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Abstract—A vehicle-to-vehicle network is one type of mobile
ad-hoc network. Due to mobility, the topology in a vehicle-o-
vehicle network is time-varying, which complicates the ankysis
and evaluation of network performance. In this paper, we moe!l
the network as geometric elements of lines and points and
analyze connectivity and capacity of the network using geostric
probability. Under the assumption that n vehicles randomly
arrive with a Poisson distribution, our analysis shows thatthe
spatial distribution of vehicles within a given distance, D, is
uniform and that the average number of vehicles to be fully
connected is approximately < (log 2 +loglog 1) for a = £2,
where R is the maximum transmission range of a vehicle. When
a random access scheme is adopted, onfy(1 — e~ ?)n of links
comprised of two adjacent nodes are simultaneously activad,
on average, so the expected network capacity increases in aw
linearly proportional to %(1 — ¢7?) as the number of vehicles
increases. Through numerical studies and simulations, weevify
the efficacy of our analytical results.

Index Terms—Vehicle-to-vehicle communications, geometric
probability, performance analysis, connectivity, capady
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Fig. 1. A vehicular network consisting of vehicles and two RSUs

vehicular environment (WAVE), was proposed [5]. Since IEEE

802.11p is grounded in IEEE 802.11, the physical medium
is shared with other communication nodes, and the carrier
sense multiple access/collision avoidance (CSMA/CA) sthe

is employed as a random access protocol.

Analyzing the performance of such networks involves non-
trivial challenges due to the following two factors: random
positions of vehicles and random links between vehicles.
Temporal information on vehicles, such as inter-arrivialets
and velocities, can be measured at RSUs, but the spatial

Vehicular networks have been studied extensively for ajfiiformation on the vehicles between two adjacent RSUs is un-

plication in intelligent transportation systems (ITS) &afety

known, which is directly related to network connectivityu®

warnings [1], [2] as well as for data communications [3],.[4]t0 vehicle mobility, vehicles are randomly located between
In such networks, communications can be categorized ift®Us, and the network topology changes with time. Hence,

two modes: vehicle-to-infrastructure (V2I) communicago

inter-vehicle distances may be greater than the transmnissi

and vehicle-to-vehicle (V2V) communications, as shown if#nge, resulting in aisconnectedsehicular network. Conse-
Fig. 1. Vehicles communicate with roadside units (RSUs) fghently, successful end-to-end communications in vehicul
access backbone networks, referred to as V21 communicatiodd hoc networks (VANETSs) depend on network connectivity,
Through V21 communications, ITS servers collect trafficadatvhich impacts the main performance measures of a vehicular

from vehicles and send traffic information to vehicles.

network, such as capacity and delay.

Between RSUs, not all vehicles can communicate with the Even if all inter-vehicle distances are less than the trans-
RSUs in a single hop due to their limited transmission rang@ission range (i.e., the vehicular network is topologicall
As a result, vehicles communicate with each other to exoharfglly connectedl data cannot be propagated immediately from
information via V2V communications. Since such commungource node to destination node in the network via the vesicl
cations do not have an infrastructure, data are deliveima fr located in between them. A path from source node to destina-
one place to another in a multi-hop manner. For such vehicutin node is composed of links, each of which is formed by an
networks, IEEE 802.11p, also known as wireless accessardered pair of nodes (sender and receiver). Due to the nando
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access scheme adopted by IEEE 802.11p, only a subset of links
in the path is allowed to simultaneously activate. The ramdo
links as well as the network connectivity affect the thropigh
capacity and delay of the network.

In this paper, we consider a one-dimensional VANET
formed on a unidirectional highway, addressing the folluyvi
problems for performance analysis:

1) the spatial distribution of vehicles on the road between
two adjacent RSUs

2) the geometric properties of the vehicular ad-hoc network

3) the probability that the vehicular ad-hoc network isyull



connected in nature, analyzing the entire spectrum of the number of
4) the capacity of the vehicular ad-hoc network disconnected links requires handling a huge dimension of

In previous work, various aspects of connectivity in ondliversity across all random links. To handle this o!iversity
dimensional VANETSs have been studied [6]-[12]. The conne¢ model the network as geometric elements of lines and
tivity of vehicular ad-hoc networks was theoretically arzaid  POINnts, and we utilize another mathematical technique dase
in [7]-[12], but was studied by computer simulations in [6]°N 9eometric probability and finite difference calculusisTh
In [7], the authors examined the connectivity charactiesst 1eChnique enables us to fully characterize the number of
related to clustefs (such as average intra-cluster spacingisconnected links in terms of probability distributionhiah
and average cluster sPein sparse one-way VANETS usingmclu.des the connection probablhty as one case. In detail,
mobility patterns extracted from real-world empirical alat Previous works have provided only the probability that éner
In [8], the authors presented a comprehensive mobility hod® N0 disconnected links in the network, whereas our aisalys
by considering the arrival and departure of nodes at preetfirProvides the probability distribution that the network ffas
entry and exit points along a highway, and studied the amra%js_connected links for all values of, including & = 0.
cluster size and the probability that the nodes form a singléiS result translates into the probability that the netwisr
cluster. In [9], the authors studied a way to improve the°mposed ofk +1) clusters for each of € {0,1,...}, from
connectivity in a VANET by adding mobile base-stations, anfhich we can obtain the average number of clusters.
analyzed the average connectivity distance and the averagNother important metric concerned with connectivity is
cluster size. In [10], the author developed connectivitybar U2ffiC density (in vehicles per kilometer per lane) [15]. As
bility using a geometry-assisted analytical method. Irj[1He the traffic density increases, the vehicular network is more
authors introduced an equivalent speed to account forwaridikely to be fully connected. In this paper, we defiostical
speeds across vehicles for use in connectivity analysfd.2l network sizeto be the number of vehicles with which the

the connectivity of one-dimensional vehicular networksswa/€hicular network begins to be fully connected, and below
analyzed with consideration of the fading channel. which a link is disconnected. A similar notion can be found

