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Analysis of Connectivity and Capacity in
One-Dimensional Vehicle-to-Vehicle Networks

Sungoh Kwon, Yoora Kim, and Ness B. Shroff

Abstract—A vehicle-to-vehicle network is one type of mobile
ad-hoc network. Due to mobility, the topology in a vehicle-to-
vehicle network is time-varying, which complicates the analysis
and evaluation of network performance. In this paper, we model
the network as geometric elements of lines and points and
analyze connectivity and capacity of the network using geometric
probability. Under the assumption that n vehicles randomly
arrive with a Poisson distribution, our analysis shows thatthe
spatial distribution of vehicles within a given distance,D, is
uniform and that the average number of vehicles to be fully
connected is approximately 1
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for a = RT

D
,

whereRT is the maximum transmission range of a vehicle. When
a random access scheme is adopted, only1

2
(1 − e

−2)n of links
comprised of two adjacent nodes are simultaneously activated,
on average, so the expected network capacity increases in a way
linearly proportional to 1

2
(1 − e

−2) as the number of vehicles
increases. Through numerical studies and simulations, we verify
the efficacy of our analytical results.

Index Terms—Vehicle-to-vehicle communications, geometric
probability, performance analysis, connectivity, capacity

I. I NTRODUCTION

Vehicular networks have been studied extensively for ap-
plication in intelligent transportation systems (ITS) forsafety
warnings [1], [2] as well as for data communications [3], [4].
In such networks, communications can be categorized into
two modes: vehicle-to-infrastructure (V2I) communications
and vehicle-to-vehicle (V2V) communications, as shown in
Fig. 1. Vehicles communicate with roadside units (RSUs) to
access backbone networks, referred to as V2I communications.
Through V2I communications, ITS servers collect traffic data
from vehicles and send traffic information to vehicles.

Between RSUs, not all vehicles can communicate with the
RSUs in a single hop due to their limited transmission range.
As a result, vehicles communicate with each other to exchange
information via V2V communications. Since such communi-
cations do not have an infrastructure, data are delivered from
one place to another in a multi-hop manner. For such vehicular
networks, IEEE 802.11p, also known as wireless access in
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Fig. 1. A vehicular network consisting ofn vehicles and two RSUs

vehicular environment (WAVE), was proposed [5]. Since IEEE
802.11p is grounded in IEEE 802.11, the physical medium
is shared with other communication nodes, and the carrier
sense multiple access/collision avoidance (CSMA/CA) scheme
is employed as a random access protocol.

Analyzing the performance of such networks involves non-
trivial challenges due to the following two factors: random
positions of vehicles and random links between vehicles.
Temporal information on vehicles, such as inter-arrival times
and velocities, can be measured at RSUs, but the spatial
information on the vehicles between two adjacent RSUs is un-
known, which is directly related to network connectivity. Due
to vehicle mobility, vehicles are randomly located between
RSUs, and the network topology changes with time. Hence,
inter-vehicle distances may be greater than the transmission
range, resulting in adisconnectedvehicular network. Conse-
quently, successful end-to-end communications in vehicular
ad hoc networks (VANETs) depend on network connectivity,
which impacts the main performance measures of a vehicular
network, such as capacity and delay.

Even if all inter-vehicle distances are less than the trans-
mission range (i.e., the vehicular network is topologically
fully connected), data cannot be propagated immediately from
source node to destination node in the network via the vehicles
located in between them. A path from source node to destina-
tion node is composed of links, each of which is formed by an
ordered pair of nodes (sender and receiver). Due to the random
access scheme adopted by IEEE 802.11p, only a subset of links
in the path is allowed to simultaneously activate. The random
links as well as the network connectivity affect the throughput
capacity and delay of the network.

In this paper, we consider a one-dimensional VANET
formed on a unidirectional highway, addressing the following
problems for performance analysis:

1) the spatial distribution of vehicles on the road between
two adjacent RSUs

2) the geometric properties of the vehicular ad-hoc network
3) the probability that the vehicular ad-hoc network is fully



2

connected
4) the capacity of the vehicular ad-hoc network

In previous work, various aspects of connectivity in one-
dimensional VANETs have been studied [6]–[12]. The connec-
tivity of vehicular ad-hoc networks was theoretically analyzed
in [7]–[12], but was studied by computer simulations in [6].
In [7], the authors examined the connectivity characteristics
related to clusters1 (such as average intra-cluster spacing
and average cluster size2) in sparse one-way VANETs using
mobility patterns extracted from real-world empirical data.
In [8], the authors presented a comprehensive mobility model
by considering the arrival and departure of nodes at predefined
entry and exit points along a highway, and studied the average
cluster size and the probability that the nodes form a single
cluster. In [9], the authors studied a way to improve the
connectivity in a VANET by adding mobile base-stations, and
analyzed the average connectivity distance and the average
cluster size. In [10], the author developed connectivity proba-
bility using a geometry-assisted analytical method. In [11], the
authors introduced an equivalent speed to account for various
speeds across vehicles for use in connectivity analysis. In[12],
the connectivity of one-dimensional vehicular networks was
analyzed with consideration of the fading channel.

While there have been extensive studies on connectivity
in VANETs, the problem of characterizing network topology
when the VANET is not fully connected has been under-
explored. Specifically, statistics on the number of disconnected
links has not been well understood, and as of yet, there is no
analytic solution for these statistics. Whenever a VANET is
not fully connected, the number of disconnected links can be
different. That is, a disconnected VANET can have various de-
grees of disconnection or fragmentation. Such statistics on the
number of disconnected links is important information in the
design of a VANET that can provide reliable communications
for vehicles. Recently, the use of Long Term Evolution (LTE)
to support a VANET is under investigation by standardization
groups [13]. Detailed knowledge on the degree of network
disconnection also enables us to precisely estimate the required
number of cluster heads or mobile relays that bridge vehicles
in a VANET and eNodeBs under LTE [14]. This estimation in
turn can help to allocate network resources in a more elaborate
way for potential VANET–LTE interworking.

In this paper, we present an exact-form analysis of the
number of disconnected links in a VANET in a unidirectional
highway environment. The main techniques in the previous
work on connectivity analysis in VANETs rely on queueing
theory or geometric-assisted analytical models. These tech-
niques have mostly been developed to analyze theconnection
probability of a VANET, which is equivalent to the probability
of having no disconnected links. Since the topology of a
VANET is spatiotemporally correlated and highly dynamic

1Throughout this paper, a cluster refers to a set of nodes formed as follows.
Any two adjacent nodes belong to the same cluster if their inter-node distance
is shorter than a given transmission range; otherwise, the two nodes belong
to different clusters. Accordingly, a VANET is composed ofk ∈ {1, 2, . . .}
clusters when there are(k − 1) disconnected links in the network.

