Supplementary Material

Proof of Lemma 4 for Class IV Trees

Lemma 4. If we have $\boldsymbol{x} \prec \boldsymbol{y}$, then for all $j \in V$, we also have $\boldsymbol{x}+\boldsymbol{e}_{j} \prec \boldsymbol{y}+\boldsymbol{e}_{j}$.

Proof: Let $\boldsymbol{u}=\boldsymbol{x}+\boldsymbol{e}_{j}$, and $\boldsymbol{z}=\boldsymbol{y}+\boldsymbol{e}_{j}$. Since $\boldsymbol{x} \prec \boldsymbol{y}$, $s(\boldsymbol{y})-s(\boldsymbol{x})=k \geq 0$. Thus, $s(\boldsymbol{z})-s(\boldsymbol{u})=k$.

We need to show that $\forall i=1,2, \ldots, s(\boldsymbol{x})+1$

$$
\begin{equation*}
t_{i}^{\boldsymbol{u}} \leq t_{i+k}^{\boldsymbol{z}} \tag{1}
\end{equation*}
$$

We now consider the following cases. Recall that policy $\pi_{I V}$ schedules the network with the new arrival as well.

Fig. 1. Lemma 4 Examples
Case 1: Packet i in state \boldsymbol{u} will reach the sink before the newly arrived packet, and packet $i+k$ in state z will also reach the sink before the newly arrived packet. Further, neither i nor $i+k$ is the newly arrived packet (see Figure 1(a)).

In this case, $t_{i}^{\boldsymbol{u}}=t_{i}^{\boldsymbol{x}}$ and $t_{i}^{\boldsymbol{z}}=t_{i}^{\boldsymbol{y}}$. Therefore, for all such packets, (1) holds.

Case 2: Packet i in state \boldsymbol{u} is either the newly arrived packet or will reach the sink only after the newly arrived packet reaches, and packet $i+k$ in state z will reach the sink before the newly arrived packet and is not the newly arrived packet (see Figure 1(b)).

In this case, the $i^{t h}$ packet in state \boldsymbol{x} becomes the $(i+1)^{t h}$ packet in state \boldsymbol{u}. We show that $t_{i}^{\boldsymbol{u}} \leq t_{i}^{\boldsymbol{x}}$ as follows. It is easy to see that $d_{i}^{\boldsymbol{u}} \leq d_{i}^{\boldsymbol{x}}$. Therefore, by Lemma $2, t_{i}^{\boldsymbol{u}} \leq t_{i}^{\boldsymbol{x}}$ if and only if $t_{i-1}^{\boldsymbol{u}} \leq t_{i-1}^{\boldsymbol{x}}$. Iteratively substitute i by $i-1$ until packet i is a packet that will reach the sink before the newly arrived packet. For this packet, from Case 1, we know that $t_{i}^{\boldsymbol{u}}=t_{i}^{\boldsymbol{x}}$. Hence, it follows that $t_{i}^{\boldsymbol{u}} \leq t_{i}^{\boldsymbol{x}}$ for all packets i that satisfy the condition in Case 2.

For packets in state z, the situation is the same as in Case 1 . Therefore, it follows that $t_{i}^{\boldsymbol{u}} \leq t_{i}^{\boldsymbol{x}} \leq t_{i+k}^{\boldsymbol{y}}=t_{i+k}^{\boldsymbol{z}}$.

Case 3: Packet i in state \boldsymbol{u} is either the newly arrived packet or will reach the sink before the newly arrived packet reaches,

(a) New packet arrives at node $d \leq$
$K \quad K$
Fig. 2. Lemma 4 Case 3 Examples
and packet $i+k$ in state z is either the newly arrived packet or will reach the sink after the newly arrived packet reaches (Figure 2).
We prove (1) by contradiction. Suppose that for some i, $t_{i}^{\boldsymbol{u}}>t_{i+k}^{z}$.

