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Abstract—In this paper, we investigate the utility maximization their batteries. However, energy management still remains
problem for a sensor network with energy replenishment. Each critical, in particular, when one cannot forecast the amount
sensor node consumes energy in its battery to generate andq¢ energy replenishment. Keeping a high battery level may

deliver data to its destination via multi-hop communications. tin | twork f hil intaini I
Although the battery can be replenished from renewable energy resuit in fow network periormance, while maintaining a low

sources, the energy allocation should be carefully designed in battery level increases risk of energy depletion.
order to maximize system performance, especially when the There are several works that address the energy allocation

replenishment profile is unknown in advance. In this paper, we problem in sensor networks with energy replenishment. In [5],
address the joint problem of energy allocation and routing to 5 go|ytion has been developed to maximize the total utility

maximize the total system utility, without prior knowledge of the f tellit ith lenish t based d "
replenishment profile. We first characterize optimal throughput 'O @ Salellite with energy repienisnment, based on dynamic

of a single node under general replenishment profile, and extend Programming (DP) technique. In [6], the authors consider a
our idea to the multi-hop network case. After characterizing the network where nodes with and without replenishment coexist,
optimal network utility with an upper bound, we develop a low- and propose two heuristic routing schemes to exploit renew-
complexity online solution that achieves asymptotic optimality. able energy: one scheme looks for the path with minimum
Focusing on long-term system performance, we can greatly . )

simplify computational complexity while maintaining high per- number of nodes'wnhout replenlshment, and the other scheme
formance. We also show that our solution can be approximated by a@llows one relaying node to deviate from the shortest path

a distributed algorithm using standard optimization techniques. and forward packets opportunistically to nodes with energy

In addition, we show that the required battery size isO(In(¢)) o replenishment. A battery recharging and discharging model
constrain the performance of our scheme within{ —neighborhood 1,535 peen developed in [7] for energy replenishment sensor

of the optimum. Through simulations with replenishment profile .
traces for solar and wind energy, we numerically evaluate our networks. A threshold-based policy has been proven to guar-

solution, which outperforms a state-of-the-art scheme that is antee at least of the optimal perfprmance. In [8], the.authors
developed based on the Lyapunov optimization technique. have developed an energy-adaptive scheme that achieves order-

optimal performance for a single node with energy replenish-
ment. Lexicographically maximum rate assignment and rout-
|. INTRODUCTION ing for perpetual data collection has been studied in [9]. The

Wireless sensor networks have been shown to be immens@&hors have proposed a centralized solution, which can obtain
useful for monitoring a wide range of environmental paranih€ optimal lexicographic rate assignment, and a distributed
eters, such as earthquake intensity, glacial movements, &¢'tion, which reaches the optimum only in tree networks
water flow. Unattended operation of sensor networks forV4th predetermined routing paths. Task scheduling problem is
long period is highly desirable due to typical remoteness aR@nsidered for a single node with energy replenishment in [10].
harshness of the environment. One of the main obstacles i€ authors have developed two heuristic schemes that smooth
developing long-lived networks is limited battery of sensdf€ €nergy consumption over the running period. In [11], a
nodes. Energy harvesting from various natural sources, sigfVer-aware routing policy has be_en develope(_j. Computing a
as solar and vibration [1]-[3], has been shown to be effective f@th with the least cost, the solution asymptotically achieves

alleviating this problem by allowing sensor nodes to replenigPtimal competitive ratio as the network scales. Also, there are
a few works that exploit the Lyapunov optimization technique
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centralized control and full knowledge of replenishment prc&ection IIl.C.) Letr, (t) denote the amount of replenishment
files in the future, which are hardly available in practice. lenergy that arrives at nodein time slott, while e,, (¢) denotes

this paper, we characterize optimal performance and obtélre allocated energy of nodein time slott. Without loss of
insight into the asymptotical properties. Based on the timgenerality, we assume that the energy replenishment occurs
invariant properties, we develop a low-complexity solutioat the beginning of each slot and the harvested energy is
that is asymptotically optimal and can be approximated bsnmediately stored in the battery. L&, (¢) denote the battery

a distributed algorithm. We summarize our main contributionsvel of noden at the beginning of time slot, which is

as follows: assumed to be initially empty for simplicity of exposition, i.e.,

1) We characterize an upper bound for the utility perfo3-(0) = 0. The energy dynamics can be depicted as follows:

mance of a sensor network with energy replenishment, Bo(t+ 1) = max {Bn () + 7n(t) — en(t), 0} . Q)

by constructing an infeasible scheme that outperforms

the optimal scheme. We assume that the replenishment process has a finite mean
2) We develop a low-complexity online solution that jointlyvalue 7, i.e.,

takes into account energy allocation and routing. With- 1 X

out advance knowledge of the future replenishment pro- P 2 lim — Z rn(t), )

