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ABSTRACT
In this paper, we characterize the throughput of a broadcast
network with n receivers using rateless codes with block size
K. We assume that the underlying channel is a Markov mod-
ulated erasure channel that is i.i.d. across users, but can be
correlated in time. We characterize the system throughput
asymptotically in n. Specifically, we explicitly show how the
throughput behaves for different values of the coding block
size K as a function of n, as n approaches infinity. Under the
more restrictive assumption of memoryless channels, we are
able to provide a lower bound on the maximum achievable
throughput for any finite values of K and n. Using simu-
lations we show the tightness of the bound with respect to
system parameters n and K, and find that its performance is
significantly better than the previously known lower bound.

Categories and Subject Descriptors
C.2 [Computer-Communication Networks]: Miscellaneous

General Terms
Performance

Keywords
Broadcast erasure channel, Markov modulated channel, rate-
less erasure code, random linear network code, throughput,
achievable rate

1. INTRODUCTION
In this work, we study the throughput of a wireless broad-

cast network with n receivers using rateless codes. In this
broadcast network, channels between the transmitter and the
receivers are modeled as packet erasure channels where trans-
mitted packets may either be erased or be successfully re-
ceived. This model describes a situation where packets may
get lost or are not decodable at the receiver due to a variety
of factors such as channel fading, interference or checksum
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errors. We assume that the underlying channel is a Markov
modulated packet erasure channel that is i.i.d. across users,
but can be correlated in time. We let γ denote the steady
state probability that a packet is transmitted successfully on
the erasure channel.

Instead of transmitting the broadcast data packet one af-
ter another through feedback and retransmissions, we inves-
tigate a class of coding schemes called rateless codes (or foun-
tain codes). In this coding scheme, K broadcast packets are
encoded together prior to transmission. K is called the coding
block size. A rateless encoder views these K packets as K in-
put symbols and can generate an arbitrary number of output
symbols (which we call coded packets) as needed until the
coding block is decoded. Although some coded packets may
get lost during the transmission, rateless decoder can guaran-
tee that any K(1 + ε) coded packets can recover the original
K packets with high probability, where ε is a positive number
that can be made arbitrarily small at the cost of coding com-
plexity. Examples of rateless erasure codes include Raptor
code [8], LT Code [4] and random linear network code [3],
where the former two are used when K is very large and ran-
dom linear network code is used when K is relatively small
and the symbol space of packets is large. The best encod-
ing and decoding complexity of rateless codes (e.g. Raptor
codes) increase linearly as the coding block size K increases.
Further, increasing the coding block size can result in large
delays and large receiver buffer size. Therefore, real systems
always have an upper bound on the value of K.

We consider broadcast traffic and a discrete time queueing
model, where the numbers of packet arrivals over different
time slots are independent and identically distributed and the
packet length is a fixed value. We let λ denote the packet ar-
rival rate and assume that the encoder waits until there are
at least K packets in the queue and then encodes the first
K of them as a single coding block. In this case, the largest
arrival rate that can be stabilized is equal to the average num-
ber of packets that can be transmitted per slot, which we call
the throughput. Therefore, we only need to characterize the
throughput that can be achieved using rateless codes under
parameters K and n. As described in Figure 1, the channel
dynamics for the ith receiver is denoted by a stochastic process
{Xij}j∈N, where j is the index of the time slot in which one
packet can be transmitted and Xij is the channel state of ith

receiver during the transmission of the jth packet. We capture
a fairly general correlation structure by letting the current
channel state be impacted by the channel states in previous
l time slots, where l can be any number. As the number of
receivers n approaches infinity, we show that the throughput



is nonzero only if the coding block size K increases at least as
fast as logn. In other words, if c , limn→∞

K
logn

, the asymp-
totic1 throughput is positive whenever c > 0. In Theorem 1,
by utilizing large deviation techniques, we give an explicit ex-
pression of the asymptotic throughput, which is a function of
K, n, γ and the channel correlation structure.

Arrival with rate λ

K:
coding block size

n: number of receivers

{X1j} {X2j} {Xnj}

Figure 1: Broadcast with discrete time queueing model

To study the non-asymptotic behavior of the system, we
make a more restrictive assumption that the channels are
memoryless, which is a special case of the correlated channel
model with l = 0. In other words, the erasure probability of
every receiver channel at any time slot is 1−γ. In this case, we
show that, when K

logn
is kept to be a constant, the throughput

will follow a decreasing pattern as the number of receivers n
increases. By combining this result with the characterization
of the asymptotic throughput, we are able to provide a lower
bound on the maximum achievable throughput for any finite
values of K and n. This lower bound captures the asymptotic
throughput in the sense that when n approaches infinity, it
coincides with the asymptotic throughput.

