. We set three flows in the
network, where the source and the destination for each flow
are marked with the same color in the figure. We compare the
performance ofDualNet with a state-of-the-art scheme called
ESA [13], which achieves asymptotic optimality under i.i.d.
energy replenishment profiles. We assume that the rate-power
function followsµ(P ) = ln(1+10P ) (bits/sec), and the utility
function is given asUs(xs) = ln(1+xs). We set the parameter
ε to 10−4. The battery sizes are assumed to be infinite.

We simulate the schemes with two different types of re-
newable energy, solar and wind. We adopt raw data collected
at the National Renewable Energy Laboratory [20] for a
period of one month (June 5th, 2011-July 5th, 2011) and
set each time slot to one minute. Fig. 5 illustrates the two
types of replenishment profiles during the month. The solar
energy data set (Global 40-South LI-200) measures solar
resource for collectors tilted40 degrees from the horizontal
and optimized for year-round performance. From the data,
we can obtain the replenishment profile for the solar energy,
assuming that each node is equipped with a solar panel of
dimension20mm × 20mm. For the wind resource, the data
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is measured using sensors placed2 meters from the ground.
The power can be calculated from the measured wind speed
V as in [22]:Pwind = 0.5×ρ×A×V 3, whereρ denotes the
air density set toρ = 1.23(kg/m3), andA is the swept area
of the wind turbine set toA = 50mm× 50mm.

Figs. 6 and 7 show the simulation results for the solar
energy and the wind energy, respectively. The red dotted curve
represents the upper boundJubc that is obtained by solving
Eqn. (27) for the givenε. It can be considered as the utility
achieved by the infeasible scheme Scheme-UB. The blue
dashed curve represents the utility achieved byDualNet. For
both energy sources, the performance ofDualNet approaches
the upper bound as time increases. Also, an interesting ob-
servation in both results is that the performance achieved
by DualNet has been once close to the upper bound when
time is fairly small. This phenomenon occurs because the
estimated average harvested energy at that time is greater than
the actual (long-term) average. The results also show that
DualNet outperformsESA, and the performance differences
are significant even after a long time period. This is because
the Lyapunov optimization technique adopted byESA requires
an assumption that the replenishment energy in each time
slot is either i.i.d. or Markovian. In contrast, our solution
is developed under a mild assumption requiring only the
existence of mean replenishment rate.

A. Discussion

To better demonstrate the reason for the difference, we con-
sider the simplest network with one source and one destination.
We simulate both schemes assuming that the energy arrival
process is an i.i.d Poisson process with parameterλ = 1.
Fig. 8 illustrates the data queue evolution, and Fig. 9 shows
the energy queue evolution. From Fig. 8, we can see that
our schemeDualNet has a shorter queue length, that is, a
better delay performance, thanESA. Also, from Fig. 9, we
can observe thatDualNet performs well with much smaller
battery size, which is set to be 100 units compared to 1800 in
ESA.

Note that underESA or other schemes using Lyapunov
optimization technique, the allocated energy in each time slot
is a function of its current queue length and current energy
level, i.e., e(t) = f(Queue(t), B(t)). From our analytical
results, we have seen that the optimal utility can be achieved
by a static energy allocation close to the average harvesting
rate r̄. From this, we can infer thatESAwill start performing
well when the energy allocation becomes static, in other
words, whenQueue(t) andB(t) increase to some high levels
such that their variations at each time slot is relatively small.
Since it will take long to reach a large queue length and a high
battery level, we can see a fairly long transient period before it
converges in Figs. 8 and 9. Similar phenomena occur in other
contexts, such as the poor delay performance of CSMA-based
scheduler [18].

In contrast, in our scheme the allocated energye(t) con-
verges tor̄ in a more straightforward way without causing
the data queues or the energy levels to build up. Therefore,
our scheme has a better delay performance as well as smaller
battery size requirement.