file, our solution is provably efficient using estimation T=oo T =1

of replenishment rate and supply-demand mismatclynich is a mild assumption including a larger class of replen-
We show that the performance gap between our onlifghment processes than those used in the prior works [12],
solution and the infeasible solution for the upper bour‘ﬁ3], wherer,, (t) is assumed to be an i.i.d. process.
diminishes as time tends to infinity. There areS flows in the network, and each flow is
3) We approximate our solution by a distributed algorithrgssgciated with a source nofieand a destination nodg. Let
and evaluate it through simulations based on replenis-genote the set of the source nodes. During a time slot, the
ment profile traces for solar and wind energy. The resuligta transmission of a node is characterized by a continuously
show that the s_olution performs close to the upper bou%ndecreasing and strictly concave rate-power functioR),
after a short time period, and outperforms a State'%atisfyingu(o)z 0. Note thatu(P) represents the amount of
the-art scheme that is developed based on the Lyapunyta that can be transmitted usidgy units of energy in a
optimization technique. time slot under a given physical layer modulation and coding
Unlike the previous works, we consider a larger class efrategy. (see [21] for details.)
replenishment processes, which only require the existence of et z°(¢) be the amount of data that is delivered from the
a mean value rather than assumptions of i.i.d. or Markoviagourcef, to the destinatior, in time slott over possibly mul-
To the best of our knowledge, our solution is the first one théple hops and multiple paths. Each uses associated with a
achieves asymptotic optimality under general replenishmeuttlity function U, (z*), which reflects the “satisfaction” of user
profiles. Also note that although the solution in [4] achieves when it transmits at average data rate£ + Z;";l x5 ().
optimal performance by making use of fluctuations of thg/e assume thdt(-) is a strictly concave, non-decreasing and
energy replenishment process, it requires future knowledgentinuously differentiable function.
of the replenishment profile. In contrast, our online solution
here does not require such knowledge and achieves asympt@tics,opniem Formulation
optimality by relying on long-term characteristic of the energy

replenishment process. Through successfully removing time©U" OPI€Ctive is to develop a low-complexity online solution

dependency in decisions, we significantly reduce the comﬁﬁ— the 1.0|r.1t problem of ene.rgyfallozatlon and dag? routing
tational complexity. to maximize aggregate utility for the rechargeable sensor

Our paper is organized as follows: In Section I, WQetwork. Since the rate of energy replenishment is usually
formulate our problem as a standard utility maximizatio uch slower then the rate of energy consumption, we assume
problem. In Section Ill, we propose a simple solution th at the reduction of energy is instantaneous for all the

maximizes throughput for a single node. In Section 1V, Wgodee along Fhe peth as in [11]. In our work, we do_ hot
W(_phcnly consider wireless interference. Thus, our techniques

extend our results to the network case, and develop a lo directly handi h di t mod :
complexity online solution that achieves asymptotic optimalit;g,an Irectly handie cases when adjacent nodes operate on
rthogonal channels. An open question is whether one can

and approximate it by an even simpler distributed algorithm.

After presenting simulation results in Section V, we conclu evelop a unified strategy that incorporates the simplicity of
our paper in Section VI our scheme with the many excellent works in the literature that

have focused on scheduling in the presence of interference,

such as [14], [17] and the references therein. While this is

beyond the scope of this work, it will form the basis of our
We consider a static sensor network, denoted (by= future work.

(N, L), where N is the set of nodes and is the set of  We start with the definition ofate regionfor a node under

links. We assume a time-slotted system for a periodl'of energy replenishment profié, = (r,,(1), 7, (2),--- ,7.(T)).

time slots. Each node has a battery whose size is assumefefinition 1 (Rate region): The rate region A, of

to be infinite. (We will relax the infinite-battery assumption imode n is defined as the set of all vectors, =

Il. SYSTEM MODEL



(n(1),v,(2), - ,vn(T)), such that for any,, € A,, there is,
exists some energy allocatieh that achieves,, i.e.,v,(t) =
ulen(t)), forall t € (1,---T). JE Zu (4)
It has been shown that the rate regidp of noden is T
i d
convex (see Lemma 4 in [4]). Letj;(¢) denote the amount |, yhe following, we provide an upper and a lower bound for
of data on the outgoing ik, j) € L for destination J*..(T), whose difference can be arbitrarily small’Bgends
noded in time slott, and we denote its vector ag;; = to infinity.
(g w (1), Y wk(2), -+, X gwl(T)). We formulate the

utility maximization problem as follows:
A. Upper Bound

T _ . .
] 1 s Let 7 denote the average replenishment rate, defingdas
ProblemA: pmax > UL (T t_zl x (t)> My oo 7 Yopmy 7(1).
) * N Proposition 1: WhenT tends to infinity,J,.(T") is upper
subjectto  wi(t) >0, Vt, Vd, V(i,j) € L, bounded byu(7).
T T T Proof: From Eqgn. (4) and Jensen’s inequality with the
S whm) => > whe =>0 > 2t =0, concavity ofy(-), we have that
t=1 j t=1 j t=1 s:fo=i,ds=d T T
vd, and for alli # d, Zt () o 2= r(®)
one Z T ) — /’l/( T )7
Z w;; € A, for all nodei € N, €) P
jilig)EL (5)

where the second constraint means that total amount of dg/tkéere the second inequality holds because the total allocated

for destinationd into node: is less than or equal to total ENErdy can be no greater than the total harvested energy. By
amount of data out of the node. If any node does not h {;g(ng the limsup on both sides, we can obtain that

enough data for a flow to send over all outgoing links, null . Zt—l r(t) B
bits are delivered. 117131 sup Jop (1) < hql}l sup p | == | = p(r). (6)
The solution to ProblenA will determine i) the amount of o o

energye, (t) that should be spent for each nade A in time u
slot ¢, ii) the amount of data:*(¢) that should be transmitted Proposmon 1 also implies that for any € A, we have
by each flows € S in time slot¢, and iii) routing decisions Limsupy . = >, v(t) < u(7). Hence, for any > 0, there
for each node, i.e., choosingwy, (t) for each link (i, j) and €xistsTo, such that for alll’ > Ty, we have
each destination nodé