While there have been extensive studies on connectiv)iE/p‘:‘mo'""tion theory (the so-called percolation thresijab],
in VANETS, the problem of characterizing network topolog

7)) if we consider a vehicle as a circle where the radius
when the VANET is not fully connected has been unde?—quals the vehicle’s transmission range. The critical ngtw
explored. Specifically, statistics on the number of dis

amed SIZ€ represents a phase transition point in a VANET, since
links has not been well understood, and as of yet, there is

connectivity of the VANET changes completely from a
analytic solution for these statistics. Whenever a VANET i isconnected phase to a connected phase. In this paper, we

not fully connected, the number of disconnected links can Bée_sent both the _exact and asymptotlc_formulas_for the gecra
different. That is, a disconnected VANET can have various d‘é”t'cal network size, and we analyze its behavior for vasio
grees of disconnection or fragmentation. Such statisticthe system parameters. .
number of disconnected links is important information ie th Our contributions in this paper are summan;ed as follows.
design of a VANET that can provide reliable communications 1 Bas_ed on th? assumption that the arnv_al process of
for vehicles. Recently, the use of Long Term Evolution (LTE) veh|cle.s is Poisson, we show fchat the spatlal.dlstrllbunon
to support a VANET is under investigation by standardizatio =~ ©f Vehicles between two adjacent RSUs is uniform.
groups [13]. Detailed knowledge on the degree of network ~ 1Ne average number of vehicles between two adjacent
disconnection also enables us to precisely estimate thireet RSUs is linearly pr?poonnaI to the vehicle arrival rate
number of cluster heads or mobile relays that bridge vehicle mulUp_hed by E[V_7 I whe_reV is a random variable
in a VANET and eNodeBs under LTE [14]. This estimation in __ denoting the vehicle velocity.
turn can help to allocate network resources in a more eladora 2) W analyze the connectivity of a VANET between two
way for potential VANET-LTE interworking. adjacerlt RSUs in a un|d|r¢ct|onal highway enwronm(_ent.
In this paper, we present an exact-form analysis of the In particular, we f|rsF d?”"‘? a closed-form expression
number of disconnected links in a VANET in a unidirectional for the prob_ablhty d_|str|but|or! Of th_e number Of. dis-
highway environment. The main techniques in the previous connected links. Using the distribution, we obtain th_e
work on connectivity analysis in VANETSs rely on queueing average number_ of clusters, as well as the probablllty
theory or geometric-assisted analytical models. Thesb- tec that the \./ANE.T is fully connected._O_ur analysis shows
nigues have mostly been developed to analyzectmection the relationship between .connec,jtlvny and the sy_stem
probability of a VANET, which is equivalent to the probability parameters suc_:h as ve_h_lcle arrival rate, transmission
of having no disconnected links. Since the topology of a range, and vehicle velocities.

VANET is spatiotemporally correlated and highly dynamic ) we .ShOW thlat thel average clr|t|cal netwqu SIz€ 1S ap-
proximately - (log = + loglog E), whereq is the ratio

IThroughout this paper, a cluster refers to a set of nodesebrms follows. of the maximum transmission range of a vehicle to the

Any two adjacent nodes belong to the same cluster if thedrinbde distance distance between two adjacent RSUs.
is shorter than a given transmission range; otherwise,vikenbdes belong  4) We investigate the capacity of a one-dimensional
to different clusters. Accordingly, a VANET is con_wposedlofe {1,2,...} VANET. We show that when network capacity is defined
clusters when there arg — 1) disconnected links in the network. . . .

2The average cluster size denotes the expected number of matten a as the amount of data delivered in a network du”ng a

cluster. unit of time [18]-[20], the network capacity is exactly



expressed a%(l — e ?%)n in an asymptotic regime, in are Nodes) andn + 1, respectively, and the vehicles are

contrast to® (, /) in two-dimensional random ad- Nodes1 to n. Let dy(t) (¢ R) be the location of Node:
& along the direction of the highwayat time¢. Without loss of

hoc networks [18], an® (n) in one- or two-dimensional .
mobile ad—hoE: getworés)[19] [20], where is the generality, we seilp(t) = 0 andd,,1(t) = D for all £. Then,

number of nodes. 0=do(t) <di(t) <...<dn(t) <dni1(t)=D. (1)
The rest of this paper is organized as follows. In Section Kpe gpatial distribution of the: ordered random vector
we describe the system model. In Section Ill, we study tr{ﬁl(t)@g(t),...,dn(t)) determines the state of each link

spatial distribution of vehicles based on temporal distitn pepyeen nodes and overall network connectivity. The link
and velocity information of vehicles. In Sections IV and Vyanyveen Nodeg — 1 and k at timet is topologically either

we analyze the connectivity and capacity of the network. {fynnectedor disconnectedand becomes connected if the
Section VI, we present numerical studies. Finally, we codel inter-node distance at time is shorter than the maximum

the paper in Section VII. transmission range, as follows:

A
II. SYSTEM MODEL AND ASSUMPTIONS sk(t) = di(t) — dp-1(t) < Rr.

