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On Sample-Path Optimal Dynamic Scheduling for
Sum-Queue Minimization in Trees under the

K-Hop Interference Model
Srikanth Hariharan and Ness B. Shroff

Abstract—We investigate the problem of minimizing the sum of
the queue lengths of all the nodes in a wireless network with a tree
topology. Nodes send their packets to the tree’s root (sink). We
consider a time-slotted system, and a K-hop interference model.
We characterize the existence of causal sample-path optimal
scheduling policies in these networks, i.e., we wish to find a policy
such that at each time slot, for any traffic arrival pattern, the
sum of the queue lengths of all the nodes is minimum among
all policies. We provide an algorithm that takes any tree and
K as inputs, and outputs whether a causal sample-path optimal
policy exists for this tree under the K-hop interference model.
We show that when this algorithm returns FALSE, there exists a
traffic arrival pattern for which no causal sample-path optimal
policy exists for the given tree structure. We further show that
for certain tree structures, even non-causal sample-path optimal
policies do not exist. We provide causal sample-path optimal
policies for those tree structures for which the algorithm returns
TRUE. Thus, we completely characterize the existence of such
policies for all trees under the K-hop interference model. The
non-existence of sample-path optimal policies in a large class of
tree structures implies that we need to study other (relatively)
weaker metrics for this problem.

Keywords: Wireless networks, Sample-path optimal schedul-
ing, K-hop interference model.

I. INTRODUCTION

We investigate the problem of finding sample-path optimal
scheduling policies for convergecasting [2] in a wireless
network with a tree topology. In the convergecasting problem,
nodes send their packets to a sink (which is the root of the
tree). The convergecasting problem is of significant importance
in multi-hop wireless networks with a centralized node to
which packets are sent. A number of applications in wireless
networks involve convergecasting to one or more central
nodes. For instance, it is of importance in sensor networks
where the centralized node performs fusion of measurements
received from multiple sensor nodes. It is also of importance in
security applications where nodes need to send authentication
information to a trusted central node. Yet another example is
in centralized scheduling, where a leader node gathers control
information from all the network nodes, and determines an
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optimal schedule. In many such applications, a tree topology
is used for transmitting packets from multiple nodes to the
central node. Many of these applications as well as routing
and data gathering protocols involve the construction of a tree,
for example, a spanning tree. Delay performance is critical in
many of these applications. A sample-path optimal scheduling
policy is one for which the sum of the queue lengths of all
the nodes in the network is minimum among all scheduling
policies for each time slot, and for any traffic arrival pattern (a
formal definition is provided in the Appendix). We are inter-
ested in minimizing the sum of the queue lengths of the nodes
in the network as it can be shown to minimize the long term
time average delay experienced by packets in the network.

We briefly overview the existing literature. Tassiulas et
al., [3] first studied the problem of dynamic scheduling for
convergecasting in tandem networks with the sink at the root
of the chain. They showed that for the primary (or 1-hop)
interference model (where two links that share a node cannot
be active at the same time), for any traffic arrival pattern, any
maximal matching policy that gives priority to the link closer
to the sink is optimal in the sense that the sum of the queue
lengths of all the nodes in the network is minimum at each
time slot. This is a very strong result because for any sample-
path (arrival pattern), this policy is optimal. Further, the policy
is causal as it does not require knowledge of future arrivals. Ji
et al., [4] develop a sample-path optimal policy for generalized
switches with three links, and a heavy-traffic optimal policy for
switches with four links. In [5], Gupta et al., have provided a
sample-path delay optimal policy for a clique wireless network
where only one link can transmit at any time, and there
are multi-hop flows. Hariharan et al., [6] characterized the
existence of causal sample-path optimal policies in trees under
the 1-hop interference model. In this work, we generalize
this result for the K-hop interference model. In the K-hop
interference model, no two links that are separated by less than
K links can be active during the same time slot. The 1-hop and
2-hop models are well known in the literature, and have been
used to model interference in wireless systems. For instance,
the 1-hop model is appropriate for Bluetooth [7] and FH-
CDMA networks [8], while the 2-hop model is appropriate for
IEEE 802.11. For the one-hop interference model, we showed
in [6] that there are two classes of trees for which causal
sample-path optimal policies exist, and that there are no other
trees for which such policies exist. We have extended this work
in [9] characterizing the classes of forests (multiple sinks) for
which causal sample-path optimal policies exist under the one-
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hop interference model. The challenge in extending to a K-hop
interference model is that, for each K > 1, there are signifi-
cantly more classes of trees in which such policies exist, and
in which they do not. We provide an algorithm that takes any
tree, and K as inputs, and outputs whether a causal sample-
path optimal policy exists for the given tree under the K-hop
interference model. We also prove that there are at most six
classes of trees in which causal sample-path optimal policies
exist, and that they do not exist in any other tree structure.

A number of authors have studied the convergecasting prob-
lem in the absence of arrivals (evacuation time optimality).
Florens et al., [10] have studied the problem of minimizing
the time by which all the packets in a network (with a tree
topology) reach the sink, for a one-hop interference model.
They propose polynomial time algorithms for this problem.
Bermond et al., [11] and Gargano et al., [12] have further
studied this problem for disk based communication model,
and arbitrary network topologies respectively.

Hajek et al., [13] have investigated the problem of mini-
mizing the time by which all flows reach a destination for
general network topologies when each node has a constant
traffic-arrival rate. Venkataramanan et al., [2] have studied
the problem of minimizing the sum-queue length in con-
vergecasting packets to the root of a network with a tree
topology from a large-deviations perspective. Zhao et al., [14]
have studied a similar convergecasting problem where each
flow has a delay constraint. These works provide practical
solutions to delay optimization in wireless networks. However,
the optimality achieved is relatively weaker than sample-path
optimality. Sample-path optimality is a very strong metric as
it implies optimality with respect to many other metrics such
as evacuation time optimality, large deviations optimality, etc.
Apart from our earlier work on tree topologies for the one-hop
interference model, it can be seen that sample-path optimal
policies have only been shown to exist in very restricted
network topologies. Therefore, by characterizing the existence
of causal sample-path optimal scheduling policies in trees
under a K-hop interference model, this work provides valuable
insights into networks where sample-path optimality can be
achieved, and those where we need to investigate relatively
weaker optimality metrics.

Our contributions in this work are summarized below.
• While previous works have mostly studied the primary

interference model, we characterize the existence of
sample-path optimal policies for the convergecasting
problem in trees under the K-hop interference model.

• We provide an algorithm that takes any tree and K as
inputs, and correctly classifies whether a causal sample-
path optimal policy exists for the given tree under the
K-hop interference model.

• We show that causal sample-path optimal policies only
exist in six classes of trees. For each class, we show that
the optimal scheduling policy is similar to scheduling in
an appropriately constructed equivalent tandem network
under a K-hop interference model. Further, we prove that
for any other tree structure, there exists a traffic pattern
such that no causal sample-path optimal scheduling pol-
icy can exist for the K-hop interference model.

The rest of this paper is organized as follows. In Section II,
we describe the model and notations. In Section III, we con-
struct the class of tree structures for which no causal sample-
path optimal policy can exist under the K-hop interference
model. Based on the intuition obtained from Section III, we
develop an algorithm that classifies whether a given tree has a
causal sample-path optimal policy under the K-hop interfer-
ence model in Section IV. In Section V, we show that causal
sample-path optimal policies exist for six classes of trees,
and prove the correctness of the algorithm in Section IV. In
Section VI, we apply our results for the 1-hop and 2-hop inter-
ference models. Finally, we conclude the paper in Section VII.

II. SYSTEM MODEL AND NOTATIONS

We model the network as a graph G(V,E), where V is the
set of nodes, |V | = N , and E is the set of links. The graph G is
a tree. We denote 0 to be the sink which is the root of the tree.
The sink does not make any transmissions. We assume a time-
slotted and synchronized system, and consider a K-hop inter-
ference model where two links that are separated by less than
K links cannot be active at the same time. As in [3], [10], [6],
we assume unit capacity links, i.e., a node can at most transmit
one packet to its parent during each time slot. The external
packet arrival pattern at nodes is arbitrary and unknown. All
packets in the network have sink 0 as the eventual destination.

We use the following notations. Whenever we consider
a tandem (or linear) network, we denote a node that is i
hops away from the root as node i. In any tree, for a given
node r, we define mr

1 as the depth of the tree rooted at r,
i.e., it is the length of the deepest branch of r. Suppose
that C(r) is the set of children of r, and that rd ∈ C(r) is
the child of r in the deepest branch of r. We define mr

2 as
1 + max{i:i∈C(r),i6=rd}m

i
1. mr

2 denotes the depth of r after
removing rd and the sub-tree rooted at rd.

III. TREES WITH NO CAUSAL SAMPLE-PATH OPTIMAL
POLICY

In this section, we construct the class of trees for which no
causal sample-path optimal policy can exist under the K-hop
interference model. We prove that no causal sample-path
optimal policy can exist by generating appropriate traffic
arrival patterns. Further, we also observe that, in some cases,
even a non-causal sample-path optimal policy does not exist.

Theorem 1. For a given tree, consider any node l, 0 ≤ l <
bK2 c, in a line in the deepest branch in the tree. If the length
of the second deepest branch rooted at node l is longer than l,
i.e., ml

2 > l, there exists no causal sample-path optimal policy
for the given tree structure under the K-hop interference
model if either of the following conditions are true.