1.1 Related Work
Among the works that investigate the throughput over era-

sure channels, [1], [9] and [7] are the most relevant to this
work. In [9], the authors investigate the asymptotic through-
put as a function of n and K and also show that the asymp-
totic throughput will be non-zero only if K at least scales with
logn. However, they only consider the channel correlation
model with l = 1 and use a completely different proof tech-
nique. Moreover, no explicit expression on the asymptotic
throughput is provided. In [1], a lower bound is provided
on the maximum achievable rate λ of this paper. However,
their bound does not converge to the asymptotic throughput
when n approaches infinity. Further, their bound is only valid
for K > 16 while our result is applicable for any values of
K. Moreover, our bound is shown to be better in a variety of
simulation settings with finite K and n, as will be showed in
Section 5. In [7], the authors consider the case when instant
feedback is provided from every user after the transmission of

1the asymptotic is with respect to increasing the number of
receivers n

each decoded packets while we only assume that feedback is
provided after the entire coding block has been decoded.

1.2 Key Contributions
The main contributions of this work are summarized as fol-

lows:

• We give an explicit expression of the asymptotic through-
put of the system when the number of receivers n ap-
proaches infinity with different scales of K and n under
the erasure channel with any levels of correlation. (The-
orem 1)

• Under a more restrictive assumption that channels are
memoryless, we reveal that when K grows with n in a
way that the ratio K

logn
is kept a constant, the through-

put will follow a decreasing pattern as n increases, which
tells us that for a quadratic increase of network size n,
we need to have the coding block sizeK more than dou-
bled in order to get the same throughput. (Theorem 2)

• We provide a lower bound on the maximum achiev-
able throughput for any finite values of K and n under
the memoryless channel assumption and show that its
performance is significantly better than the previously
known bound in [1]. (Theorem 3)

The rest of this paper is organized as follows. In Section 2
we describe our model and assumptions. In Section 3 we give
the characterization of asymptotic throughput. In Section 4
we provide a lower bound on the maximum achievable rate
for any finite values of K and n. In Section 5 we use simu-
lations to verify our theoretical results. Detailed proofs on all
the theorems can be found in Section 6. Finally, in Section 7,
we conclude the paper.

2. SYSTEM MODEL
We consider a broadcast channel with n receivers. Time

is slotted, and the numbers of broadcast packet arrivals over
different time slots are i.i.d. with finite variance. We denote
the expected number of packet arrivals per slot as the packet
arrival rate λ. The transmission starts when there are more
than K packets waiting in the incoming queue intended for
all the receivers. Instead of transmitting these packets one
after another using feedback and retransmissions, we view
each data packet as a symbol and encode the first K of them
into an arbitrary number of coded symbols as needed using
rateless code (For example, Raptor Code [8] or random linear
network code [3]) until the coding block is decoded. These
K packets together form a single coding block with K being
called block size. During the transmission, the coded symbols
are transmitted one after another.

Each receiver send an ACK feedback signal after it has suc-
cessfully decoded theK packets. In the following context, the
term packet and symbol are used interchangeably.

We model the broadcast channel as a slotted broadcast packet
erasure channel where one packet can be transmitted per slot.
The channel dynamics can be represented by a stochastic pro-
cess {Xij}1≤i≤n,j∈N, where Xij is the state of channel be-
tween transmitter and the ith receiver during the transmis-
sion of jth packet (we also call it the jth time slot in the ith



channel), which is given by

Xij =

 1 jth packet in the ith channel is
successfully received

0 otherwise
.

We assume that the dynamics of the channels for different re-
ceivers are independent and identical. More precisely, for all
1 ≤ i ≤ n, {Xij}j≥1 are independent and identical processes.

Since, in practice, the channel dynamics are often tem-
porarily correlated, we investigate the situation where the
current channel state distribution depends on the channel
states in the preceding l time slots. More specifically, for
Fim = {Xij}j≤m and fixed l, we define Him = {Xim, . . . ,
Xi(m−l+1)} for m ≥ l ≥ 1 with Him = {∅,Ω} for l =
0, and assume that P[Xi(m+1) = 1|Fim] = P[Xi(m+1) =
1|Him] for all m ≥ l. To put it another way, when l ≥
1, the state

(
Xim, . . . , Xi(m−l+1)

)
, m ≥ l forms a Markov

chain. Denote by Π the transition matrix of the Markov chain{(
Xim, . . . , Xi(m−l+1)

)}
m≥l, where

Π = [π(s, u)]s,u∈{0,1}l ,

with π(s, u) being the one-step transition probability from
state s to state u. Throughout this paper, we assume that Π
is irreducible and aperiodic, which ensures that this Markov
chain is ergodic [6]. Therefore, for any initial value Hl, the
parameter γi is well defined and given by

γi = lim
m→∞

P[Xim = 1],

and, from the ergodic theorem [6] we know

P

[
lim
m→∞

∑m
j=1 Xij

m
= γi

]
= 1.