In this paper, we consider a segment of a unidirectiontl addition, the vehicular network is topologicaliylly con-
multi-lane highway that consists of two adjacent RSUs amctedat time ¢ if no link is disconnected at time, i.e.,
N(t) vehicles between them at time Each vehicle is sk(t) < Ry forall k =1,2,...,n+ 1. For such topological
equipped with a communication device that has a maximugannectivity, we ignore interference from other transioiss,
transmission rangeRz, and can control its transmissionwhich may affect the physical link connectivity.
power. The RSUs are spaced apart at distaRgevhich is A random access scheme is employed to establish a com-
much longer than transmission ranfe. Thus, vehicles be- munication link between two nodes. We assume that nodes
tween the two RSUs can communicate with each other onlyti@nsfer data only to adjacent nodes, and each node can form
a multi-hop fashion without relying on a wired infrastruetu at most a single link at a time. For example, if Nodeom-

In practice, the transmission range of an RSU is wider thapunicates with Nodé + 1 at timet, then Nodek + 2 cannot
that of a vehicle. However, if a vehicle is located fartheagw form a link with Nodek +1 at that time. A node can generally
from an RSU than its transmission range, then the vehideach any node in its transmission range. However, in such
cannot bidirectionally communicate with the RSU. Hence, we case, intermediate nodes between the two communicating
assume that the RSUs also have maximum transmission rangédes (the sender and the receiver) cannot communicate with
Ry, enabling bidirectional communication between a vehickach other due to collision at receivers, and as a result, the
and an RSU. network capacity decreases [18], [23], [24]. Moreover, the

The topology of the VANET changes with time due td@reater transmission range induces more collisions atrothe
vehicle mobility. The vehicle mobility model used in thisgga communication links, and decreases network capacity. élenc
can be described in terms of vehicle arrival and velocity & this paper, a node with power control is assumed to establi
follows. With regard to vehicle arrival, we assume that eagh communication link with an adjacent node. We define that
vehicle arrives at the first RSU according to a Poisson priak between Node¢ andk + 1 asactiveat timet if Node
cess, as assumed in previous works [8]-[12], [21]. Emgiriceommunicates with Nodg + 1 at time¢. Otherwise, the link
studies from real freeway traffic data have shown that vehidtetween Node# and £ + 1 is idle, even though Nodé is
arrivals can be accurately approximated by a Poisson pspcdgpologically connected to Node+ 1 at timet. Since IEEE
especially for a sparse traffic environment, such as nigh@2.11p provides multiple channels, nodes can communicate
time periods and early mornings [7]. With regard to vehicl#ith their neighboring nodes without the hidden node proble
velocities, we assume that the speed of a vehicle is a randefrthe exposed node problem [25]-[27].
variable that is independent for each vehicle and follows Under the above assumptions, in this paper, we first analyze
a general probability distribution. Vehicles are assumed tdhe spatial distribution of vehicles on the road between two
freely overtake slower vehicles so that their velocities mot adjacent RSUs. Based on this spatial distribution, we next
hindered by other vehicles. This assumption practicallgéo study the connectivity of a vehicular network from various
in sparse situations [21] or in free-flow phase in the traffidgspects. We then derive the capacity of a vehicular network
theory language [9], [15]. For example, in the case of multtmploying a random access scheme.
lanes in rural areas, vehicle speeds are likely to be urtaffec
by the traffic. Hence, we assume that each vehicle drives at
a constant speed of its own, which is chosen randomly, untilln this section, we determine the spatial distribution diive
reaching the second RSU. cles on the road between two adjacent RSUs at a given time,

Due to the time-varying topology,/V (¢ is a random
ying topology, N ( )}tZO 3A more precise expression for the location of Nddis (dy, (t), vk (t)) €

process. For a fixed time suppose th_at (E NU{O}) vehicles R2, wherey; (t) is the signed distance from a fixed point (e.g., an RSU) to
are located between the two RSUs, if€(¢) = n. Throughout Nodek along a line perpendicular to the highway. It is shown that effect

this paper, we count vehicles and RSUs together as nodes gl (t) on connectivity can be considered negligible in multi-ldighways
label th d Nodé (k — in th for most practical cases, since the transmission ranggriss> 3.6 m that is
abel thesen +-2 nodes as No ( =0,1,...,n+ 1) In the the standard highway’s lane width [15], [22]. Hence, we egprthe location

vehicle driving direction, i.e., the first and the second RSWf Node k using dy, (t).

IIl. DISTRIBUTION OF VEHICLES



Fig. 2. Modeling of a vehicular network using geometry Fig. 3.  Network connectivity when there afé(t) = n vehicles between
two adjacent RSUs at time

based on the temporal distribution and velocity infornmatio

of vehicles gathered at the RSUs. The trajectory of a vehidiere0 < z; <zz <... <z, < D.

create_d using ti_me and space c_oordinates_ can b_e modele(a,'%%f: Refer to [30]. -

a straight line in a plane iR? if the vehicle drives at a

constant speed and never leaves the road, as shown in Fig. Zhe result in Lemma 1 implies that(¢) has the same
In the figure, the horizontal axis and the vertical axis repne, distribution as theith smallest value among independent
respectively, time and distance of the vehicle from the first random variablesiniformly distributed on the interval0, D).

RSU. Therefore, if we are given the information on the number of
The trajectory of vehiclé can be parameterized ty;, ;) Vehicles between the RSUs at timgsay, N() = n), then
and is expressed as we can infer that thex vehicles are uniformly distributed on
the road.
d=Vi(t—t;).
Here, the time intercept; on the t-axis denotes the time V. CONNECTIVITY OF A VANET

when vehicle: passes the first RSU, arid is the velocity
of vehiclei. Since the arrival epochi; };cn form a Poisson
process, and the velociti¢¥; } ;cn are independent and identi-
cally distributed across it follows that the spatial distribution
of vehicles at any given timeis Poisson [28], [29]. Also, its
density, denoted by, is determined as

Based on spatial distribution analysis, we next analyze the
connectivity of a VANET. Specifically, we derive the folloug
four metrics in sequence: (i) the probability distributiof
the number of disconnected links, (ii) the average number
of clusters, (iii) the probability that the VANET is fully
N connected, and (iv) the average critical network size.
Ad = /\/ 1dFV(u) = \E[V], (2)

0

v

, , ) ) A. Probability distribution of the number of disconnectiedks
where \ is the arrival rate of the vehicles, ard, () is the

distribution function of velocityl’. It means that the spatial Since RSUs are evenly located, and the segments between
density \; of vehicles between two RSUs is the measurdWo adjacent RSUs have identical statistics, we convertex li
temporal density\ scaled byE[V~!]. As a consequence, theSegment into a circle to remove edge effects as in [19], {20].

average number of vehicles between the RSUE[i§ (¢)] = The detailed procedure is as follows. We first normalize the
A\aD for any timet, and the probability mass function 8f(¢) line segment in Fig. 1 by lengtih). We next transform the
is obtained by scaled line segment into a circle by attaching the first aed th
N second RSUs, as shown in Fig. 3. We then denote the RSU at
P(N(t) =n) = e—k@@’ n=0,1,.... (3) theoriginin Fig. 2 by zero on the circle and assign numbers
n from Node0 clockwise.