1) ml
2 ≤ bK2 c and ml

1 +ml
2 > K + 1

2) ml
2 > bK2 c and ml

1 +ml
2 > K + 2

Proof: We prove this result by contradiction.
Suppose that the result was not true, i.e., there exists a causal

sample-path optimal scheduling policy for tree structures that
satisfy either condition (1) or (2).
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Fig. 1. No causal sample-path optimal policy

For a given l, 0 ≤ l < bK2 c, we consider the simplest
tree structures corresponding to condition (1) and condition
(2). We will now construct traffic arrival patterns to show that
no causal sample-path optimal scheduling policy can exist for
such tree structures, resulting in a contradiction.

Case 1: l < ml
2 ≤ bK2 c and ml

1 +ml
2 = K + 2.

Consider a tree with the first l links in a line (as shown
in Figure 1(b)), and with two lines at node l, one of depth
ml

2 > l, and the other of depth ml
1 = K + 2−ml

2.
Consider the following traffic arrival pattern. At time t = 0,

there exists one packet each at nodes A and B. Node A is at a
depth l+ml

2 from the root of the tree, and node B is at a depth
l+ml

1−1. Since ml
2 ≤ bK2 c, m

l
1 ≥ K−bK2 c+2 ≥ bK2 c+2.

Hence, ml
2 < ml

1 − 1. Therefore, the packet at node A is at
a lower distance from the root than the packet at node B.
Further, nodes A and B cannot be scheduled simultaneously
under the K-hop interference model. In fact, since l < bK2 c,
the only nodes in this network that can simultaneously
transmit are A and C. This implies that we need to schedule
A before node B. This is because if we schedule node B
instead, the time for the first packet to exit the system will
be ml

1 + l − 1. On the other hand, if we schedule node A,
the time for the first packet to exit the system will only be
ml

2+l < ml
1+l−1. Hence, in any sample-path optimal policy,

we always need to schedule the closest packet to the root of
the tree. However, suppose that we schedule A at time t = 0,
and a packet arrives at node C at time t = 1. Further, assume
that there are no other packet arrivals in the system. Then the
total time (after the slot t = 1) for the three packets to exit
the system is l+ml

2−1+ l+ml
1−1+ l+ml

1 = 3l+K+ml
1.

On the other hand, if we had scheduled B during the first
time slot, since nodes A and C can transmit simultaneously,
the packets at nodes A and C can be transmitted to their
respective parents during the same time slot. Therefore, the
total time for the three packets to exit the system is now
l+ml

1−2+l+ml
2+l+ml

1−1 = 3l+K+ml
1−1 < 3l+K+ml

1.
Thus, we get a contradiction for this case.

We can further infer from the above counterexample that
even a non-causal sample-path optimal policy cannot exist for
this tree structure under the K-hop interference model. This
is because even if we knew that a packet was going to arrive
at node C at slot t = 1, we would still have to schedule node
A at slot t = 0 since it is closer to the root than node B.

Case 2: ml
2 > bK2 c and ml

1 +ml
2 = K + 3.

Suppose K is even. Then, ml
2 = K

2 + 1 and ml
1 = K

2 + 2.

From Case 1, we know that for a network with ml
2 = K

2 and
ml

1 = K
2 + 2, there exists a traffic arrival pattern such that

there exists no sample-path optimal policy for this network.
Since the network with ml

2 = K
2 + 1 contains the network

with ml
2 = K

2 as a substructure, there exists no sample-path
optimal policy for this structure as well.

Suppose K is odd. Then, ml
2 = K+1

2 and ml
1 = K+5

2 , or
ml

1 = ml
2 = K+3

2 . For the former scenario, from Case 1, we
know that there exists no sample-path optimal policy even for
the network with ml

2 = K−1
2 and ml

1 = K+5
2 . By reusing the

traffic arrival pattern in Case 1 and setting the number of pack-
ets to zero for the additional node at distance K+1

2 from l in its
second deepest branch, it follows that there exists no sample-
path optimal policy for this network as well. For the latter
scenario, we construct the following traffic arrival pattern.

Consider the tree shown in Figure 1(c) where the first l
links are in a line and the node l has two branches, each of
length K+3

2 . Suppose that at t = 0, there is one packet each
at nodes A and B which are both at depth K+1

2 from l as
shown in the figure. A and B cannot simultaneously transmit
under the K-hop interference model. Also, since l < K−1

2 ,
the nodes in the network that can simultaneously transmit in
the same slot are A and D, or B and C, or C and D. Since
both the packets are at the same depth from the root, without
having knowledge of future traffic arrivals, we can only
arbitrarily choose A or B to schedule. Suppose we choose
A to schedule, and a packet arrives at node D at slot t = 1.
Then, the total time after this slot for the three packets to exit
the system is l + K−1

2 + l + K+1
2 + l + K+3

2 = 3l + 3K+3
2 .

On the other hand, if we knew that a packet was going
to arrive at D at slot t = 1, we could have scheduled B
during the first time slot. In this case, A and D could have
simultaneously been scheduled in a later time slot. Hence, the
total time after the first slot for these packets to exit the system
is l+ K−1

2 + l+ K+1
2 + l+ K+1

2 = 3l+ 3K+1
2 < 3l+ 3K+3

2 .
Thus, we get a contradiction.

Note that the proof easily extends to tree structures for
which ml

1 +ml
2 > K + 2 for condition (1), and ml

1 +ml
2 >

K + 3 for condition (2). This is because we simply need to
set the number of packets to zero for the additional nodes in
the tree, and use the same traffic pattern shown above for the
remaining nodes.

Hence, Theorem 1 follows.

Theorem 2. Let K be an odd number. Let l be the node at
distance K−1

2 from the sink in a line in the deepest branch in
the tree. If the length of the second deepest branch rooted at
node l is longer than K+1

2 , i.e., ml
2 >

K+1
2 , then there exists

no causal sample-path optimal policy for this tree structure.

Proof: We prove this result by contradiction.
Suppose that the result was not true. We consider the

simplest tree structure for which ml
2 >

K+1
2 at node l = K−1

2
(Figure 1(a)). In this tree, m0

1 = K + 1, ml
1 = K+3

2 , and
ml

2 = K+3
2 > K+1

2 .
Consider the following traffic arrival pattern. At time t = 0,

there exists one packet each at nodes A and B which are both
at depth K+1

2 from node l. Note that due to the K-hop inter-
ference model, A and B cannot be scheduled simultaneously
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since they are separated by only K − 1 links. Without having
future knowledge of traffic arrivals, we can either choose to
schedule A or B in the first time slot. Suppose we schedule
A, and a packet arrives at node D at time t = 1. Also, assume
that there are no further packet arrivals in the system. It can
be easily seen that only one packet can be scheduled during
any time slot in the network due to the K-hop interference
model. Hence, from slot t = 1, the total time for the three
packets to reach node 0 is (K − 1) + K + (K + 1) = 3K.
On the other hand, if we had known that a packet was going
to arrive at D at time t = 1, we could have scheduled B
during the first time slot. Note that A and D are separated by
K links, and can hence simultaneously transmit. Therefore,
from slot t = 1, the total time for the three packets to reach
node 0 in this case is (K − 1) + K + K = 3K − 1 < 3K.
This contradicts our assumption that the result does not hold.

Thus, this traffic arrival pattern shows that without having
future knowledge of arrivals, there can exist no sample-path
optimal policy for this tree structure. As argued in the proof
of Theorem 1, this immediately implies that there can exist
no causal sample-path optimal policy in any tree that contains
this structure.

As a result of Theorems 1 and 2, we have a class of tree
structures in which no causal sample-path optimal policy can
exist under the K-hop interference model. In Section V, we
will show that we can find a causal sample-path optimal policy
for every other tree structure under this interference model.

We can now visualize an algorithm that takes any tree and
K as inputs, and outputs whether a causal sample-path optimal
scheduling policy exists for the given tree under the K-hop
interference model. We develop and discuss this algorithm in
the next section.

IV. CLASSIFICATION ALGORITHM

Based on the results in Section III, we develop an algorithm
that identifies whether a causal sample-path optimal policy
exists for a given tree under the K-hop interference model.

In algorithm (Asp) given in Table I, we use the continue
statement to skip the current iteration and start the next
iteration. This algorithm uses a subroutine sp (Table I).
Asp identifies a line in the tree rooted at the sink that is of

maximum depth. If there are multiple lines of equal length,
the algorithm picks one of them arbitrarily. The nodes in
this line are labeled from 0 to m0

1, where m0
1 is the length

of the deepest branch of the tree. We are only interested in
the first bK2 c nodes in this line (when m0

1 > bK2 c). Starting
from the last such node, i.e., node l = min(m0

1, bK2 c), we
investigate the deepest and second deepest branches rooted at
l. Note that the deepest branch rooted at l has length m0

1 − l.
If ml

1 and ml
2 satisfies certain conditions, we move to node

l− 1. Otherwise, the algorithm returns that there is no causal
sample-path optimal policy for the given tree structure. If the
conditions are satisfied at all nodes from 0 to min(m0

1, bK2 c),
the algorithm returns that a causal sample-path optimal policy
exists for the given tree structure.

Figure 2 illustrates two examples explaining the functioning
of Asp for the 3-hop interference model. Consider Figure 2(a).