Since {Xij}j≥1 for all 1 ≤ i ≤ n are i.i.d., we denote γ = γi,
for all 1 ≤ i ≤ n.

Using near optimal rateless codes, such as Raptor Code
[8], LT Code [4] and random linear network code [3], only
slightly more than K coded symbols are needed to decode
the whole coding block. For simplicity, here we assume that
any combination of K coded symbols can lead to a successful
decoding of the K packets.

According to the above system model, we have the follow-
ing definitions:

DEFINITION 1. The number of time slots (number of trans-
mitted coded symbols) needed for user i to successfully decode
K packets is defined as

Ti(K) = min
m

{
m∑
j=1

Xij ≥ K

}
.

DEFINITION 2. The number of time slots (number of trans-
mitted coded symbols) needed to complete the transmission of a
single coding block to all the receivers is defined as

T (n,K) = max {Ti(K), i = 1, 2, . . . , n} .

DEFINITION 3 (INITIAL STATE). Since the current channel
state depends on the channel states in the previous l time-slots,
for each receiver i, by assuming that the system starts at time
slot 1, we define the initial state of receiver i as

Ei =
{
Xi(−l+1), Xi(−l+2), . . . , Xi0

}
.

The initial states for all the receivers is then denoted as E ,
∪ni=1Ei.

DEFINITION 4 (THROUGHPUT). Under an initial state E ,
the average number of packets that can be successfully trans-
mitted per slot is defined as

η(n,K, E) =
K

E[T (n,K)|E ]
,

which we call the throughput under initial condition E . In the
special case where the channel states are i.i.d. (l = 0), we know
that E = ∅ and we can denote the throughput as

η(n,K) =
K

E[T (n,K)]
. (1)

3. ASYMPTOTIC THROUGHPUT
Before presenting the main results, we need to introduce

some necessary definitions. First, define a mapping f from
the state space of the Markov chain {0, 1}l to {0, 1} as

f
(
(Xim, . . . , Xi(m−l+1))

)
= Xim.

Then, given a real number θ, we define a matrix Πθ as

Πθ =

{ [
π(s, u)eθf(u)

]
s,u∈{0,1}l

when l ≥ 1[
γeθ
]

when l = 0
.

Last, define a standard large deviation rate function Λ(β,Π)
as

Λ(β,Π) = sup
θ
{θβ − log ρ(Πθ)}, (2)

where ρ(Πθ) denotes the Perron-Frobenious eigenvalue of Πθ

(See Theorem 3.1.1 in [2]), which is the largest eigenvalue of
Πθ.

The asymptotic throughput for any values of K as a func-
tion of n under any initial condition E is characterized by the
theorem below:

THEOREM 1. Assume that K is a function of n and the value
of limn→∞

K
logn

exists, which we denote as c , limn→∞
K

logn
,

then for any initial state E we have

lim
n→∞

η(n,K, E) = sup

{
β

∣∣∣∣c ≥ β

Λ(β,Π)
, 0 ≤ β < γ

}
. (3)

PROOF. see Section 6.1.

From Theorem 1, we know that, if the coding block size K is
set to be a function of the network size n, then we can charac-
terize the asymptotic throughput when n approaches infinity
in an explicit form. Equation (3) shows that the asymptotic
throughput is irrelevant to the initial state E and is a func-
tion of γ, limn→∞

K
logn

and the channel correlation structure
indicated by Π.

By Theorem 1, the asymptotic throughput in the special
cases when K ∈ o(logn) and K ∈ ω(logn) are given in the
following corollary.

COROLLARY 1.1. AssumeK is a function of n, for any initial
state E we have

1. if K ∈ o(logn), then2

lim
n→∞

η(n,K, E) = 0.

2We use standard notations: f(n) = o(g(n))

if limn→∞
f(n)
g(n)

= 0 and f(n) = ω(g(n)) if limn→∞
f(n)
g(n)

di-
verges



2. if K ∈ ω(logn), then

lim
n→∞

η(n,K, E) = γ.

PROOF. 1) If K ∈ o(logn), then c = limn→∞
K

logn
= 0 and

we have {
β

∣∣∣∣c ≥ β

Λ(β,Π)
, 0 ≤ β < γ

}
= {0} .

According to Theorem 1, we get

lim
n→∞

η(n,K, E) = sup{0} = 0.