2The average cluster size denotes the expected number of nodes within a
cluster.

in nature, analyzing the entire spectrum of the number of
disconnected links requires handling a huge dimension of
diversity across all random links. To handle this diversity,
we model the network as geometric elements of lines and
points, and we utilize another mathematical technique based
on geometric probability and finite difference calculus. This
technique enables us to fully characterize the number of
disconnected links in terms of probability distribution, which
includes the connection probability as one case. In detail,
previous works have provided only the probability that there
are no disconnected links in the network, whereas our analysis
provides the probability distribution that the network hask

disconnected links for all values ofk, including k = 0.
This result translates into the probability that the network is
composed of(k+1) clusters for each ofk ∈ {0, 1, . . .}, from
which we can obtain the average number of clusters.

Another important metric concerned with connectivity is
traffic density (in vehicles per kilometer per lane) [15]. As
the traffic density increases, the vehicular network is more
likely to be fully connected. In this paper, we definecritical
network sizeto be the number of vehicles with which the
vehicular network begins to be fully connected, and below
which a link is disconnected. A similar notion can be found
in percolation theory (the so-called percolation threshold [16],
[17]) if we consider a vehicle as a circle where the radius
equals the vehicle’s transmission range. The critical network
size represents a phase transition point in a VANET, since
the connectivity of the VANET changes completely from a
disconnected phase to a connected phase. In this paper, we
present both the exact and asymptotic formulas for the average
critical network size, and we analyze its behavior for various
system parameters.

Our contributions in this paper are summarized as follows.
1) Based on the assumption that the arrival process of

vehicles is Poisson, we show that the spatial distribution
of vehicles between two adjacent RSUs is uniform.
The average number of vehicles between two adjacent
RSUs is linearly proportional to the vehicle arrival rate
multiplied by E[V −1], whereV is a random variable
denoting the vehicle velocity.

2) We analyze the connectivity of a VANET between two
adjacent RSUs in a unidirectional highway environment.
In particular, we first derive a closed-form expression
for the probability distribution of the number of dis-
connected links. Using the distribution, we obtain the
average number of clusters, as well as the probability
that the VANET is fully connected. Our analysis shows
the relationship between connectivity and the system
parameters such as vehicle arrival rate, transmission
range, and vehicle velocities.

3) We show that the average critical network size is ap-
proximately 1

a

(
log 1

a
+ log log 1

a

)
, wherea is the ratio

of the maximum transmission range of a vehicle to the
distance between two adjacent RSUs.

4) We investigate the capacity of a one-dimensional
VANET. We show that when network capacity is defined
as the amount of data delivered in a network during a
unit of time [18]–[20], the network capacity is exactly
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expressed as12 (1 − e−2)n in an asymptotic regime, in

contrast toΘ
(√

n
logn

)

in two-dimensional random ad-

hoc networks [18], andΘ(n) in one- or two-dimensional
mobile ad-hoc networks [19], [20], wheren is the
number of nodes.

The rest of this paper is organized as follows. In Section II,
we describe the system model. In Section III, we study the
spatial distribution of vehicles based on temporal distribution
and velocity information of vehicles. In Sections IV and V,
we analyze the connectivity and capacity of the network. In
Section VI, we present numerical studies. Finally, we conclude
the paper in Section VII.

II. SYSTEM MODEL AND ASSUMPTIONS

In this paper, we consider a segment of a unidirectional
multi-lane highway that consists of two adjacent RSUs and
N(t) vehicles between them at timet. Each vehicle is
equipped with a communication device that has a maximum
transmission range,RT , and can control its transmission
power. The RSUs are spaced apart at distanceD, which is
much longer than transmission rangeRT . Thus, vehicles be-
tween the two RSUs can communicate with each other only in
a multi-hop fashion without relying on a wired infrastructure.

In practice, the transmission range of an RSU is wider than
that of a vehicle. However, if a vehicle is located farther away
from an RSU than its transmission range, then the vehicle
cannot bidirectionally communicate with the RSU. Hence, we
assume that the RSUs also have maximum transmission range
RT , enabling bidirectional communication between a vehicle
and an RSU.

The topology of the VANET changes with time due to
vehicle mobility. The vehicle mobility model used in this paper
can be described in terms of vehicle arrival and velocity as
follows. With regard to vehicle arrival, we assume that each
vehicle arrives at the first RSU according to a Poisson pro-
cess, as assumed in previous works [8]–[12], [21]. Empirical
studies from real freeway traffic data have shown that vehicle
arrivals can be accurately approximated by a Poisson process,
especially for a sparse traffic environment, such as night
time periods and early mornings [7]. With regard to vehicle
velocities, we assume that the speed of a vehicle is a random
variable that is independent for each vehicle and follows
a general probability distribution. Vehicles are assumed to
freely overtake slower vehicles so that their velocities are not
hindered by other vehicles. This assumption practically holds
in sparse situations [21] or in free-flow phase in the traffic
theory language [9], [15]. For example, in the case of multi-
lanes in rural areas, vehicle speeds are likely to be unaffected
by the traffic. Hence, we assume that each vehicle drives at
a constant speed of its own, which is chosen randomly, until
reaching the second RSU.

Due to the time-varying topology,{N(t)}t≥0 is a random
process. For a fixed timet, suppose thatn (∈ N∪{0}) vehicles
are located between the two RSUs, i.e.,N(t) = n. Throughout
this paper, we count vehicles and RSUs together as nodes and
label thesen+2 nodes as Nodek (k = 0, 1, . . . , n+1) in the
vehicle driving direction, i.e., the first and the second RSUs

are Nodes0 andn + 1, respectively, and then vehicles are
Nodes1 to n. Let dk(t) (∈ R) be the location of Nodek
along the direction of the highway3 at timet. Without loss of
generality, we setd0(t) = 0 anddn+1(t) = D for all t. Then,

0 = d0(t) < d1(t) < . . . < dn(t) < dn+1(t) = D. (1)

The spatial distribution of then ordered random vector
(d1(t), d2(t), . . . , dn(t)) determines the state of each link
between nodes and overall network connectivity. The link
between Nodesk − 1 and k at time t is topologically either
connectedor disconnected, and becomes connected if the
inter-node distance at timet is shorter than the maximum
transmission range, as follows:

sk(t) , dk(t)− dk−1(t) ≤ RT .