Due to stationary and independent increments inherent in aSuppose that (¢ N U {0}) vehicles are located between
Poisson process, the joint distribution @i (t),...,d,(t)) the two RSUs at time, i.e., N(t) = n. It then follows
when N (t) = n can be described by a uniform distributiorfrom Lemma 1 that the vehicles are located randomly on
on the interval(0, D) [30], as in Lemma 1. the circumference of the circle with a uniform distributidn
addition, there are+1 arcs on the circle, and the arc between

Lemma 1. Given thatN'(¢) = n, the joint density function of Nodesk — 1 andk (i.e., thekth arc) on the circle corresponds

(di(t),da(t), ..., dn(t)) in (1) is

. n! 4We are inspired by the modelling in [31], and our analysidofe$ the
f(r1, 22, 20) = D’ methodology in there.



to the kth link in the VANET and has the normalized arcTheorem 1. Given thatN (¢) = n, the probability that there

lengtha(t), defined as are ¢ disconnected links in the network is
Sk (t n a =i nt1—i ] S\
a(t) 2 20 I () e e (R R o
di(t) — dg_1 (1) )=q it is<la], Q)

=g k=12..n+l

Hence, the sum of alk,(t)s is one, i.e.,zz;f ag(t) = 1.
Let a be the ratio of transmission randegr to distanceD

0, if i>la"t],

wherei =0,1,...,n+ 1.

between two adjacent RSUs, i.e., Proof: From (4), we have
R
(Normalized transmission range) a = FT (i + ) {(1 —(i+j5)a)" if j< a7t -1, ®)
gn(t+7J) = LT
In practice, the transmission ranges are not constant,aout r 0 if j>[a™]—4.

domly distributed. Since the statistical properties of astant ) . , o
transmission range case and a random transmission range ca{PPose first thata™'] —4 < 0. Then, g,,(i + j) = 0 for all
are similar when the number of nodess large [32], we study 7 210’ and thus, we havg, (i) = 0 by (6). Suppolse next that
the connectivity of a VANET under the assumption that the | —¢ = 0. Then,g, (i +j) = 0 forall j > [a~"] —i > 0.
transmission range is constant. If arc lengil{t) is greater HeNce, substituting the first case in (8) into (6) gives

than the normalized transmission rangethen Nodest — 1

min(m4+l—i,|a”—

andk are unable to communicate with each other. If suchan =~ /m+1 2 o)) n+1l—1 V1t a"
event occurs, we say that th¢h arc has a gap, which is also?"'"/ =\ Z j 1/ (1=(i+5)q)
equivalent to having a topologically disconnected linkwestn 71-7:9
Nodesk — 1 and % in the vehicular network. When no gap n4+1 la =2 /) +1—34 ; o
occurs in any arc on the circle, the VANET is fully connected. = i Z j (=17 (1= (i+j)a)",

To facilitate our analysis, we first compute the probability =0
gn(i) (i = 1,2,...,n + 1) that gaps occur in specified . i
arcs (namelyith, koth, ... kth arcs), whatever happenghere the second equality follows, singg" ") = 0 for

elsewhere: i e. j >n+1—1. This completes the proof. |

gn(i) 2 Plag(t) > a,k = k1, ko, ..., ki [ N(t) =n).

Due to circular symmetryy,, (1) is identical to the probability B. Expected number of clusters
that the first arc has a gap, which(is— a)™ sincen vehicles

are uniformly distributed on the circle by Lemma 1. ApplyingS
a similar argument, the probability, (i) is then derived as

A cluster, which is also referred to as a platoon, denotes a
et of nodes in which the distance between any two adjacent
nodes is less than the transmission range. The number of

_ (1 —ia)™ if i< |a™?, clusters would be an interesting parameter in a certaindjpe
gn(1) = 0 if > |a"!] (4)  vANET. Clustering technology provides efficient and releab
’ communications in a VANET, as well as an integration of
where|z| is the largest integer not greater than VANET and cellular networks [3], [4], by communicating with
We next compute the probability, (i) (i = 0,1,...,n+1) neighboring nodes, referred to as cluster members. In such
that exactly; gaps occur on the circle, wherever they happeoluster-based networks, cluster heads are elected to manag
ie., both intra-cluster and inter-cluster communications.
n+1 Let C(t) be a random variable denoting the number of
Gn(i) =P (Z Lap(t)y>ay =1 | N(t) = n) , (5) clusters in the network at time According to the discussion
k=1 above, a VANET formsk clusters when there arg: — 1)

wherel ., is an indicator function. From the calculus of finitedisconnected links in the network. Hence, applying theltesu

differences and the results in [33] and [34], the probapilitn Theorem 1, we can derive the average number of clusters
§n(i) can be obtained by in the network, as shown in Theorem 2.

