
1

Achieving Optimal Throughput and Near-Optimal Asymptotic Delay
Performance in Multi-Channel Wireless Networks with Low

Complexity: A Practical Greedy Scheduling Policy
Bo Ji, Gagan R. Gupta, Manu Sharma, Xiaojun Lin, and Ness B. Shroff

Abstract—In this paper, we focus on the scheduling problem
in multi-channel wireless networks, e.g., the downlink of a single
cell in fourth generation (4G) OFDM-based cellular networks.
Our goal is to design practical scheduling policies that can
achieve provably good performance in terms of both throughput
and delay, at a low complexity. While a class of O(n2.5 log n)-
complexity hybrid scheduling policies are recently developed
to guarantee both rate-function delay optimality (in the many-
channel many-user asymptotic regime) and throughput optimality
(in the general non-asymptotic setting), their practical complexity
is typically high. To address this issue, we develop a simple
greedy policy called Delay-based Server-Side-Greedy (D-SSG) with
a lower complexity 2n2 + 2n, and rigorously prove that D-SSG
not only achieves throughput optimality, but also guarantees near-
optimal asymptotic delay performance. Specifically, we define the
delay-violation probability as the steady-state probability that
the largest packet waiting time in the system exceeds a certain
fixed integer threshold b > 0, and we study the rate-function
(or decay-rate) of such delay-violation probability when the
number of channels or users, n, goes to infinity. We show that
the rate-function attained by D-SSG for any such threshold b,
is no smaller than the maximum achievable rate-function by
any scheduling policy for threshold b − 1. Thus, we are able
to achieve a reduction in complexity (from O(n2.5 log n) of the
hybrid policies to 2n2 + 2n) with a minimal drop in the delay
performance. More importantly, in practice, D-SSG generally
has a substantially lower complexity than the hybrid policies
that typically have a large constant factor hidden in the O(·)
notation. Finally, we conduct numerical simulations to validate
our theoretical results in various scenarios. The simulation results
show that in all scenarios we consider, D-SSG not only guarantees
a near-optimal rate-function, but also empirically has a similar
delay performance to the rate-function delay-optimal policies.

I. INTRODUCTION

In this paper, we consider the scheduling problem in a
multi-channel wireless network, where the system has a large
bandwidth that can be divided into multiple orthogonal sub-
bands (or channels). A practically important example of such
a multi-channel network is the downlink of a single cell of a
fourth generation (4G) OFDM-based wireless cellular system
(e.g., LTE and WiMax). In such a multi-channel system, a
key challenge is how to design efficient scheduling policies
that can simultaneously achieve high throughput and low
delay? This problem becomes extremely critical in OFDM

B. Ji is with AT&T Labs. M. Sharma is with Qualcomm Technologies Inc,
and made contribution on this work while he was at Purdue University. X. Lin
is with School of ECE at Purdue University. N. B. Shroff is with Departments
of ECE and CSE at the Ohio State University. Emails: ji.33@osu.edu,
gagan.gupta@iitdalumni.com, sharma50@purdue.edu, linx@ecn.purdue.edu,
shroff.11@osu.edu.

A preliminary version of this work was presented at the IEEE INFOCOM
2013, Turin, Italy, April, 2013.

systems that are expected to meet the dramatically increasing
demands from multimedia applications with more stringent
Quality-of-Service (QoS) requirements (e.g., voice and video
applications), and thus look for new ways to achieve higher
data rates, lower latencies, and a much better user experience.
Yet, an even bigger challenge is how to design such high-
performance scheduling policies at a low complexity? For
example, in the OFDM-based LTE systems, the Transmission
Time Interval (TTI), within which the scheduling decisions
need to be made, is only one millisecond. On the other hand,
there are hundreds of orthogonal channels that need to be
allocated to hundreds of users. Hence, the scheduling decision
has to be made within a very short scheduling cycle.

We consider a single-cell multi-channel system consisting
of n channels and a proportionally large number of users, with
intermittent connectivity between each user and each channel.
We assume that the Base Station (BS) maintains a separate
First-in First-out (FIFO) queue associated with each user,
which buffers the packets for the user to download. A series of
works studied the delay performance of scheduling policies in
the large-queue asymptotic regime, where the buffer overflow
threshold tends to infinity (see [1]–[4] and references therein).
One potential difficulty of the large-queue asymptotic is that
the estimates become accurate only when the queue-length
or the delay becomes large. However, for a practical system
that has a large bandwidth and aims to serve a large number of
users with more stringent delay requirements (as anticipated in
the 4G systems), it is more important to ensure small queue-
length and small delay [5]. Note that even in the wireline
networks, there was a similar distinction between the large-
buffer asymptotic and the many-source asymptotic [6], [7]. It
was shown that the many-source asymptotic provides sharper
estimates of the buffer violation probability when the queue-
length threshold is not very large. Hence, the delay metric
that we focus on in this paper is the decay-rate (or called
the rate-function in large-deviations theory) of the steady-state
probability that the largest packet waiting time in the system
exceeds a certain fixed threshold when the number of users
and the number of channels both go to infinity. (See Eq. (2)
for the formal definition of rate-function.) We refer to this
setting as the many-channel many-user asymptotic regime.

A number of recent works have considered a multi-channel
system similar to ours, but looked at delay from different
perspectives. A line of works focused on queue-length-based
metrics: average queue length [8] or queue-length rate-function
in the many-channel many-user asymptotic regime [5], [9]–
[11]. In [8], the authors focused on minimizing cost functions
over a finite horizon, which includes minimizing the expected

2

total queue length as a special case. The authors showed that
their goal can be achieved in two special scenarios: 1) a
simple two-user system, and 2) systems where fractional server
allocation is allowed. In [5], [9]–[11], delay performance is
evaluated by the queue violation probability, and its associated
rate-function, i.e., the asymptotic decay-rate of the probability
that the largest queue length in the system exceeds a fixed
threshold in the many-channel many-user asymptotic regime.
Although [5] and [11] proposed scheduling policies that can
guarantee both throughput optimality and rate-function opti-
mality, there are still a number of different dimensions that
have space for improvement. First, although the decay-rate
of the queue violation probability may be mapped to that
of the delay-violation probability when the arrival process is
deterministic with a constant rate [4], this is not true in general,
especially when the arrivals are correlated over time. Further,
[12]–[14] have shown through simulations that good queue-
length performance does not necessarily imply good delay
performance. Second, their results on rate-function optimality
strongly rely on the assumptions that the arrival process is i.i.d.
not only across users, but also in time, and that per-user arrival
at any time is no greater than the largest channel rate. Third,
even under this more restricted model, the lowest complexity
of their proposed rate-function-optimal algorithms is O(n 3).
For more general models, no algorithms with provable rate-
function optimality are provided.

Similar to this paper, another line of work [12], [13],
[15] proposed delay-based scheduling policies 1 and directly
focused on the delay performance rather than the queue-length
performance. The performance of delay is often harder to
characterize, because the delay in a queueing system typically
does not admit a Markovian representation. The problem
becomes even harder in a multi-user system with fading
channels and interference constraints, where the service rate
for individual queues becomes more unpredictable. In [12],
[13], the authors developed a scheduling policy called Delay
Weighted Matching (DWM), which maximizes the sum of the
delay of the scheduled packets in each time-slot. It has been
shown in [12], [13], [15] that DWM is not only throughput-
optimal, but also rate-function delay-optimal (i.e., maximizing
the delay rate-function, rather than the queue-length rate-
function as considered in [5], [9]–[11]). Moreover, the authors
of [13] used the derived rate-function of DWM to develop
a simple threshold policy for admission control when the
number of users scales linearly with the number of channels in
the system. However, DWM incurs a high complexity O(n5),
which renders it impractical for modern OFDM systems with
many channels and users (e.g., on the order of hundreds). In
[15], the authors proposed a class of hybrid scheduling policies
with a much lower complexity O(n2.5 log n), while still guar-
anteeing both throughput optimality and rate-function delay
optimality (with an additional minor technical assumption).
However, the practical complexity of the hybrid policies is
still high as the constant factor hidden in the O(·) notation

1Delay-based policies were first introduced in [16] for scheduling problems
in Input-Queued switches, and were later studied for wireless networks [14],
[17]–[22]. Please see [14] and references therein for more discussions on the
history and the recent development of delay-based scheduling policies.

is typically large due to the required two-stage scheduling
operations and the operation of computing a maximum-weight
matching in the first stage. Hence, scheduling policies with
an even lower (both theoretical and practical) complexity are
needed in the multi-user multi-channel systems.

This leads to the following natural but important questions:
Can we find scheduling policies that have a significantly
lower complexity, with comparable or only slightly worse
performance? How much complexity can we reduce, and how
much performance do we need to sacrifice? In this paper, we
answer these questions positively. Specifically, we develop a
low-complexity greedy policy that achieves both throughput
optimality and rate-function near-optimality.

We summarize our main contributions as follows.
First, we propose a greedy scheduling policy, called Delay-

based Server-Side-Greedy (D-SSG). D-SSG, in an iterative
manner, allocates servers one-by-one to serve a connected
queue that has the largest head-of-line (HOL) delay. We
rigorously prove that D-SSG not only achieves throughput
optimality, but also guarantees a near-optimal rate-function.
Specifically, the rate-function attained by D-SSG for any fixed
integer threshold b > 0, is no smaller than the maximum
achievable rate-function by any scheduling policy for threshold
b − 1. We obtain this result by comparing D-SSG with a
new Greedy Frame-Based Scheduling (G-FBS) policy that
can exploit a key property of D-SSG. We show that G-FBS
policy guarantees a near-optimal rate-function, and that D-
SSG dominates G-FBS in every sample-path. To the best
of our knowledge, this is the first work that shows a near-
optimal rate-function in the above form, and hence our proof
technique is of independent interest. Also, we remark that the
gap between the near-optimal rate-function attained by D-SSG
and the optimal rate-function is likely to be quite small. (See
Section IV-C for detailed discussion.)