0 2000 4000 6000 8000 10000
0

100

200

300

400

500

600

700

800

900

Data Queue

 

 
Datequeue-ESA
Datequeue-DualNet

Fig. 8. Data queue for one node case

0 2000 4000 6000 8000 10000
0

200

400

600

800

1000

1200

1400

1600

1800

Energy Queue

 

 

Energyqueue-ESA
Energyqueue-DualNet

Fig. 9. Energy queue for one node case

VI. CONCLUSION

In this paper, we study the joint problem of energy alloca-
tion and routing to maximize total user utility in a sensor net-
work with energy replenishment. Under general replenishment
profiles with finite mean value, we develop a low-complexity
online solution that is asymptotically optimal. Characterizing
the optimal performance by an upper bound achieved by an
infeasible solution, we show that the long-term performance
of our online solution approaches the upper bound. To the
best knowledge of the authors, this is the first result that
achieves asymptotic optimality in multi-hop networks with
general energy replenishment profiles. Also, by removing
time coupling properties between controls, our online solution
achieves low complexity and can be approximated by a
distributed algorithm. Moreover, we show that the required
battery size isO(ln( 1

ξ
)) to constrain the performance of our

scheme withinξ− neighborhood of the optimum. Through
simulations based on traces from two different types of energy
source, we evaluate our solutions and show that it outperforms
a state-of-the-art scheme and achieves the performance close to
the optimal. An important question that remains unanswered is
whether one can develop such simple asymptotically optimal
schemes for networks with replenishment that also take into
account interference. This is an interesting and important
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question that we plan to pursue for future work in this area.

APPENDIX A
PROOF OFPROPOSITION3

Proof: From the stationary property of the problem, we
havexsub(t) = xsubc for all t. Thus, we have that

lim sup
T→∞

Jub(T ) = lim sup
T→∞

∑

s

Us (xsubc) = Jubc .

We will prove thatlim supT→∞ J∗(T ) ≤ Jubc by showing
that the achievable maximum utility of Eqn. (27) is no smaller
than that of a solution to ProblemA.

We first consider the following problem, where the differ-
ence from ProblemA is the last constraint.

max
∑

s

Us
( 1

T

T∑

t=1

xs(t)
)

subject to wdij(t) ≥ 0, ∀t, ∀d, ∀(i, j) ∈ L,
T∑

t=1

∑

j

wdij(t)−
T∑

t=1

∑

j

wdji(t)−
T∑

t=1

∑

s:fs=i,ds=d

xs(t) ≥ 0,

∀d, and fori 6= d,

T∑

t=1

∑

j:(i,j)∈L

∑

d

wdij(t) ≤ Tµ(r̄i(1 + ε)), ∀i ∈ N .

(40)

From Eqn. (7), it is clear that the last constraint in
Problem A, i.e.,

∑
j:(i,j)∈L ~wij ∈ Λi, is stricter than the

last constraint of Eqn. (40),
∑
t

∑
j:(i,j)∈L

∑
d w

d
ij(t) ≤

Tµ(r̄i(1 + ε)), whenT is sufficiently large. Hence, by letting

JB(T ) , max
∑
s Us

(
1
T

∑T
t=1 x

s(t)
)

denote the achievable
maximum utility of (40), we have that

lim sup
T→∞

J∗(T ) ≤ lim sup
T→∞

JB(T ). (41)

We also consider another strictly convex optimization prob-
lem with the same objective function and show that its solution
is also the solution to Eqn. (40), which implies that both
optimization problems have the same maximum utility.

max
∑

s

Us
( 1

T

T∑

t=1

xs(t)
)

subject to wdij(t) ≥ 0, ∀t, ∀d, ∀(i, j) ∈ L,
∑

j:(i,j)∈L

wdij(t)−
∑

j:(i,j)∈L

wdji(t)−
∑

fs=i,ds=d

xs(t) ≥ 0,

∀t, ∀d, and fori 6= d,
∑

j:(i,j)∈L

∑

d

wdij(t) ≤ µ(r̄i(1 + ε)), ∀t, ∀i ∈ N . (42)

Note that the difference from Eqn. (40) is the last two
constraints, where now we do not have summation over time.
The solution space of Eqn. (40) includes the solution space of
Eqn. (42), since it can be easily shown that if(~wdij , ~x

s) satisfies
the constraints of Eqn. (42), it also satisfies the constraints of
Eqn. (40). This implies that if the optimal solution to Eqn.