In addition, the vehicular network is topologicallyfully con-
nectedat time t if no link is disconnected at timet, i.e.,
sk(t) ≤ RT for all k = 1, 2, . . . , n+ 1. For such topological
connectivity, we ignore interference from other transmissions,
which may affect the physical link connectivity.

A random access scheme is employed to establish a com-
munication link between two nodes. We assume that nodes
transfer data only to adjacent nodes, and each node can form
at most a single link at a time. For example, if Nodek com-
municates with Nodek+1 at timet, then Nodek+2 cannot
form a link with Nodek+1 at that time. A node can generally
reach any node in its transmission range. However, in such
a case, intermediate nodes between the two communicating
nodes (the sender and the receiver) cannot communicate with
each other due to collision at receivers, and as a result, the
network capacity decreases [18], [23], [24]. Moreover, the
greater transmission range induces more collisions at other
communication links, and decreases network capacity. Hence,
in this paper, a node with power control is assumed to establish
a communication link with an adjacent node. We define that
link between Nodesk andk+1 asactiveat timet if Node k

communicates with Nodek+ 1 at timet. Otherwise, the link
between Nodesk and k + 1 is idle, even though Nodek is
topologically connected to Nodek + 1 at time t. Since IEEE
802.11p provides multiple channels, nodes can communicate
with their neighboring nodes without the hidden node problem
or the exposed node problem [25]–[27].

Under the above assumptions, in this paper, we first analyze
the spatial distribution of vehicles on the road between two
adjacent RSUs. Based on this spatial distribution, we next
study the connectivity of a vehicular network from various
aspects. We then derive the capacity of a vehicular network
employing a random access scheme.

III. D ISTRIBUTION OF VEHICLES

In this section, we determine the spatial distribution of vehi-
cles on the road between two adjacent RSUs at a given time,

3A more precise expression for the location of Nodek is (dk(t), yk(t)) ∈
R
2, whereyk(t) is the signed distance from a fixed point (e.g., an RSU) to

Nodek along a line perpendicular to the highway. It is shown that the effect
of yk(t) on connectivity can be considered negligible in multi-lanehighways
for most practical cases, since the transmission range isRT ≫ 3.6 m that is
the standard highway’s lane width [15], [22]. Hence, we express the location
of Nodek usingdk(t).
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Fig. 2. Modeling of a vehicular network using geometry

based on the temporal distribution and velocity information
of vehicles gathered at the RSUs. The trajectory of a vehicle
created using time and space coordinates can be modeled as
a straight line in a plane inR2 if the vehicle drives at a
constant speed and never leaves the road, as shown in Fig. 2.
In the figure, the horizontal axis and the vertical axis represent,
respectively, timet and distanced of the vehicle from the first
RSU.

The trajectory of vehiclei can be parameterized by(Vi, ti)
and is expressed as

d = Vi(t− ti).

Here, the time interceptti on the t-axis denotes the time
when vehiclei passes the first RSU, andVi is the velocity
of vehicle i. Since the arrival epochs{ti}i∈N form a Poisson
process, and the velocities{Vi}i∈N are independent and identi-
cally distributed acrossi, it follows that the spatial distribution
of vehicles at any given timet is Poisson [28], [29]. Also, its
density, denoted byλd, is determined as

λd = λ

∫ ∞

0

1

v
dFV (v) = λE[V −1], (2)

whereλ is the arrival rate of the vehicles, andFV (·) is the
distribution function of velocityV . It means that the spatial
density λd of vehicles between two RSUs is the measured
temporal densityλ scaled byE[V −1]. As a consequence, the
average number of vehicles between the RSUs isE[N(t)] =
λdD for any timet, and the probability mass function ofN(t)
is obtained by

P(N(t) = n) = e−λdD
(λdD)n

n!
, n = 0, 1, . . . . (3)

Due to stationary and independent increments inherent in a
Poisson process, the joint distribution of(d1(t), . . . , dn(t))
whenN(t) = n can be described by a uniform distribution
on the interval(0, D) [30], as in Lemma 1.

Lemma 1. Given thatN(t) = n, the joint density function of
(d1(t), d2(t), . . . , dn(t)) in (1) is

f(x1, x2, . . . , xn) =
n!

Dn
,

0 (n+1) 1
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Fig. 3. Network connectivity when there areN(t) = n vehicles between
two adjacent RSUs at timet

where0 < x1 < x2 < . . . < xn < D.

Proof: Refer to [30]. �

The result in Lemma 1 implies thatdk(t) has the same
distribution as thekth smallest value amongn independent
random variablesuniformly distributed on the interval(0, D).
Therefore, if we are given the information on the number of
vehicles between the RSUs at timet (say,N(t) = n), then
we can infer that then vehicles are uniformly distributed on
the road.

IV. CONNECTIVITY OF A VANET

Based on spatial distribution analysis, we next analyze the
connectivity of a VANET. Specifically, we derive the following
four metrics in sequence: (i) the probability distributionof
the number of disconnected links, (ii) the average number
of clusters, (iii) the probability that the VANET is fully
connected, and (iv) the average critical network size.

A. Probability distribution of the number of disconnected links

Since RSUs are evenly located, and the segments between
two adjacent RSUs have identical statistics, we convert a line
segment into a circle to remove edge effects as in [19], [20].4

The detailed procedure is as follows. We first normalize the
line segment in Fig. 1 by lengthD. We next transform the
scaled line segment into a circle by attaching the first and the
second RSUs, as shown in Fig. 3. We then denote the RSU at
the origin in Fig. 2 by zero on the circle and assign numbers
from Node0 clockwise.

Suppose thatn (∈ N ∪ {0}) vehicles are located between
the two RSUs at timet, i.e., N(t) = n. It then follows
from Lemma 1 that the vehicles are located randomly on
the circumference of the circle with a uniform distribution. In
addition, there aren+1 arcs on the circle, and the arc between
Nodesk− 1 andk (i.e., thekth arc) on the circle corresponds

4We are inspired by the modelling in [31], and our analysis follows the
methodology in there.
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to the kth link in the VANET and has the normalized arc
lengthak(t), defined as

ak(t) ,
sk(t)

D

=
dk(t)− dk−1(t)

D
, k = 1, 2, . . . , n+ 1.

Hence, the sum of allak(t)s is one, i.e.,
∑n+1

k=1 ak(t) = 1.
Let a be the ratio of transmission rangeRT to distanceD

between two adjacent RSUs, i.e.,

(Normalized transmission range) a ,
RT

D
.