D-SSG is a very simple policy and has a low complexity
2n2+2n. Note that the queue-length-based counterpart of D-
SSG, called Q-SSG, has been studied in [9], [10]. However,
there the authors were only able to prove a positive (queue-
length) rate-function for restricted arrival processes that are
i.i.d. not only across users, but also in time. In contrast, we
show that D-SSG achieves a rate-function that is not only pos-
itive but also near-optimal, for more general arrival processes.
Thus, we are able to achieve a reduction in complexity (from
O(n2.5 logn) of the hybrid policies [15] to 2n2 + 2n) with
a minimal drop in the delay performance. More importantly,
the practical complexity of D-SSG is substantially lower than
that of the hybrid policies since we can precisely bound the
constant factor in its complexity.

Further, we conduct simulations to validate our analytical
results in various scenarios. The simulation results show that
in all scenarios we consider, D-SSG not only guarantees a
near-optimal rate-function, but also empirically has a similar
delay performance to the rate-function delay-optimal policies.

The remainder of the paper is organized as follows. In
Section II, we describe the details of our system model and
performance metrics. In Section III, we derive an upper bound
on the rate-function that can be achieved by any scheduling
policy. Then, in Section IV, we present our main results on

3

throughput optimality and near-optimal rate-function for our
proposed low-complexity greedy policy. Further, we conduct
numerical simulations in Section V. Finally, we make con-
cluding remarks in Section VI.

II. SYSTEM MODEL

We consider a discrete-time model for the downlink of a
single-cell multi-channel wireless network with n orthogonal
channels and n users. In each time-slot, a channel can be
allocated only to one user, but a user can be allocated with
multiple channels simultaneously. As in [5], [9]–[13], [15], for
ease of presentation, we assume that the number of users is
equal to the number of channels. (If the number of users scales
linearly with the number of channels, the rate-function delay
analysis follows similarly. However, an admission control
policy needs to be carefully designed if the number of users
becomes too large [13].) We let Qi denote the FIFO queue
associated with the i-th user, and let Sj denote the j-th server2.
We consider the i.i.d. ON-OFF channel model under which
the connectivity between each queue and each server changes
between ON and OFF from time to time. We also assume
unit channel capacity, i.e., at most one packet from Q i can
be served by Sj when Qi and Sj are connected. Let Ci,j(t)
denote the connectivity between queue Q i and server Sj in
time-slot t. Then, Ci,j(t) can be modeled as a Bernoulli
random variable with a parameter q ∈ (0, 1), i.e.,

Ci,j(t) =

{
1, with probability q,
0, with probability 1− q.

We assume that all the random variables Ci,j(t) are i.i.d.
across all the variables i, j and t. Such a network can be
modeled as a multi-queue multi-server system with stochastic
connectivity, as shown in Fig. 1. Further, we assume that the
perfect channel state information (i.e., whether each channel is
ON or OFF for each user in each time-slot) is known at the BS.
This is a reasonable assumption in the downlink scenario of a
single cell in a multi-channel cellular system with dedicated
feedback channels.

As in the previous works [5], [8], [9], [12], [13], [15], the
above i.i.d. ON-OFF channel model is a simplification, and is
assumed only for the analytical results. The ON-OFF model
is a good approximation when the BS transmits at a fixed
achievable rate if the SINR level is above a certain threshold
at the receiver, and does not transmit otherwise. The sub-bands
being i.i.d. is a reasonable assumption when the channel width
is larger than the coherence bandwidth of the environment.
Moreover, we believe that our results obtained for this channel
model can provide useful insights for more general models.
Indeed, we will show through simulations that our proposed
greedy policies also perform well in more general models,
e.g., accounting for heterogeneous (near- and far-)users and
time-correlated channels. Further, we will briefly discuss how
to design efficient scheduling policies in general scenarios
towards the end of this paper.

2Throughout this paper, we use the terms “user” and “queue” interchange-
ably, and use the terms “channel” and “server” interchangeably.

�
.
.
.

�
.
.
.

1Q

2Q

nQ

1S

2S

nS

q

Fig. 1. System model. The connectivity between each pair of queue Qi and
server Sj is “ON” (denoted by a solid line) with probability q, and “OFF”
(denoted by a dashed line) otherwise.

We present more notations used in this paper as follows.
Let Ai(t) denote the number of packet arrivals to queue Q i

in time-slot t. Let A(t) =
∑n

i=1 Ai(t) denote the cumulative
arrivals to the entire system in time-slot t, and let A(t1, t2) =∑t2

τ=t1
A(τ) denote the cumulative arrivals to the system from

time t1 to t2. We let λi denote the mean arrival rate to queue
Qi, and let λ � [λ1, λ2, . . . , λn] denote the arrival rate vector.
We assume that packets arrive at the beginning of a time-slot,
and depart at the end of a time-slot. We use Qi(t) to denote the
length of queue Qi at the beginning of time-slot t immediately
after packet arrivals. Queues are assumed to have an infinite
buffer capacity. Let Zi,l(t) denote the delay (or waiting time)
of the l-th packet at queue Qi at the beginning of time-slot
t, which is measured from the time when the packet arrived
to queue Qi until the beginning of time-slot t. Note that at
the end of each time-slot, the packets that are still present in
the system will have their delays increased by one due to the
elapsed time. Further, let Wi(t) = Zi,1(t) (or Wi(t) = 0 if
Qi(t) = 0) denote the HOL delay of queue Q i at the beginning
of time-slot t. Finally, we define (x)+ � max(x, 0), and use
�{·} to denote the indicator function.

We now state the assumptions on the arrival processes. The
throughput analysis is carried out under Assumption 1 only,
which has also been used in [15], [19].

Assumption 1: For each user i ∈ {1, 2, . . . , n}, the arrival
process Ai(t) is an irreducible and positive recurrent Markov
chain with countable state space, and satisfies the Strong Law
of Large Numbers: That is, with probability one,

lim
t→∞

∑t−1
τ=0Ai(τ)

t
= λi. (1)

We also assume that the arrival processes are mutually in-
dependent across users (which can be relaxed for throughput
analysis as discussed in [19]).

The rate-function delay analysis is carried out under the
following two assumptions, which are also used in the previous
works [12], [13], [15].

Assumption 2: There exists a finite L such that Ai(t) ≤ L
for any i and t, i.e., instantaneous arrivals are bounded.

Assumption 3: The arrival processes are i.i.d. across users,
and λi = p for any user i. Given any ε > 0 and δ > 0,
there exists T > 0, N > 0, and a positive function IB(ε, δ)
independent of n and t such that

�(

∑t
τ=1 �{|

∑n
i=1 Ai(τ)−pn|>εn}
t

> δ) < exp(−ntIB(ε, δ)),

for all t > T and n > N .

4

Assumption 2 requires that the arrivals in each time-slot
have bounded support, which is indeed true for practical
systems. Assumption 3 is also very general, and can be viewed
as a result of the statistical multiplexing effect of a large
number of sources. Assumption 3 holds for i.i.d. arrivals
and arrivals driven by two-state Markov chains (that can be
correlated over time) as two special cases (see Lemmas 2 and
3 of [13]).

A. Performance Objectives

In this paper, we consider two performance metrics: 1)
the throughput and 2) the rate-function of the steady-state
probability that the largest packet delay in the system exceeds
a certain fixed threshold in the many-channel many-user
asymptotic regime.

We first define the optimal throughput region (or stability
region) of the system for any fixed integer n > 0 under
Assumption 1. As in [19], a stochastic queueing network
is said to be stable if it can be described as a discrete-
time countable Markov chain and the Markov chain is stable
in the following sense: The set of positive recurrent states
is nonempty, and it contains a finite subset such that with
probability one, this subset is reached within finite time from
any initial state. When all the states communicate, stability is
equivalent to the Markov chain being positive recurrent [23].
The throughput region of a scheduling policy is defined as
the set of arrival rate vectors for which the network remains
stable under this policy. Then, the optimal throughput region is
defined as the union of the throughput regions of all possible
scheduling policies, which is denoted by Λ∗. A scheduling
policy is throughput-optimal, if it can stabilize any arrival
rate vector strictly inside Λ∗. For more discussions on the
optimal throughput region Λ∗ in our multi-channel systems,
please refer to [15].

Next, we consider the steady-state probability that the
largest packet delay in the system exceeds a certain fixed
threshold, and its rate-function in the many-channel many-user
asymptotic regime. Assuming that the system is stationary and
ergodic, let W (0) � max1≤i≤n Wi(0) denote the largest HOL
delay over all the queues (i.e., the largest packet delay in the
system) in the steady state, and then we define rate-function
I(b) as the decay-rate of the steady-state probability that the
largest packet delay exceeds any fixed integer threshold b ≥ 0,
as the system size n goes to infinity, i.e.,

I(b) � lim
n→∞

−1

n
log�(W (0) > b). (2)

Note that once we know this rate-function, we can then
estimate the delay-violation probability using �(W (0) > b) ≈
exp(−nI(b)). The estimate tends to be more accurate as n
becomes larger. Clearly, for systems with a large n, a larger
value of the rate-function implies a better delay performance,
i.e., a smaller probability that the largest packet delay in the
system exceeds a certain threshold. As in [12], [13], [15], we
define the optimal rate-function as the maximum achievable
rate-function over all possible scheduling policies, which is
denoted by I∗(b). A scheduling policy is rate-function delay-

optimal if it achieves the optimal rate-function I ∗(b) for any
fixed integer threshold b ≥ 0.

III. AN UPPER BOUND ON THE RATE-FUNCTION

In this section, we derive an upper bound of the rate-
function for all scheduling policies.

Let IAG(t, x) denote the asymptotic decay-rate of the prob-
ability that in any interval of t time-slots, the total number of
arrivals is greater than n(t+ x), as n tends to infinity, i.e.,

IAG(t, x) � lim inf
n→∞

−1

n
log�(A(−t+ 1, 0) > n(t+ x)).

Let IAG(x) be the infimum of IAG(t, x) over all t > 0, i.e.,

IAG(x) � inf
t>0

IAG(t, x).

Also, we define IX � log 1
1−q .

Theorem 1: Given the system model described in Sec-
tion II, for any scheduling algorithm, we have

lim sup
n→∞

−1

n
log�(W (0) > b)

≤ min{(b+ 1)IX , min
0≤c≤b

{IAG(b − c) + cIX}} � IU (b).