Suppose that the newly arrived packet is in one of the first K nodes in the equivalent linear network, say, at node $d \leq K$ (Figure 2(a)). Then $t_{i}^{\boldsymbol{u}}=t_{i-1}^{\boldsymbol{u}}+d_{i}^{\boldsymbol{u}}$, and $t_{i+k}^{\boldsymbol{z}} \geq t_{i+k-1}^{\boldsymbol{z}}+d$. Hence, $t_{i}^{\boldsymbol{u}}>t_{i+k}^{\boldsymbol{z}}$ implies that $t_{i-1}^{\boldsymbol{u}}>t_{i+k-1}^{\boldsymbol{z}^{2+k}}+d-d_{i}^{\boldsymbol{u}} \geq$ t_{i+k-1}^{z}. By iteratively substituting i by $i-1$, we either obtain $i=1$ in state \boldsymbol{u} or $i+k$ is a packet that reaches the sink before the newly arrived packet according to state z. If $i=1$, $t_{1}^{\boldsymbol{u}}=d_{1}^{\boldsymbol{u}} \leq d \leq t_{k+1}^{z}$, and thus we get a contradiction. If $i+k$ is a packet that reaches the sink before the newly arrived packet, then from Case 1, we get a contradiction. Hence, (1) must hold.

Suppose that the newly arrived packet arrives at a node $>K$ in the equivalent linear network, say, at node $d>K$ (Figure 2(b)). Suppose that for some $i, t_{i}^{\boldsymbol{u}}>t_{i+k}^{z}$. If i is a packet that lies in one of the first K nodes in state \boldsymbol{u}, using the same argument as above, we get a contradiction. Otherwise, if $t_{i}^{\boldsymbol{u}}=d_{i}^{\boldsymbol{u}} \leq d$, since $t_{i+k}^{z} \geq d$, we get a contradiction. If $t_{i}^{\boldsymbol{u}}=t_{i-1}^{\boldsymbol{u}}+K+1>t_{i+k}^{z_{i+k}} \geq t_{i+k-1}^{\boldsymbol{z}}+K+1$, this implies that $t_{i-1}^{\boldsymbol{u}}>t_{i+k-1}^{z}$. Hence, iteratively substituting i by $i-1$, and arguing as above, we again get a contradiction.

Hence, (1) holds for this case.
Case 4: Packet i in state \boldsymbol{u} reaches the sink after the newly arrived packet, and packet $i+k$ in state z is either the newly arrived packet or reaches the sink after the newly arrived packet.

Suppose that the new packet is the $m^{t h}$ packet to leave the system according to state \boldsymbol{u}, and the $n^{t h}$ packet to leave the system according to state z.

Since $i>m$, we have $d_{i}^{\boldsymbol{u}}=d_{i-1}^{\boldsymbol{x}}$. Similarly, when $i+k>n$

Fig. 3. Lemma 4 Case 4 Examples
we have $d_{i+k}^{\boldsymbol{z}}=d_{i+k-1}^{\boldsymbol{y}}$.
We first show that $t_{i+k}^{z} \geq t_{i+k-1}^{\boldsymbol{y}}$ when $i+k \geq n$.
For the base case, consider $i+k=n$: Since $t_{n}^{z} \geq t_{n-1}^{z}=$ $t_{n-1}^{\boldsymbol{y}}$, we have $t_{n}^{z} \geq t_{n-1}^{\boldsymbol{y}}$. Thus the result holds for $i+k=n$.

Assume that the result holds for $i+k=l>n$.
Consider $i+k=l+1$: If $t_{l+1}^{z}=\max \left(t_{l}^{z}+K+1, d_{l+1}^{z}\right)$, then $t_{l+1}^{z} \geq \max \left(t_{l-1}^{\boldsymbol{y}}+K+1, d_{l}^{\boldsymbol{y}}\right)=t_{l}^{\boldsymbol{y}}$, since $d_{l+1}^{z}=d_{l}^{\boldsymbol{y}^{+1}}$ and $t_{l}^{z} \geq t_{l-1}^{y}$. On the other hand, if $t_{l+1}^{z}=t_{l}^{z}+d_{l+1}^{z}$, it follows that $t_{l+1}^{z}=t_{l}^{z}+d_{l+1}^{z} \geq t_{l-1}^{y}+d_{l}^{y}=t_{l}^{y}$. Thus the result holds for $l+1$.

Therefore, by induction, $t_{i+k}^{z} \geq t_{i+k-1}^{\boldsymbol{y}} \forall i+k \geq n$.
We now distinguish the cases where the newly arrived packet is located in the equivalent linear network.

Suppose that the newly arrived packet arrived in a node d in the equivalent linear network such that $d \leq K$ (Figure). We have the following cases.