In practice, the transmission ranges are not constant, but ran-
domly distributed. Since the statistical properties of a constant
transmission range case and a random transmission range case
are similar when the number of nodesn is large [32], we study
the connectivity of a VANET under the assumption that the
transmission range is constant. If arc lengthak(t) is greater
than the normalized transmission rangea, then Nodesk − 1
andk are unable to communicate with each other. If such an
event occurs, we say that thekth arc has a gap, which is also
equivalent to having a topologically disconnected link between
Nodesk − 1 and k in the vehicular network. When no gap
occurs in any arc on the circle, the VANET is fully connected.

To facilitate our analysis, we first compute the probability
gn(i) (i = 1, 2, . . . , n + 1) that gaps occur ini specified
arcs (namely,k1th, k2th, . . . , kith arcs), whatever happens
elsewhere; i.e.,

gn(i) , P(ak(t) > a, k = k1, k2, . . . , ki |N(t) = n).

Due to circular symmetry,gn(1) is identical to the probability
that the first arc has a gap, which is(1− a)n sincen vehicles
are uniformly distributed on the circle by Lemma 1. Applying
a similar argument, the probabilitygn(i) is then derived as

gn(i) =

{

(1− ia)n if i ≤ ⌊a−1⌋,

0 if i > ⌊a−1⌋,
(4)

where⌊x⌋ is the largest integer not greater thanx.
We next compute the probabilitŷgn(i) (i = 0, 1, . . . , n+1)

that exactlyi gaps occur on the circle, wherever they happen,
i.e.,

ĝn(i) , P

(
n+1∑

k=1

1{ak(t)>a} = i

∣
∣
∣
∣
N(t) = n

)

, (5)

where1{·} is an indicator function. From the calculus of finite
differences and the results in [33] and [34], the probability
ĝn(i) can be obtained by

ĝn(i) =

(
n+ 1

i

) n+1−i∑

j=0

(
n+ 1− i

j

)

(−1)jgn(i + j), (6)

where
(
n

j

)
is the number of ways of choosingj unordered

outcomes fromn possibilities. In this paper, we adopt the
convention that

(
n

j

)
= 0 when j > n or j < 0. Combining

equations (4) and (6), we have the following theorem on the
distribution of the number of disconnected links.

Theorem 1. Given thatN(t) = n, the probability that there
are i disconnected links in the network is

ĝn(i)=







(
n+1
i

)∑⌊a−1⌋−i

j=0

(
n+1−i

j

)
(−1)j(1−(i+j)a)

n
,

if i ≤ ⌊a−1⌋,

0, if i > ⌊a−1⌋,

(7)

wherei = 0, 1, . . . , n+ 1.

Proof: From (4), we have

gn(i+ j) =

{

(1− (i + j)a)
n if j ≤ ⌊a−1⌋ − i,

0 if j > ⌊a−1⌋ − i.
(8)

Suppose first that⌊a−1⌋ − i < 0. Then,gn(i + j) = 0 for all
j ≥ 0, and thus, we havêgn(i) = 0 by (6). Suppose next that
⌊a−1⌋− i ≥ 0. Then,gn(i+ j) = 0 for all j > ⌊a−1⌋− i ≥ 0.
Hence, substituting the first case in (8) into (6) gives

ĝn(i)=

(
n+1

i

)min(n+1−i,⌊a−1⌋−i)
∑

j=0

(
n+1−i

j

)

(−1)j(1−(i+j)a)
n

=

(
n+ 1

i

)⌊a−1⌋−i
∑

j=0

(
n+ 1− i

j

)

(−1)j (1− (i+ j)a)n ,

where the second equality follows, since
(
n+1−i

j

)
= 0 for

j > n+ 1− i. This completes the proof. �

B. Expected number of clusters

A cluster, which is also referred to as a platoon, denotes a
set of nodes in which the distance between any two adjacent
nodes is less than the transmission range. The number of
clusters would be an interesting parameter in a certain typeof a
VANET. Clustering technology provides efficient and reliable
communications in a VANET, as well as an integration of
VANET and cellular networks [3], [4], by communicating with
neighboring nodes, referred to as cluster members. In such
cluster-based networks, cluster heads are elected to manage
both intra-cluster and inter-cluster communications.

Let C(t) be a random variable denoting the number of
clusters in the network at timet. According to the discussion
above, a VANET formsk clusters when there are(k − 1)
disconnected links in the network. Hence, applying the result
in Theorem 1, we can derive the average number of clusters
in the network, as shown in Theorem 2.

Theorem 2. Given thatN(t) = n, the expected number of
clusters in the network is

E[C(t) |N(t) = n] =

⌊a−1⌋
∑

i=0

(i + 1)

(
n+ 1

i

)

·

⌊a−1⌋−i
∑

j=0

(
n+ 1− i

j

)

(−1)j (1− (i+ j)a)
n
. (9)
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SinceN(t) follows a Poisson distribution, the expected number
of clusters in the steady state becomes

E[C(t)] = e−λdD

∞∑

n=0

⌊a−1⌋
∑

i=0

(i + 1)

(
n+1

i

)

·

⌊a−1⌋−i
∑

j=0

(
n+1−i

j

)

(−1)j
{λdD(1−(i+ j)a)}n

n!
. (10)

Proof: Given N(t) = n, we haveC(t) = k with probability
ĝn(k − 1) for k = 1, 2, . . . , n+ 2. Hence,

E[C(t) |N(t) = n]

=

n+2∑

k=1

k · P(C(t) = k |N(t) = n)

=

n+2∑

k=1

k · ĝn(k − 1)

=

n+1∑

i=0

(i+ 1) · ĝn(i)

=

min(n+1,⌊a−1⌋)
∑

i=0

(i+1)

(
n+1

i

)⌊a−1⌋−i
∑

j=0

(
n+1−i

j

)

(−1)j(1−(i+j)a)n

=

⌊a−1⌋
∑

i=0

(i+1)

(
n+1

i

)⌊a−1⌋−i
∑

j=0

(
n+1−i

j

)

(−1)j(1−(i+j)a)
n
,

where the last equality follows, since
(
n+1
i

)
= 0 for i > n+1.

By the law of total probability, the expected number of
clusters in the steady state is then derived as

E[C(t)] =
∞∑

n=0

E[C(t) |N(t) = n]P(N(t) = n)

= e−λdD

∞∑

n=0

⌊a−1⌋
∑

i=0

(i+ 1)

(
n+ 1

i

)

·

⌊a−1⌋−i
∑

j=0

(
n+ 1− i

j

)

(−1)j
{λdD(1− (i+ j)a)}n

n!
,

where the second equality follows from (3). This completes
the proof. �

The above theorem can answer the question of how many
cluster heads exist in the VANET, when clusters are formed
based on connectivity and each cluster has a cluster head.
While previous works studied efficient clustering algorithms
and their performance, our analysis provides the number of
cluster heads, which was not studied in the previous works.