Theorem 1 can be shown by considering two types of
events that lead to the delay-violation event {W (0) > b}
no matter how packets are scheduled, and computing their
probabilities and decay-rates. In the above expression of IU (b),
the first term (b + 1)IX is due to sluggish services, which
corresponds to the event that a queue with at least one packet
is disconnected from all of the n servers for consecutive b+1
time-slots. The second term min0≤c≤b{IAG(b − c) + cIX}
is due to both bursty arrivals and sluggish services, where
IAG(b − c) corresponds to the event that the arrivals are too
bursty during the interval of [−t − b,−b − 1] such that at
the beginning of time-slot −c for c ≤ b, there exists at least
one packet remaining in the system, say queue Q1. Then, the
term cIX corresponds to the event that the services are too
sluggish such that queue Q1 is disconnected from all of the
n servers for the following consecutive c time-slots. Clearly,
both of the above events will lead to the delay-violation event
{W (0) > b} under all scheduling policies. We provide the
detailed proof in Appendix A.

Remark: Theorem 1 implies that IU (b) is an upper bound
on the rate-function that can be achieved by any scheduling
policy. Hence, even for the optimal rate-function I ∗(b), we
must have I∗(b) ≤ IU (b) for any fixed integer threshold b ≥ 0.

Note that our derived upper bound IU (b) is strictly positive
in the cases of interest. For example, when L = 1, it
has been shown in [15] that the optimal rate-function is
I∗(b) = (b + 1) log 1

1−q , and thus IU (b) ≥ I∗(b) > 0 for all
integer b ≥ 0. This holds for general arrival processes under
Assumptions 2 and 3, including two special cases of i.i.d.
Bernoulli arrivals and two-state Markov chain driven arrivals.
When L > 1, we can show that IU (b) is strictly positive for
the special case of i.i.d. 0-L arrivals with feasible arrival rates
(please refer to our online technical report [24]); further, in
Section V, our simulation results (Fig. 2) also demonstrate
that the rate-function attained by D-SSG is strictly positive
under two-state Markov chain driven arrivals.

5

IV. DELAY-BASED SERVER-SIDE-GREEDY (D-SSG)

In [15], it has been shown that a class of two-stage hybrid
policies can achieve both throughput optimality and rate-
function delay optimality at a lower complexity O(n2.5 logn)
(compared to O(n5) of DWM). The hybrid policies are
constructed by combining certain throughput-optimal policies
with a rate-function delay-optimal policy DWM-n (where n
is the number of users or channels), which in each time-slot
maximizes the sum of the delay of the scheduled packets
among the n oldest packets in the system. For example, DWM-
n combined with the Delay-based MaxWeight Scheduling (D-
MWS) policy [15], [19], [20] yields a O(n2.5 logn) complex-
ity hybrid policy, called the DWM-n-MWS policy.

The above result leads to the following important questions:
Is it possible to develop scheduling policies with an even lower
complexity, while achieving comparable or only slightly worse
performance? If so, how much complexity can we reduce,
and how much performance do we need to sacrifice? In this
section, we answer these questions positively. We first develop
a greedy scheduling policy called Delay-based Server-Side-
Greedy (D-SSG) with an even lower complexity 2n2 + 2n.
Under D-SSG, each server iteratively chooses to serve a
connected queue that has the largest HOL delay. Then, we
show that D-SSG not only achieves throughput optimality, but
also guarantees a near-optimal rate-function. Hence, D-SSG
achieves a reduction in complexity (from O(n2.5 logn) of the
hybrid policies to 2n2+2n) with a minimal drop in the delay
performance. More importantly, the practical complexity of
D-SSG is substantially lower than that of the hybrid policies.

A. Algorithm Description

Before we describe the detailed operations of D-SSG, we
would like to remark on the D-MWS policy in our multi-
channel system, due to the similarity between D-MWS and
D-SSG. Under D-MWS, each server chooses to serve a
queue that has the largest HOL delay (among all the queues
connected to this server). Note that D-MWS is not only
throughput-optimal, but also has a low complexity O(n 2).
However, in [15] it has been shown that D-MWS suffers from
poor delay performance. (Specifically, D-MWS yields a zero
rate-function in certain scenarios, e.g., with i.i.d. 0-1 arrivals).
The reason is that under D-MWS, each server chooses to serve
a connected queue that has the largest HOL delay without
accounting for the decisions of the other servers. This way
of allocating servers leads to an unbalanced schedule. That is,
only a small fraction of the queues get served in each time-slot.
This inefficiency essentially leads to poor delay performance.

Now, we describe the operations of our proposed D-SSG
policy. D-SSG is similar to D-MWS, in the sense that it also
allocates each server to serve a connected queue that has the
largest HOL delay. However, the key difference is that, instead
of allocating the servers all at once as in D-MWS, D-SSG
allocates the servers one-by-one, accounting for the scheduling
decisions of the servers that are allocated earlier. We will show
that this critical difference results in a substantial improvement
in the delay performance.

We present some additional notations, and then specify the
detailed operations of D-SSG. In each time-slot, there are
n rounds, and in each round, one of the remaining servers
is allocated. Let Qk

i (t), Zk
i,l(t) and W k

i (t) = Zk
i,1(t) (or

W k
i (t) = 0 if Qk

i (t) = 0) denote the length of queue
Qi, the delay of the l-th packet of Qi, and the HOL delay
of Qi after k ≥ 1 rounds of server allocation in time-
slot t, respectively. In particular, we have Q0

i (t) = Qi(t),
Z0
i,l(t) = Zi,l(t), and W 0

i (t) = Wi(t). Let Sj(t) denote
the set of queues being connected to server S j in time-slot
t, i.e., Sj(t) = {1 ≤ i ≤ n | Ci,j(t) = 1}. Let Γk

j (t)
denote the set of indices of the queues that are connected
to server Sj in time-slot t and that have the largest HOL
delay at the beginning of the k-th round in time-slot t, i.e.,
Γk
j (t) � {i ∈ Sj(t) | W k−1

i (t) = maxl∈Sj(t) W
k−1
l (t)}. Let

i(j, t) denote the index of queue that is served by server S j

in time-slot t under D-SSG.
Delay-based Server-Side-Greedy (D-SSG) policy: In each
time-slot t,

1) Initialize k = 1.
2) In the k-th round, allocate server Sk to serve queue

Qi(k,t), where i(k, t) = min{i | i ∈ Γk
k(t)}. That is,

in the k-th round, the k-th server Sk is allocated to
serve the connected queue that has the largest HOL
delay, breaking ties by picking the queue with the
smallest index if there are multiple such queues. Then,
update the length of Qi(k,t) to account for service,

i.e., set Qk
i(k,t)(t) =

(
Qk−1

i(k,t)(t)− Ci(k,t),k(t)
)+

and

Qk
i (t) = Qk−1

i (t) for all i �= i(k, t). Also, update the
HOL delay of Qi(k,t) to account for service, i.e., set
W k

i(k,t)(t) = Zk
i(k,t),1(t) = Zk−1

i(k,t),2(t) if Qk
i(k,t)(t) >

0, and W k
i(k,t)(t) = 0 otherwise, and set W k

i (t) =

W k−1
i (t) for all i �= i(k, t).

3) Stop if k equals n. Otherwise, increase k by 1 and repeat
step 2.

Remark: From the above operations, it can be observed that
in each round, D-SSG aims to allocate the available server with
the smallest index. Further, when there are multiple queues
that are connected to the considered server and that have the
largest HOL delay, D-SSG favors the queue with the smallest
index. We specify such tie-breaking rules for ease of analysis
only. In practice, we can break ties arbitrarily.

We highlight that D-SSG has a low complexity of 2n2 +
2n due to the following operations. Assume that each packet
contains the information of its arriving time. At the beginning
of each time-slot, it requires n addition operations to update
the HOL delay of each of the n queues (i.e., increasing it by
one). In each round k, it takes n time to check the connectivity
between server Sk and the n queues, another up to n time to
find the connected queue with the largest HOL delay, and one
more basic operation to update the HOL delay of the queue
chosen by server Sk. Since there are n rounds, the overall
complexity is n+ n(n+ n+ 1) = 2n2 + 2n.

Note that the queue-length-based counterpart of D-SSG,
called Q-SSG, has been studied in [9], [10]. Under Q-SSG,
each server iteratively chooses to serve a connected queue

6

that has the largest length. It has been shown that Q-SSG
not only achieves throughput optimality, but also guarantees
a positive (queue-length) rate-function. However, their results
have the following limitations: 1) a positive rate-function may
not be good enough, since the gap between the guaranteed
rate-function and the optimal is unclear; 2) good queue-
length performance does not necessarily translate into good
delay performance; 3) their analysis was only carried out for
restricted arrival processes that are not only i.i.d. across users,
but also in time. In contrast, in this section we will show that
D-SSG achieves a rate-function that is not only positive but
also near-optimal (in the sense of (3)) for more general arrival
processes, while guaranteeing throughput optimality.

B. Throughput Optimality

We first establish throughput optimality of D-SSG in general
non-asymptotic settings with any fixed value of n. Note
that the delay performance will be studied in the asymptotic
regime, where n goes to infinity. Hence, even if the conver-
gence rate of the delay rate-function is fast (as is typically the
case), the throughput performance may still be poor for small
to moderate values of n. As a matter of fact, for a fixed n,
a rate-function delay-optimal policy (e.g., DWM-n) may not
even be throughput-optimal [15]. To this end, we first focus
on studying the throughput performance of D-SSG in general
non-asymptotic settings.

We remark that the throughput performance of scheduling
policies have been extensively studied in various settings,
including the multi-channel systems that we consider in this
paper. Specifically, for such multi-channel systems, [15] pro-
posed a class of Maximum Weight in the Fluid limit (MWF)
policies and proved throughput-optimality of the MWF poli-
cies in very general settings (under Assumption 1). The key
insight is that to achieve throughput-optimality in such multi-
channel systems, it is sufficient for each server to choose a
connected queue with a large enough weight such that this
queue has the largest weight in the fluid limit [25].

Next, we prove that D-SSG is throughput-optimal in general
non-asymptotic settings (for a system with any fixed value of
n) by showing that D-SSG is an MWF policy.