(40) also satisfies all the constraints of Eqn. (42), then it is
also the optimal solution to Eqn. (42).

Let (~wd
′

ij , ~x
s′) denote the optimal solution to Eqn. (40).

Also, we define two constantswd
′′

ij ,
1
T

∑T
t=1 w

d′

ij (t) and
xs
′′
, 1

T

∑T
t=1 x

s′(t). We consider a time-invariant vector
(~wd

′′

ij , ~x
s′′), wherewd

′′

ij (t) = wd
′′

ij and xs
′′
(t) = xs

′′
for all

time slots. We will show that this time-invariant vector is a
common optimal solution to both Eqn. (40) and Eqn. (42).

We first show that it is an optimal solution to Eqn. (40).
Since(~wd

′

ij , ~x
s′) is a solution to (40), it satisfies the constraints

and we have that
∑T
t=1

∑
j w

d′

ij (t) −
∑T
t=1

∑
j w

d′

ji(t) −∑T
t=1

∑
s:fs=i,ds=d

xs
′
(t) ≥ 0. Dividing by T , we obtain that

∑

j

wd
′′

ij (t)−
∑

j

wd
′′

ji (t)−
∑

s:fs=i,ds=d

xs
′′

(t) ≥ 0, (43)

for all t ∈ [1, T ], since(wd
′′

ij (t), xs
′′
(t)) are equal over time.

Hence, the inequality is also true when summing fromt = 1
to T . Hence,(~wd

′′

ij , ~x
s′′) satisfies the second constraint of Eqn.

(40). Similarly, since we have
∑T
t=1

∑
j:(i,j)∈L

∑
d w

d′

ij (t) ≤
Tµ(r̄i(1 + ε)), dividing by T , we have that

∑

j:(i,j)∈L

∑

d

wd
′′

ij (t) ≤ µ(r̄i(1 + ε)). (44)

By taking the summation fromt = 1 to T , it yields that∑T
t=1

∑
j:(i,j)∈L

∑
d w

d′′

ij (t) ≤ Tµ(r̄i(1 + ε)). Therefore,

(~wd
′′

ij , ~x
s′′) satisfies all the constraints of Eqn. (40). Also, we

have that

T∑

t=1

xs
′

(t) = T ·
1

T

T∑

t=1

xs
′

(t) =

T∑

t=1

xs
′′

(t).

This means that(~wd
′′

ij , ~x
s′′) achieves the same utility value as

the optimal solution(~wd
′

ij , ~x
s′), which implies that it is another

optimal solution to Eqn. (40).
We next show that(~wd

′′

ij , ~x
s′′) is also an optimal solution to

Eqn. (42). Note that from our earlier statement on the solution
spaces of Eqn. (40) and Eqn. (42), it suffices to show that
(~wd

′′

ij , ~x
s′′) satisfies all the constraints of Eqn. (42), which has

already been obtained from Eqn. (43) and Eqn. (44). Hence,
(~wd

′′

ij , ~x
s′′) is an optimal solution to Eqn. (42).

Let JC(T ) denote the achievable optimal utility of Eqn.
(42). Since both optimization problem Eqn. (40) and Eqn.
(42) have an identical objective function and share at least
a common maximizer, the achievable optimal utility should
be equal, i.e.,

JB(T ) = JC(T ). (45)

Further, from our development of the common solution, we
can always find an optimal solution to Eqn. (42) that is time-
invariant, and thus we can reduce the solution space to time-
invariant vectors without affecting the achievable maximum
utility. Next, we will prove thatJC(T ) = Jubc , which is the
achievable maximum utility of the optimal solution to Eqn.
(27).