C. Connection probability of a VANET

When the network forms only a single cluster, the VANET
is fully connected. Hence, using Lemma 1 and Theorem 1,
we can derive the connection probability of a VANET, as
summarized in Theorem 3.

Theorem 3. Given thatN(t) = n, the network becomes fully
connected with the following probability:

P(VANET is connected |N(t) = n)

=
∑⌊a−1⌋

j=0

(
n+1
j

)
(−1)j(1− ja)n. (11)

Since N(t) follows a Poisson distribution, the connection
probability of a VANET in the steady state is thus obtained by

P(VANET is connected)

= e−λdD

∞∑

n=0

⌊a−1⌋
∑

j=0

(
n+ 1

j

)

(−1)j(1− ja)n
(λdD)n

n!
. (12)

Proof: According to the definition of̂gn(·) in (5), we have

P(VANET is connected |N(t) = n) = ĝn(0).

Hence, by Theorem 1, we obtain

ĝn(0) =

{∑⌊a−1⌋
j=0

(
n+1
j

)
(−1)j (1− ja)

n if 0 ≤ ⌊a−1⌋,

0 if 0 > ⌊a−1⌋.

Since0 < a ≤ 1, we have⌊a−1⌋ ≥ 0. Thus,

P(VANET is connected |N(t) = n)

=
∑⌊a−1⌋

j=0

(
n+1
j

)
(−1)j(1− ja)n.

This proves (11). By the law of total probability, the connec-
tion probability of a VANET in the steady state is then derived
as

P(VANET is connected)

=

∞∑

n=0

P(VANET is connected |N(t) = n)P(N(t) = n)

= e−λdD

∞∑

n=0

⌊a−1⌋
∑

j=0

(
n+ 1

j

)

(−1)j(1− ja)n
(λdD)n

n!
,

where the second equality follows from (3). This completes
the proof. �

We can interpret the probability (12) in Theorem 3 as the
percentage of time that the network is fully connected. For
applications, if there exists a data center gathering traffic
statistics, such as the average of vehicle arrivals, the long-term
average of VANET connectivity can be computed from (12)
in Theorem 3. Also, when information on the number of
vehicles on the road is available in real time, (11) in Theorem 3
becomes useful for predicting the connectivity of the VANET
over time.

D. Critical network size

In this section, we derive both the exact and asymptotic
formulas for the average critical network size, i.e., the expected
number vehicles required for a VANET to be fully connected.

Let Na be a random variable denoting the critical network
size, provided that the normalized transmission rangea is used.
Note that if the event{Na ≤ m} occurs, then a VANET
consisting ofm vehicles is fully connected. On the other hand,
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if a VANET with m vehicles is fully connected, then{Na ≤
m}. Hence,

P(Na ≤ m) = P(VANET is connected |N(t) = m).

From (11) in Theorem 3, we also have

P(Na ≤ m) =

⌊a−1⌋
∑

j=0

(
m+ 1

j

)

(−1)j(1− ja)m. (13)

Based on the distribution function in (13), we present the
closed-form formula forE[Na] and its asymptotics in the
following theorem.

Theorem 4. The average critical network size of a VANET
that uses normalized transmission rangea is given by

E[Na] =
∞∑

m=1

⌊a−1⌋
∑

j=1

(
m

j

)

(−1)j−1(1− ja)m−1 (14)

=
1

a

{

log
1

a
+ log log

1

a
+ γ + o(1)

}

, (15)

whereγ is Euler’s constant,5 and o(1)6 is a negligibly small
number compared toa.

Proof: SinceNa takes on only non-negative integer values, we
obtain the expectationE[Na] as

E[Na] =
∞∑

m=1

P(Na ≥ m)

=

∞∑

m=1

(1− P(Na ≤ m− 1))

=

∞∑

m=1

{

1−

⌊a−1⌋
∑

j=0

(
m

j

)

(−1)j(1− ja)m−1

}

=

∞∑

m=1

⌊a−1⌋
∑

j=1

(
m

j

)

(−1)j−1(1− ja)m−1,

(16)

which proves (14). Now, we investigate the asymptotic behav-
ior of E[Na] as normalized transmission rangea approaches
zero. By the Taylor series expansion, we have1− ja ≈ e−ja

for small a. Hence, the summation on the right-hand side of
the third equality in (16) becomes

⌊a−1⌋
∑

j=0

(
m

j

)

(−1)j(1−ja)m−1 ≈

m∑

j=0

(
m

j

)

(−1)je−jam (a→0)

=
m∑

j=0

(
m

j

)

(−e−am)j

= (1 − e−am)m. (17)

5Euler’s constantγ is defined asγ = limn→∞

(
∑n

k=1
1
k
− log(n)

)

≈

0.57721 [35].
6For two real functionsf(x) and g(x), we usef(x) = o(g(x)) if

limx→∞

f(x)
g(x)

= 0 and f(x) = O(g(x)) if there exist constantsc and
x̂ ∈ R such that|f(x)| ≤ c|g(x)| for all x ≥ x̂. Hence,o(1) implies a small
number compared toa.

0 1 2 3 4 n n+1 n-1 n-2 n-3 5 

RSU1 
RSU2 

Fig. 4. Example of randomly activated links in a VANET

Applying the result in (17) to the third equality in (16) gives

E[Na] ≈

∞∑

m=1

{
1− (1− e−am)m

}

=
∑

m≤a−1

{
1− (1 − e−am)m

}

+

∫ ∞

a−1

{
1− (1− e−am)m

}
dm+O(1)

= O(a−1) + a−1

∫ ∞

1

{
1− (1− e−x)

x
a

}
dx, (18)

where change of variables witham = x is used in the last
equality. It then follows from [36, Equations (20), (21)] that

∫ log 1

a

1

{
1− (1− e−x)

x
a

}
dx = log

1

a
− 1 + o(1),

∫ ∞

log 1

a

{
1− (1− e−x)

x
a

}
dx = log log

1

a
+ γ + o(1).