2) If K ∈ ω(logn), then c = limn→∞
K

logn
=∞ and we have{

β

∣∣∣∣c ≥ β

Λ(β,Π)
, 0 ≤ β < γ

}
= [0, γ).

According to Theorem 1, we get

lim
n→∞

η(n,K, E) = sup[0, γ) = γ.

Corollary 1.1 says that the throughput will vanish to 0 as
the increase of n, when K does not scale as fast as logn.
Whereas when K scales faster than logn (Or more specifi-
cally, when K ∈ ω(logn)), the capacity of this system γ can
be approached. It should be noted that Theorem 1, together
with Corollary 1.1, are a generalized version of Theorem 1 in
[9], which only consider the case when l = 1 and does not
give the explicit expression of asymptotic throughput.

For the special case when the channels are memoryless (l =
0), we can compute Λ(β,Π) explicitly, as shown in the corol-
lary below

COROLLARY 1.2. Assume that K is function of n and the
channels are memoryless (l = 0), we have
if limn→∞

K
logn

= c, where c is a positive constant, then

lim
n→∞

η(n,K) =

sup

{
β

∣∣∣∣ log
β

γ
+

1− β
β

log
1− β
1− γ ≥

1

c
, 0 ≤ β < γ

}
. (4)

PROOF. When l = 0, Πθ = [γeθ] is a degenerate matrix
with a single entry and ρ(Πθ) = ρ(γeθ) = γeθ. Therefore we
have, according to Equation (2)

Λ(β,Π) = β log
β

γ
+ (1− β) log

1− β
1− γ .

4. MAXIMUM ACHIEVABLE THROUGH-
PUT

For all rateless coding schemes, the encoding and decod-
ing complexity increases linearly in K, the size of the cod-
ing block. Moreover, the value of K determines the receiver
buffer size. Therefore, in reality, the value of K is often lim-
ited by the decoder buffer size or the computational power of
both sender and receiver. Then we have to consider the case
when K is finite and need to answer the following questions:
For a given number of receivers n, channel statistics, and a
maximum available coding block size K, what is maximum
packet arrival rate λ that can be supported by this given sys-
tem? For a specific number of receivers and channel statistics,

if we are given a target packet arrival rate λ, how can we de-
sign the value of K in the system such that the target arrival
rate can be supported?

In order to answer these questions, we make a more restric-
tive assumption in this section that channels are memoryless,
meaning that the channel states are i.i.d. across different time
slots. Based on this assumption, in the theorem below, we are
able to show that when we keep the value of K/ logn to be a
constant as we increase K or n, the throughput will follow a
decreasing pattern. We leave the case when l > 0 for future
study.

THEOREM 2. When the channels are memoryless (l = 0),
for any n ∈ N,K ∈ N and α ∈ N, we have

η(nα, αK) < η(n,K).

REMARK 2.1. While Theorem 1 tells us that in order to achieve
a nonzero throughput, we can double the coding block sizeK for
every quadratic increase of n, which is to make K/ logn a fixed
value, it does not tell us anything about how the throughput
will converge as n approaches infinity. This theorem indicates
that under the memoryless channel assumption, if we adapt the
coding block size K with the increase of network size n in a
way that K/ logn is kept as a fixed value, then the throughput
will follow a decreasing pattern before it reaches the asymptotic
throughput.

REMARK 2.2. For the case when the channels are correlated,
the expected transmission time for a single coding block varies
under different initial states E . It is technically difficult to obtain
the steady state distribution of initial state E across different
transmissions. Therefore, it is not clear whether this inequality
will hold for l > 0.

PROOF. see Section 6.2.

By the help of the above theorem, we can get a lower bound
on the maximum stable throughput that can be achieved for
any finite values of coding block size K and network size n,
as shown in the theorem below.

THEOREM 3. For a broadcast network with n receivers, cod-
ing block size K and packet arrive rate λ, when the erasure
broadcast channels are memoryless (l = 0) with erasure proba-
bility 1− γ, the system is stable if

λ ≤ R
(

logn

K

)
,

where

R (r) = sup

{
β

∣∣∣∣∣ log
β

γ
+

1− β
β

log
1− β
1− γ ≥ r, 0 ≤ β < γ

}
.