It has been shown in [4] that Probler is a convex TZ 7(1+€)). 7)
optimization problem and can be solved using the standard
convex duality approach if full knowledge of the replenishment This equation will be used later in the proof of the network
profile including for the future is provided. However, suchgse.
knowledge is difficult to obtain in practice. Furthermore, even
if such knowledge is assumed, this problem is computatlona@/ Lower Bound
highly complex. The culprit is the “time coupllng property”, _ _
which is reflected in the last constralil . ; .\ i; € A;. In We consider the following energy allocation scheme, de-
this paper, we show an upper bound on optimal performan’&%ted by Scheme-LBONE:
that can be obtained by solving Problein We also provide  In each time slot, average harvested energy is estimated
a low-complexity online solution, the performance of which  as follows:
forms a lower bound. Moreover, we show that the lower bound
can get arbitrarily close to the upper bound, whErtends Zr (8)
to infinity, which implies that our solution is asymptotically =1

optimal. « Using the estimation, energy is allocated as:

. (1 —e)@(t), if B(t)+r(t)>(1—er(t),
et) = B(t) +r(t), otherwise
We first investigate throughput performance of optimal (9)
energy allocation scheme for a single node. In this section, wheree > 0 is a system parameter that can be chosen to
we omit the subscript from all the notations defined in the  be arbitrarily small.
previous section, since all results are for a single nede We denote the throughput of Scheme-LBONE by
Let & = (e*(1),e*(2),...,e*(T)) denote the optimal J% (T) 2 £ S7_ E[u(e(t))], where the expectation is taken
energy allocation that maximizes throughput of a single nodéth respect to the sample space of the replenishment process.
under energy replenishmenrt= (r(1),7(2),---,r(T)). Let We will obtain a lower bound fotJ?,.(T) by the following
Jx..(T) denote the optimal throughput achieved &y that proposition.

7 A

& | =

Ill. THROUGHPUTMAXIMIZATION : A SINGLE NODE CASE



Proposition 22 WhenT tends to infinity,J, . (T') is lower r&» e YSL Be(t e()
bounded byu((1 — €)27). )
Proof: From Eqn. (2), we havéim;_, ., #(t) = 7, which
follows that for anye > 0, there existsl, such that|#(t) —
7| < er holds for allt > T. Thus, we have thatl — €)F < g 1.
7(t) < (1 + ¢)7, vVt > T3. It follows that

Sensor node modeled by a G/G/1 queue with finite buffer size

R o Now we can obtain the performance bound of Scheme-
1-— t 1 1-— t>1T;. 10
(1=git) <A+l —gr<r, Vt>T (10) LBONE as follows:

From Egn. (9), we consider the battery levBl(t) as J?® (T ZE
a queue, and Scheme-LBONE as a work-conserving server
with service rate(1 — €)#(t), which is strictly less than the 1 E
average arrival rate, for ¢t > Ti. Hence, whenl’ tends = — > {E[M(e(t))|€(t) > (1 =€) - P(e(t) > (1 - €)°F)

to infinity, the battery level will increase to infinity almost t=1
surely. This implies that the probability that the availabler E[u(e(t))|e(t) < (1 - 6)27:] -Ple(t) < (1— 6)%)}
energy is greater than tends to one a$ tends to infinity, (15)
i.e., lim; o, P(B(t) + r(t) > 7) = 1. Combining with Eqgn. T
(10). we can obtain > 2 S Elpe®)e(®) > (1 - 9% Ple(t) > (1 - e)*r)
t=1
lim P(B(t) +r(t) > (1 —€)7(t)) = 1. (11) 1 E
tmro0 ( ) > u((1—€)?7) - T ZP(e(t) > (1 —€)?7). (16)
t=1

From Eqn. (9), since(t) = min{(1 — e)i(t), B() + 7(t)}.  \where Eqn. (15) holds because BfX] = E[X|A]P(A) +
t029_ether with Eqn. (11), together witfl — €)7(t) > (1 — E[X|A¢]P(A¢). By taking liminf on both sides of Egn. (16),
€)°r, V¢ > Ty, we have that we can obtain from Eqn. (14) that

1b \2=
thm Ple(t) > (1 — €)%F) = 1. (12) hrnmf Jome(T) > p((1 — €)°7). (a7)
—00
Since Scheme-LBONE is a feasible energy allocation scheme,

we have thatim infr_, o J%,.(T) > u((1 — €)?7). [ |

Egn. (12) implies that the probability that the allocated Comment:Note that Scheme-LBONE is an online scheme
energy is great thal — ¢)*r is one. and does not require knowledge of the future replenishment

Next, we will use epsilon-delta arguments to show thgofile. Hence, for a single node case, Propositions 1 and
im0 7 Zt y P(e(t) > (1—¢€)*F) = 1. According to Eqn. 2 imply that Scheme-LBONE can achieve the performance
(12), it follows that f0f anyp > 0, there eX|st§’2, such that arbitrarily close to the optimum by choosing sufficiently
for all t > Ty, |P(e(t) > (1 —¢)?F) — 1] < & small.