Inputs: Tree, K
Select a line of maximum depth in the tree
m0

1 = Length of tree rooted at 0
for l = min(m0

1, bK2 c) to 0
Consider the node in the line that is l hops from 0
ml

1 = m0
1 − l

ml
2 = Length of the second deepest branch rooted at l

if l == K
2

continue
else if l == K−1

2

if ml
2 ≤ K+1

2
continue

else
return FALSE

end
else

if ml
2 ≤ l

continue
else
t = sp(ml

1,m
l
2,K)

if t
continue

else
return FALSE

end
end

end
end
return TRUE

boolean sp(m1,m2,K)
if m2 ≤ bK2 c

if m1 +m2 ≤ K + 1
return TRUE

else
return FALSE

end
else

if m1 +m2 ≤ K + 2
return TRUE

else
return FALSE

end
end

TABLE I
ALGORITHM Asp

0

1

2

3

(a) Asp returns FALSE

0

1

2

3

(b) Asp returns TRUE

Fig. 2. Examples illustrating the functioning of Asp for K = 3

The depth of the tree is 3, and suppose that Asp chooses the
line 0− 1− 2− 3. Since K−1

2 = 1, Asp starts at node 1. At
node 1, m1

2 = 0. Hence, Asp will continue to the previous
node in the line. At node 0, m0

2 = 3, and m0
1 = 3. Therefore,

m0
1 +m0

2 = 6 > K + 2 = 5. Hence, subroutine sp will return
FALSE, and hence Asp will return FALSE. Now, consider
Figure 2(b). Suppose that Asp chooses the line 0−1−2−3. At
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node 1, we again have m1
2 = 0, and hence Asp will continue to

node 0. At node 0, we now have m0
2 = 2, and m0

1 = 3. Hence,
m0

1+m0
2 = 5 = K+2, and m0

2 = 2 ≥ K+1
2 . Hence, subroutine

sp will return TRUE, Asp will exit out of the loop (since
node 0 has been reached), and will return TRUE for this tree.

We now provide some intuition behind Asp. The following
result shows why the choice of the line (of maximum depth)
does not affect the outcome of Asp.

Theorem 3. If there are two or more lines of maximum
depth in the tree, and Asp returns TRUE (or FALSE) for
an arbitrarily chosen line, it will return TRUE (or FALSE,
respectively) even if any other line of equal depth is chosen.

Proof: Suppose that there are n lines of maximum depth
in the tree, p1, p2, ..., pn. WLOG, suppose that p1 was
chosen, and that Asp had returned FALSE for p1. We have
the following cases.
Case 1: K is odd, and at l = K−1

2 in p1, ml
2 >

K+1
2 . Then,

ml
2 ≥ K+3

2 . Consider any line pi, i > 1. Consider the node A
at which p1 branches away from pi. If node A is closer to the
root than node l = K−1

2 , then two longest lines at node A are
those corresponding to p1 and pi. Further, mA

1 ≥ K+3
2 and

mA
2 ≥ K+3

2 . Therefore, mA
1 +mA

2 ≥ K + 3 > K + 2. Hence,
subroutine sp would have returned FALSE at node A even if
the line pi had been chosen instead of p1. If node A is the same
as node l, or is farther away from the root than node l = K−1

2 ,
then it immediately follows that whether p1 or pi had been
chosen, Asp would have returned FALSE at node l = K−1

2 .
Case 2: At a node l < bK2 c in p1, sp returns FALSE, and
hence Asp returns FALSE. As before, consider any line pi,
i > 1, and consider the node A at which p1 branches away
from pi. If node A is closer to the root than node l, then two
longest lines at node A are those corresponding to p1 and pi.
Since sp returns FALSE at node l, and mA

1 +mA
2 > ml

1+ml
2,

sp would have returned FALSE at node A even if we had
chosen line pi instead of p1.

Hence, we have shown that if Asp returns FALSE for an
arbitrarily chosen line of maximum depth, then it will return
FALSE even if any other line (of maximum depth) is chosen.

Suppose that Asp had returned TRUE for p1. We show by
contradiction that it cannot return FALSE even if any other
line (of maximum depth) had been chosen. Assume that Asp

returns FALSE for line pj , j > 1. By the previous result, it fol-
lows that if Asp returns FALSE for pj , it will return FALSE for
p1, which contradicts the fact that it returned TRUE for p1.
Remark 1: Asp only considers the two longest branches at
any node (at distance at most bK2 c from the sink) in a line
of maximum depth. The intuition behind this is as follows.
Suppose we select the deepest node in the longest branch,
and the deepest node in the second longest branch at a node l.
If these two nodes cannot simultaneously transmit according
to the K-hop interference model, then it implies that no two
nodes in different branches of l can simultaneously transmit
according to the K-hop interference model. In fact, we will see
that in many tree structures, there exists no causal sample-path
optimal policy if there is a possibility of having simultaneous
transmissions (under the K-hop interference model).
Remark 2: At any node l ≤ bK2 c (in a line in the deepest

branch of the tree), if ml
2 ≤ l, Asp skips to the next node closer

to the sink in that line. The intuition is that if ml
2 ≤ l, no two

nodes in two different branches of l need to simultaneously
transmit even if they can potentially do so under the K-hop
interference model. The implication of this is that we can hope
to convert the tree into an equivalent line network [10], [6], and
schedule the tree as though the schedule is in a line network.
This can be reasoned as follows. Suppose that we have a node
A at distance a ≤ l in one branch, and another node B at
distance K+ 2−a from node l in the other branch. Note that
these nodes can potentially transmit simultaneously according
to the K-hop interference model. However, their parents can-
not transmit simultaneously. Suppose that A and B each had a
packet. If they transmit simultaneously, the packets will reach
the respective parents of A and B, and after this slot, they can-
not be simultaneously transmitted. Therefore, if we keep trans-
mitting the packet from node A, the packet from node B can-
not transmit until the former packet reaches the sink. Even if
we had initially not transmitted simultaneously and just trans-
mitted the packet from A, since A is at a distance a+l from the
sink, and B is at a distance K+2−a+l, when the packet from
node A reaches the sink’s child, the distance between the sink’s
child and B is at least K+1, and hence the sink’s child and B
can simultaneously transmit. Therefore, at the slot the packet
from A reaches the sink, the packet from B will be at B’s
parent, which is the same situation as before. The implication
of this is that we can hope to convert the tree into an equivalent
line network ( [10], [6]), and schedule the tree as though the
schedule is in a line network. Section V explains this in detail.
Remark 3: Asp does not consider nodes that are at distance
greater than bK2 c from the sink. The reasoning is similar
to the previous case. Consider any node l > bK2 c. Even if
ml

2 ≥ l, then the deepest node in the second deepest branch
at l is at least K + 1 hops away from the sink. We will see in
Section V that we can schedule many of these trees according
to a schedule in an equivalent linear network.

We now show that Algorithm Asp correctly identifies tree
structures for which no causal sample-path optimal policy can
exist under the K-hop interference model.

Theorem 4. Algorithm Asp correctly identifies tree structures
for which there exist no causal sample-path optimal policy
under the K-hop interference model, i.e., whenever Asp re-
turns FALSE for a given tree structure, there exists no causal
sample-path optimal policy for that tree structure.

Proof: This result follows from Theorems 1 and 2.
Theorem 1 proves it for 0 ≤ l < bK2 c, and Theorem 2 shows
the result for l = bK2 c.

As a sanity check, we can also verify our results for the
1-hop interference model by comparing it with the results in
[6]. For the 1-hop interference model, b 12c = 0. Hence, we
only need to apply Theorem 2. This says that if m0

2 > 1,
there exists no causal sample-path optimal policy for the
given tree structure. Theorem 3 in [6] shows that there exists
no causal sample-path optimal policy for a tree structure
where m0

1 = m0
2 = 2, thus verifying our result.

The implication of the above results is that sample-path
optimal policies may only exist in restricted tree topologies.
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V. EXISTENCE OF CAUSAL SAMPLE-PATH OPTIMAL
SCHEDULING POLICIES

In this section, we develop sample-path optimal policies
for all tree structures for which Algorithm Asp returns TRUE
under the K-hop interference model.

A. Classification of Trees

We classify the tree structures for which Asp returns TRUE
into six classes. The following theorem forms an initial basis
for classification. It classifies trees for which the depth of the
tree must be bounded by K in order for Asp to return TRUE,
and those for which the depth need not be bounded.

Theorem 5. For any tree for which Asp returns TRUE, the
depth of the tree must be bounded by K, i.e., m0

1 ≤ K, unless
the following conditions are satisfied.

1) If K is odd, for each l such that 0 ≤ l < K−1
2 , ml

2 ≤ l.
2) If K is even, for each l such that 0 ≤ l < K

2 , ml
2 ≤ l.

Proof: We first show that m0
1 can be any arbitrary quantity

if the given conditions are satisfied. Whether K is odd or even,
it can be immediately seen from Asp that if the corresponding
conditions (for odd and even K) are satisfied, there is no
constraint on ml

1 for any l (since if the conditions are satisfied,
we have the continue statement). Therefore, the depth of the
tree can be any arbitrary quantity.

We prove the converse by showing that m0
1 cannot be larger

than K if either of the conditions are not satisfied for a tree
for which Asp returns true.