PROOF. From Equation (10) in Lemma 1 we can see that
when K and n are finite, the transmission time of a coding
block T (n,K) is light-tail distributed, meaning that it has fi-
nite variance. Then according to [5] we know that the queue
will be stable if the traffic intensity of this queue, which is de-
fined as the packet arrival rate λ over the service rate, is less
than 1. Therefore, the queue will be stable if the arrival rate
λ satisfies

λ < sup

{
µ

∣∣∣∣ µ

K/E[T (n,K)]
< 1

}
=

K

E[T (n,K)]
= η(n,K). (5)



By Theorem 2 we know that η(n,K) > η(nα, αK) for any
integer values of α, therefore we have

η(n,K) > lim
α→∞

η(nα, αK). (6)

Since αK
lognα

= K
logn

for any value of α, then by applying The-
orem 1 and Corollary 1.2, we get

lim
α→∞

η(nα, αK) =

sup

{
β

∣∣∣∣ log
β

γ
+

1− β
β

log
1− β
1− γ ≥

logn

K
, 0 ≤ β < γ

}
= R

(
logn

K

)
,

which, by combining Equation (5) and Equation (6), com-
pletes the proof.

In order to compare this lower bound on the maximum
achievable rate with the existing bound given in [1], we re-
state Theorem 2 in [1] as the following

THEOREM 4 (THEOREM 2 IN [1]). For a broadcast network
with n receivers, coding block length K > 16 and packet arrive
rate λ, when the erasure broadcast channels are memoryless
(l = 0) with erasure probability 1− γ, the system is stable if

λ <
(1− γ)K

K + (logn+ 0.78)
√
K + 2.61

. (7)

For the ease of notation let us denote the bounds given in
Theorem 4 as CSE bound using the initials of the authors’ last
name.

Firstly we should notice that CSE bound is only valid when
K > 16, while there is no such restriction for our bound. Sec-
ondly, our bound converges to the asymptotic throughput in
the sense that as n approaches infinity while keepingK/ logn
as a constant c, our bound on the maximum achievable rate
will converge to the asymptotic throughput with parameter c.
Or more specifically,

lim
n→∞

η(n,K) = lim
n→∞

R
(

logn

K

)
= R

(
1

c

)
, (8)

which can be seen from Theorem 1 and Theorem 3. However,
in the CSE bound, when we keep the ratio K/ logn to be a
constant c, as n or K approaches infinity, the bound will be-
come trial (approach 0), which can be seen from the equation
below.

lim
K→∞

(1− γ)K

K + (logn+ 0.78)
√
K + 2.61

= lim
K→∞

(1− γ)

1 + (1/c+ 0.78/K)
√
K + 2.61/K

=0. (9)

Next, in Section 5, we show that our bound outperforms CSE
bound under various simulation settings.

5. SIMULATION
In this Section, we conduct simulation experiments to verify

our main results.
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Figure 2: Illustration for example 1

5.1 Example 1
This example verifies both Theorem 1 and Theorem 2. We

choose a memoryless channel with γ = 0.5. By keeping
K/ logn as a constant 5/ log 2, we change K from 5 to 100
and calculate the maximum achievable rate, which is η(n,K),
through simulations for each pair of (K,n). Since the value of
our bound is a function of the ratio K/ logn, in this case, it is
a constant for allK and is equal to the asymptotic throughput
with a parameter 5/ log 2. From Figure 2 we can see that asK
approaches infinity, the maximum achievable rate converges
to our lower bound (which is also the asymptotic through-
put in this case) in a decreasing manner, which validates both
Theorem 1 and Theorem 2.

In this case, we also plotted the CSE lower bound given
by Theorem 4 and we can see that CSE bound gradually ap-
proaches zero as indicated by Equation (9) while our bound
is a constant value and is asymptotically tight.

5.2 Example 2
In this example, we conduct three set of experiments with

different values of K as a function of n and show that our
bound outperforms CSE bound in all these simulation set-
tings.

In the first case, we set the coding block size K to be the
same as the network size n and change n from 5 to 100. We
plot the simulation result of the maximum achievable rate
as well as our bound and CSE bound in Figure 3a, since in
this case K scales faster than logn, the achievable rate will
approach system capacity γ as the network size n grows.

In the second case, we assume that the number of receivers
is fixed to be 10 and we increase coding block size K from 5
to 100. The simulations result, together with the two bounds,
are plotted in Figure 3b. In this case, the achievable rate will
also approach system capacity γ as n increases.

In the final case, as shown in Figure 3c, we keep the coding
block size to be a constant 20 and increase the number of
receivers from 5 to 100. Since K does not increase with logn
at all, the achievable rate will vanish to 0 as n grows.

From Figure 2, 3a, 3b and 3c, we can see that our bound
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(a) n=K
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(b) n=10
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(c) K=20

Figure 3: Illustration for example 2

obtained by Theorem 3 is significantly better than the lower
bound achieved in [1] in all these four different cases.

6. PROOFS

6.1 Proof of Theorem 1
In order to prove Theorem 1, we first need the following

lemmas (Lemma 1, Lemma 2 and Lemma 3).