(19)

Combining (18) and (19), we have (15). �

Applying Theorem 4, we can easily estimate the average
number of vehicles required for a network connection under
a given set of system parameters. For example, if the distance
between adjacent RSUs is 2 km, and the maximum transmis-
sion range is 400 m (i.e.,a = 0.2), then at least 14 vehicles on
average must be moving on the road for the vehicular network
to be fully connected (i.e.,E[Na] ≈ 13.3). In that case, the
network is composed of 15 links, which are defined as a pair
of two contiguous nodes.

V. CAPACITY ANALYSIS OF RANDOM ACCESS IN A

VANET

Since IEEE 802.11p employs CSMA/CA as a medium
access control (MAC) protocol, links are randomly activated.
As in Fig. 4, if Nodes 2 and 4 are communicating with Nodes 1
and 5, respectively, then Node 3 must be idle. Hence, among
N(t) + 1 links, only a random portion of links participates
in transmitting data in the VANET at timet, even though the
VANET is fully connected at that moment.

We define the network capacity at timet as the summation
of all transmitted data at timet. When the wireless bandwidth
W is given, and the number of activated links isL at time t,
the network capacity is expressed asWL. For simplicity, we
assume thatW = 1. Then, the expected number of links
simultaneously activated by the random access, denoted by
E[L], is directly related to network capacity.

In this section, we analyzeE[L] as a function ofN(t) = n

and study its asymptotic behavior asn approaches infinity. In
order to focus on the random access effect, our analysis in
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this section is based on the regimen ≫ E[Na], so that the
network is in a connected state. In this case, we have

E[L|N(t) = n] =
n+ 2− E[Nidle|N(t) = n]

2
, (20)

whereNidle is the number of idle nodes that do not partic-
ipate in communications. For example, if four vehicles are
distributed between two RSUs, then the VANET consists of
six nodes. If two pairs of nodes, Nodes 1 and 2 and Nodes 4
and 5, are communicating, then Nodes 0 and 3 are idle. Hence,
the number of communicating links is two (= 6−2

2 ).
To characterize the number of idle nodes,Nidle, we use

the technique applied for solving a packing problem [30]. For
k = 0, 1, . . . , N(t) + 1, we let

Ik(t) ,

{

1 if Node k is idle at timet,

0 otherwise.

Then, the number of idle nodes can be expressed asNidle =
I0(t) + . . .+ IN(t)+1(t). Hence,

E[Nidle|N(t) = n] = E

[N(t)+1
∑

k=0

Ik(t)

∣
∣
∣
∣
N(t) = n

]

=

n+1∑

k=0

E
[
Ik(t)

∣
∣N(t) = n

]

=

n+1∑

k=0

pn+2(k), (21)

where pn+2(k) , P(Ik(t) = 1 |N(t) = n) denotes the
probability that Nodek is idle at timet, given that there are
N(t)+2 = n+2 nodes in the network. To computepn+2(k),
we consider two contiguous segments:

0, 1, · · · , k
︸ ︷︷ ︸

k+1

and k, k + 1, · · · , n, n+ 1
︸ ︷︷ ︸

n+2−k

.

Nodek will be idle if and only if the right-most node in the
first segment and the left-most node in the second segment
are both idle. Accordingly, ifp̂m+2 (m = 0, 1, . . .) is the
probability that the end node in a VANET consisting ofm

vehicles is idle, i.e.,

p̂m+2 , pm+2(0) = pm+2(m+ 1),

thenpn+2(k) can be obtained from̂pm+2 as

pn+2(k) =

{

p̂n+2 if k = 0, n+ 1,

p̂k+1 · p̂n+2−k if k = 1, . . . , n.
(22)

In the following, we derive a general expression forp̂m+2 for
m = 0, 1, . . .. To that end, we considerm+2 nodes distributed
in a line, and suppose that linkL(i−1,i) (i = 1, 2, . . . ,m+ 1)
between Nodesi − 1 and i is initially activated. Note the
following: (i) this initial configuration is observed with prob-
ability 1

m+1 , since the random access scheme operates in a
uniform manner7; (ii) if i = m + 1 (i.e., link L(m,m+1) is
activated), then Nodem + 1 cannot be idle trivially; (iii) if

7According to [37], the probability that a node transmits in arandomly
chosen slot time is identical in the steady state.

i = m (i.e., link L(m−1,m) is activated), then Nodem+ 1 is
idle; and (iv) if i ≤ m − 1, we separate the array into two
independent segments:

0, 1, · · · , i− 2
︸ ︷︷ ︸

i−1

and i+ 1, · · · ,m,m+ 1
︸ ︷︷ ︸

m+1−i

.

Then, Nodem+ 1 is idle if the right-end node of the second
segment consisting ofm + 1 − i nodes is idle. Combining
(i)-(iv), we have

p̂m+2 =
1

m+ 1

(

0 + 1 +

m−1∑

i=1

p̂m+1−i

)

=
1 + p̂2 + . . .+ p̂m

m+ 1
. (23)

We can rewrite (23) in recursive form as

p̂m+2 − p̂m+1 = −
p̂m+1 − p̂m

m+ 1
.

Sincep̂2 = 0 and p̂3 = 1
2 , we can solve for̂pm+2 as follows:

p̂m+2 =

m+1∑

j=0

(−1)j

j!
, m = 0, 1, . . . . (24)

We are now ready to derive the main result of this section. By
substituting (22) and (24) into (21) and then using (20), we
can obtain the network capacity, as stated in Theorem 5.

Theorem 5. For n ≫ E[Na], the expected network capacity
is approximately given by

E[L|N(t) = n] ≈
1

2
(n+ 2)(1 − e−2)− e−2. (25)

Proof: Substituting (24) into (22) gives

pn+2(k)

=







∑n+1
j=0

(−1)j

j! if k = 0, n+ 1,
(
∑k

j=0
(−1)j

j!

)(
∑n+1−k

j=0
(−1)j

j!

)

if k = 1, . . . , n.
(26)

Note thatpn+2(0) = pn+2(n) = 0, because the first and the
second term in (26) are zero fork = 1, n, respectively. Hence,
from (21), we have

E[Nidle|N(t) = n]

= 2

n+1∑

j=0

(−1)j

j!
+

n−1∑

k=2





k∑

j=0

(−1)j

j!









n+1−k∑

j=0

(−1)j

j!



 .

Since limn→∞

∑n+1
j=0

(−1)j

j! = e−1, the expectation
E[Nidle|N(t) = n] asn → ∞ behaves asymptotically as

E[Nidle|N(t) = n] ≈ 2e−1 + (n− 2)e−2

= (2e+ n− 2)e−2

≈ (n+ 4)e−2. (27)

Therefore, by substituting (27) into (20), we have

E[L|N(t) = n] ≈
n+ 2− (n+ 4)e−2

2

=
1

2
(n+ 2)(1 − e−2)− e−2,
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which completes the proof. �

The result in Theorem 5 indicates that, amongn+1 possible
links, only 1

2 (n+2)(1− e−2)− e−2 links are simultaneously
activated, i.e., approximatelyn2 (1 − e−2) for largen.