We first consider the case where K is odd. Suppose that
for some l such that 0 ≤ l < K−1

2 , ml
2 > l, and m0

1 > K.
We have the following possibilities.
Case 1: First consider the case, ml

2 ≤ K−1
2 . Note that

ml
1 = m0

1 − l > K − l. Consider any ml
1 and ml

2 such
that ml

1 ≥ ml
2, l < ml

2 ≤ K−1
2 , and ml

1 > K − l.
Therefore, we have ml

1 ≥ K + 1− l, and ml
2 ≥ l + 1. Then,

ml
1+ml

2 ≥ K+1− l+ l+1 = K+2. Therefore, according to
subroutine sp, Asp will return FALSE for this tree structure.
This contradicts our assumption that Asp returns TRUE.
Case 2: Consider any l such that 0 ≤ l < K−1

2 , ml
2 >

K−1
2 ,

and m0
1 > K. Since l < K−1

2 , l ≤ K−3
2 , and hence, ml

1 =
m0

1−l > K+3
2 . Therefore, ml

1 ≥ K+5
2 and ml

2 ≥ K+1
2 . Hence,

ml
1+ml

2 > K+2. Therefore, subroutine sp will return FALSE,
and hence Asp will return FALSE, resulting in a contradiction.

Consider the case where K is even. Suppose that m0
1 > K,

and for some l such that 0 ≤ l < K
2 , ml

2 > l. We have the
following possibilities.
Case 1: ml

2 ≤ K
2 : Again, ml

1 = m0
1 − l > K − l. Therefore,

following the same argument as in the previous case,
ml

1 +ml
2 ≥ K + 1− l+ l+ 1 = K + 2. Hence, sp will return

FALSE, and we similarly get a contradiction.
Case 2: ml

2 > K
2 : Since l < K

2 , l ≤ K
2 − 1. Hence,

ml
1 = m0

1 − l > K
2 + 1. So, ml

1 ≥ K
2 + 2 and ml

2 ≥ K
2 + 1.

Thus, ml
1 + ml

2 ≥ K + 3 > K + 2. Therefore, subroutine
sp will return FALSE, Asp will consequently return FALSE,
and we obtain a contradiction.

Corollary 1 (Corollary to Theorem 5). For any tree for which
Asp returns TRUE, m0

1 must be bounded by K if the following
conditions are satisfied.

1) If K is odd, ml
2 > l for at least one node l (0 ≤ l <

K−1
2 ) in a line in the deepest branch of the tree.

2) If K is even, ml
2 > l for at least one node l (0 ≤ l < K

2 )
in a line in the deepest branch of the tree.

Based on the above theorem and corollary, we now classify
trees for which Asp returns TRUE into six classes. The first
three classes correspond to the scenario in which the depth
of the tree must be bounded by K, and the last three classes
correspond to the case in which the depth of the tree need
not be bounded by K. Figure 3 shows a flow-chart describing
this classification.

𝑚2
𝑙  ≤ 𝑙, ∀𝑙 𝑠. 𝑡. 0 ≤ 𝑙 <  𝐾/2 ? 

𝑚2
𝑙  ≤ 𝑙, 𝑙 =  𝐾/2 ? 

Class IV K Odd? 

Class V Class VI 

Asp returns TRUE 

𝑚1
𝑙 + 𝑚2

𝑙  ≤ 𝐾 + 1 𝑎𝑡 𝑒𝑎𝑐ℎ 𝑛𝑜𝑑𝑒 𝑙? 

Class I K Odd? 

Class II Class III 

Y 

Y 

Y 

Y 

Y 
N 

N 

N 

N 

N 

Fig. 3. Classification of trees for which Asp returns TRUE

Class I: The tree satisfies the conditions in Corollary 1.
Hence, the depth of the tree is bounded by K. In addition,
it satisfies the condition that at each node l in a line in the
deepest branch of the tree, ml

1 +ml
2 ≤ K+1. It can be easily

seen that no two links in such a tree can be simultaneously
scheduled (due to the K-hop interference model).
Class II: K is odd, the tree satisfies the first condition in
Corollary 1, and does not satisfy the additional condition
for Class I trees. It can be shown that this implies that at
exactly one node l in a line in the deepest branch of the tree,
ml

1 +ml
2 = K + 2, where ml

2 = K+1
2 , and at all other nodes

l in the line, ml
1 +ml

2 ≤ K + 1.
Class III: K is even, the tree satisfies the second condition in
Corollary 1, and does not satisfy the additional condition for
Class I trees. Simultaneous transmissions are possible among
certain links in trees belonging to Classes II and III, and we
discuss this in more detail when we provide the sample-path
optimal policies for these classes. It can be shown that this con-
dition implies that at exactly one node l in a line in the deepest
branch of the tree, ml

1 + ml
2 = K + 2, where ml

2 = K
2 + 1,

and at all other nodes l in the line, ml
1 +ml

2 ≤ K + 1.
Class IV: The tree satisfies the conditions in Theorem 5.
Hence, the tree can be of arbitrary depth. In addition, it
satisfies the condition that at node l = bK2 c, m

l
2 ≤ l. We

show that these trees can be scheduled using a schedule in
an equivalent linear network [6], [10].
Class V: K is odd, the tree satisfies the first condition in Theo-
rem 5, and it does not satisfy the additional condition for Class
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IV trees, i.e., for l = bK2 c, m
l
2 > l. Note that since Asp returns

TRUE for this class, it follows that for l = K−1
2 , ml

2 = K+1
2 .

Class VI: K is even, the tree satisfies the second condition
in Theorem 5, and it does not satisfy the additional condition
for Class IV trees, i.e., for l = bK2 c, m

l
2 > l.

Theorem 6. Classes I-VI characterize all trees for which
Algorithm Asp returns TRUE under the K-hop interference
model, i.e., for any tree that does not belong to Classes I-VI,
Asp returns FALSE.

Proof: From Theorem 5, Corollary 1, and the definitions
of Classes I-VI, the result follows.

B. Class I

We recall that Class I is the class of trees for which the
depth of the tree must be bounded by K, and no two links in
the tree can simultaneously transmit. Figure 9(a) provides an
example of Class I trees under the 2-hop interference model.
We define the causal policy, πI , for Class I trees as follows.
Policy πI : At each slot, determine the packet i whose hop
distance to the sink is minimum among all packets in the
system, and schedule it. If there are multiple such packets,
schedule one of them arbitrarily.

C. Class II

We study Class II trees in this section. K is assumed to be
odd. At exactly one node l in a line in the deepest branch of
the tree, ml

1 + ml
2 = K + 2, where ml

2 = K+1
2 , and at all

other nodes l in the line, ml
1 +ml

2 ≤ K + 1.
Note: The node l in a line in the deepest branch of the tree
for which ml

1 + ml
2 = K + 2 and ml

2 = K+1
2 is unique. It

corresponds to the node in the line for which ml
1 = K+3

2 .
Consider the node l for which ml

1 + ml
2 = K + 2. The

nodes that are at depth K+1
2 in the second deepest branch of

node l, and the nodes that are at depth K+3
2 in the deepest

branch of node l are separated by K links. Therefore, one of
these nodes in the second deepest branch and one of these
nodes in the deepest branch can transmit simultaneously in a
slot. Further, since ml

1 + ml
2 ≤ K + 1 for all other nodes l,

no other nodes in the tree can transmit simultaneously.
We define the following notation. Consider the node

l in a line in the deepest branch of the tree for which
ml

1 +ml
2 = K + 2. We define N1 to be the set of packets at

leaf nodes that are at depth K+3
2 from node l in the deepest

branch rooted at node l, and N2 to be the set of packets at
leaf nodes at depth K+1

2 from node l in any other branch
rooted at node l. For example, consider Figure 4(a). This
represents a Class II tree under the 5-hop interference model.
At l = 1, m1

1 +m1
2 = 4 + 3 = 7 = K + 2. Hence, packets at

nodes B, C, and D belong to N1, and those at nodes F , and
G belong to N2. Further, note that packets at nodes A, H , J ,
and E neither belong to N1 nor to N2 because they are in the
same branch of node l = 1 as the packets that belong to N1.
Policy πII : At each time slot, schedule a packet that is closest
to the root of the tree. If multiple packets are at the same depth
from the root, a packet can be arbitrarily chosen to schedule
in all but the following scenario. Suppose that at node l in

0

1

A

B C D

E F G
JH

(a) Class II, K = 5

0

1

A

B C E F

G

D

(b) Class III, K = 4

Fig. 4. Examples for Classes II and III

a line in the deepest branch of the tree, ml
1 + ml

2 = K + 2.
Any packet that lies at a node at depth K+1

2 from l in the
branch of l corresponding to nodes in N1 is given priority
over packets that lie at nodes at depth K+1

2 from l in any
other branch of l. If the only packets left in the system are
those that lie in the set N1 ∪N2, then select one packet from
N1 and one packet from N2 to transmit simultaneously.

In Figure 4(a), if A and F both have a packet, then A will
be given priority over F . If B and F both have a packet, they
will transmit simultaneously to their respective parents.

D. Class III

We now consider Class III trees. K is assumed to be even.
At exactly one node l in a line in the deepest branch of the
tree, ml

1 +ml
2 = K + 2, where ml

2 = K
2 + 1, and at all other

nodes l in the line, ml
1 +ml

2 ≤ K + 1. As we argued in the
previous section for Class II trees, at most one node l in the
line can have ml

1 +ml
2 = K + 2.