na 1\ "E a1 . Theorem 2. Given thatN(t) = n, the expected number of
gn(z‘):( _ ) Z ( _ )(—1)-7gn(z‘+j), (6) clusters in the network is

t : J
Jj=0
la™")
s o 1
where (J) is the numpe_r_ (_)f ways qf choosing unordered E[C(t)| N(t) = n] = (i + 1)<n—i‘- >
outcomes fromn possibilities. In this paper, we adopt the o 7
convention that(’;) = 0 whenj > n or 5 < 0. Combining la=1]—i ,
equations (4) and (6), we have the following theorem on the ) Z (n +1- l> (=1 (1= (i +))a)". (9
distribution of the number of disconnected links. J

Jj=0



SinceN (t) follows a Poisson distribution, the expected numbdrheorem 3. Given thatN (¢) = n, the network becomes fully

of clusters in the steady state becomes connected with the following probability:
oo a7 ntl P(VANET is connected | N(t) = n)
_ ,—XaD ; a 'l /n . C\n
Ble@W]=e P30 3 i+ 1’( i ) =2 (P (1 jay (1)

n=0 =0
la™!)—i Since N(t) follows a Poisson distribution, the connection

Z <n+.1_l) (1) {AaD(1~ (f +5)a)} . (10) probability of a VANET in the steady state is thus obtained by
J n!

=0
! P(VANET is connected)

Proof: Given N(¢) = n, we haveC(t) = k with probability la=]
gn(k —1) for k=1,2,...,n+ 2. Hence DN L A IS e (.Y 2) P
" e ’ =e ZOZO ;) ey -jari=a—. 1)
E[C(#) | N(t) = n] T

n42 Proof: According to the definition of,,(-) in (5), we have

(]

k-P(C(t) = k|N(t) =n) P(VANET is connected | N () = n) = ,,(0).

3 >
+ 1l
N =

Hence, by Theorem 1, we obtain

:Zk.gn(k—l) P
= o LD (C1)d (1 — ja)" -1
o 4u(0) = {Zg—o () o 0% Lo,
=3+ 1) g0 ’ o=l
=0 B o Since0 < a < 1, we have|a™!| > 0. Thus,
m1n(n+1,La' 1) nail la= ! —i nal—i . o . B
— Z G+ Z _ 1) (1= (i+j)a) P(VANET is connected | N(t) = n)
— 7 — J a ] /n ] - \n
. o =% (T o,
_ (i+1)<”+1> 3 <”+1_i) (<1)(1—(i+j)a)", This proves (11). By the law of total probability, the connec
= i = J tion probability of a VANET in the steady state is then dedive

as
where the last equality follows, sin¢&'") = 0 fori > n+1.

By the law of total probability, the expected number of
clusters in the steady state is then derived as

P(VANET is connected)

= i P(VANET is connected | N(t) = n)P(N(t) = n)

00 n=0
E[C(t)] = Y E[C(t) |N(t) = n]P(N(t) = n) oo la!] n
n=0 _ e—)\dD Z Z n+1 (_1)]’(1 _ 'a)n (/\dD)
—A4D g . n+1 n=0 j=0
- 7;) ; (i + 1)( i ) where the second equality follows from (3). This completes
a1 | o the proof. [ |
. Z (” + 1 - Z) (—1)7 {AaD(1 — (i +])a)}n7 We can interpret the probability (12) in Theorem 3 as the
=0 J n! percentage of time that the network is fully connected. For

applications, if there exists a data center gathering ¢raffi

where the second equality follows from (3). This completegatistics, such as the average of vehicle arrivals, thg-term
the proof. B average of VANET connectivity can be computed from (12)

The above theorem can answer the question of how many Theorem 3. Also, when information on the number of
cluster heads exist in the VANET, when clusters are formeghicles on the road is available in real time, (11) in Theo8e
based on connectivity and each cluster has a cluster helag@comes useful for predicting the connectivity of the VANET
While previous works studied efficient clustering algamith over time.
and their performance, our analysis provides the number of
cluster heads, which was not studied in the previous worksy  jitical network size

In this section, we derive both the exact and asymptotic
C. Connection probability of a VANET formulas for the average critical network size, i.e., thpested

When the network forms only a single cluster, the VANE‘Fumber vehicles required for a VANET to be fully connected.

. . Let N, be a random variable denoting the critical network
's fully connected. Hence, using Lemma 1 and Theorem sl|2e rovided that the normalized transmission ranigeused
we can derive the connection probability of a VANET, P gased.

summarized in Theorem 3 af\lote that if the even{ N, < m} occurs, then a VANET
' consisting ofm vehicles is fully connected. On the other hand,



if a VANET with m vehicles is fully connected, thefiv, < 0 1 203 4 5 n-3 n2nl n  ntl
e o—9o © e—o e—o o o—o
m}. Hence, RSU RSU,

1

P(N, <m) = P(VANET is connected | N(t) = m).
Fig. 4. Example of randomly activated links in a VANET
From (11) in Theorem 3, we also have

la™") . : . T .
P(N, < m) = Z (m + 1) (—1)(1 — ja)™ (13) Applying the result in (17) to the third equality in (16) gse
: J
7=0
o - B[N~ > {1 - (1—eom)m}
Based on the distribution function in (13), we present the =
closed-form formula forE[N,] and its asymptotics in the B —amam
following theorem. - Z {1-(—emm}

m<a~—1

Theorem 4. The average critical network size of a VANET &0 B
+ {1-(1—-e )"} dm+0(1)

that uses normalized transmission rangés given by

o :0(a*1)+a*1/ {1-(1—e®)a}dzx, (18)
E[NJ =) Z < ) YL —ja)m Tt (14) 1
m=1 j=1 where change of variables witthn = z is used in the last
_ % {bg% n loglogé . 0(1)} ’ (15) equality. It then follows from [36, Equations (20), (21)kth

log -+ . 1
where~ is Euler's constan®, and o(1)® is a negligibly small / {1 —(l—e) } dz = log i 1+o0(1),
1

number compared ta. . 1 (19)
Proof: Since N, takes on only non-negative integer values, we /log 1 {1 —(1—em)e } dz = loglog a ++o(l).
obtain the expectatioR[N,] as ’
Combining (18) and (19), we have (15). |
E[N,] = Z P(N, > m) Applying Theorem 4, we can easily estimate the average

number of vehicles required for a network connection under
a given set of system parameters. For example, if the distanc
(1-P(Na <m-—1)) between adjacent RSUs is 2 km, and the maximum transmis-
sion range is 400 m (i.eq, = 0.2), then at least 14 vehicles on
la™"] m _ (16) average must be moving on the road for the vehicular network
{1— > (M)eia-a }
j=0 J