Theorem 2: D-SSG policy is throughput-optimal under As-
sumption 1.

The proof of Theorem 2 is straightforward. Hence, we omit
the proof and provide it in our online technical report [24].

C. Near-optimal Delay Performance

In this subsection, we present our main result on the
near-optimal rate-function. We first define near-optimal rate-
function, and then evaluate the delay performance of D-SSG.

A policy P is said to achieve near-optimal rate-function
if the delay rate-function I(b) attained by policy P for any
fixed integer threshold b > 0, is no smaller than I ∗(b−1), the
optimal rate-function for threshold b− 1. That is,

I(b) = lim inf
n→∞

−1

n
log� (W (0) > b) ≥ I∗(b − 1). (3)

We next present our main result of this paper in the
following theorem, which states that D-SSG achieves a near-
optimal rate-function.

Theorem 3: Under Assumptions 2 and 3, D-SSG achieves
a near-optimal rate-function, as given in Eq. (3).

We prove Theorem 3 by the following strategy: 1) motivated
by a key property of D-SSG (Lemma 1), we propose the Greedy
Frame-Based Scheduling (G-FBS) policy, which is a variant
of the FBS policy [12], [13] that has been shown to be rate-
function delay-optimal in some cases; 2) show that G-FBS
achieves a near-optimal rate-function (Theorem 4); 3) prove
a dominance property of D-SSG over G-FBS. Specifically, in
Lemma 2, we show that for any given sample path, by the end
of each time-slot, D-SSG has served every packet that G-FBS
has served.

We now present a crucial property of D-SSG in Lemma 1,
which is the key to proving a near-optimal rate-function for
G-FBS and D-SSG.

Lemma 1: Consider a set of n packets satisfying that no
more than 2H packets are from the same queue, where H > 4
is any integer constant independent of n. Consider any strictly
increasing function f(n) such that f(n) < n

2 and f(n) ∈
o(n/ log2 n). Suppose that D-SSG is applied to schedule these
n packets. Then, there exists a finite integer NX > 0 such that
for all n ≥ NX , with probability no smaller than 1 − 2(1 −
q)n−f(n) log2 n, D-SSG schedules at least n −H

√
n packets,

including the oldest f(n) packets among the n packets.
To prove Lemma 1 and thus near-optimal rate-function of

D-SSG (Theorem 3), we introduce another greedy scheduling
policy called Delay-based Queue-Side-Greedy (D-QSG) and a
sample-path equivalence property between D-QSG and D-SSG
(Lemma 3). Please refer to Appendix B for details.

We provide the proof of Lemma 1 in Appendix C, and
explain the importance of Lemma 1 as follows. We first recall
how DWM is shown to be rate-function delay-optimal (for
some cases) in [12], [13]. Specifically, the authors of [12],
[13] compare DWM with another policy FBS. In FBS, packets
are filled into frames with size n−H in a First-Come First-
Serve (FCFS) manner such that no two packets in the same
frame have a delay difference larger than h time-slots, where
h > 0 is a suitably chosen constant independent of n and H =
Lh. The FBS policy attempts to serve the entire HOL frame
whenever possible. The authors of [12], [13] first establish the
rate-function optimality of the FBS policy. Then, by showing
that DWM dominates FBS (i.e., DWM will serve the same
packets in the entire HOL frame whenever possible), the delay
optimality of DWM then follows.

However, this comparison approach will not work directly
for D-SSG. In order to serve all packets in a frame whenever
possible, one would need certain back-tracking (or rematching)
operations as in a typical maximum-weight matching algo-
rithm like DWM. For a simple greedy algorithm like D-SSG
that does not do back-tracking, it is unlikely to attain the same
probability of serving the entire frame. In fact, even if we
reduce the maximum frame size to n − H

√
n, we are still

unable to show that D-SSG can serve the entire frame with a
sufficiently high probability. Thus, we cannot compare D-SSG
with FBS as in [12], [13].

7

Fortunately, Lemma 1 provides an alternate avenue. Specifi-
cally, for a set of n packets, even though D-SSG may not serve
any given subset of n−H

√
n packets with a sufficiently high

probability, it will serve some subset of n−H
√
n packets with

a sufficiently high probability. Further, this subset must contain
the oldest H

√
n packets for a large n, if we choose f(n) in

Lemma 1 such that f(n) > H
√
n for large n. Note that D-

SSG still leaves (at most) H
√
n packets to the next time-slot.

In the next time-slot, if we can make sure that D-SSG serves
all of these H

√
n leftover packets, which also happen to be

the oldest, we would then at worst suffer an additional one-
time-slot delay. Indeed, Lemma 1 guarantees that with high
probability. Intuitively, we would then be able to show that
D-SSG attains a near-optimal delay rate-function as given in
Eq. (3).

To make this argument rigorous, we next compare D-SSG
with a new policy called Greedy Frame-Based Scheduling
(G-FBS). Note that G-FBS is only for assisting our analysis,
and will not be used as an actual scheduling algorithm. We first
fix a properly chosen parameter h > 0. In the G-FBS policy,
packets are grouped into frames satisfying the following
requirements: 1) No two packets in the same frame have a
delay difference larger than h time-slots. This guarantees that
in a frame, no more than H = Lh packets from the same
queue can be filled into a single frame; 2) Each frame has a
capacity of n0 = n −H

√
n packets, i.e., at most n0 packets

can be filled into a frame; 3) As packets arrive to the system
in each time-slot, the frames are created by filling the packets
sequentially. Specifically, packets that arrive earlier are filled
into the frame with a higher priority, and packets from queues
with a smaller index are filled with a higher priority when
multiple packets arrive in the same time-slot. Once any of
the above requirements is violated, the current frame will be
closed and a new frame will be open. We also assume that
there is a “leftover” frame, called L-frame for simplicity, with
a capacity of H

√
n packets. The L-frame is for storing the

packets that were not served in the previous time-slot and
were carried over to the current time-slot. At the beginning of
each time-slot, we combine the HOL frame and the L-frame
into a “super” frame, called S-frame for simplicity, with a
capacity of n packets. It is easy to see that in the S-frame, no
more than 2H packets are from the same queue. Note that if
there are less than n packets in the S-frame, we can artificially
add some dummy packets with a delay of zero at the end of
the S-frame so that the S-frame is fully filled, but still need
to guarantee that no more than 2H packets from the same
queue can be filled into the S-frame. In each time-slot, G-FBS
runs the D-SSG policy, but restricted to only the n packets of
the S-frame. We call it a success, if D-SSG can schedule at
least n0 packets, including the oldest f(n) packets, from the
S-frame, where f(n) < n

2 is any function that satisfies that
f(n) ∈ o(n/ log2 n) and f(n) ∈ ω(

√
n). In each time-slot, if a

success does not occur, then no packets will be served. When
there is a success, the G-FBS policy serves all the packets
that are scheduled by D-SSG restricted to the S-frame in that
time-slot. Lemma 1 implies that in each time-slot, a success
occurs with probability at least 1 − 2(1 − q)n−f(n) log2 n. A
success serves all packets from the S-frame, except for at most

H
√
n = n−n0 packets, and these served packets include the

oldest f(n) packets. The packets that are not served will be
stored in the L-frame, and carried over to the next time-slot
(except for the dummy packets, which will be discarded).

Remark: Although G-FBS is similar to FBS policy [12],
[13], it exhibits a key difference from FBS. In the FBS
policy, in each time-slot, either an entire frame (i.e., all the
packets in the frame) will be completely served or none of
its packets will be served. Hence, it does not allow packets
to be carried over to the next time-slot. In contrast, G-FBS
allows leftover packets and is thus more flexible in serving
frames. This property is the key reason that we can use lower-
complexity policies like D-SSG. On the other hand, it leads to
a small gap between the rate-functions achieved by G-FBS and
delay-optimal policies (e.g., DWM and the hybrid policies).
Nonetheless, this gap can be well characterized. Specifically, in
the G-FBS policy, an L-frame contains at most H

√
n packets

are not served whenever there is a success. Further, these (at
most) H

√
n leftover packets will be among the oldest f(n)

packets (in the S-frame) in the next time-slot for large n, due
to our choice of f(n) ∈ ω(

√
n). Hence, another success will

serve all the leftover packets. This implies that at most x+ 1
successes are needed to completely serve x frames, for any
finite integer x > 0. In fact, this property is the key reason
for a one-time-slot shift in the guaranteed rate-function by G-
FBS, which leads to the near-optimal delay rate-function, as
we show in the following theorem.

Theorem 4: Under Assumptions 2 and 3, G-FBS policy
achieves a near-optimal rate-function, as given in Eq. (3).

The proof of Theorem 4 follows a similar line of argument
as in the proof for rate-function delay optimality of FBS
(Theorem 2 in [13]). We consider all the events that lead to
the delay-violation event {W (0) > b}, which can be caused
by two factors: bursty arrivals and sluggish service. On the
one hand, if there are a large number of arrivals in certain
period, say of length t time-slots, which exceeds the maximum
number of packets that can be served in a period of t+ b+1
time-slots, then it unavoidably leads to a delay-violation. On
the other hand, suppose that there is at least one packet arrival
at certain time, and that under G-FBS, a success does not occur
in any of the following b + 1 time-slots (including the time-
slot when the packet arrives), then it also leads to a delay-
violation. Each of these two possibilities has a corresponding
rate-function for its probability of occurring. Large-deviations
theory then tells us that the rate-function for delay-violation
is determined by the smallest rate-function among these pos-
sibilities (i.e., “rare events occur in the most likely way”). We
can then show that I(b) ≥ IU (b − 1) ≥ I∗(b − 1) for any
integer b > 0, where I(·) is the rate-function attained by G-
FBS, IU (·) is the upper bound that we derived in Section III,
and I∗(·) is the optimal rate-function, respectively. We provide
the detailed proof of Theorem 4 in Appendix D.

Remark: Note that the gap between the optimal rate-function
and the above near-optimal rate-function is likely to be quite
small. For example, in the case where the arrival is either 1 or
0, the near-optimal rate-function implies that I(b) ≥ b

b+1I
∗(b),

since we have I∗(b) = (b + 1) log 1
1−q for this case [15].