Let T3 = L2 nowVT > Ty, we have

C. Finite Battery Size

1 Z In the previous analysis, we assumed that the battery size
T D Ple(t) > (1—e)°r) — 1 is infinite, which is impossible in reality. In this subsection,
t=1 we will first show that as long as the battery size is large
1 & o enough, although finite, we can still guarantee that the perfor-
Sf Z{ |[Pe(t) > (1 —¢)*F)| + 1} mance of Scheme-LBONE is withig—neighborhood of the
t:1T optimum. Furthermore, we show that the required battery size
1 is O(In(%)).
+T t_;ﬂ |P( &) > (1 -e7) - 1’ Let M5 denote the battery size. From Eqn. (16), we can see
oT ? (T—Ty) 6 that the performance loss occurs whg(t)+7(t) < (1—e)?7.
<222 2/ Also note thatB(t) + r(t) < (1 —¢)?7 leads toB(t+ 1) = 0.
<¢T3 r 2 13) Thus, the probability of the energy outage event is given by

_ _ _ :TII_IJ;OTZ]-{BU -0}
Therefore, according to epsilon-delta arguments, it follows that
where the subscripty denotes the sample path, which the
probability is a function of. We will show thaP} < § holds
(1—e)%F) = 1. (14) almost surely, wheré is an arbitrary control parameter, when
M is O(ln(%)).

lim —
T—oo T

HM%



First, the battery can be viewed aszdG/1 queue system 1(t) e(t)
with a finite buffer under fluid model, where the energy ~— B'c(t) —
harvesting process(t) acts as the input and Scheme-LBONE
works as a work-conserving server with service (atee)#(t),

as shown in the left figure of Fig. 1. Note that the queue lengtly. 2. G/G/1 queue with infinite buffer size
B(t) evolves as:

B(t+1) = min{max{B(t) + r(t) — e(t),0}, M}. (18) r(t) Bt (1-2)r

Since the load intensity > 1, which is inconvenient to
analyze, we will instead consider a “flipped?/G/1 queue,
where the input is:(t) and the service rate is(t) as shown Fig- 3. D/G/1 queue with infinite buffer size
in the right figure of Fig. 1. Now the flipped queue has a load
intensity p < 1. We denote the queue length of the fllpped
queue aB.(t), which is initially assumed to b&/. The queue
length evolution ofB.(t) is given by:

T
. 1
B(t +1) = min{max{Be(t) + e(t) — r(t),0}, M}. (19)  lim — > 1p.-r < lim — Z 1ppy>ny- (1)
t=1

From [15], we know thatB.(t) > B.(t) for any sample path,
which follows

T—oo T

We claim that for any time slat, we always haveB..(t) =
M — B(t). We now use mathematical deduction to prove it.

» For t=1, we haveB.(1) = M = M — B(1).

Thus, if we havelimHOOTZt ‘L>my <0, 0t
follows thatlimy_, o, & T Zt 1 L{B.()=m} < 6 almost surely.
. Assume thatB,(r) = M — B(r) holds for time slotr. Next, we compare the infinite-buffe/G/1 queue with
« Whent = = + 1, we have three cases: an infinite- bufferD/G/l queue, where the input rate is a
Case 1) If0 < B(r) + r(r) — e(r) < M, from Eqn. deterministic valug1 — 5)7" We denote the queue length of
(18), we haveB(r + 1) = B(r) + r(r) — e(r). On the the infinite- bufferD/(_}/l queue asB//(t). From_Eqn (20),
other hand, we have we know that thee(t) is always less thaiil — €2)7, V¢ > T12.
This means that the input of th&/G /1 queue is always;
r(r),0}, M} less than the input of th®/G/1 queueVt > T;. Assuming
= min{max{M — B(r) + e(r) — r(r),0}, M} that »(¢) is upper bounded byr,,.., Vt, it follows that
. e(t) < Tmaz, Vt, because®(t) < rpq.. Therefore, it can be
= min{max{M — (B(r) +(7) —e(r)), 0}, M} seen thatB”(t) > BL(t) after the timeT; + 2rmg=T1 which
=M — (B(7) +r(7) —e(1)) implies thatB” () > B.(t) always holds after some transient
=M — B(t+1). period.
Note that the load intensity for th®/G/1 queues is less
Case 2) IfB(r)+r(r)—e(r) < 0, we haveB(r+1) = 0. than 1, and both input and output processes are stationary.
. Thus the stationary distribution of the queue length exists.
Be(r + 1) = min{max{B.(r) + e(r) = r(r), 0}, M} Hence, we have the stationary distribution of thy/G/1

B.(7 + 1) = min{max{B.(7) + e(1) —

N

= min{max{M — B(7) + e(r) — r(7),0}, M’} qgueue forms an upper bound, that is,
= min{max{M — (B(7) + r(7) — e(7)),0}, M }
=min{M — (B(r) +r(r) — (7)), M} tlgglole{Bf(tpM}
=M=M-B(r+1).
Case 3) IfB(r)+r(r)—e(r) > M, we haveB(r +1) = < Jlim Z LBy (1>}
M. And similarly we haveB.(r+1) =0= M — B(7 +
1). :tllm P(Bg( ) > M) (almost surely, (22)

Therefore, we have shown th#&.(t) = M — B(t). As a

: " > H _
result, we have wherelim;_,, P(BY(t) > M) denotes the stationary proba

bility of the eventB/(t) > M.
Now our goal is to find a battery sizé/, such that
= Tlggo = Z Lip.(t)= (20)  lim; oo P(B/(t) > M) < 6. _ _ N
Note that if the replenishment process is Markovian or i.i.d.,
Now, the problem has become: how to find a bound drem [23], we have
battery sizeM, such thatlimr_,cc 7 > ;_; 1{p.(t)=m} < 0 lim P(B"(t) > M) < exp(—~*M), (23)
almost surely. t—o0
Next, we will compare the finite-buffef/G/1 queue with wherevy* is a positive constant. It is worth pointing out that the
an infinite-bufferG/G/1 queue as shown in Fig 2, for both ofi.i.d. case coincides with the well-known Kingman'’s Bound.
which the input process and server are exactly the same. Wefact, Eqn. (23) holds under more general replenishment
denote the queue length for the infinite-buffer queBidt). processes [24].