Consider the node l for which ml
1 + ml

2 = K + 2. This
means that l has at least two branches of depth K

2 + 1.
Assume that l has p branches of depth K

2 + 1, p ≥ 2. We
define Ni, i = 1, 2, ..., p, to be the set of packets at leaf
nodes that are at depth K

2 + 1 in the ith branch of l. Consider
any node a1 ∈ N1, a2 ∈ N2,..., ap ∈ Np. a1, a2, ..., ap can
all transmit during the same slot since any two nodes in the
set {a1, a2, ..., ap} are separated by K links. Further, since
ml

1 + ml
2 ≤ K + 1 for all other nodes l, no other nodes in

the tree can transmit simultaneously. We provide an example
to explain this scheduling (Figure 4(b), K = 4). At l = 1, we
have m1

1 = m1
2 = 3. Hence, m1

1 + m1
2 = 6 = K + 2. Also,

there are three branches of depth 3 from node 1. Therefore,
p = 3. Packets at nodes A, B, C, and D belong to N1, those
at E and F belong to N2 and N3, respectively. Note that
packets at node G do not belong to N1 ∪N2 ∪N3.

We now propose policy πIII for this class of trees.
Policy πIII : At each time slot, schedule a packet that is closest
to the root of the tree as long as it does not belong to N1 ∪
N2∪...∪Np. If multiple packets are at the same depth from the
root, a packet can be arbitrarily chosen to schedule. If the only
packets left in the system belong to N1∪N2∪...∪Np, select one
packet in each of N1, N2, ..., Np (as long as a packet exists),
and schedule these packets simultaneously during that slot.

In Figure 4(b), if there is one packet each at nodes A, E,
and F , these packets will be scheduled simultaneously.
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E. Class IV

We now discuss tree structures for which the depth need
not be bounded by K in order for a causal sample-path
optimal policy to exist. We study Class IV trees in this
section. These trees satisfy the conditions in Theorem 5.
Hence, the tree can be of arbitrary depth. In addition, they
satisfy the condition that for each l such that 0 ≤ l ≤ bK2 c,
ml

2 ≤ l. This additional condition ensures that no two nodes
that are at distance K + 1 or lesser from the sink can
transmit simultaneously under the K-hop interference model.
Figures 7(b) and 10(a) are examples of Class IV trees for the
1-hop and 2-hop interference models, respectively.

We show that these trees can be scheduled as though the
schedule is in a linear network under the K-hop interference
model. We recall the definition of the equivalent linear
network for a given tree below [10].

For a tree network G(V,E) with V nodes and E edges,
where each node i has βi packets during a given time slot,
the equivalent linear network G(Vl, El) is defined as follows:
Vl = {0, 1, ..., N}, El = {(i − 1, i), 1 ≤ i ≤ N} where
N = max

i∈V
(d(0, i)). d(0, i) represents the distance of node

i from the sink node 0. Further, each node j ∈ Vl has αj

packets during the same time slot, where αj =
∑

i∈V :d(0,i)=j

βi.

Figure 5 gives an example of this transformation. The far-
thest node in the tree is 3 hops away from the sink. Therefore,
the equivalent linear network has 3 nodes and the sink. The
number of packets at each node is mentioned in the figure. The
total number of packets from nodes that are 2 hops away from
the sink is 7 (=3+4), and that from nodes that are 3 hops away
from the sink is 9 (=6+1+2). Therefore, the equivalent linear
network has 7 packets in node 2, and 9 packets in node 3.

0

5

4

21
6

9

7

5

3

1

3

2

0

A

CB

D E F

Fig. 5. Equivalent Linear Network

We now propose policy πIV for Class IV trees.
Policy πIV : Consider node 1 in the equivalent linear network.
If node 1 has a packet, schedule it. Else, go to the next node.
For any node i ≤ K+1, if none of the nodes 1, 2, ..., i−1 have
been scheduled, and if node i has a packet, schedule node
i. Otherwise, go to the next node. For any node i > K + 1,
if none of the nodes in the set {i − 1, i − 2, ..., i −K} have
been scheduled, and if node i has a packet, schedule node i.
Otherwise, go to the next node.

This policy is a generalized version of the policy in [3] for
a linear network under the 1-hop interference model.

We recall some of the implications of this policy using the
1-hop interference model as an example (as noted in [6]).

Remark 4: According to policy πIV , any node i in the equiva-
lent linear network can schedule at most one packet during any
time slot. This means that among all nodes that are i hops away
from node 0 in the original tree, at most one packet will be
scheduled. Note that multiple nodes (at the same distance from
the sink) can potentially schedule their transmissions simulta-
neously if they don’t have the same parent (under the 1-hop
interference model). This implies that even without scheduling
a maximal set of non-interfering links, this policy is optimal.
Remark 5: Suppose that a node i in the equivalent linear
network is selected to schedule during a certain slot according
to πIV . Consider nodes that are i hops away from node 0 in
the original tree that have at least one packet to schedule. One
of these nodes can be chosen arbitrarily to schedule its packet
during that slot. This means that the optimal solution neither
depends on the structure of the Class IV tree nor the number
of packets at each node. For example, in Figure 5, we can
arbitrarily choose to schedule one of {D,E, F} according to
πIV . We can potentially simultaneously schedule D and E.
However, this policy does not allow such a schedule because
in the equivalent linear network, R can at most send one
packet in a slot.
Remark 6: If a node i in the equivalent linear network is se-
lected to schedule during a certain slot according to πIV , none
of the nodes that are i−1 hops away from node 0 in the original
tree can transmit. Since it is possible to potentially schedule a
node that is at distance i−1 and a node at distance i simulta-
neously without interference as long as the node at distance i
is not a child of the node at distance i−1, it is interesting that
even without scheduling such non-interfering links, this policy
is optimal. For example, in Figure 5, we can potentially simul-
taneously schedule B and E. However, this policy does not
allow such a schedule because in the equivalent linear network,
when R makes a transmission, Q cannot make a transmission.

F. Class V

We investigate causal sample-path optimal policies for Class
V trees in this section. K is odd, the tree satisfies the first
condition in Theorem 5, and does not satisfy the additional
condition that Class IV trees satisfy. Therefore, at node l =
K−1
2 in a line in the deepest branch of the tree, ml

2 = K+1
2 .

We first define a similar notation as used for Class II trees.
Consider the node l = K−1

2 in a line in the deepest branch
of the tree. We define N1 to be the set of packets at nodes at
depth ≥ K+3

2 from node l in the deepest branch rooted at node
l, and N2 to be the set of packets at leaf nodes at depth K+1

2
from node l in any other branch rooted at node l. A packet
in N2 and a packet in N1 can potentially simultaneously
transmit according to the K-hop interference model.

We now propose policy πV for this class of trees.
Policy πV : At each time slot, do the following. For packets
that are at distance ≤ K− 1 from the sink, schedule a packet
that is closest to the sink, say, at distance d ≤ K − 1 to the
sink. Do not schedule any packets at distance ≤ d+K from
the sink. Schedule packets in N1 at distance > d+K from the
sink according to a schedule in an equivalent linear network.
If there are no packets at distance d ≤ K − 1 from the sink,



9

consider node l = K−1
2 in a line in the deepest branch of

the tree. Any packet that lies at a node at depth K+1
2 from

l in the branch of l corresponding to nodes in N1 is given
priority over packets that lie at nodes at depth K+1

2 from l in
any other branch of l, and the rest of the schedule for packets
in N1 (at distance > 2K from the sink) is according to one
in an equivalent linear network. If the only packets left in the
system are those that lie in the set N1 ∪ N2, then select the
packet closest to the sink from N1 and one packet from N2

to transmit simultaneously. Schedule the rest of the packets in
N1 according to a schedule in an equivalent linear network.

We provide an example to explain this policy. Consider
Figure 6(a). This is an example of a Class V tree under
the 3-hop interference model. At node l = 1, m1

1 ≥ 3, and
m1

2 = 2. Packets in nodes A, B, C, D, and in the sub-trees
rooted at these nodes belong to N1. Packets at nodes E and F
belong to N2. If there is one packet each at G and E, then G
will be given priority over E. If there is one packet each at A
and E, then these packets will be scheduled simultaneously.
If B is scheduled during a particular slot, then since B is 4
hops away from the sink 0, only packets that are at least 8
hops away from the sink will be scheduled. This schedule is
equivalent to one in an equivalent linear network.

0

1

A

E F

B C D

G

(a) Class V, K = 3

A
B C D E F G

0

1

2

(b) Class VI, K = 4

Fig. 6. Examples for Classes V and VI

G. Class VI

Finally, we investigate Class VI trees. K is even, the tree
satisfies the second condition in Theorem 5, and does not
satisfy the additional condition that Class IV trees satisfy.
Therefore, at node l = K

2 in a line in the deepest branch of
the tree, the branches originating from this node can be of
arbitrary depth. Since these trees do not satisfy the additional
condition that Class IV trees satisfy, there exist at least two
branches at node l whose depth from l is greater than l.

We define a similar notation as used for Class III trees.
Consider the node l = K

2 in a line in the deepest branch of
the tree. Suppose that l has p branches whose depth from l is
greater than l. We define Ni to be the set of packets at nodes
at depth ≥ K

2 + 1 from node l in branch i, i = 1, 2, ..., p.
We now propose policy πV I for this class of trees.