Finally, we make use of the following dominance property

8

of D-SSG over G-FBS.
Lemma 2: For any given sample path and for any value of

h, by the end of any time-slot t, D-SSG has served every
packet that G-FBS has served.

We prove Lemma 2 by contradiction. The proof follows
a similar argument as in the proof of Lemma 7 in [13],
and is provided in our online technical report [24]. Then,
the near-optimal rate-function of D-SSG (Theorem 3) follows
immediately from Lemma 2 and Theorem 4.

Remark: Note that D-SSG combined with DWM-n policy,
can also yield an O(n2.5 log n)-complexity hybrid policy that
is both throughput-optimal and rate-function delay-optimal.
We omit the details since the treatment follows similarly as
that for hybrid DWM-n-MWS policy [15].

So far, we have shown that our proposed low-complexity
D-SSG policy achieves both throughput optimality and near-
optimal delay rate-function. In the next section, we will show
through simulations that in all scenarios we consider, D-
SSG not only exhibits a near-optimal delay rate-function, but
also empirically has a similar delay performance to the rate-
function delay-optimal policies such as DWM and the hybrid
DWM-n-MWS policy.

V. SIMULATION RESULTS

In this section, we conduct simulations to compare schedul-
ing performance of our proposed greedy policies with DWM,
hybrid DWM-n-MWS (called Hybrid for short), D-MWS,
and Q-SSG. We simulate these policies in Java and compare
the empirical probabilities that the largest HOL delay in the
system in any given time-slot exceeds an integer threshold b,
i.e., �(W (0) > b).

Same as in [15], we consider bursty arrivals that are driven
by a two-state Markov chain and that are correlated over
time. (We obtained similar results for i.i.d. 0-L arrivals, and
omit them here.) For each user, there are 5 packet-arrivals
when the Markov chain is in state 1, and there is no arrivals
when it is in state 2. The transition probability of the Markov
chain is given by the matrix [0.5, 0.5; 0.1, 0.9], and the state
transitions occur at the end of each time-slot. The arrivals for
each user are correlated over time, but they are independent
across users. For the channel model, we first assume i.i.d.
ON-OFF channels with unit capacity, and set q = 0.75. We
later consider more general scenarios with heterogeneous users
and bursty channels that are correlated over time. We run
simulations for a system with n servers and n users, where
n ∈ {10, 20, . . . , 100}. The simulation period lasts for 107

time-slots for each policy and each system.
The results are summarized in Fig. 2, where the complexity

of each policy is also labeled. In order to compare the rate-
function I(b) as defined in Eq. (2), we plot the probability
over the number of channels or users, i.e., n, for a fixed value
of threshold b. The negative of the slopes of the curves can
be viewed as the rate-function for each policy. In Fig. 2, we
report the results only for b = 4, and the results are similar
for other values of threshold b. From Fig. 2, we observe that
both D-SSG and D-QSG have the same performance, and
are virtually indistinguishable from DWM and Hybrid, which

are known to be rate-function delay-optimal. This not only
supports our theoretical results that D-SSG guarantees a near-
optimal rate-function, but also implies that D-SSG empirically
performs very well while enjoying a lower complexity. Further,
we observe that D-SSG consistently outperforms its queue-
length-based counterpart, Q-SSG, despite the fact that in [9],
it has been shown through simulations that Q-SSG empirically
achieves near-optimal queue-length performance. This pro-
vides a further evidence that good queue-length performance
does not necessarily translate into good delay performance.
The results also show that D-MWS yields a zero rate-function,
as expected.

We also plot the probability for delay threshold b as in [5],
[9], [10], [12], [13], [15] to investigate the performance of
different policies for fixed n is fixed. In Fig. 3, we report
the results for n = 10, and the results are similar for other
values of n. From Fig. 3, we observe that our proposed greedy
policies consistently perform closely to DWM and Hybrid
for almost all values of b that we consider. We also observe
that D-SSG consistently outperforms its queue-length-based
counterpart Q-SSG for almost all values of b.

In addition, we compute the average time required for the
operations of each policy within one scheduling cycle, when
n = 100. Running simulations in a PC with Intel Core i7-
2600 3.4GHz CPU and 8GB memory, D-SSG requires roughly
0.3 millisecond to finish all of the required operations within
one scheduling cycle (which, for example, is 1 millisecond
in LTE systems), while the two-stage Hybrid policy needs 7-
10 times more. This, along with the above simulation results,
implies that in practice D-SSG is more suitable for actual
implementations than the hybrid policies, although D-SSG
does not guarantee rate-function delay optimality.

Further, we evaluate scheduling performance of different
policies in more realistic scenarios, where users are hetero-
geneous and channels are correlated over time. Specifically,
we consider channels that can be modeled as a two-state
Markov chain, where the channel is “ON” when the Markov
chain is in state 1, and is “OFF” when it is in state 2. We
assume that there are two classes of users: users with an odd
index are called near-users, and users with an even index are
called far-users. Different classes of users see different channel
conditions: near-users see better channel condition, and far-
users see worse channel condition. We assume that the transi-
tion probability matrices of channels for near-users and far-
users are [0.833, 0.167; 0.5, 0.5] and [0.5, 0.5; 0.167, 0.833],
respectively. The arrival processes are assumed to be the same
as in the previous case.

The results are summarized in Fig. 4. We observe similar
results as in the previous case with homogeneous users and
i.i.d. channels in time. In particular, D-SSG exhibits a rate-
function that is the same as that of DWM and Hybrid,
although its delay performance is slightly worse. Note that
in this scenario, a rate-function delay-optimal policy is not
known yet. Hence, for future work, it would be interesting to
understand how to design rate-function delay-optimal or near-
optimal policies in general scenarios.

9

0 20 40 60 80 100
10

−4

10
−3

10
−2

10
−1

10
0

n (number of users or channels)

P
(W

(0
)>

b)
Markov−chain driven arrivals, b=4

D−MWS, O(n2)

Q−SSG, O(n2)

D−SSG, O(n2)

Hybrid, O(n2.5logn)

D−QSG, O(n3)

DWM, O(n5)

Fig. 2. Performance comparison of different
scheduling policies in the case with homoge-
neous i.i.d. channels, for delay threshold b = 4.

−5 0 5 10 15 20 25 30
10

−4

10
−3

10
−2

10
−1

10
0

b (time−slots)

P
(W

(0
)>

b)

Markov−chain driven arrivals, n=10

D−MWS, O(n2)

Q−SSG, O(n2)

D−SSG, O(n2)

Hybrid, O(n2.5logn)

D−QSG, O(n3)

DWM, O(n5)

Fig. 3. Performance comparison of different
scheduling policies in the case with homoge-
neous i.i.d. channels, for n = 10 channels or
users.

0 20 40 60 80 100
10

−4

10
−3

10
−2

10
−1

10
0

n (number of users or channels)

P
(W

(0
)>

b)

Markov−chain driven arrivals, b=4

D−MWS, O(n2)

Q−SSG, O(n2)

D−SSG, O(n2)

Hybrid, O(n2.5logn)

D−QSG, O(n3)

DWM, O(n5)

Fig. 4. Performance comparison of different
scheduling policies in the case with Markov-
chain driven heterogeneous channels, for delay
threshold b = 4.

VI. CONCLUSION

In this paper, we developed a practical and low-complexity
greedy scheduling policy (D-SSG) that not only achieves
throughput optimality, but also guarantees a near-optimal delay
rate-function, for multi-channel wireless networks. Our studies
reveal that throughput optimality is relatively easier to achieve
in such multi-channel systems, while there exists an explicit
trade-off between complexity and delay performance. If one
can bear a minimal drop in the delay performance, lower-
complexity scheduling policies can be exploited.

The analytical results in this paper are only derived for
the i.i.d. ON-OFF channel model with unit channel capacity.
An interesting direction for future work is to study general
multi-rate channels that can be correlated over time. We note
that this problem will become much more challenging. For
example, even for an i.i.d. 0-K channel model with channel
capacity K > 1, it is still unclear whether there exists a
scheduling policy that can guarantee both optimal throughput
and optimal/near-optimal asymptotic delay performance. An-
other direction for future work is to consider heterogeneous
users with different arrival processes and different delay re-
quirements. In these more general scenarios, it may be worth
exploring how to find efficient schedulers that can guarantee
a nontrivial lower bound of the optimal rate-function, if it
turns out to be too difficult to achieve or prove the optimal
asymptotic delay performance itself. Nonetheless, we believe
that the results derived in this paper will provide useful insights
for designing high-performance scheduling policies for such
more general scenarios.

APPENDIX A
PROOF OF THEOREM 1

We consider event E1 and a sequence of events E c
2 implying

the occurrence of event {W (0) > b}.
Event E1: Suppose that there is a packet that arrives to the

network in time-slot −b − 1. Without loss of generality, we
assume that the packet arrives to queue Q1. Further, suppose
that Q1 is disconnected from all the n servers in all the time-
slots from −b− 1 to −1.

Then, at the beginning of time-slot 0, this packet is still
in the network and has a delay of b + 1. This implies E1 ⊆

{W (0) > b}. Note that the probability that event E1 occurs
can be computed as

�(E1) = (1− q)n(b+1) = e−n(b+1)IX .

Hence, we have

�(W (0) > b) ≥ e−n(b+1)IX ,

and thus

lim sup
n→∞

−1

n
log�(W (0) > b) ≤ (b+ 1)IX .

Event Ec
2 : Consider any fixed c ∈ {0, 1, . . . , b}. Fix any

ε > 0, and choose t such that IAG(t, b− c) ≤ IAG(b− c) + ε.
Suppose that from time-slot −t−b to −b−1, the total number
of packet arrivals to the system is greater than nt+ n(b− c),
and let p(b−c) denote the probability that this event occurs.
Then, from the definitions of IAG(t, x) and IAG(t), we know

lim inf
n→∞

−1

n
log p(b−c) = IAG(t, b − c) ≤ IAG(b− c) + ε.