3
&

M

3
&

to be fully connected (i.eE[N,] ~ 13.3). In that case, the
. network is composed of 15 links, which are defined as a pair
la™?] of two contiguous nodes.
( ) J 1(1 - ]a) 11

NN

3
Il

1 j=1
V. CAPACITY ANALYSIS OF RANDOM ACCESS IN A

which proves (14). Now, we investigate the asymptotic behav VANET
ior of E[V,] as normalized transmission rangeapproaches
zero. By the Taylor series expansion, we have ja ~ e ¢
for small a. Hence, the summation on the right-hand side
the third equality in (16) becomes

Since IEEE 802.11p employs CSMA/CA as a medium
gccess control (MAC) protocol, links are randomly actidate
Asin Fig. 4, if Nodes 2 and 4 are communicating with Nodes 1
and 5, respectively, then Node 3 must be idle. Hence, among
a7 m mo o N(t) + 1 links, only a random portion of links participates
> ( >( 1Y (1—ja)" " ~ Z( ,>(—1)Je‘3‘”” (a—0) in transmitting data in the VANET at timg even though the
§=0 J =0 \J VANET is fully connected at that moment.

( ) g We define the network capacity at times the summation

I
Ms

of all transmitted data at time When the wireless bandwidth

W is given, and the number of activated links/isat timet,

—e )™, (17) the network capacity is expressed1&&L. For simplicity, we
assume that¥ = 1. Then, the expected number of links

®Euler's constanty is defined asy = lim, oo (3j—; 1 —log(n)) ~ simultaneously activated by the random access, denoted by

I
—
=l

0%’7:721&35] | functions (z) and (o) o (o) E[L], is directly related to network capacity.
or 0 real tunctionsy(x) and g(x), we use j(x) = o(g(x | . . . o
limy o 58) _ 0 and f(x) = O(g(x)) if there exist constants and In this section, we analyzE[L] as a function ofN(t) = n

& € R such that f(z)| < c|g(x)| for all z > 2. Hence,o(1) implies a small  @Nd study its asymptotic behavior asapproaches infinity. In
number compared ta. order to focus on the random access effect, our analysis in



this section is based on the regime> E[N,], so that the i =m (i.e., link L(,,_; . is activated), then Node» + 1 is

network is in a connected state. In this case, we have idle; and (iv) if i < m — 1, we separate the array into two
2 — E[N;gi|N (1) = independent segments:
BN () = n] = 22N VO 2] = g . |
2 0,1,---,i—2and ¢+ 1,--- ,mm-+1.
————

where N,q4;. is the number of idle nodes that do not partic-
ipate in communications. For example, if four vehicles ar o —
distributed between two RSUs, then the VANET consists E)Sh erz’ezlf?:(e)’:‘;_i;tlinls 'g;ff ahir!g::;;gg irsloi((jﬁe()fégfnzieriﬁnd
six nodes. If two pairs of nodes, Nodes 1 and 2 and Node i 9 ! ' 9

and 5, are communicating, then Nodes 0 and 3 are idle. Henss:qé,('v)’ we have

i—1 m+1—i

the number of communicating links is twe-(%52). K el
To characterize the number of idle nodeg,;., we use Pmt2 = (0+ 1+ Z pm+1—i)
the technique applied for solving a packing problem [30}. Fo . =t
k=0,1,...,N(t)+1, we let _ APt AP 23)
m+1
() 2 1 if Node £ is idle at timet, We can rewrite (23) in recursive form as
0 otherwise A A
- . _ Pm4+1 = Pm
. Pm+2 = Pm+1 = —— -
Then, the number of idle nodes can be expresse;as = m+1
Io(t) + ...+ Ing)+1(t)- Hence, Sincep, = 0 andps = 1, we can solve fof,,+» as follows:
N(t)+1 m+1 (—1)7
E[Nidle|N(t)_n]_E|: Z Ik(t)‘N(t)_n] Pmt2 = Z > m=0,1,.... (24)
— : J:
k=0 j=0
B ni:l E[LL (1) ‘ N(t) = n] We are now ready to derive the main result of this section. By
n P k n substituting (22) and (24) into (21) and then using (20), we
ntl can obtain the network capacity, as stated in Theorem 5.
= potalk), (21)  Theorem 5. For n >> E[N,], the expected network capacity
k=0

is approximately given by
where p,,12(k) £ P(Ix(t) = 1|N(t) = n) denotes the 1 L s
probability that Nodek is idle at timet, given that there are E[LIN(t) = n] ~ 5(” +2)(A—e) - (29)