VI. SIMULATIONS

In this section, we examine the connectivity and capacity
of a VANET for various system parameters through numerical
studies and simulations. The simulation environments used
in this section are as follows. We consider a segment of
a unidirectional highway between two adjacent RSUs. The
distance between the adjacent RSUs is set toD = 3000 m.
The vehicle velocity is randomly chosen at between 80 km/h
and 110 km/h. We assume that there are two lanes on the
highway, and that vehicles maintain their velocities between
the adjacent RSUs, even when overtaking other vehicles. The
number of vehicle arrivals at the first RSU is modeled as a
Poisson random variable, and the vehicle arrival rateλ is set
to 30 vehicles per minute.

We developed a simulator using MATLAB, and Monte
Carlo simulations were performed according to the simula-
tion environments. We ran 10,000 simulations with different
random seeds for each case, and averaged the results. Such
simulation results, denoted as Simulation in each figure in this
section, are compared with analytical results from the driven
equations. If the analytical results are obtained from our exact
formula, the results are denoted as Analysis. If the analytical
results are obtained from our approximation formula, then the
results are denoted as Approximation.

A. Connectivity

We first investigate the connectivity of a VANET from
various aspects: i) probability distribution of the numberof
disconnected links, ii) average number of clusters, and iii)
probability that the VANET is fully connected for a given
number of vehicles. Note that, if we are given information on
the number of vehicles at a particular time, i.e., the value of
N(t), these three metrics on connectivity are readily charac-
terized by normalized transmission rangea (= RT

D
), as shown

in Theorems 1, 2, and 3. In our study, we vary the maximum
transmission range of each vehicle asRT = 200, 300, 400 m,
so that the corresponding normalized transmission range is
a = 0.067, 0.100, 0.133.

Fig. 5 shows the probability mass function̂gn(·) for the
number of disconnected links between the RSUs when the
number of vehicles isn = 20. The graphs denoted as Analysis
in Fig. 5 are obtained from (7). From the figure, we can see
that the distribution is skewed to the right for each normalized
transmission rangea. In addition, the peak of each curve
moves to the left asa increases, meaning that the larger the
normalized transmission range, the more likely it is to have
fewer clusters in the VANET.

Fig. 6 details the average number of clusters between
the adjacent RSUs when the number of vehicles isn =
0, 1, . . . , 70. The graphs denoted as Analysis in Fig. 6 are
obtained from (9). There are two clusters whenn = 0, since
each RSU constitutes a cluster. As the number of vehicles
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Fig. 5. The probability of havingi disconnected links for a network
consisting of20 vehicles when the maximum transmission range isRT =
200, 300, 400 m, and the inter-RSU distance isD = 3000 m (i.e., the
normalized transmission range isa = 0.067, 0.100, 0.133).
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Fig. 6. The expected number of clusters when the maximum transmission
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(i.e., the normalized transmission range isa = 0.067, 0.100, 0.133).

20 40 60 80 100 120 140 160
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of vehicles 

C
on

ne
ct

io
n 

pr
ob

ab
ili

ty

 

 

Analysis (a = 0.133)
Analysis (a = 0.100)
Analysis (a = 0.067)
Simulation
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RSU distance isD = 3000 m (i.e., the normalized transmission range is
a = 0.067, 0.100, 0.133).
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increases, the average number of clusters increases and then
decreases, converging to 1 eventually. Hence, the result in
Fig. 6 indicates that the number of clusters is always bounded
above, and has a maximum. In the integration of a VANET
and a cellular network [3], [13], the cluster heads play the
role of mobile gateway between the VANET and the cellular
network [14]. Hence, the expected number of cluster heads can
help to estimate the required capacity and to reserve resources
for interworking the VANET with the cellular network. In
practice, due to mobility randomness, the number of vehicles
between two adjacent RSUs is time-varying. If the number
of vehicles is equally likely observed at between 50 and 70
vehicles with a 200 m transmission range, from Fig. 6 and
the law of total probability, we can predict that the average
number of clusters can be roughly estimated at around two
during the observation.

Fig. 7 shows that the connection probability increases as the
number of vehicles increases, and saturates at a certain system
size. The graphs denoted as Analysis in Fig. 7 are obtained
from (11). The connection probability can be interpreted as
the time portion of network connection during observation.
Hence, combining the results of Figs. 6 and 7 gives us
detailed information on the statistical properties of network
connectivity as follows. If a VANET is composed of 60
vehicles with a 200 m transmission range (i.e.,a = 0.067),
the network will be fully connected only31.89% of the time
(from Fig. 7) and will be segmented into two clusters on
average (from Fig. 6). In addition, network connectivity can
be improved as normalized transmission rangea increases for
each fixed number of vehicles. For example, when the 60
vehicles have a 400 m transmission range (i.e.,a = 0.133),
the probability of network connection increases to98.86%
from Fig. 7, and the average number of clusters becomes 1.01
from Fig. 6. The single cluster of the VANET implies that the
network is fully connected most of the time.

Our findings from (9) can apply for multiple RSUs as well,
under the assumptions that vehicle arrivals at the first RSU
follow a Poisson process and that vehicle velocities chosen
randomly at the first RSU are maintained until the last RSU.
WhenNRSU (≥ 2) RSUs are involved, there are (NRSU − 1)
segments separated by intervening RSUs. Hence, by separately
considering each segment and combining the results, our
findings can be extended to such cases. Since (NRSU − 2)
clusters including the intervening RSUs are counted twice at
two adjacent segments, (NRSU −2) should be subtracted from
the sum of the numbers of clusters individually counted in
each segment. For example, if there arelj disconnections (i.e.,
(lj + 1) clusters) in each segmentj ∈ {1, 2, . . . , NRSU − 1}
at time t, then the number of clusters in the network,C(t),
can be expressed as

C(t) =

NRSU−1∑

j=1

(lj + 1)− (NRSU − 2) =

NRSU−1∑

j=1

lj + 1.