Clearly, the total number of packets that are served in any
time-slot is no greater than n. Hence, at the end of time-slot
−b−1, there are at least n(b−c)+1 packets remaining in the
system. Moreover, at the end of time-slot −c− 1, the system
contains at least one packet that arrived before time-slot −b.
Without loss of generality, we assume that this packet is in Q1.
Now, assume that Q1 is disconnected from all the n servers in
the next c time-slots, i.e., from time-slot −c to −1. This occurs
with probability (1− q)cn = e−ncIX , independently of all the
past history. Hence, at the beginning of time-slot 0, there is
still a packet that arrived before time-slot −b. Hence, we have
W (0) > b in this case. This implies E c

2 ⊆ {W (0) > b}. Note
that the probability that event E c

2 occurs can be computed as

�(Ec
2) = p(b−c)e

−ncIX .

Hence, we have

�(W (0) > b) ≥ p(b−c)e
−ncIX ,

and thus

lim sup
n→∞

−1

n
log�(W (0) > b) ≤ IAG(b − c) + ε + cIX .

10

Since the above inequality holds for any c ∈ {0, 1, . . . , b} and
all ε > 0, by letting ε tend to 0 and taking the minimum over
all c ∈ {0, 1, . . . , b}, we have

lim sup
n→∞

−1

n
log�(W (0) > b)

≤ min
c∈{0,1,...,b}

{IAG(b− c) + cIX}.

Considering both event E1 and events E c
2 , we have

lim sup
n→∞

−1

n
log�(W (0) > b)

≤ min{ min
c∈{0,1,...,b}

{IAG(b − c) + cIX}, (b+ 1)IX}.

APPENDIX B
DELAY-BASED QUEUE-SIDE-GREEDY (D-QSG) AND

SAMPLE-PATH EQUIVALENCE

Delay-based Queue-Side-Greedy (D-QSG) policy, in an
iterative manner too, schedules the oldest packets in the system
one-by-one whenever possible. In this sense, D-QSG can be
viewed as an intuitive approximation of the Oldest Packet
First (OPF) policies3 [15] that have been shown to be rate-
function delay-optimal. We later prove an important sample-
path equivalence result (Lemma 3) that will be used in proving
Lemma 1 and thus the main result of this paper (Theorem 3).

We start by presenting some additional notations. In the D-
QSG policy, there are at most n rounds in each time-slot t.
By slightly abusing the notations, we let Qk

i (t), Z
k
i,l(t) and

W k
i (t) = Zk

i,1(t) denote the length of queue Qi, the delay
of the l-th packet of Qi, and the HOL delay of Qi after
the k-th round in time-slot t under D-QSG, respectively. Let
Υk(t) denote the set of indices of the available servers at
the beginning of the k-th round, and let Ψk(t) denote the
set of queues that have the largest HOL delay among all the
queues that are connected to at least one server in Υk(t) at
the beginning of the k-th round, i.e., Ψk(t) � {1 ≤ i ≤
n | W k−1

i (t) · �{∑j∈Υk(t) Ci,j(t)>0} = max1≤l≤n W
k−1
l (t) ·

�{∑j∈Υk(t) Cl,j(t)>0}}. Also, let i(k, t) be the index of the
queue that is served in the k-th round of time-slot t, and let
j(k, t) be the index of the server that serves Qi(k,t) in that
round. We then specify the operations of D-QSG as follows.
Delay-based Queue-Side-Greedy (D-QSG) policy: In each
time-slot t,

1) Initialize k = 1 and Υ1 = {1, 2, . . . , n}.
2) In the k-th round, allocate server Sj(k,t) to Qi(k,t), where

i(k, t) = min{i | i ∈ Ψk(t)},
j(k, t) = min {j ∈ Υk(t) | Ci(k,t),j(t) = 1}.

That is, in the k-th round, we consider the queues
that have the largest HOL delay among those that
have at least one available server connected (i.e., the
queues in set Ψk(t)), and break ties by picking the
queue with the smallest index (i.e., Qi(k,t)). We then
choose an available server that is connected to queue

3A scheduling policy P is said to be an OPF policy if in any time-slot,
policy P can serve the k oldest packets in that time-slot for the largest possible
value of k ∈ {1, 2, . . . , n}.

Qi(k,t), and break ties by picking the server with the
smallest index (i.e., server Sj(k,t)), to serve Qi(k,t).
At the end of the k-th round, update the length of
Qi(k,t) to account for service, i.e., set Qk

i(k,t)(t) =(
Qk−1

i(k,t)(t)− Ci(k,t),j(k,t)(t)
)+

and Qk
i (t) = Qk−1

i (t)

for all i �= i(k, t). Also, update the HOL delay of Qi(k,t),
by setting W k

i(k,t)(t) = Zk
i(k,t),1(t) = Zk−1

i(k,t),2(t) if
Qk

i(k,t)(t) > 0, and W k
i(k,t)(t) = 0 otherwise, and setting

W k
i (t) = W k−1

i (t) for all i �= i(k, t).
3) Stop if k equals n. Otherwise, increase k by 1, set

Υk(t) = Υk−1(t)\{j(k, t)}, and repeat step 2.
Remark: Note that D-QSG is only used for assisting the rate-

function delay analysis of D-SSG and may not be suitable for
practical implementation due to its O(n3) complexity. This
is because there are at most n rounds, and in each round, it
takes O(n2 + n) = O(n2) time to find a queue that has at
least one connected and available server (which takes O(n2)
time to check for all queues) and that has the largest HOL
delay (which takes O(n) time to compare).

The following lemma states the sample-path equivalence
property between D-QSG and D-SSG under the tie-breaking
rules specified in this paper.

Lemma 3: For the same sample path, i.e., same realizations
of arrivals and channel connectivity, D-QSG and D-SSG pick
the same schedule in every time-slot.

Proof: We prove Lemma 3 by induction. It suffices to
prove that for any given system, i.e., for any given set of
packets after arrivals and for any channel realizations, both D-
SSG and D-QSG pick the same schedule. Suppose that there
are K packets in the system. Let xk denote the k-th oldest
packet in the system. We want to show that packet xk is either
served by the same server under both D-SSG and D-QSG, or
is not served by any server under both D-SSG and D-QSG. We
denote the set of the k oldest packets by Pk � {xr | r ≤ k},
and denote the set of the first k servers by Sk � {Sj | j ≤ k}.
Let Sj(r) denote the server allocated to serve the r-th oldest
packet under D-QSG. We prove it by induction method.

Base case: Consider packet x1, i.e., the oldest packet, and
consider two cases: under D-QSG, 1) packet x1 is served by
Sj(1); 2) packet x1 is not served by any server.

In Case 1), we want to show that packet x1 is also served
by the same server Sj(1) under D-SSG. Note that packet x1

is the oldest packet in the system and is the first packet to
be considered under D-QSG. Since it is served by Sj(1), from
the tie-breaking rule of D-QSG, we know that the queue that
contains packet x1 is disconnected from all the servers in
set Sj(1) except server Sj(1). Now, we consider the server
allocation under D-SSG, which allocates servers one-by-one
in an increasing order of the server index. Since all the servers
in set Sj(1) except for server Sj(1) are disconnected from the
queue containing packet x1, these servers cannot be allocated
to packet x1 in the first j(1)−1 rounds under D-SSG. While in
the j(1)-th round, D-SSG must allocate server Sj(1) to packet
x1, since the queue that contains packet x1 is the queue that
has the largest HOL among the queues that are connected to
server Sj(1).

In Case 2), packet x1 is the first packet to be considered

11

under D-QSG, but is not served by any server. This implies
that no servers are connected to the queue that contains packet
x1. Hence, packet x1 cannot be served under D-SSG either.

Combining the above two cases, we prove the base case.
Induction step: Consider an integer k ∈ {1, 2, . . . ,K−1}.

Suppose that every packet in set Pk is either served by the
same server under both D-QSG and D-SSG, or is not served
by any server under both D-QSG and D-SSG. We want to
show that this also holds for every packet in set Pk+1. Clearly,
it suffices to consider only packet xk+1 (i.e., the (k + 1)-th
oldest packet in the system), as the other packets all satisfy
the condition from the induction hypothesis. We next consider
two cases: under D-QSG, 1) packet xk+1 is scheduled by a
server under D-QSG; 2) xk+1 is not served by any server.

In Case 1), suppose that packet xk+1 is served by server
Sj(k+1) under D-QSG. We want to show that packet xk+1 is
also served by server Sj(k+1) under D-SSG. We first show
that under D-SSG, packet xk+1 cannot be served in the first
j(k + 1)− 1 rounds. Note that under D-QSG, packet xk+1 is
served by server Sj(k+1). This implies that any server in set
Sj(k+1)−1 is either disconnected from the queue that contains
packet xk+1 or has already been allocated to packets in set
Pk under D-QSG. This, along with the induction hypothesis,
further implies that under D-SSG, in the first j(k + 1) − 1
rounds, the servers under consideration are either disconnected
from the queue that contains packet xk+1 or allocated to
packets in set Pk. Hence, packet xk+1 cannot be scheduled in
the first j(k + 1)− 1 rounds under D-SSG. Next, we want to
show that packet xk+1 must be served by server Sj(k+1) in
the j(k+ 1)-th round under D-SSG. Let P ′

k ⊆ Pk denote the
set of packets among the k oldest packets that are not served
under both D-QSG and D-SSG. Then, all the queues that
contain packets in set P ′

k must be disconnected from server
Sj(k+1), otherwise some packet xr ∈ P ′

k should be served by
server Sj(k+1) under D-QSG. On the other hand, the induction
hypothesis implies that any packet xr ∈ Pk\P ′

k must be served
by some server Sj(r), under D-SSG, where j(r) �= j(k + 1).
Hence, D-SSG does not allocate server Sj(k+1) to any packet
in set Pk. Therefore, in the (k + 1)-th round, D-SSG must
allocate server Sj(k+1) to packet xk+1, since the queue that
contains packet xk+1 has the largest HOL delay among the
queues that are connected to server Sj(k+1).

In Case 2), packet xk+1 is not served by any server under D-
QSG. This implies that the queue that contains packet xk+1

is disconnected from all the servers in set Sn\{Sj(r) | r ∈
Pk\P ′

k}, i.e., the set of available servers when considering
packet xk+1. On the other hand, the induction hypothesis
implies that under D-SSG, all the servers in set {Sj(r) | r ∈
Pk\P ′

k} are also allocated to packets in set Pk\P ′
k. Hence,

packet xk+1 cannot be served by any server under D-SSG
either.