N(t)+2 = n+2 nodes in the network. To compute 2(k),  proof: Substituting (24) into (22) gives
we consider two contiguous segments:

nt2(k
0,1,---,k and k,k+1,--- ,n,n—+1. Pnt2(k) o
Znio (7’|) |f k = O7n + 17
k+1 n+2—k _ j in , -
. . . . ] (Zk (71)1)(27#14@ (,1)1) i .
Node £ will be idle if and only if the right-most node in the j=0"j1 j=0 T T

first segment and the left-most node in the second segmgpfia thatp,42(0) = pry2(n) = 0, because the first and the

are both idle. Accordingly, ifpm2(m = 0,1,...) is the gocqng term in (26) are zero for= 1, n, respectively. Hence,
probability that the end node in a VANET consisting of from (21), we have

vehicles is idle, i.e.,
. E[Nigie|N(t) = n]
Pm+2 £ Pm+2 (0) = Pm+2 (m + 1)’

n+1 1\ n—1 k 1\ n+l—k 1V
thenp, .2 (k) can be obtained from,,» as =2 @ + ( ,1) > ﬂ
=0 J! k=2 \ ;=0 7! j=0 7!
(k) = Prso if k=0,n+1, 22) ! , '
P2l = Dkl Pnyo—k T k=1...,n Since lim,_, Z?i& (’jll)] = ¢!, the expectation

E[N;ui.|N(t) = n] asn — oo behaves asymptotically as
In the following, we derive a general expression fQr o for [Niae| N (t) = n] asn = oo ymp y

m =0,1,.... Tothat end, we consider+2 nodes distributed E[Niqie|N(t) =n] =~ 2™ + (n — 2)e™?2

in a line, and suppose that link;_, ;) (i = 1,2,...,m + 1) =(2e+n—2)e?

between Nodes — 1 and is initially activated. Note the ~ (n+4)e? 27)
following: (i) this initial configuration is observed withrgb- =An €
ability m+r1 since the random access scheme operates iTleerefore, by substituting (27) into (20), we have

uniform mannef; (i) if i = m + 1 (i.e., link Lm,m+1) 1S n42— (n+4)e?

activated), then Noden + 1 cannot be idle trivially; (iii) if E[LIN(t) =n] = 5
7According_ to [37], the probability that a node transmits irramdomly — l(n +2)(1 - 872) _ 672’
chosen slot time is identical in the steady state. 2



which completes the proof. |

The result in Theorem 5 indicates that, amaengl possible —arayes @ <0067
links, only £ (n +2)(1 —e~2) — e~2 links are simultaneously - --Analysis (a = 0.100)
activated, i.e., approximately(1 — e”?) for largen. || Analysis (a =0.133) | |

o~ O Simulation
VI. SIMULATIONS ;;

In this section, we examine the connectivity and capaci %
of a VANET for various system parameters through numeric ¢ |
studies and simulations. The simulation environments us
in this section are as follows. We consider a segment |
a unidirectional highway between two adjacent RSUs. Tt
distance between the adjacent RSUs is seDte= 3000 m. —o e

10 15 20

The vehicle velocity is randomly chosen at between 80 km
and 110 km/h. We assume that there are two lanes on the
highway, and that vehicles maintain their velocities betwe y o )
the adjacent RSUs, even when overtaking other vehicles. Tk %ot Vehices when the maximum ranemission rangetis —
number of vehicle arrivals at the first RSU is modeled as 20, 300,400 m, and the inter-RSU distance ® = 3000 m (ie., the
Poisson random variable, and the vehicle arrival paie set normalized transmission rangeds= 0.067,0.100, 0.133).
to 30 vehicles per minute.

We developed a simulator using MATLAB, and Monte
Carlo simulations were performed according to the simul 7 : :
tion environments. We ran 10,000 simulations with differer ——Analysis (a = 0.067)
random seeds for each case, and averaged the results. ¢ 2:2:));:2 gzzgjiggi 1
simulation results, denoted as Simulation in each figuréis t o Simulation
section, are compared with analytical results from theeriv
equations. If the analytical results are obtained from oace

Number of disconnected links i

Average number of clusters

formula, the results are denoted as Analysis. If the arwiti 4
results are obtained from our approximation formula, then t
results are denoted as Approximation. 3
. . Z ’ N i
A. Connectivity o >
We first investigate the connectivity of a VANET from 5 10 20 30 "ﬁ{""soh‘:‘"g —
various aspects: i) probability distribution of the numlmér Number of vehicles

disconnected links, ii) average number of clusters, and iii

probability that the VANET is fully connected for a givenrig 6. The expected number of clusters when the maximunstnision
number of vehicles. Note that, if we are given information orange isRr = 200, 300,400 m and the inter-RSU distance I3 = 3000 m
the number of vehicles at a particular time, i.e., the valfie &€ the normalized transmission rangeuis= 0.067,0.100, 0.133).

N(t), these three metrics on connectivity are readily charac-

terized by normalized transmission range= ££), as shown

in Theorems 1, 2, and 3. In our study, we vary the maximu L o e T Tt
transmission range of each vehicle &s = 200, 300,400 m, 0.9 o ’ ' 1
so that the corresponding normalized transmission range o.8f S 1
a = 0.067,0.100,0.133. g ort 4 ]

Fig. 5 shows the probability mass functign(-) for the S o6l |
number of disconnected links between the RSUs when t ‘g o5l & ¢ i
number of vehicles is = 20. The graphs denoted as Analysis 2 ol |
in Fig. 5 are obtained from (7). From the figure, we can s¢ £ 0'37," |
that the distribution is skewed to the right for each noreedi S 7 / /|- Analysis (a = 0.133)

issi ddition, the peak of each curve 0% [ Anaysis (2204001

transmission range.. _In addition, P urv p Analysis (a = 0.067)
moves to the left as increases, meaning that the larger th o1r o Simulation 1
normalized transmission range, the more likely it is to ha 0 0 &0 80 100 120 10 160
fewer clusters in the VANET. Number of vehicles

Fig. 6 details the average number of clusters between
the adjacent RSUs when the number of vehiclesiis= Fig. 7. Connection probability vs. the number of vehiclesewhthe
0,1,...,70. The graphs denoted as Analysis in Fig. 6 amaximum transmission range iBr = 200,300,400 m and the inter-
obtained from (9). There are two clusters wher= 0, since RSU distance isD = 3000 m (i.e., the normalized transmission range is

g . .a=0.067,0.100, 0.133).
each RSU constitutes a cluster. As the number of veh|clcés )
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increases, the average number of clusters increases amd 180

decreases, converging to 1 eventually. Hence, the result o o Simulation
160¢ N —Analysis
\ - - -Approximation| |