LEMMA 1. For any β ∈ (0, 1) and any values of E , we have

P
[
T (n,K) >

k

β

∣∣∣K = k, E
]

=1−
(

1− e−
k
β

Λ(β,Π)1(β<γ)+g(β,k,E)
)n

, (10)

where

g(β, k, E) ∈
{
o(k) as k →∞ if β < γ
o(1) as k →∞ if β > γ

.

PROOF OF LEMMA (1). From definition (1) and (2), we have,
for any t,

{T (n,K) ≤ t, E} =
n⋂
i=1

{Ti(K) ≤ t, Ei} .

Therefore, we have

P[T (n,K) > t|K = k, E ]

=1− P[T (n,K) ≤ t|K = k, E ]

=1−
n∏
i=1

(1− P[Ti(K) > t|K = k, Ei]) . (11)

Let t = k
β

, from definition 1 we can get, for any 1 ≤ i ≤ n,

P
[
Ti(K) >

k

β

∣∣∣K = k, Ei
]

=P

k/β∑
j=1

Xij < k

∣∣∣∣∣Ei


=P

[∑k/β
j=1 Xij

k/β
< β

∣∣∣∣∣Ei
]
.

and

lim
k→∞

log P
[
Ti(K) > k

β

∣∣∣K = k, Ei
]

k/β
= −Λ(β,Π)1(β < γ),

(12)

with the last equation being a direct application of Theorem
3.1.2 in [2] (Gärtner-Ellis Theorem for finite state Markov
chains). Notice that the right hand side of Equation (12) is
fixed for all possible values of i and Ei as long as the values
of β and Π are fixed. Then the proof completes by combining
(11) and (12).

LEMMA 2. Assume k is a function of n and denote k := k(n),
and define f(k, β, E) := e

k
β

Λ(β,Π)1(β<γ)−g(β,k,E), then we have

1. For a fixed β ∈ (0, 1), if limn→∞
n

f(k(n),β,E)
= 0, then

lim
n→∞

P
[
T (n,K) >

k(n)

β

∣∣∣K = k(n), E
]

= 0. (13)

2. For a fixed β ∈ (0, 1), if limn→∞
n

f(k(n),β,E)
=∞, then

lim
n→∞

P
[
T (n,K) >

k(n)

β

∣∣∣K = k(n), E
]

= 1. (14)

PROOF OF LEMMA 2. According to Lemma 1 and the defi-
nition of f(k(n), β, E), we have

P
[
T (n,K) >

k(n)

β

∣∣∣K = k(n), E
]

=1−
(

1− 1

f(k(n), β, E)

)n
=1−

[(
1− 1

f(k(n), β, E)

)f(k(n),β,E)
] n
f(k(n),β,E)

.

Since the function
(
1− 1

x

)x with domain (1,+∞) is a bounded
and strictly increasing function with region (0, e−1) and the
fact that f(k, β) > 1, we know that if limn→∞

n
f(k(n),β,E)

=



∞, then

lim inf
n→∞

P
[
T (n,K) >

k(n)

β

∣∣∣K = k(n), E
]

=1− lim sup
n→∞

[(
1− 1

f(k(n), β, E)

)f(k(n),β,E)
] n
f(k(n),β,E)

≥1− lim sup
n→∞

e
− n
f(k(n),β,E)

=1,

which, together with the fact that P
[
T (n,K) > k(n)

β

∣∣K =

k(n), E
]
≤ 1, yields Equation (14).

If limn→∞
n

f(k(n),β,E)
= 0, then f(k(n), β, E)→∞ as n→

∞, which results in

lim
n→∞

(
1− 1

f(k(n), β, E)

)f(k(n),β,E)

= e−1.

Then we can obtain

lim sup
n→∞

P
[
T (n,K) >

k(n)

β

∣∣∣K = k(n), E
]

=1− lim inf
n→∞

[(
1− 1

f(k(n), β, E)

)f(k(n),β,E)
] n
f(k(n),β,E)

=1−

lim inf
n→∞

[
lim
n→∞

(
1− 1

f(k(n), β, E)

)f(k(n),β,E)
] n
f(k(n),β,E)

=1− 1 = 0,

which leads to Equation (13).

LEMMA 3. Let {hn(x)} be a set of Lebesgue measurable func-
tions defined on [0,∞) and hn(x) converges to 1(x < y) almost
everywhere for some y > 0. If hn(x) is a decreasing function of
x and have the range [0, 1] for any n ∈ N, then hn(x) converges
globally in measure to 1(x < y).

PROOF. Choose ε > 0. Since hn(x) converges to 1(x < y)
almost everywhere, for any δ > 0, we can find N ∈ N such
that for any n > N , we have

|hn (y − δ/2)− 1| < ε

|hn (y + δ/2)− 0| < ε.