By letting exp(—y*M) = 4, it follows that In contrast to ProblemA, the third constraint in the

In(2) above problem is not coupled across time, which implies
M = —f (24) that routing decision in each time sldt can be solved
v mdependently We denote the unique solution to Eqn. (27)
Hence, from Eqns (20) (21), (22), (23), (24), we have thgs, Zu(t) = [25,(t)]. Though Scheme-UB is an infeasi-

when M = 6(3) the probability of the energy outage in theple scheme we WI|| show that its performance, defined as
original queue is less thah almost surely. This implies that Jub(T) & .U, Z z%,(t)), dominates the optimal
e(t) > (1 — €)*7 with probability greater than — 4. T Set=

By taking§ — ¢ — % we have performanceJ*(T'). Also since the energy allocation and

routing in Scheme-UB do not change over time, it follows that

lim inf7 o0 J2 . (T) o (1= 8)u((1—€)%7) z$,(t) is the same in all time slots, which we denotezds. .
limsupy_, ., J%,(T) ~ 1(7) By denotingJt £ Y U, (22,.), we haveJ“(T) = Jub.
(1—8)(1 - €)2u(F) Proposition 3 When T tends to infinity,J*(T') is upper
> = bounded byJ“*(T), and we have thaim sup;_, ., J*(T) <
Hir) limsupy_, ., JU(T) = J¥.
=1-0)(1-e?=(1~- §>3 We refer to Appendix A for the proof.
> (1-¢). (25)

B. Lower Bound
Combining with Eqn. (24), we can see that the required bat-, yhis sypsection, we propose a low-complexity online

tery size under Scheme- LBONE+¥+IH3 i.e.,O(In(¢)), scheme, denoted by Scheme-LB, and show that its perfor-

which is better than the bour@( ) in [12] [13]. mance approaches the upper bound obtained in the previous
section, wher{" tends to infinity. We begin with the algorithm
IV. UTILITY MAXIMIZATION : A NETWORK CASE description of Scheme-LB:

In this section, we investigate the problem of maximizing . Energy allocation as in Scheme-LBONE, in each time

utility over the network with energy replenishment. In our  sjot ¢, each node estimates its average harvested energy
formulation ProblemA, we denote the achievable maximum  gs:

utility by J*(T) £ max)_ U, (th LT (t )). We first t

provide an upper bound af*(T") using an infeasible scheme, Pit) & =) ri(r). (28)

and then propose a low-complexity online scheme that does T=1

not require future knowledge of replenishment profile. We  Then energy is allocated as

show that the performance of our proposed scheme approaches . . N

the upper bound as tim# tends to infinity. ei(t) = { (I—e)fi(t), if Bi(t)_ +ri(t) = (1= €e)fi(t),
B;(t) + r;(t), otherwise

A. Upper Bound (29)

We consider a fictitious infeasible scheme, denoted by* Rolu_tlng r:OUftlTlg n each_ tl_me_slo't |sb|determ|ned by
Scheme-UB, which not only knows in advance the average solving the following optimization problem.

SN

energy harvesting ratg for all i € NV, but also can allocate max Z U, (m t
more energy than the harvested energy. Scheme-UB works as Wij, T
follows: subject o w,(t) >0, Vd, V(i,j) € L,
» Energy allocation each node spends a fixed amount of d d s
energy7; (1 + €) in all time slots, i.e., Z wi;(8) = Z wji(t) = Z z*(t) 2 0,
j:(i,j)EL j:(i,5)EL fs=i,ds=d
el(t) = 7:1(1 + 6), for all 7+ andt. (26) vd, and fori 7& d
Clearly, this is more than the average replenishment rate wi(t) < Vie N
NS IS n (1) < ples(t)), Yie N.  (30)
and thus infeasible. (;)E‘C ; i )

« Routing the routing in each time slot is determined

by solving the following strictly convex optimization Ve denote the solution to Eqn. (30) (1) = [27,(t)].
problem: Note that the difference from Scheme-UB is the energy

allocation, which is now based on the estimated average
max ZU replenishment rate. Le(T) £ E[SS, U, (4 S0, «i,(1))
" where the expectation is taken over the sample space of
subject to - w((t) > 0, vd, ¥(i,j) € £, the replenishment process. Also, lej, denote the solution
Z wi(t) — Z wi(t) — Z z5(t) >0, to Eqgn. (30) whene;(t) = (1 — ¢)*r; for all i € N

J(h9eL giig)eL fo=idi=d and J® £ S U, (z3,.). Then we can obtain the following
vd, andVi # d proposition.
) Proposition 4 When T' tends to infinity, J*(T) is lower
Z Zw ) Sum(l+e), VieN. (27)  bounded byJ"*(T), and we have thalim infz_,s, J*(T) >

jiig)ec d liminfr o J(T) > JP.



We refer to Appendix B for the proof. C. Distributed Algorithm Based on Duality

Recall that both/¢* and J;" are function ofe. Next we  Note that Scheme-LB should solve a convex optimization
show via the following proposition that the lower boudf  proplem, i.e., Eqn. (30), in each time sloin a centralized
can be arbitrarily close to the upper boudi@l® by settinge  manner. In this section, we extend our solution and develop a
sufficiently small. low-complexity distributed scheme that approximates Scheme-

Proposition 5: For anyé > 0, there exists > 0, such that |B ysing the standard optimization technique of duality [16],
| Jeb — TP < 6. [17].