Combining the above two cases, we prove the induction
step. This completes the proof.

Note that under D-SSG, in each round, when a server has
multiple connected queues that have the largest HOL delay,
we break ties by picking the queue with the smallest index.
Presumably, one can take other arbitrary tie-breaking rules.
However, it turns out to be much more difficult to directly

analyze the rate-function performance for a greedy policy
from the server side (like D-SSG) without using the above
equivalence property. For example, as we mentioned earlier,
the authors of [9], [10] were only able to prove a positive
(queue-length) rate-function for Q-SSG in more restricted
scenarios. Hence, our choice of the above simple tie-breaking
rule is in fact quite important for proving the above sample-
path equivalence result, which in turn plays a critical role in
proving a key property of D-SSG (Lemma 1) and thus near-
optimal rate-function of D-SSG (Theorem 3). Nevertheless,
we would expect that one can choose arbitrary tie-breaking
rules for D-SSG in practice.

APPENDIX C
PROOF OF LEMMA 1

We then divide the proof into two parts (Lemmas 4 and 5).
Lemma 4: Consider a set of n packets. Consider any func-

tion f(n) < n
2 , which is strictly increasing with n. The D-SSG

policy is applied to schedule these n packets. Then, there exists
a finite integer NX1 > 0 such that for all n ≥ NX1, with
probability no smaller than 1 − (1 − q)n−f(n) log2 n, D-SSG
schedules all the oldest f(n) packets among the n packets.

Proof: Since Lemma 4 is focused on the oldest f(n)
packets in the set, it is easier to consider the D-QSG policy
instead, which in an iterative manner schedules the oldest
packets first. Due to the sample-path equivalence between D-
SSG and D-QSG (Lemma 3), it is sufficient to prove that the
result of Lemma 4 holds for D-QSG.

Suppose that the oldest f(n) packets among the n packets
are from k different queues, where k ≤ f(n). It is easy to
see that if each of the k queues is connected to no less than
f(n) servers, then all of these oldest f(n) packets will be
served. Specifically, because D-QSG gives a higher priority
to an older packet, the above condition guarantees that when
D-QSG schedules any of the oldest f(n) packets, there will
always be at least one available server that is connected to the
queue containing this packet.

Now, consider any queue Qi. We want to compute the
probability that Qi is connected to no less than f(n) servers.
We first compute the probability that Qi is connected to less
than f(n) servers:

�(Qi is connected to less than f(n) servers)

=
∑f(n)−1

j=0 �(Qi is connected to j servers)

=
∑f(n)−1

j=0

(
n
j

)
qj(1− q)n−j

≤f(n)nf(n)(1− q)n−f(n).

Next, choose NX1 such that f(n)nf(n) < (1
1−q)

n−f(n)

and f 2(n)nf(n) ≤ (1
1−q)

f(n)(log2 n−1) for all n ≥
NX1. Such an NX1 exists because log(f(n)nf(n)) =
Θ(f(n) logn) and log((1

1−q)
n−f(n)) = Θ(n), hence,

we have log(f(n)nf(n)) < log((1
1−q)

n−f(n)) and thus
f(n)nf(n) < (1

1−q)
n−f(n) for large enough n; and

similarly, because log(f 2(n)nf(n)) = Θ(f(n) logn) and
log((1

1−q)
f(n)(log2 n−1)) = Θ(f(n) log2 n), hence, we

have log(f 2(n)nf(n)) ≤ log((1
1−q)

f(n)(log2 n−1)) and thus

12

f2(n)nf(n) ≤ (1
1−q)

f(n)(log2 n−1) for large enough n. Then,
the probability that each of the k queues is connected to no
less than f(n) servers is:

�(Each of the k queues is connected to no less than f(n) servers)

≥(1− f(n)nf(n)(1− q)n−f(n))k

(a)

≥ (1− f(n)nf(n)(1− q)n−f(n))f(n)

(b)

≥1− f2(n)nf(n)(1− q)n−f(n)

(c)

≥1− (1− q)n−f(n) log2 n

for all n ≥ NX1, where (a) is from our choice of NX1 and
the fact that k ≤ f(n), (b) is from our choice of NX1 and
Bernoulli’s inequality (i.e., (1 + x)r ≥ 1 + rx for every real
number x ≥ −1 and every integer r ≥ 0), and (c) is from our
choice of NX1. This completes the proof.

Lemma 5: Consider a set of n packets satisfying that no
more than 2H packets are from the same queue, where H > 4
is any integer constant independent of n. The D-SSG policy is
applied to schedule these n packets. Then, there exists a finite
integer NX2 > 0 such that for all n ≥ NX2, with probability
no smaller than 1−(1−q)n, D-SSG schedules at least n−H

√
n

packets among the n packets.

Proof: Consider the D-SSG policy. We first compute the
probability that some H

√
n packets are not scheduled by D-

SSG, which is equivalent to the event that some H
√
n servers

are not allocated to any packet by D-SSG.

Consider any arbitrary set of servers Ξ = {Srj | j =
1, 2, . . . , H

√
n}, where ri < rj if i < j. Clearly, we have

rj ≤ n − H
√
n + j for all j ∈ {1, 2, . . . , H√

n}. Consider
the rj -th server Srj . Then, the number of remaining packets
is at least n − rj + 1 at the beginning of the rj -th round.
Since no more than 2H packets are from the same queue,
there are at least 	n−rj+1

2H
 queues that are non-empty at
the beginning of the rj-th round. Then, the probability that
server Srj is not allocated to any packet is no greater than

(1− q)�
n−rj+1

2H 	 ≤ (1− q)
n−rj+1

2H . Hence,

�(None of the servers in a given set Ξ is allocated)

≤∏H
√
n

j=1 (1 − q)
n−rj+1

2H

≤∏H
√
n

j=1 (1 − q)
n−(n−H

√
n+j)+1

2H

≤(1− q)
1

2H (1+2+···+H
√
n)

=(1− q)
H
4 n+

√
n
4

Since H > 4, there exists an NX2 such that nH
√
n(1 −

q)
H
4 n+

√
n
4 ≤ (1 − q)n for all n ≥ NX2. Such

an NX2 exists because log(nH
√
n) = Θ(

√
n logn) and

log((1
1−q)

H
4 n+

√
n
4 −n) = Θ(n

H
4 −1), hence, log(nH

√
n) ≤

log((1
1−q)

H
4 n+

√
n
4 −n) and thus nH

√
n(1 − q)

H
4 n+

√
n
4 ≤ (1 −

q)n for large enough n. Then, we can compute the probability

that some H
√
n servers are not allocated as

�(Some H
√
n servers are not allocated)

≤
(

n

H
√
n

)
�(None of the servers in a given set Ξ is allocated)

≤nH
√
n(1 − q)

H
4 n+

√
n
4

≤(1− q)n

for all n ≥ NX2, where the last inequality is due to our choice
of NX2.

Therefore, we have

�(At least n−H
√
n packets are scheduled)

=1− �(Less than n−H
√
n packets are scheduled)

=1− �(Greater than H
√
n packets are not scheduled)

≥1− �(At least H
√
n packets are not scheduled)

=1− �(Some H
√
n packets are not scheduled)

=1− �(Some H
√
n servers are not allocated)

≥1− (1− q)n,

for all n ≥ NX2.
By applying Lemmas 4 and 5, and choosing NX �

max{NX1, NX2, NX3}, where NX3 is such that n−H
√
n >

f(n) for all n ≥ NX3, we show that for all n ≥ NX , with
probability no smaller than 1 − 2(1− q)n−f(n) log2 n, D-SSG
schedules at least n−H

√
n packets including the oldest f(n)

packets among the n packets.

APPENDIX D
PROOF OF THEOREM 4

The proof follows a similar argument for the proof of
Theorem 2 in [13].

We start by defining I0 � IU (b − 1) =
min{bIX ,min0≤c≤b−1{IAG(b − 1 − c) + cIX}} ≥
I∗(b − 1). Consider any fixed ε > 0, and define
Iε0 � min{bIX ,min0≤c≤b−1{IAG(b − 1 − c) − ε + cIX}}.
Then, we have limε→0 I

ε
0 = I0.

We then choose the value of parameter h for G-FBS based
on the statistics of the arrival process. We fix δ < 2

3 and η <
p
2 . Then, from Assumption 3, there exists a positive function
IB(η, δ) such that for all n ≥ NB(η, δ) and t ≥ TB(η, δ), we
have

�

(∑r+t
τ=r+1 �{|A(τ)−pn|>ηn}

t
> δ

)
< exp(−ntIB(η, δ)),

for any integer r. We then choose

h = max

{
TB(η, δ),

⌈
1

(p− η)(1 − 3δ
2)

⌉
,

⌈
2Iε0

IB(η, δ)

⌉
, 4

}
+1.

The reason for choosing the above value of h will become
clear later on. Recall from Assumption 2 that L is the
maximum number of packets that can arrive to a queue in
any time-slot t. Then, H = Lh is the maximum number of
packets that can arrive to a queue during an interval of h time-
slots, and is thus the maximum number of packets from the
same queue in a frame. This also implies that in the S-frame,
no more than 2H packets are from the same queue.

13

Next, we define the following notions associated with the G-
FBS policy. Let F (t) denote the number of unserved frames in
time-slot t, and let R(t) denote the remaining available space
(where the unit is packet) in the end-of-line frame at the end
of time-slot t. Also, let XF (t) denote the indicator function
of whether a success occurs in time-slot t. That is, XF (t) = 1
if there is a success, and XF (t) = 0 otherwise. Recall that
n0 = n−H

√
n. Then, we can write a recursive equation for

F (t):

F (t) = (F (t− 1) +

⌈
A(t)−R(t− 1)

n0

⌉
−XF (t), 0)

+, (4)

R(t) = �{F (t)>0} · ((R(t− 1)−A(t)) mod n0). (5)

Let M(t) ≤ H
√
n denote the number of packets in the L-

frame at the beginning of time-slot t, and let P (t) ≤ n0 denote
the number of packets in the HOL frame at the beginning of
time-slot t. Then, at the beginning of time-slot t, the number
of packets in the S-frame is equal to M(t)+P (t). Let D(t) ≤
M(t) + P (t) denote the number of packets served from the
S-frame if a success occurs in time-slot t. Then, we have the
following recursive equation for M(t):

M(t+ 1) =

{
M(t) + P (t)−D(t), if XF (t) = 1,
M(t), otherwise.