Since 0 ≤ hn(x) ≤ 1 for any x ∈ [0,∞) and hn(x) is a de-
creasing function of x, we know that, for any n > M ,

hn(x) > 1− ε ∀x < y − δ/2
hn(x) < ε ∀x > y + δ/2.

Therefore, for any n > N ,

ν ({|hn(x)− 1(x < y)| > ε})
<ν([y − δ/2, y]) + ν([y, y + δ/2]) = δ,

where ν is the Lebesgue measure. Since ε and δ are arbi-
trarily chosen, from the above inequality we know that hn(x)
converges globally in measure to 1(x < y).

With Lemma 1,2 and 3 established, we now turn to the
proof of Theorem 1.

PROOF OF THEOREM 1. Since K is assumed to be a func-
tion of n, we denote this function as k(n). According to defi-
nition 4 we have, for any values of E ,

lim
n→∞

(η(n,K, E))−1

= lim
n→∞

E
[
T (n,K)

K

∣∣∣E]
= lim
n→∞

∫ ∞
0

P [T (n,K) > s|K = k(n), E ]

k(n)
ds

= lim
n→∞

∫ ∞
0

P [T (n,K) > k(n)u|K = k(n), E ] du. (15)

According to the assumption that limn→∞ k(n)/ log(n) = c,
we have

lim
n→∞

n

e
k(n)
β

Λ(β,Π)1(β<γ)−g(β,k,E)

=

{
0 c > β

Λ(β,Π)1(β<γ)

∞ c < β
Λ(β,Π)1(β<γ)

.

Since β
Λ(β,Π)1(β<γ)

|β=0 = 0, limβ→γ−
β

Λ(β,Π)1(β<γ)
= ∞ and

β
Λ(β,Π)1(β<γ)

is a monotone increasing function on the do-

main (0, γ), the equation c = β
Λ(β,Π)1(β<γ)

has only one solu-
tion of β, which we denote as

βc = sup

{
β
∣∣∣c ≥ β

Λ(β,Π)
, 0 ≤ β < γ

}
.

Then by Lemma 2 we get

lim
n→∞

P
[
T (n,K) > k(n)u

∣∣K = k(n), E
]

=

{
1 if u < 1

βc

0 if u > 1
βc

. (16)

Let us denote hn(u) = P
[
T (n,K) > k(n)u

∣∣K = k(n), E
]
.

Equation (16) implies that hn(u) converges to 1(u < 1/βc)
pointwisely. Since hn(u) is a decreasing function of u and has
the range [0, 1] for all n, by Lemma 3 we know that hn(u)
globally converges in measure to 1(u < 1/βc). We also know
that the set of function {hn(u)} is uniformly bounded. Then
we can apply Vitali convergence theory to Equation (15) to
exchange the limit and integral and obtain

lim
n→∞

E
[
T (n,K)

K

∣∣∣E]
=

∫ ∞
0

lim
n→∞

P
[
T (n,K) > k(n)u

∣∣K = k(n), E
]
du =

1

βc
,

which, by combining Equation (15), completes the proof.

6.2 Proof of Theorem 2.
PROOF. When the channel states are i.i.d., according to

definition 1 and 2, T (n,K) and T (nα, αK) can be expressed
as

T (n,K) = max
1≤i≤n

K∑
j=1

Tij

T (nα, αK) = max
1≤i≤nα

αK∑
j=1

Tij ,



where {Tij}i∈N,j∈N are i.i.d. geometric random variables with
parameter γ. Let us deonte

Sri =

rK∑
j=1+(r−1)K

Tij .

Then we know that {Sri }i∈N,r∈N are also i.i.d. random vari-
ables. The above two equations can be rewritten as

T (n,K) = max
1≤i≤n

S1
i (17)

T (nα, αK) = max
1≤i≤nα

α∑
r=1

Sri . (18)

Instead of viewing Equation (18) as a 1-dimensional maxi-
mization over nα points, we can think of it as an α-dimensional
maximization over nα points where we can choose coordi-
nate from 1 to n on each dimension and therefore can further
rewrite Equation (18) as

T (nα, αK) = max
1≤i1≤n

max
1≤i2≤n

. . . max
1≤iα≤n

α∑
r=1

Sr(i1,i2,...,iα),

(19)

where

Sr(i1,i2,...,iα) = Sr∑α
u=1 n

u−1(iu−1)+1

and iu can be viewed as the coordinate in the uth dimension.
Next, we are going to use Equation (19) to build a lower

bound for the expection of T (nα, αK).
For fixed values of i2, i3, . . . , iα, let us find a i∗1 such that

i∗1 (i2, . . . , iα) = arg max
1≤i1≤n

S1
(i1,i2,...,iα), (20)

which we denote as i∗1 for short. Then according to Equation
(19), we can find a lower bound for E[T (nα, αK)] by choos-
ing i1 = i∗1 (i2, . . . , iα) for all possible values of i2, i3, . . . , iα,
which is