- Packet i in state \boldsymbol{u} lies in a node between d and $K+1$, and $i+k$ in z also lies in a node between d and $K+1$ in the equivalent linear network (Figure 3(a)): In this case, the arrival of the new packet increases the time for i and $i+k$ to reach the sink by d slots. Therefore, $t_{i}^{\boldsymbol{u}}=t_{i-1}^{\boldsymbol{x}}+d$ and $t_{i+k}^{z}=t_{i+k-1}^{\boldsymbol{y}}+d$. Since $\boldsymbol{x} \prec \boldsymbol{y}$, (1) holds.
- Packet i in state \boldsymbol{u} lies in a node $>K+1$, and $i+k$ in z lies in a node between d and $K+1$ in the equivalent linear network (Figure 3(b)): In this case, $t_{i}^{\boldsymbol{u}} \leq t_{i-1}^{x}+d$ and the situation is the same as in the previous case for packet $i+k$. Hence, (1) holds.
- Packet i in state \boldsymbol{u} lies in a node between d and $K+1$, and $i+k$ in z lies in a node $>K+1$ in the equivalent linear network (Figure 3(c)): In this case, we have $t_{i}^{\boldsymbol{u}}=$ $t_{i-1}^{\boldsymbol{u}}+d_{i}^{\boldsymbol{u}}$ where $d_{i_{z}}^{\boldsymbol{u}} \leq K+1$, and $t_{i+k}^{z} \geq t_{i+k-1}^{z}+K+1$. Hence, if $t_{i}^{\boldsymbol{u}}>t_{i+k}^{z}$, then $t_{i-1}^{\boldsymbol{u}}>t_{i+k-1}^{z}$. Iteratively substituting i by $i-1$, we either reach the newly arrived packet in state \boldsymbol{u} or we reach a packet $i+k$ in state z that lies in a node between d and $K+1$ in the equivalent linear network. In the former case, by Case 3, we get a contradiction. For the latter case, we get a contradiction
because of the previous case in this list. Hence, (1) holds.
- Packet i in state \boldsymbol{u} lies in a node $>K+1$, and $i+k$ in z also lies in a node $>K+1$ in the equivalent linear network (Figure 3(d)): We can again prove (1) by contradiction. Suppose that $t_{i}^{\boldsymbol{u}}>t_{i+k}^{z}$ for some i. We cannot have $t_{i}^{\boldsymbol{u}}=d_{i}^{\boldsymbol{u}}$ since in that case $t_{i-1}^{\boldsymbol{x}} \geq d_{i-1}^{\boldsymbol{x}}=d_{i}^{\boldsymbol{u}}=t_{i}^{\boldsymbol{u}}>t_{i+k}^{z_{i}} \geq t_{i+k-1}^{\boldsymbol{y}}$, which contradicts $\boldsymbol{x} \prec \boldsymbol{y}$. Hence we have $t_{i}^{\boldsymbol{u}}=t_{i-1}^{\boldsymbol{u}+\boldsymbol{u}}+K+1>$ $t_{i+k}^{z} \geq t_{i+k-1}^{z}+K+1$. Hence, $t_{i-1}^{\boldsymbol{u}}>t_{i+k-1}^{z}$. Iteratively substituting i by $i-1$, we either reach a situation where packet i is the newly arrived packet, or packet $i+k$ is a packet that lies in a node $b \leq K+1$. In either case, we obtain a contradiction since it falls under the previously listed scenarios. Hence, (1) holds.
Now, suppose that the newly arrived packet arrived in a node d in the equivalent linear network such that $d>K$. We can again prove (1) by contradiction. Suppose that $t_{i}^{\boldsymbol{u}}>$ t_{i+k}^{z} for some i. Since both i and $i+k$ now lie in nodes $>K$, by a similar argument as in the last possibility above, we must have $t_{i}^{u}=t_{i-1}^{u}+K+1>t_{i+k}^{z} \geq t_{i+k-1}^{z}+K+1$. Hence, $t_{i-1}^{u}>t_{i+k-1}^{z}$. Again, by iteratively substituting i by $i-1$, we either reach a situation where packet i is the newly arrived packet, or packet $i+k$ is a packet that reaches the sink before the newly arrived packet. In the former case, we get a contradiction from Case 3, and in the latter case, we get a contradiction from Case 2. Thus, (1) holds in this case.

From these four cases, the result holds.