Proof: We define the ratio of two transmission rates: From the dual counterpart to Eqn_ (30), we can obtain
o9 the following solution, denoted bybualNet which can be
k £ min M (31) implemented in a distributed manner. Since the technique is
N p((1+e)r) quite standard, we omit details and refer interested readers to

Since u(-) is an increasing concave function, we have froffur technical report [21].
Jensen’s inequality that « At each timet, sources generates data at rai€(t) by
solving

u(1 = ©2F) = (1 — F; + (2 — &) % 0) > (1 - ().

and similarly we haveu((1 + €)7;) < (1 + €)u(7;) for all

max Us(2*(t)) — p§ (Da°(t),  (35)

0<z* (t)<Tmax

i € N. Hence, from the definition of, it follows that where z,,,, iS a constant for the maximum data rate
) andpd(t) is the associated Lagrange multiplier for each
1-e)?< (I—¢) k<1 (32) second constraint of Eqn. (30).
(I+¢ — — « Routing at each nodgis determined by solving
Let (wd,z**) denote an optimal solution to Eqgn. (27). ) max SO wii ) (pf (1) — pi(1))
Clearly, we have thaf** = 3~ U, (z**(t)). Then we consider 0<3 2, 2wl OSme®) T 45
another vector(kaids, ki**). Since (wiy,**) is an optimal (36)

solution to Eqn. (27), it satisfies all the constraints of Eqn. (27)., The Lagrange multipliers are updated as
From the first and the second constraints of Eqn. (27), we can

easily show that the constant-mulitplied vecténsy, kz**) pi(t+1) = [pl(t) — h( Z wfj(t)_
satisfies the first two constraints of Eqn. (30). Also from the Gi(i)EL
third constraint of Eqn. (27) and the definition f we have d s +
that _ Z wi; (t) — Z z*(t)] ", (37)
j:(i,5)EL fs=i,ds=d
3OS Tkwd(t) < ku(ri(1+€) < p((1— €)’r)). whereh is a small step size.
J d

It is worthwhile pointing out that Eqn. (36) allocates energy
for node to transmit the data of commodity to node j,
where;j andd are chosen for the largesf (¢) — p¢(t), which
is similar to the well-known back-pressure scheme without in-
r‘[erference constraint. Note that using the standard optimization
technique, the performance of the dual solution gets closer to
the optimal by increasing the number of iterations. Hence, the
g > Z U, (k:z:s*(t)) performance ODu_aII_\Iet Which performs a singlg iteratioq in

each time slot, will improve if we embed multiple iterations

Hence, the vecto(kwgl;,kfs*) also satisfies the third con-
straint of Eqn. (30) wher;(t) = (1 — €)%7; for all i € NV
SinceJ is the achievable maximum utility of Eqn. (30) whe

ei(t) = (1 —€)*r; for all i € N/, we have that

S
o in each time slot. Nevertheless, we show via simulations that
2 kZUS (m (t)) (33) DualNet with a single iteration still achieves good empirical
S .
g performance that is close to the upper bound.

, In addition, we know from the previous discussion that
> (11—, (34) with probability one, the allocated energy of each nede
Scheme-LB tends to a static value, i{@.+-¢€)7;. Therefore, the

where Eqn. (33) holds becaugg(-) is an increasing concave .onyergence obualNetcan be always guaranteed irrespective
function andk < 1, and Eqn. (34) comes from Eqn. (32).  4f the number of iterations per slot.

Therefore, we havél — ¢)3Jub < Jib < jub| where the
latter inequality directly comes from Propositions 3 and 4. ]
Thus, for anys > 0, we can fince > 0, such thaf.J= — J%| < D. Finite Battery Size for the Network Case
d. ] In Section IlI.C, we showed that with a finite battery size
Proposition 5 implies that it is chosen to be sufficiently of O(ln(%)), the performance of Scheme-LBONE is within
small, the performance of Scheme-LB approaches the optigalneighborhood of the optimum. In this subsection, we will
performance, ag’ tends to infinity. Hence, Scheme-LB isextend this idea to the network case.
asymptotically optimal. i). Proposition 3 still holds and“® is an upper bound.
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Fig. 7. Utility performance for wind energy

ii). From Eqn. (47) in the proof of Proposition 4, we have
lim; o P(ei(t) > (1 — €)%7;, Vi € N) = 1 under Scheme- _ o _
LB, which, however, does not hold any longer if the batter§ 1 x 1 field, as shown in Fig. 4. We connect each pair of

size is finite. Extending the one node analysis in Section I11.@0des within distancé.2 by a link. We set three flows in the
we can find a battery sizé/ such that , for anys > 0, network, where the source and the destination for each flow

limy 00 PM(e(t) > (1 — €)2F) > 1 — 6, for all the nodes. are marked with the same color in the figure. We compare the
Hence, we have performance oDualNetwith a state-of-the-art scheme called
) N W ESA [13], which achieves asymptotic optimality under i.i.d.
Jm Plei(t) > (1—¢)°ri, Vi€ N) > (1 —=8)"">1—|NI3, energy replenishment profiles. We assume that the rate-power
(38) function followsy(P) = In(1+10P) (bits/sec), and the utility
. . function is given ad/;(z,) = In(1+4z,). We set the parameter

wh_e_:re N is _the number of _nodes in the network. .. € to 1074, The battery sizes are assumed to be infinite.

iii). Following the same lines as the proof of Proposition We simulate the schemes with two different tvoes of re-
4, we can obtain thalim infro J*(Z) > (1 — [N]9).J." newablé eunergy solar and wil;:vjl W(l_Nadolpt raw dgi)a collected