E [T (nα, αK)]

=E

[
max

1≤i1≤n
max

1≤i2≤n
. . . max

1≤iα≤n

α∑
r=1

Sr(i1,i2,...,iα)

]
(a)

≥E

[
max

1≤i2≤n
. . . max

1≤iα≤n

α∑
r=1

Sr(i∗1 ,i2,...,iα)

]

=E

[
max

1≤i2≤n
. . . max

1≤iα≤n

(
α∑
r=2

Sr(i∗1 ,i2,...,iα) + S1
(i∗1 ,i2,...,iα)

)]
.

(21)

Since the choice of i∗1 is only sub-optimal, the inequality (a)
in Equation (21) should be strict inequality. Notice that ac-
cording to Equation (20), for any values of i2, i3, . . . , iα, we
have

S1
(i∗1 ,i2,...,iα) = max

1≤i1≤n
S1

(i1,i2,...,iα),

which, combining Equation (17) and the fact that {Sri } are
i.i.d. random variables, yields

E
[
S1

(i∗1 ,i2,...,iα)

]
=E

[
max

1≤i1≤n
S1

(i1,i2,...,iα)

]
=E

[
max

1≤i≤n
S1
i

]
=E [T (n,K)] . (22)

As a second step, for any values of i3, i4, . . . , iα, let us define
i∗2 as

i∗2(i∗1, i3, . . . , iα) = arg max
1≤i2≤n

S2
(i∗1 ,i2,...,iα).

Then similarly as Equation (21), by fixing i2 to be i∗2, we can
obtain

E
[
T (nα, αK)

]
> E

[
max

1≤i3≤n
. . . max

1≤iα≤n(
α∑
r=3

Sr(i∗1 ,i∗2 ,...,iα) + S1
(i∗1 ,i

∗
2 ,...,iα) + S2

(i∗1 ,i
∗
2 ,...,iα)

)]
.

Also, for any values of i3, i4 . . . , iα, we have

E
[
S2

(i∗1 ,i
∗
2 ,...,iα)

]
=E

[
max

1≤i2≤n
S1

(i∗1 ,i2,...,iα)

]
=E [T (n,K)] . (23)

By defining i∗3, . . . , i
∗
α in a similar way

i∗u(i∗1, . . . , i
∗
u−1, iu+1, . . . , iα)

= arg max
1≤iu≤n

Su(i∗1 ,...,i∗u−1,iu,...,iα)

and iterating the above step, we can get

E
[
T (nα, αK)

]
>E

[
S1

(i∗1 ,i
∗
2 ,...,i

∗
α) + S2

(i∗1 ,i
∗
2 ,...,i

∗
α) + . . .+ Sα(i∗1 ,i∗2 ,...,i∗α)

]
(b)
=

α∑
r=1

E
[
Sr(i∗1 ,i∗2 ,...,i∗α)

]
(c)
=αE [T (n,K)] . (24)

Equation (b) follows from the fact that {Sr(i∗1 ,i∗2 ,...,i∗α)}1≤r≤α
are independent random variables and equation (c) follows
from Equation (22), (23) and iterated steps. By combining
Equation (1) and Equation (24), we have

η(nα, αK) =
αK

E [T (nα, αK)]
<

αK

αE [T (n,K)]
= η(n,K),

which completes the proof.

7. CONCLUSION
In this paper, we characterize the throughput of a broad-

cast network using rateless codes. The broadcast channels
are modeled by Markov modulated packet erasure channels,
where the packet can either be erased or successfully received
and for each receiver the current channel state distribution
depends on the channel states in previous l packet transmis-
sions.

We first characterize the asymptotic throughput of the sys-
tem when n approaches infinity for any values of coding block
size K as a function of number of receiver n in an explicit
form. We show that as long as K scales at least as fast as
logn, we can achieve a non-zero asymptotic throughput. Un-
der the more restrictive assumption that the channel is memo-
ryless (l = 0), we study the case when K and n are finite. We
show that, by keeping the ratio K/ logn to be a constant, the
system throughput will converge to the asymptotic through-
put in a decreasing manner as n grows. By the help of these
results, we are able to give a lower bound on the maximum



achievable throughput (maximum achievable rate), which is
a function ofK, n and erasure probability 1−γ. In contrast to
the state-of-the-art, we show that our bound is asymptotically
tight when K/ logn is fixed as n approaches infinity. Further,
through numerical evaluations, we show that our bound is
significantly better than existing result.
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