First, note that the time invariant solution(~wd
′′

ij , ~x
s′′) to

Eqn. (42) satisfies the constraints of Eqn. (27), since the
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constraints of both equations are the same. This implies that
Jubc ≥

∑
s Us

(
xs
′′)

=
∑
s Us

(
1
T

∑T
t=1 x

s′′(t)
)

= JC(T ).
On the other hand, let(~wd∗ij , ~x

s∗) represent one solution
to Eqn. (27). Thus, we haveJubc =

∑
s Us

(
xs∗
)
. Consider

the time-invariant vector(~wd∗ij , ~x
s∗), wherewd∗ij (t) = wd∗ij

and xs∗(t) = xs∗ for all time slots. Note that(~wd∗ij , ~x
s∗)

satisfies all the constraints of Eqn. (42) and thus leads to a
suboptimal value, i.e.,JC(T ) ≥

∑
s Us

(
1
T

∑T
t=1 x

s∗(t)
)

=∑
s Us

(
xs∗
)

= Jubc . Thus, we have proved that

JC(T ) = Jubc . (46)

Therefore, we have that from Eqns. (41), (45) and (46),

lim sup
T→∞

J∗(T ) ≤ lim sup
T→∞

JB(T ) = lim sup
T→∞

JC(T ) = Jubc .

APPENDIX B
PROOF OFPROPOSITION4

Proof: Since Scheme-LB is a feasible scheme, we have
J∗(T ) ≥ J lb(T ) by definition.

The energy allocation component of Scheme-LB is exactly
the same as Scheme-LBONE for the single node case, thus
all the results in Section III.B also hold. LetAi denote the
event ei(t) ≥ (1 − ε)2r̄i. From Eqn. (12), we have that
limt→∞ P (Ai) = 1 for eachi. Given a finite number of nodes
in the network, we can obtain that

lim
t→∞

P (ei(t) ≥ (1− ε)2r̄i, ∀i ∈ N ) = 1, (47)

which immediately implies (as in Eqn. (13))

lim
T→∞

1

T

T∑

t=1

P (ei(t) ≥ (1− ε)2r̄i, ∀i ∈ N ) = 1. (48)

Then we can obtain that

J lb(T ) = E
[∑

s

Us(
1

T

T∑

t=1

xslb(t))
]

≥
1

T

T∑

t=1

E
[∑

s

Us(x
s
lb(t))

]

≥
1

T

T∑

t=1

{
E
[∑

s

Us(x
s
lb(t))| ei(t) ≥ (1− ε)2r̄i, ∀i ∈ N

]

· P (ei(t) ≥ (1− ε)2r̄i, ∀i ∈ N )

+ E
[∑

s

Us(x
s
lb(t))| ei(t) < (1− ε)2r̄i, for somei ∈ N

]

· P (ei(t) < (1− ε)2r̄i, for somei ∈ N )
}

≥
1

T

T∑

t=1

E
[∑

s

Us(x
s
lb(t))| ei(t) ≥ (1− ε)2r̄i, ∀i ∈ N

]

· P (ei(t) ≥ (1− ε)2r̄i, ∀i ∈ N )

≥
1

T

T∑

t=1

J lbc · P (ei(t) ≥ (1− ε)2r̄i, ∀i ∈ N ), (49)

where the first inequality holds due to Jensen’s Inequality as
well as the concavity ofU(·), the second inequality holds

because ofE[X] = E[X|A]P (A) + E[X|Ac]P (Ac) and the
last inequality holds sinceJ lbc is achieved whenei(t) = (1−
ε)2r̄i, ∀i ∈ N . Taking liminf on the both sides and from (48),
we can obtain that

lim inf
T→∞

J∗(T ) ≥ lim inf
T→∞

J lb(T ) ≥ J lbc .
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