Policy πV I : At each time slot, do the following. For packets
that are at distance ≤ K from the sink, schedule a packet
that is closest to the sink, say, at distance d ≤ K to the sink.
Do not schedule any packets at distance ≤ d + K from the
sink. Consider packets at distance ≥ d + K + 1 from the

sink. These packets belong to N1 ∪ N2 ∪ ... ∪ Np. For Ni,
i = 1, 2, ..., p, schedule packets in Ni at distance ≥ d+K+1
from the sink according to a schedule in an equivalent linear
network. The schedule of packets in Ni is independent of the
schedule of packets in Nj for any i 6= j.

We provide an example to explain this policy. Consider
Figure 6(b). This represents a Class VI tree for K = 4. The
tree rooted at node K

2 = 2 can be arbitrary. This node has
3 branches of depth at least K

2 + 1 = 3. Therefore, p = 3.
Packets in nodes A, B, C, D, and in their subtrees belong to
N1. Those in E, and its subtree belong to N2, and those in
F , G, and their subtrees belong to N3. If there is one packet
each at nodes C, E, and G, these packets will be transmitted
simultaneously to their respective parents. The three branches
of node 2 can be converted into three equivalent linear
networks, and the schedule in each branch till the packet
reaches a node at distance K+1 = 5 from the sink is according
to a schedule in an equivalent linear network for that branch.

The following result shows the optimality of policy πi for
Class i trees, i = I, II, ..., V I .

Theorem 7. For Class i of trees, i = I, II, ..., V I , policy πi
minimizes the sum of the queue lengths of all the nodes in the
given tree under the K-hop interference model at each time
slot and for any traffic arrival pattern.

Proof: The proof for each class consists of three com-
ponents: a recursive relationship for the time at which each
packet leaves the system, a proof for optimality in the absence
of arrivals, and finally a proof for optimality when there are
packet arrivals in the system. We prove this result for Class
IV trees in the appendix. The proof for the other tree classes
are of the same flavor. Due to space limitations, we refer the
readers to [15] for the other tree classes.
Remark 7: One of the key intuitions to the fact that there
exists causal sample-path optimal policies for these six classes
of trees is the relationship of the scheduling policy to that
in an equivalent linear network (or some extensions of it).
Classes I and IV can be scheduled according to a schedule
in an equivalent linear network, while the optimal schedules
for the other classes is a modification of a schedule in an
equivalent linear network.
Remark 8: Theorem 7 states that the number of packets
in the network under πi for Class i is smaller than the
number of packets under any other policy at all time instants.
Therefore, the long term time average number of packets in
the system under πi is smaller than the corresponding number
under any other policy. From Little’s law, the long term time
average delay is directly proportional to the average number
of packets in the system. Hence, πi minimizes the average
delay in the system for Class i trees, i = I, II, ..., V I .

Theorem 8. Algorithm Asp correctly classifies trees for which
a causal sample-path optimal policy exists, and those for
which such a policy does not exist.

Proof: The result for non-existence of causal sample-
path optimal policies follows from Theorem 4, and that for
existence follows from Theorems 6 and 7 for Classes I-VI.

Thus, we have completely characterized the existence of
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causal sample-path optimal policies for all trees under the K-
hop interference model for the convergecasting problem.

VI. EXAMPLES - 1-HOP AND 2-HOP

In this section, we apply the results in Sections III and V
to the 1-hop and 2-hop interference models, and completely
characterize the tree structures for which causal sample-path
optimal policies exist for these interference models. The
results for the 1-hop interference model derived in [6] serves
as a sanity check for the results in this work.

A. 1-hop

Since, K = 1, we have K−1
2 = 0, and K+1

2 = 1. We first
look at the tree structures for which no causal sample-path op-
timal policy exists. From Theorem 2, at node l = 0 in a line in
the deepest branch of the tree, if m0

2 > 1, there exists no causal
sample-path optimal policy for the given tree. Thus, if the root
of the tree has more than one child that is not a leaf node,
there exists no causal sample-path optimal policy for the given
tree. This implies that the tree in Figure 7(a) has no causal
sample-path optimal policy. This verifies Theorem 3 in [6].

0

(a) No optimal
policy

0

(b) Class IV

0

(c) Class V

Fig. 7. Existence of sample-path optimal policies for K = 1

We now consider trees for which a causal sample-path
optimal policy exists. Since K is odd, we only need to
consider Classes I, II, IV, and V. Since K−1

2 = 0, from
Corollary 1, it follows that there are no Class I and Class
II trees under the 1-hop interference model. For Class IV
trees, for each 0 ≤ l ≤ K−1

2 , ml
2 ≤ l. This means that at the

root (l = 0), m0
2 ≤ 0. Therefore, the root can have only one

child. The rest of the tree can be arbitrary. For such trees, we
can transform the tree into an equivalent linear network, and
schedule the equivalent linear network according to the 1-hop
interference model. This concurs with Theorem 1 in [6].
Finally, for Class V trees, at node l = K−1

2 = 0, m0
2 ≤ 1. This

means that if the root has at most one non-leaf child, then
the tree has a causal sample-path optimal policy. Further, the
optimal policy (for Class V trees) is to always give priority
to that child of the root that is not a leaf node (when there is
contention among the root’s children), and to schedule the rest
of the tree according to the equivalent linear network schedule.
From Theorem 2 in [6], we can verify the correctness of both
the optimal policy, and the structure of this class of trees.
Figures 7(b) and 7(c) show examples of Class IV and Class
V trees for the 1-hop interference model, respectively.

B. 2-hop

Consider tree structures for which no causal sample-path
optimal policy exist under the 2-hop interference model.
Since K

2 = 1, by Theorem 1, m0
2 > 0. sp(m0

1,m
0
2, 2) will

return FALSE if m0
1 + m0

2 > K + 1 = 3 when m0
2 = 1,

and m0
1 + m0

2 > K + 2 = 4 when m0
2 = 2. Therefore, there

exists no causal sample-path optimal policy for tree structures
for which m0

1 = 3 and m0
2 = 1, and m0

1 = 3 and m0
2 = 2.

Figure 8 shows an example of such tree structures.

0

A

B

C

(a) m0
1 = 3 and

m0
2 = 1

0

A

D
B

C

(b) m0
1 = 3 and

m0
2 = 2

Fig. 8. No causal sample-path optimal policy, K = 2

Indeed, if m0
1 = 3 and m0

2 = 1 (Figure 8(a)), suppose that
there is one packet at each node A and B at time slot 0. Since
node A is closer to the sink, we must schedule node A during
the first slot. However, if we do this, and a packet arrives
at node C at the beginning of the first slot, it would take
five additional time slots for the packets at B and C to reach
the sink. On the other hand, if we had scheduled B during
the first slot, then since A and C could have been scheduled
together, it would only take an additional four time slots for all
the packets to reach the sink. Thus, even a non-causal optimal
policy does not exist for this tree structure. Since there doesn’t
exist a sample-path optimal policy when m0

1 = 3 and m0
2 = 1,

there cannot exist a sample-path optimal policy when m0
1 = 3

and m0
2 = 2, for we can simply assume the same arrival pattern

in A, B, and C, and no packets in node D in Figure 8(b).
We now look at trees for which a causal sample-path

optimal policy exists under the 2-hop interference model.
Since K is even, we need to consider Classes I, III, IV, and
VI. By Corollary 1, if m0

2 > 0, the depth of the tree must be
bounded by K = 2. Therefore, we have the following two
cases for trees whose depth is bounded by K.
Class I: m0

2 = 1 and m0
1 ≤ 2, so that m0

1+m0
2 ≤ 3. Figure 9(a)

shows Class I trees for the 2-hop interference model. Clearly,
no two nodes in this tree can simultaneously transmit.
Class III: m0

2 = 2 and m0
2 = 2, so that m0

1+m0
2 = K+2 = 4.

Figure 9(b) shows Class III trees. The only nodes in this tree
that can simultaneously transmit are those at depth 2 from
node 0, and in different branches of node 0. For instance, A,
B, and C can simultaneously transmit.

For trees whose depth need not be bounded, we have the
following cases.
Class IV: At l = 0 and l = 1, we must have ml

2 ≤ l. There-
fore, m0

2 = 0, and m1
2 ≤ 1. Figure 10(a) shows an example

of this class of trees. These trees can be scheduled according
to a schedule in an equivalent linear network. Therefore, for
instance, nodes A and B in Figure 10(a) will not transmit
simultaneously even though they can potentially do so.
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0

(a) Class I

0

A B C

(b) Class III

Fig. 9. Examples of Class I and Class III trees for K = 2

Class VI: For this class, we only have the condition that
m0

2 = 0. m1
2 can be arbitrary. Figure 10(b) illustrates this

class. The different branches of node 1 can be scheduled
according to an equivalent linear network in each branch, as
explained for Class VI trees. However, the entire tree cannot
be scheduled according to an equivalent linear network,
since, for instance, node A and node B in Figure 10(b) must
transmit simultaneously if they both have packets to transmit.

0

BA

(a) Class IV

0

A B

(b) Class VI

Fig. 10. Examples of Class IV and Class VI trees for K = 2

Thus, we have illustrated our results for completely charac-
terizing the existence of causal sample-path optimal policies
for trees under the 1-hop and 2-hop interference models.