Also, we let

XF (t1, t2) =

t2∑
τ=t1

XF (τ)�{{F (τ)>0}∪{M(τ)>0}}

denote the the total number of successes in the interval from
time-slot t1 to t2 when the S-frame is non-empty (i.e., the
number of unserved frames is greater than zero or the L-frame
is non-empty).

Note that the arriving time of a frame is the time when its
first packet arrives. Let R0 = R(t1 − 1) denote the available
space in the end-of-line frame at the end of time-slot t1 − 1.
Then, we let AR0

F (t1, t2) denote the number of new frames
that arrive from time-slot t1 to t2. When R0 = 0, we use
AF (t1, t2) to denote AR0

F (t1, t2) for notational convenience.
Let L(−b) be the last time before −b, when the number of

unserved frames is equal to zero. Then, given that L(−b) =
−t − b − 1, where t > 0, the number of unserved frames
never becomes zero during interval [−t− b,−b−1]. Let U(0)
denote the indicator function of whether at time-slot 0 the L-
frame contains a packet that arrives before time-slot −b, i.e.,
U(0) = 1 if at time-slot 0 the L-frame contains a packet that
arrives before time-slot −b, and U(0) = 0, otherwise. Let E α1

t

denote the event that the number of frames that arrive during
interval [−t − b,−b − 1] is greater than the total number of
successes during interval [−t − b,−1] when the S-frame is
non-empty, i.e.,

Eα1
t = {AF (−t− b,−b− 1) > XF (−t− b,−1)}.

Let Eα2
t denote the event that the number of frames that arrive

during interval [−t − b,−b − 1] is equal to the total number
of successes during interval [−t− b,−1] when the S-frame is

non-empty, and at time-slot 0 the L-frame contains a packet
that arrives before time-slot −b, i.e.,

Eα2
t = {AF (−t− b,−b− 1) = XF (−t− b,−1), U(0) = 1}.

Letting Eα
t = Eα1

t ∪ Eα2
t , we have

{L(−b) = −t− b− 1,W (0) > b}
= {L(−b) = −t− b− 1, Eα

t }.
(6)

By taking the union over all possible values of L(−b) and
applying the union bound, we have

�(W (0) > b) ≤
∞∑
t=1

�(L(−b) = −t− b− 1, Eα
t). (7)

We fix a finite time t∗ as

t∗ � max{T1,

⌈
Iε0
IBX

⌉
}, (8)

where

T1 � max{TB(p̂− p,
1− p̂

6(L+ 2)
),

18(1 + p̂)

(2 + p̂)(1− p̂)
} (9)

and

IBX � min{ (1− p̂)IX
9

, IB(p̂− p,
1− p̂

6(L+ 2)
)}. (10)

Then, we split the summation in (7) as

�(W (0) > b) ≤ P1 + P2,

where

P1 �
t∗∑
t=1

�(L(−b) = −t− b− 1, Eα
t),

P2 �
∞∑

t=t∗
�(L(−b) = −t− b− 1, Eα

t).

We divide the proof into two parts. In Part 1, we show that
there exist a constant C1 > 0 and a finite N1 > 0 such that
for all n ≥ N1, we have

P1 ≤ (C1 + eg(n))t∗e−nIε
0 ,

where g(n) is a function satisfying that g(n) ∈ ω(f(n) log2 n)
and g(n) ∈ o(n). And in Part 2, we show that there exists a
finite N2 > 0 such that for all n ≥ N2, we have

P2 ≤ 4e−nIε
0 .

Finally, combining both Parts, we have

�(W (0) > b) ≤
(
(C1 + eg(n))t∗ + 4

)
e−nIε

0 ,

for all n ≥ N � max{N1, N2}. By letting ε tend to 0, and
taking logarithm and limit as n goes to infinity, we obtain
lim infn→∞ −1

n log� (W (0) > b) ≥ I0, and thus the desired
results. For a detailed proof, please refer to our online technical
report [24].

14

REFERENCES

[1] L. Ying, R. Srikant, A. Eryilmaz, and G. Dullerud, “A large deviations
analysis of scheduling in wireless networks,” IEEE Transactions on
Information Theory, vol. 52, no. 11, pp. 5088–5098, 2006.

[2] A. Stolyar, “Large deviations of queues sharing a randomly time-varying
server,” Queueing Systems, vol. 59, no. 1, pp. 1–35, 2008.

[3] S. Shakkottai, “Effective capacity and QoS for wireless scheduling,”
IEEE Transactions on Automatic Control, vol. 53, no. 3, pp. 749–761,
2008.

[4] V. Venkataramanan and X. Lin, “On wireless scheduling algorithms for
minimizing the queue-overflow probability,” IEEE/ACM Transactions on
Networking, vol. 18, no. 3, pp. 788–801, 2010.

[5] S. Bodas, S. Shakkottai, L. Ying, and R. Srikant, “Scheduling in
multi-channel wireless networks: Rate function optimality in the small-
buffer regime,” in ACM Proceedings of the eleventh international
joint conference on Measurement and modeling of computer systems
(SIGMETRICS), 2009, pp. 121–132.

[6] C. Courcoubetis and R. Weber, “Buffer overflow asymptotics for a buffer
handling many traffic sources,” Journal of Applied Probability, pp. 886–
903, 1996.

[7] S. Shakkottai and R. Srikant, “Many-sources delay asymptotics with
applications to priority queues,” Queueing Systems, vol. 39, no. 2, pp.
183–200, 2001.

[8] S. Kittipiyakul and T. Javidi, “Delay-optimal server allocation in mul-
tiqueue multiserver systems with time-varying connectivities,” IEEE
Transactions on Information Theory, vol. 55, no. 5, pp. 2319–2333,
2009.

[9] S. Bodas, S. Shakkottai, L. Ying, and R. Srikant, “Low-complexity
scheduling algorithms for multi-channel downlink wireless networks,”
in The IEEE International Conference on Computer Communications
(INFOCOM). IEEE, 2010, pp. 1–9.

[10] ——, “Scheduling for small delay in multi-rate multi-channel wireless
networks,” in The IEEE International Conference on Computer Com-
munications (INFOCOM). IEEE, 2011, pp. 1251–1259.

[11] S. Bodas and T. Javidi, “Scheduling for multi-channel wireless networks:
Small delay with polynomial complexity,” in 2011 International Sym-
posium on Modeling and Optimization in Mobile, Ad Hoc and Wireless
Networks (WiOpt). IEEE, 2011, pp. 78–85.

[12] M. Sharma and X. Lin, “OFDM downlink scheduling for delay-
optimality: Many-channel many-source asymptotics with general arrival
processes,” in The IEEE Information Theory and Applications Workshop
(ITA), 2011.

[13] ——, “OFDM downlink scheduling for delay-optimality: Many-
channel many-source asymptotics with general arrival processes,”
Purdue University, Tech. Rep., 2011. [Online]. Available: https:
//engineering.purdue.edu/%7elinx/papers.html

[14] B. Ji, C. Joo, and N. B. Shroff, “Delay-Based Back-Pressure Scheduling
in Multihop Wireless Networks,” IEEE/ACM Transactions on Network-
ing, vol. 21, no. 5, pp. 1539–1552, 2013.

[15] B. Ji, G. R. Gupta, X. Lin, and N. B. Shroff, “Low-complexity
scheduling policies for achieving throughput and asymptotic delay
optimality in multi-channel wireless networks,” IEEE/ACM Transactions
on Networking, 2013, accepted for publication.

[16] A. Mekkittikul and N. McKeown, “A starvation-free algorithm for
achieving 100% throughput in an input-queued switch,” in Proc. of the
IEEE International Conference on Communication Networks (ICCCN),
1996.

[17] M. Andrews, K. Kumaran, K. Ramanan, A. Stolyar, P. Whiting, and
R. Vijayakumar, “Providing quality of service over a shared wireless
link,” IEEE Communications magazine, vol. 39, no. 2, pp. 150–154,
2001.

[18] S. Shakkottai and A. Stolyar, “Scheduling for multiple flows sharing
a time-varying channel: The exponential rule,” Translations of the
American Mathematical Society-Series 2, vol. 207, pp. 185–202, 2002.

[19] M. Andrews, K. Kumaran, K. Ramanan, A. Stolyar, R. Vijayakumar,
and P. Whiting, “Scheduling in a queuing system with asynchronously
varying service rates,” Probability in the Engineering and Informational
Sciences, vol. 18, pp. 191–217, 2004.

[20] A. Eryilmaz, R. Srikant, and J. Perkins, “Stable scheduling policies
for fading wireless channels,” IEEE/ACM Transactions on Networking,
vol. 13, no. 2, pp. 411–424, 2005.

[21] B. Sadiq and G. de Veciana, “Throughput optimality of delay-driven
MaxWeight scheduler for a wireless system with flow dynamics,” in
Proceedings of the 47th Annual Conference on Communication, Control
and Computing (Allerton), 2009.

[22] M. Neely, “Delay-based network utility maximization,” in The 29th
IEEE International Conference on Computer Communications (INFO-
COM), 2010.

[23] M. Bramson, “Stability of queueing networks,” Probability Surveys,
vol. 5, no. 1, pp. 169–345, 2008.

[24] B. Ji, G. R. Gagan, M. Sharma, X. Lin, and N. B. Shroff, “Achieving
Optimal Throughput and Near-Optimal Asymptotic Delay Performance
in Multi-Channel Wireless Network with Low Complexity: A Practical
Greedy Scheduling Policy,” Arxiv preprint arXiv:1212.1638, November
2013. [Online]. Available: http://arxiv.org/abs/1212.1638

[25] J. Dai, “On positive Harris recurrence of multiclass queueing networks:
a unified approach via fluid limit models,” The Annals of Applied
Probability, pp. 49–77, 1995.