H H _ 11 ' .
Since| '] is bounded, the lower bour(d — |\']9).J, and the at the National Renewable Energy Laboratory [20] for a

bound on the required battery size is given by: period of one month (June 5th, 2011-July 5th, 2011) and

In3 +In|N]| 1n(%) set each time slot to one minute. Fig. 5 illustrates the two

M= A+ + A (39) types of replenishment profiles during the month. The solar

. . 1 energy data set (Global 40-South LI-200) measures solar
which remainsO <ln(5))' resource for collectors tilted0 degrees from the horizontal

and optimized for year-round performance. From the data,

V. NUMERICAL EVALUATION we can obtain the replenishment profile for the solar energy,

We evaluate our schemes through simulations. We considassuming that each node is equipped with a solar panel of
a network with100 nodes, which are randomly deployed irdimension20mm x 20mm. For the wind resource, the data



is measured using sensors placdheters from the ground. 900

The power can be calculated from the measured wind speed

V as in [22]: Pyina = 0.5 x p x A x V3, wherep denotes the

air density set tgp = 1.23(kg/m*), and A is the swept area

of the wind turbine set tod = 50mm x 50mm. 600
Figs. 6 and 7 show the simulation results for the solar 00k

energy and the wind energy, respectively. The red dotted curve

represents the upper bounft® that is obtained by solving

Eqn. (27) for the givere. It can be considered as the utility

T T
Datequeue-ESA
= = = Datequeue-DualNet ||

800 [

700

400

300

achieved by the infeasible scheme Scheme-UB. The blue 200

dashed curve represents the utility achievedOmalNet For 100}

both energy sources, the performanceDofalNet approaches I
the upper bound as time increases. Also, an interesting ob- 0 2000 0 i ueus 8000 10000

servation in both results is that the performance achieved
by DualNet has been once close to the upper bound whefy. 8. Data queue for one node case
time is fairly small. This phenomenon occurs because the
estimated average harvested energy at that time is greater than
the actual (long-term) average. The results also show that
DualNet outperformsESA, and the performance differences 1600 Enorgyueus ESA
are significant even after a long time period. This is because 1400} = = = Energyqueue-DualNet |
the Lyapunov optimization technique adoptedE§A requires

an assumption that the replenishment energy in each time
slot is either i.i.d. or Markovian. In contrast, our solution
is developed under a mild assumption requiring only the 8oor
existence of mean replenishment rate. 600

1800

1200

1000 -

. . 400 -
A. Discussion

To better demonstrate the reason for the difference, we con-
sider the simplest network with one source and one destination. 0 2000 4000 6000 8000 10000
We simulate both schemes assuming that the energy arrival ety Quece
process is an i.i.d Poisson process with paramater 1. Fi

. . . . ig. 9. Energy queue for one node case
Fig. 8 illustrates the data queue evolution, and Fig. 9 show
the energy queue evolution. From Fig. 8, we can see that
our schemeDualNet has a shorter queue length, that is, a
better delay performance, thdaSA Also, from Fig. 9, we
can observe thabDualNet performs well with much smaller In this paper, we study the joint problem of energy alloca-
battery size, which is set to be 100 units compared to 1800tian and routing to maximize total user utility in a sensor net-
ESA work with energy replenishment. Under general replenishment

Note that underESA or other schemes using Lyapunowrofiles with finite mean value, we develop a low-complexity
optimization technique, the allocated energy in each time skaline solution that is asymptotically optimal. Characterizing
is a function of its current queue length and current energfye optimal performance by an upper bound achieved by an
level, i.e., e(t) = f(Queue(t), B(t)). From our analytical infeasible solution, we show that the long-term performance
results, we have seen that the optimal utility can be achieveti our online solution approaches the upper bound. To the
by a static energy allocation close to the average harvestipest knowledge of the authors, this is the first result that
rater. From this, we can infer thdESAwill start performing achieves asymptotic optimality in multi-hop networks with
well when the energy allocation becomes static, in othgeneral energy replenishment profiles. Also, by removing
words, whenQueue(t) and B(t) increase to some high levelstime coupling properties between controls, our online solution
such that their variations at each time slot is relatively sma#ichieves low complexity and can be approximated by a
Since it will take long to reach a large queue length and a higlistributed algorithm. Moreover, we show that the required
battery level, we can see a fairly long transient period beforebiattery size isO(ln(%)) to constrain the performance of our
converges in Figs. 8 and 9. Similar phenomena occur in otremheme withiné— neighborhood of the optimum. Through
contexts, such as the poor delay performance of CSMA-bassthulations based on traces from two different types of energy
scheduler [18]. source, we evaluate our solutions and show that it outperforms

In contrast, in our scheme the allocated ene¢() con- a state-of-the-art scheme and achieves the performance close to
verges tor in a more straightforward way without causinghe optimal. An important question that remains unanswered is
the data queues or the energy levels to build up. Therefovehether one can develop such simple asymptotically optimal
our scheme has a better delay performance as well as smalgremes for networks with replenishment that also take into
battery size requirement. account interference. This is an interesting and important

200

VI. CONCLUSION
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guestion that we plan to pursue for future work in this area(40) also satisfies all the constraints of Eqn. (42), then it is
also the optimal solution to Eqn. (42).