VII. CONCLUSION

We have studied the existence of causal sample-path
optimal policies that, at each time slot, minimize the sum of
the queue lengths of all the nodes in a multi-hop wireless
network with a tree topology under the K-hop interference
model, for any sample-path traffic arrival pattern. We provided
necessary and sufficient conditions for the existence of such
policies, and rigorously proved their correctness. We observed
that causal sample-path optimal policies exist for a large
class of trees. Surprisingly, in many cases, the tree can be
scheduled as if as the schedule is in an equivalent linear
network. On the other hand, the class of trees for which such
policies do not exist is also large. Further, we showed that
there are tree structures for which no sample-path optimal
policy (even policies that are not necessarily causal) exists.
This is a limitation of the sample-path metric, and hence this
emphasizes the need to study other metrics for delay.

APPENDIX

We recall the definition of a sample-path traffic arrival
pattern and a causal sample-path optimal scheduling policy
for a wireless networks as defined in [3], [4], [5].

Sample-path traffic arrival: Let A(t)|t ∈ {0, 1, 2, ...} be a
stochastic process, where A(t) is a random vector (repre-
senting traffic arrivals at nodes in the given network) on
the probability space (Ω,F , P ). For any fixed sample point
ω ∈ Ω, the function Aω(t) : t → A(t) is called a sample-
path of the stochastic process. In other words, considering
traffic arrivals as a stochastic process, any sample traffic arrival
pattern constitutes a sample-path of the stochastic process.
Sample-path optimal scheduling policy: A sample-path op-
timal scheduling policy for a wireless network is one for
which at each time slot, and for any sample-path traffic
arrival pattern, the sum of the queue lengths of all the nodes
in the network is minimum among all policies. Further, a
causal sample-path optimal scheduling policy is a sample-
path optimal scheduling policy that is also causal, i.e., the
scheduling decision at any given time slot is independent of
future traffic arrivals.

We first provide some notations, definitions, and results that
will be used in the sample-path optimality proofs of all the
classes of trees. Most of these notations and definitions are
similar to that defined in [3], and in [6] to prove sample-path
optimality in tree structures under the one-hop interference
model. Our proofs use some of the basic structure used in
the sample-path optimality proof for tandem networks in [3].
The reason is that the structure of the proofs developed in [3]
neither depends on the topology nor on the interference model.
Following the same structure, we first identify a relationship
between the location of a packet, and the time for it to reach
the sink. We then prove optimality in the absence of arrivals,
and finally prove optimality in the presence of arrivals. It is
important to note that while the structure is similar, with a
different topology as well as a different interference model,
the details of the proof are quite different.

1) Activation Set: A set of links that can be simultaneously
activated such that no two links interfere with each other
according to the K-hop interference model.

2) Activation Vector: A binary indicator vector i with one
element for each link (which is not zero if and only if
the link belongs to the activation set).

3) S: Set of all possible activation vectors.
4) Ai(t): Set of exogenous packet arrivals to node i at slot

t.
5) A(t): Vector of arrivals at all nodes during slot t.
6) Xi(t): Length of the queue of packets at node i by the

end of slot t. Xi(t) ≥ 0 ∀i.
7) X(t): X(t) = (Xi(t), i = 1, ..., N) is the vector of queue

lengths at all nodes at the end of slot t.
8) X: The queue length process {X(t)}∞t=1.
9) I(t): Indicator vector denoting the set of links activated

at time slot t. A link is activated only if the correspond-
ing node has packets to send.

10) πi: The stationary policy that schedules link acti-
vations at each time slot for Class i trees, i =
I, II, III, IV, V, V I .

11) gi(X(t): The activation vector corresponding to policy
πi for Class i trees, i = I, II, III, IV, V, V I .

For the convergecasting problem, the queue length vector
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evolves as X(t+ 1) = X(t) + RI(t+ 1) + A(t+ 1), where R
is an N ×N matrix with elements

rij =

 1, j is a child of i
−1, i = j
0, otherwise

(1)

Definition: Let X, Y be the queue length processes when
the initial queue length vectors are X(0) = x, Y(0) = y
respectively, there are no exogenous arrivals, and policy πi
schedules link activations for Class i trees. We say that the
vectors x and y are related with the partial ordering ≺ and we
write x ≺ y if for all t = 0, 1, ..., we have s(X(t)) ≤ s(Y(t)),
where s(x) =

∑
i∈V xi is the total number of packets in the

system when the state is x.
To each state x we define the departure times txi , i =

1, ..., s(x) and the positions dx
i , i = 1, ..., s(x) as follows.

Definition: Assume that the system is initially in state x,
there are no exogenous arrivals, and policy πj schedules link
activations for the given Class j tree. Let {X(t)}∞t=1 be the
corresponding queue length process. The time txi is defined as

txi = min{t : t > 0, s(X(t)) ≤ s(x)− i}, i = 1, ..., s(x), (2)

and the position dx
i is defined as the distance (number of

hops) from the sink at which the ith packet to exit the system
lies.

Since these definitions were previously defined for tandem
networks in [3], we provide an example to show how they
extend to a Class IV tree under a 1-hop interference model.
Consider the Class IV tree in Figure 11 with sink 0. Suppose
that in state x, node A has two packets, node B has one
packet, and node C has three packets. In the equivalent linear
network, node 1 would have two packets, and node 2 would
have four packets. According to the definitions above, dx

i = 1
for i ∈ {1, 2}, and dx

i = 2 for i ∈ {3, 4, 5, 6}. Also, we have
tx1 = 1, tx2 = 2, tx3 = 4, tx4 = 4, tx5 = 8, and tx6 = 10.
Irrespective of the way we order and schedule the packets
in nodes B and C, dx

i , and dx
i will remain the same for

state x for i ∈ {1, 2, 3, 4, 5, 6}. Ordering the packets in B
and C is equivalent to ordering the packets in node 2 in the
equivalent linear network. For simplicity, we can order the
packets from the left-most node to the right-most node among
nodes equidistant from the sink in order to obtain a unique
index and schedule for each packet. So the definitions of dx

i

and txi extend to the six classes of trees defined in this paper.

0 

A 

B C 

(2) 

(1) (3) 

0 

1 (2) 

2 (4) 

Class IV Tree Equivalent linear network 

Fig. 11. Example of Class IV tree and its corresponding equivalent linear
network

We now recall Lemma 3.2 in [3].

Lemma 1. For any two vectors x and y, we have x ≺ y if and
only if

txi ≤ t
y
i+k, i = 1, ..., s(x), (3)

where k = s(y)− s(x).

This lemma states that x ≺ y if and only if, for any i, the
time by which the ith packet in state x leaves the system is no
greater than the time by which the (i+ k)th packet in state y
leaves the system. The proof of this lemma can be found in [3].

We now prove the optimality of policy πIV for Class IV
trees. We first develop a relationship between txi and dx

i when
the network is scheduled according to policy πIV at each time
slot and there are no packet arrivals in the system.

Lemma 2. For Class IV trees, for all states x, txi is defined
as follows.

txi =


dx
i i = 1
i dx

i = 1
txi−1 + dx

i i > 1, 2 ≤ dx
i ≤ K

max(dx
i , t

x
i−1 +K + 1) i > 1, dx

i > K

(4)

Proof: Consider the system operated under policy πIV ,
with initial state x and there are no arrivals in the system.
Since the closest packet to the sink gets priority, the first
packet gets forwarded to the sink at each slot. Hence, tx1 = dx

1 .
If dx

i = 1, there are at least i packets at distance 1 to the sink.
Therefore, the ith packet will reach the destination at the end
of slot i. If i > 1 and dx

i > 1 and dx
i ≤ K, the ith packet is

located at a node that is dx
i hops away from the sink. Since

no two links can simultaneously transmit in the system, at
the slot at which the (i − 1)th packet reaches the sink, the
ith packet will still remain at the same node. Therefore, dx

i

slots after txi−1, the ith packet will reach the sink.
Suppose that i > 1 and dx

i > K. The proof for this case
is similar to that of Lemma 3.1 in [3]. However, since our
proof is for the K-hop interference model, and Lemma 3.1
only considers the 1-hop interference model, we provide the
details below. Consider the following cases.

Case 1: dx
i − txi−1 ≥ K + 1.

At any slot t < txi−1, the packet i − 1 should reside in a
node j in the original tree such that d(0, j) ≤ txi−1−t because
it should reach the destination in txi−1− t slots, and cannot be
forwarded faster than one hop during each slot. Also, at time
t, the packet i should reside in a node m such that d(0,m) ≥
dx
i − t since it cannot move faster towards the destination than

one hop per slot. Therefore we have d(0,m) ≥ dx
i − t ≥

txi−1 − t+K + 1 ≥ d(0, j) +K + 1. This implies that packet
i − 1 will be, at each slot t, at least K + 1 nodes closer to
the destination than packet i in both the original tree as well
as the equivalent linear network. Therefore packet i will be
the first packet in its queue, and all the nodes in the tree that
are one hop closer to the destination than the node at which
packet i currently is have no packets in their respective queues.
Therefore, packet i will be forwarded by one node towards
the destination at each slot. Hence, packet i will reach the
destination by the end of slot dx

i , i.e., txi = dx
i .
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Case 2: dx
i − txi−1 ≤ K.