B. Average critical network size

We next investigate the average critical network size,E[Na],
between two adjacent RSUs. Fig. 8 shows the results when the
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Fig. 8. The expected number of vehiclesE[Na] vs. normalized transmission
rangea

maximum transmission range varies from 100 m to 1500 m
(i.e.,a varies from 0.033 to 0.5). In the figure, the expectation
estimated from our exact formula (14) is denoted as Analysis,
and the graph denoted as Approximation shows our asymptotic
formula (15) wheno(1) = 0. As shown in Fig. 8, the average
number of vehicles,E[Na], required for network connection
increases on the order of

(
1
a
log 1

a

)
as normalized transmission

rangea decreases. We also observe that the results obtained by
simulation, analysis, and approximation are almost identical.
When ratioa is small, the analytical results from (14) deviate
from the other results because the combinatorial term of (14)
is too large to be included in the simulation, and we consider
only a finite number of vehicles in the computation of the
infinite series.

As the number of vehicles increases, the network be-
gins a phase transition from a disconnected phase to a
connected phase at the critical network size. The criti-
cal network size is a function of normalized transmission
range a for a given network configuration, and follows
1
a

(
log 1

a
+ log log 1

a
+ 0.5772

)
approximately. For example,

when a = 0.1, the average critical network size is 37.
However, if a is halved, i.e., the maximum transmission
range is reduced to half of the given condition, or the inter-
RSU distance doubles, then the critical network size increases
to 94 vehicles, which is greater than the reciprocal of the
transmission range reduction.

C. Expected number of active links

To study network capacity, we examine the expected number
of simultaneously activated links in a vehicular network asthe
number of vehicles between the RSUs increases fromn = 20
to n = 120. Fig. 9 shows the results fora = 0.1, 0.15, 0.2,
where the graph denoted as Approximation is obtained from
(25). From the figure, we observe that, as the number of
vehicles increases, the number of active links linearly increases
with slope 1

2 (1 − e−2), regardless ofa. This result indicates

that, in an asymptotic regime ofn, exactly 43.2%
(

= 1−e−2

2

)

of links are simultaneously activated, and the resulting network
capacity becomes0.432n. In Fig. 9, there is a gap between
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the results of the simulation and the analysis for a smalln.
The difference is larger for a smallera, and becomes zero as
n increases. The reason is as follows. Our analysis focuses
on the regimen ≫ E[Na], so that the network is in a fully
connected condition, and link activation is ruled only by a
random access scheme. However, when the network consists
of a small number of vehicles, link connectivity (as well as
random access) affects link activation, since a disconnected
link cannot be activated. Such an event can occur more often
for a smallera, yielding a larger gap, as shown in Fig. 9.

D. Effect of velocity changes on connectivity

Vehicle mobility pattern is one of the major factors that
govern the connectivity of a VANET. In this section, we
investigate the effect of average velocity changes on the
connectivity of a VANET between two adjacent RSUs.

Let µ(t) be the average velocity of a vehicle arriving at
time t. We assume thatµ(t) changes over timet according
to Fig. 10. Each vehicle arriving at timet is assigned a
randomly chosen velocity between(µ(t) − 20) km/h and
(µ(t) + 20) km/h, and maintains its assigned velocity while
moving on the highway segment between two adjacent RSUs
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Fig. 11. (a) The expected number of clusters and (b) the connection
probability when the average velocity changes over time according to Fig. 10.
The maximum transmission range isRT = 200, 300, 400 m, and the inter-
RSU distance isD = 3000 m.

(i.e., for approximately one to three minutes, since the inter-
RSU distance isD = 3000 m).8

Figs. 11 (a) and (b) show how the average number of
clusters, and the connection probability, change when the
average velocity varies with time according to Fig. 10. The
graphs denoted as Analysis in Figs. 11 (a) and (b) are obtained
from (10) and (12), respectively. From the figures, we have the
following observations and interpretations: (i) As the average
velocity increases, the average number of clusters increases,
and the connection probability decreases. This observation
indicates that high-speed highways are more prone to discon-
nection than low-speed highways. Note that, in Section III,we
showed that the spatial distribution of vehicles at any given
time t is Poisson with the spatial densityλd = λE[V −1] (see
Equation (2)). Hence, for a fixed arrival rateλ, smallerµ(t)
results in a more dense network (having more vehicles), which

8In most general cases, the vehicle velocity can vary with time as the vehicle
moves along the highway. It has been shown that if vehicle velocities change
over time according to a wide-sense stationary random process, the steady-
state distribution of vehicle locations is the same as when vehicle velocities
are constant over time [11], [38].
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in turn leads to improving the connectivity, as shown in Figs. 6
and 7. (ii) The amount of increase or decrease in Figs. 11 (a)
and (b) becomes prominent for shorter transmission rangeRT .
That is, the shorter the transmission range, the connectivity
becomes more sensitive to velocity changes. Hence, using a
longer transmission range can help to stably sustain network
connectivity over time against velocity changes. (iii) In the
worst case (i.e.,RT = 200 m), the connection probability is in
the range from 0.15 to 0.55 with 1.7 to 2.7 clusters on average.
The connectivity can be noticeably improved by increasing the
transmission range fromRT = 200 m to RT = 300 m; the
network is in a fully connected state for at least 4 out of 6
hours with 1 to 1.3 clusters on average.

VII. C ONCLUSION AND FUTURE WORK

In this paper, we analyze properties of a vehicle-to-vehicle
network with a random topology. To that end, we model
a one-dimensional random topology network with geometric
elements, such as line segments and points. Using theory
from geometric probability, we analyze properties of such a
vehicular network not only in a disconnected phase but also
in a connected phase. For a given number of vehicles, our
analysis provides the probability that the network is connected,
as well as the expected number of clusters that the network
forms. Moreover, our analysis shows that the average number
of vehicles needed for the network to be fully connected
is approximately1

a

(
log 1

a
+ log log 1

a
+ 0.5772

)
for a given

transmission range,RT , wherea = RT

D
. When CSMA/CA is

adopted as a random access scheme, then each packet between
RSUs has 2e2

e2−1n slot times. We verified our analysis through
simulations.

Our findings focused on a VANET between two adjacent
RSUs on a unidirectional highway under the assumption that
the maximum transmission range is deterministic. However,
due to wireless channel randomness, such as shadowing and
fading, the transmission range has randomness, which affects
the properties of network connectivity. Interference among
transmissions and unevenly distributed-traffic congestion may
affect the network connectivity as well. Bidirectional traffic
induces a different network topology than unidirectional traf-
fic. The analysis of a VANET between multiple RSUs with
time-varying vehicle velocities requires other mathematical
approaches, since the location of a vehicle is no longer linear
with time. The analyses extending to the above assumptions
are left open for future work.
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