APPENDIX A Let (@, #*') denote the optimal solution to Egn. (40).
PROOF OFPROPOSITION3 Also, we define two constante; 2 L7 w(t) and
I/ A 1 - B . .
Proof: From the stationary property of the problem, wé” g s Zt 177 (t ) We cor;smer a tlme mvazl//ant vector
havez?,(t) = «$,. for all t. Thus, we have that Wij » & ) Wherew” (t) = wi; andz? (1) = z* for all
time slots. We will show that this time-invariant vector is a
lim sup J“*(T") = lim supz U, (25,.) = J". common optimal solution to both Eqgn. (40) and Egn. (42).
T—o0 T—o0

We first show that it is an optimal solution to Eqn. (40).
—d’ —‘s
We will prove thatlimsupy_, J*(T) < J by showing Since(w;, 7 ) is a solution to (40) it satisfies the constralnts
that the achievable maximum utility of Eqn. (27) is no smalléind we have thatZt 122 Wi L) — Xy D w Gt -

than that of a solution to Problew. DIHED DN fomidi—a @ () > 0. DIVIdlng by T', we obtaln that
We first consider the following problem, where the differ- T oy .
ence from ProblenA is the last constraint. > w Zw > 2 (1) =0, (43)
J sifs=i,ds=d
max ZUS(T > (1) for all t € [1,7], since(wf; (t),z*" (t)) are equal over time.
t=1

Hence, the inequality is also true when summing from 1

to T. Hence,(w¢; , #*") satisfies the second constraint of Eqn.

T T
(40). Similarly, since we havd 7’ , 3. S owd(t) <
d d s t=1 (i,7)€L d ™1
Zzwij(t) - Zzwji(t) - Z Z z*(t) 20, Tu(7;(1 +¢€)), dividing by T, we havejth:j:lt ’

subject to wd( t) >0, Vt, Vd, V(i,7) € L,

)

t=1 j t=1 j t=1 s:fs=i,ds=d
vd, and fori # d, S D wd (8) < u(E (1 + ). (44)
T j:(t,5)eL d
; (z): Ezd:ww ) STu(r(1+e), VieN. By taking the summation front = 1 to T, it yields that
=172

T 1 _
(40) Zt71 Z,J,':(i,j)ec > d wfj (t) < Tu(7(1 + €)). Therefore,
(u?idj ,Z%") satisfies all the constraints of Egn. (40). Also, we
From Eqn. (7), it is clear that the last constraint imave that

Problem A, i.e., Z] )L wi; € A, is stricter than the . .
last constraint of Eqn. (40))_,> . e 2qW wl(t) < sz _ Z sz" ().
Tu(7;(1+¢€)), whenT is sufficiently Iarge Hence, by letting P

JB(T) £ max ", Uy g% S xs(t)) denote the achievable

maximum utility of (40), we have that

t=1

This means thatii¢; ,:T:S”) achieves the same utility value as
the optimal solutior(w; ,5:’8'), which implies that it is another

limsup J*(T') < limsup JZ(T). (41) optimal solution to Eqn. (40).

T—o0 T—o0 We next show thawd, , #=") is also an optimal solution to

We also consider another strictly convex optimization proliegn. (42). Note that from our earlier statement on the solution

lem with the same objective function and show that its soluticxrpaces of Eqgn. (40) and Egn. (42), it suffices to show that
is also the solution to Eqgn. (40), which implies that botI(nw z )satisfies all the constraints of Egn. (42), which has
optimization problems have the same maximum utility. already been obtained from Eqn. (43) and Eqgn. (44). Hence,
(w' #") is an optimal solution to Eqn. (42).

T ij
max ZUs(les(t)) Let J?(T) denote .the a_chievable optimal utility of Eqn.
T (42). Since both optimization problem Eqn. (40) and Egn.
subject to wflj( ) >0, Vt, Vd, ¥(i,5) € L, (42) have an identical objective function and share at least

a common maximizer, the achievable optimal utility should
Z ng(t) - Z w?i(t) - Z z°(t) >0, be equal, i.e., P v
J:(4,5)€L J:(4,5)€L fs=t,ds=d JB(T) _ JC(T). (45)
vt, ¥d, and fori # d,
. Further, from our development of the common solution, we
Z Zw” ) S u(ri(l+e), ¥, VieN. (42) can always find an optimal solution to Egn. (42) that is time-
invariant, and thus we can reduce the solution space to time-
Note that the difference from Eqn. (40) is the last twinvariant vectors without affecting the achievable maximum
constraints, where now we do not have summation over timgility. Next, we will prove thatJ¢(T) = J**, which is the
The solution space of Eqn. (40) includes the solution spaceasthievable maximum utility of the optimal solution to Eqgn.
Eqgn. (42), since it can be easily shown tha(hi:lfi 7°) satisfies (27).
the constraints of Eqn. (42), it also satisfies the constralnts ofFirst, note that the time invariant solut|o(nu a8 ') to
Egn. (40). This implies that if the optimal solution to EqnEgn. (42) satisfies the constraints of Eqn. (27) since the

J:(ij)eL d
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constraints of both equations are the same. This implies th@cause off[X] = E[X|A]P(A) + E[X|A°|P(A°) and the

JE >3 Ug(a¥") = 3, Us (A0, 22 (1) = JE(D). last inequality holds sincd?’’ is achieved whem; () = (1 —
On the other hand, |e¢ng*,fs*) represent one solution €)27;,Vi € N. Taking liminf on the both sides and from (48),

to Egn. (27). Thus, we havd*® = Y U,(z**). Consider we can obtain that

the time-invariant vector(w(, z**), where wix(t) = wi o e "

and z°*(t) = z** for all time slots. Note that(w{*,#*) liminf J*(T) 2 liminf J™(T) 2 J.”.

satisfies all the constraints of Eqn. (42) and thus leads to a

suboptimal value, i.e.J(T) > 3, Uy (&S], 2% (t)) =

>, Us(2z*) = J¥. Thus, we have proved that
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