If i > 1, dx
i > K, then txi ≥ txi−1 +K + 1. This is because

any packet which is not residing in a node at depth ≤ K from
the sink at t = 0, can reach one of these nodes only when there
are no packets left to schedule in any of these nodes, since
these nodes would be activated otherwise (as they are closer to
the root of the tree). This is only true because the tree is a Class
IV tree. This is not true for Class V and Class VI trees. Hence,
during the slot at which i−1 leaves the system, packet i will be
in node K+1 in the equivalent linear network (corresponding
to one of the nodes at depth K + 1 in the original tree) or
further away from the destination, and therefore it requires at
least K + 1 additional slots in order to reach the destination.

We now show that txi = txi−1 + K + 1. If packet i is for-
warded towards the destination by one node at each slot then it
will reach the destination by slot dx

i . However, this is impossi-
ble since dx

i −txi−1 ≤ K, and we need txi ≥ txi−1+K+1. This
means that at some slot, packet i is not forwarded from its node
(say node k). Suppose that packet i−1 was residing at node j
during this slot. Then we must have d(0, j) ≤ d(0, k)+K, i.e.,
in the equivalent linear network packet i − 1 is either in the
same node with i or in a node that is at most K hops in front of
i towards the destination. Therefore, at the slot at which i− 1
was not forwarded and at all subsequent slots until the time
packet i−1 leaves the system, packets i and i−1 cannot be in
two nodes m, n such that d(0,m)− d(0, n) > K + 1. There-
fore, K + 1 slots after the time packet i− 1 reaches node 0,
packet i also reaches node 0. Thus, txi = txi−1 +K + 1.

We now show that the partial ordering defined earlier
propagates in time if there are no exogenous arrivals in the
network. Specifically, we show that if we deviate from the
optimal scheduling policy during any given slot, and follow
the optimal policy for all the following slots until all packets
exit the system, the partial ordering is preserved.

Lemma 3. If we have x ≺ y, and i is an arbitrary activation
vector, then for u = x + RgIV (x) and z = y + Ri, we have
u ≺ z.

Proof: We show that for all i = 1, ..., s(u), we have tui ≤
tzi+s(z)−s(u). Hence, from Lemma 1, we can conclude that
u ≺ z. In order to prove this result, we show that the following
relations hold.
• s(u) = s(x)⇒ tui = txi − 1
• s(u) = s(x)− 1⇒ tui = txi+1 − 1

• s(z) = s(y)⇒ tzi ≥ t
y
i − 1

• s(z) = s(y)− 1⇒ tzi = t
y
i+1 − 1

Let s(y)− s(x) = k. We consider the following cases.
Case 1: s(u) = s(x) and s(z) = s(y).
In this case, we need to show that tui ≤ tzi+k, ∀ i =

1, ..., s(u).
Since u results from applying policy πIV , from the defini-

tion of departure times, it immediately follows that

tui = txi − 1. (5)

We now show that for any packet i, tzi ≥ t
y
i −1 by induction.

For i = 1, tz1 = dz
1, and ty1 = d

y
1 . Further, dz

1 ≥ d
y
1−1 since

a packet can at most go one hop closer to the sink during a

slot. Hence, tz1 ≥ d
y
1 − 1 = t

y
1 − 1.

Assume that the result is true for some packet i ≥ 1.
Consider packet i+ 1.
If dz

i+1 = 1, then tzi+1 = i+ 1. Also, dz
i+1 = 1 implies that

d
y
i+1 = 1 or dy

i+1 = 2. If dy
i+1 = 1, tyi+1 = i+1. On the other

hand, if dy
i+1 = 2, then there are i packets that are one-hop

away from the sink (since dz
i+1 = 1). Therefore, in this case,

t
y
i+1 = i+ 2. Thus, in either case, tzi+1 ≥ t

y
i+1 − 1.

If 2 ≤ dz
i+1 ≤ K, tzi+1 = tzi + dz

i+1. If dz
i+1 = d

y
i+1,

then this packet was not scheduled. Hence, tyi+1 = t
y
i + d

y
i+1.

Since tzi ≥ t
y
i − 1 by the induction hypothesis, it follows that

tzi+1 ≥ t
y
i+1 − 1. On the other hand, if dz

i+1 = d
y
i+1 − 1, then

no other packet closer to the sink could have been scheduled
because of the K-hop interference model. Hence, tzi = t

y
i .

Hence, we obtain tzi+1 = t
y
i+1 − 1.

If dz
i+1 > K, then tzi+1 = max(dz

i+1, t
z
i + K + 1). Since

dz
i+1 ≥ d

y
i+1 − 1, and by the induction hypothesis, we have

t
y
i+1− 1 = max(d

y
i+1, t

y
i +K+ 1)− 1 ≤ max(dz

i+1, t
z
i +K+

1) = tzi+1.
Hence, the result holds by induction for any packet i.
Since tui = txi − 1 ≤ tyi+k − 1 ≤ tzi+k, it follows that u ≺ z

in this case.
Case 2: s(u) = s(x)− 1, s(z) = s(y).
In this case, we need to show that tui ≤ tzi+k+1, ∀ i =

1, ..., s(u).
Since one packet exits the system according to policy πIV ,

the (i+ 1)th packet in the previous slot now becomes the ith

packet. Therefore, tui = txi+1 − 1.
For z, the situation is identical to that of Case 1. Therefore,

tzi ≥ t
y
i − 1. Therefore, it follows that tui ≤ tzi+k+1, ∀ i =

1, ..., s(u).
Case 3: s(u) = s(x)− 1, s(z) = s(y)− 1.
In this case, we need to show that tui ≤ tzi+k, ∀ i =

1, ..., s(u).
From Case 2 for u, we have tui = txi+1 − 1.
For state z, we now show by induction that tzi ≥ t

y
i+1 − 1.

i = 1: We have tz1 = dz
1 ≤ d

y
2 ≤ t

y
2 . If ty2 = d

y
2 , then

tz1 = dz
1 ≥ d

y
2 − 1 = t

y
2 − 1. Therefore, the result holds in

this case. On the other hand, if ty2 > d
y
2 , then the second

packet was at a node at distance ≤ K+1 from the sink at the
previous slot (otherwise, ty2 = d

y
2). Since the first packet was

scheduled, i.e., the closest packet to the sink was scheduled,
the second packet in state y cannot be scheduled, and the time
for all packets in the system to reach the sink decreases by 1.
In this case, tz1 = t

y
2 − 1. Therefore, tz1 ≥ t

y
2 − 1.

Assume that it holds for some i by the induction hypothesis.
i + 1: If dz

i+1 = 1, then since a packet in node 1 was
scheduled in the previous slot, dy

i+2 = 1. Hence, tzi+1 = i+ 1

and tyi+2 = i+ 2. Therefore, tzi+1 = t
y
i+2 − 1.

If 2 ≤ dz
i+1 ≤ K, since node 1 was scheduled, this packet

could not have been scheduled in the previous slot. However,
since the closest packet was scheduled, the time for this packet
to reach the sink decreases by 1. Therefore, tzi+1 = t

y
i+2 − 1.

If dz
i+1 > K, then dz

i+1 ≥ d
y
i+2 − 1, since it moves one

hop closer to the sink if scheduled, or stays at the same
distance, otherwise. Hence, by this relation and the induction
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hypothesis, we have tyi+2−1 = max(d
y
i+2, t

y
i+1+K+1)−1 ≤

max(dz
i+1, t

z
i +K + 1) = tzi+1.

Thus, by induction, tzi ≥ t
y
i+1 − 1 for all packets i.

Therefore, tzi+k ≥ t
y
i+k+1 − 1 ≥ txi+1 − 1 = tui .

Hence, it follows that tui ≤ t
z
i+k for this case.

Case 4: s(u) = s(x), s(z) = s(y)− 1.
In this case, we need to show that ∀i, tui ≤ t

z
i+k−1.

The case for u is identical to that in Case 1, and the case
for z is identical to that in Case 3. Therefore, tui = txi − 1,
and tzi+k−1 ≥ t

y
i+k − 1. Since tyi+k − 1 ≥ txi − 1, it follows

that tui ≤ t
z
i+k−1. Thus, we have shown that u ≺ z.

We now show that the ordering ≺ between two states is
preserved after a packet arrives at any network node. To be
precise, let ej be the vector which has all its elements equal
to zero except for the element j which is 1. Then we have
the following.

Lemma 4. If we have x ≺ y, then for all j ∈ V , we also have
x + ej ≺ y + ej .

Proof: Due to space limitations, we have provided
the proof as supplementary material (downloadable from
http://ieeexplore.ieee.org).

We now prove Theorem 7 for Class IV trees. We note that
the proof is identical to Theorem 3.1 in [3]. For the reader’s
convenience, we repeat the proof.
Proof of Theorem 7 for Class IV Trees:

Proof: For t = 0, we have XI(0) = X(0), and hence
XI(t) ≺ X(t) at t = 0. Assume that XI(t) ≺ X(t) is true for
some t. We show that it holds for t+ 1 as well. Let I(t+ 1)
be the activation vector under some policy π at t + 1. Then
from Lemma 3 we have

(XI(t) + RgI(XI(t))) ≺ X(t) + RI(t+ 1). (6)

Further, the arrival vector A(t + 1) can be written as∑
i∈V

Ai(t+ 1)ei.

Hence from Lemma 4 and the relation 6 we can see that

XI(t+ 1) = XI(t) + RgI(XI(t)) +
∑
i∈V

Ai(t+ 1)ei

≺ X(t) + RI(t+ 1) +
∑
i∈V

Ai(t+ 1)ei

= X(t+ 1). (7)
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