Fig. 6 indicates that the number of clusters is always bodnd
above, and has a maximum. In the integration of a VANE 140
and a cellular network [3], [13], the cluster heads play tt 1201
role of mobile gateway between the VANET and the cellule —,
network [14]. Hence, the expected number of cluster heaus ¢ £
help to estimate the required capacity and to reserve ressut

for interworking the VANET with the cellular network. In

practice, due to mobility randomness, the number of vesicl 407
between two adjacent RSUs is time-varying. If the numb 20f
of vehicles is equally likely observed at between 50 and 0
vehicles with a 200 m transmission range, from Fig. 6 ar 0

the law of total probability, we can predict that the average
number of clusters can be roughly estimated at around two
during the observation Fig. 8. The expected number of vehiclE§N, ] vs. normalized transmission
. ' . e range
Fig. 7 shows that the connection probability increasesas th gea
number of vehicles increases, and saturates at a certdansys

size. The graphs denoted as Analysis in Fig. 7 are obtaing@dximum transmission range varies from 100 m to 1500 m
from (11). The connection probability can be interpreted ge., o varies from 0.033 to 0.5). In the figure, the expectation
the time portion of network connection during observatiomstimated from our exact formula (14) is denoted as Analysis
Hence, combining the results of Figs. 6 and 7 gives @d the graph denoted as Approximation shows our asymptotic
detailed information on the statistical properties of m&tw formula (15) whero(1) = 0. As shown in Fig. 8, the average
connectivity as follows. If a VANET is composed of 60nhumber of vehiclesE[N,], required for network connection
vehicles with a 200 m transmission range (i.= 0.067), increases on the order ¢ log 1) as normalized transmission
the network will be fully connected onl§1.89% of the time rangeq decreases. We also observe that the results obtained by
(from Fig. 7) and will be segmented into two clusters oBjmulation, analysis, and approximation are almost idahti
average (from Fig. 6). In addition, network connectivitncawhen ratioa is small, the analytical results from (14) deviate
be improved as normalized transmission rangecreases for from the other results because the combinatorial term of (14
each fixed number of vehicles. For example, when the §)too large to be included in the simulation, and we consider
vehicles have a 400 m transmission range (ue= 0.133), only a finite number of vehicles in the computation of the
the probability of network connection increases %.86% infinite series.
from Fig. 7, and the average number of clusters becomes 1.0JAs the number of vehicles increases, the network be-
from Flg 6. The single cluster of the VANET lmplles that thQJinS a phase transition from a disconnected phase to a
network is fully connected most of the time. connected phase at the critical network size. The criti-
Our findings from (9) can apply for multiple RSUs as wellga| network size is a function of normalized transmission
under the assumptions that vehicle arrivals at the first R§ghge « for a given network configuration, and follows
follow a Poisson process and that vehicle velocities choser’(log% +1Og10g% + 0_5772) approximately. For example,
randomly at the first RSU are maintained until the last Rs%hen a = 0.1, the average critical network size is 37.
When Ngsy (> 2) RSUs are involved, there aré&Vgsu — 1)  However, if a is halved, i.e., the maximum transmission
segments separated by intervening RSUs. Hence, by selgaraignge is reduced to half of the given condition, or the inter-
considering each segment and combining the results, @&U distance doubles, then the critical network size irsgsa

findings can be extended to such cases. Sif¢gst; — 2) to 94 vehicles, which is greater than the reciprocal of the
clusters including the intervening RSUs are counted twice @ansmission range reduction.

two adjacent segmentsVg sy — 2) should be subtracted from
the sum of the numbers of clusters individually counted i&_ Expected number of active links
each segment. For example, if there greisconnections (i.e.,
(I; + 1) clusters) in each segmente {1,2,..., Nrsy — 1}
at time ¢, then the number of clusters in the netwotk(t),
can be expressed as

Ngrsvu—1 Nrsu—1

To study network capacity, we examine the expected number
of simultaneously activated links in a vehicular networktzes
number of vehicles between the RSUs increases fiom20
to n = 120. Fig. 9 shows the results far = 0.1,0.15,0.2,

where the graph denoted as Approximation is obtained from
ct) = Z (lj +1) = (Nrsu = 2) = Z lj+1. (25). From the figure, we observe that, as the number of
=1 =1 vehicles increases, the number of active links linearlyeases
with slope (1 — e~2), regardless ofi. This result indicates

B. Average critical network size that, in an asymptotic regime af, exactly 43.2%( = 1=¢—

We next investigate the average critical network skzgy,], of links are simultaneously activated, and the resultingvogk
between two adjacent RSUs. Fig. 8 shows the results when tapacity becomes8.432n. In Fig. 9, there is a gap between
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Fig. 10. The average velocity of a vehicle arriving at time Fig. 11. (a) The expected number of clusters and (b) the abione

probability when the average velocity changes over timemieg to Fig. 10.
The maximum transmission range figr = 200, 300,400 m, and the inter-
. . . RSU distance isD = 3000 m.
the results of the simulation and the analysis for a small

The difference is larger for a smaller and becomes zero as
n increases. The reason is as follows. Our analysis focuges., for approximately one to three minutes, since therint
on the regimen > E[N,], so that the network is in a fully RSU distance isD = 3000 m).2
connected condition, and link activation is ruled only by a Figs. 11 (a) and (b) show how the average number of
random access scheme. However, when the network consigigters, and the connection probability, change when the
of a small number of vehicles, link connectivity (as well agyerage velocity varies with time according to Fig. 10. The
r_andom access) e_lffects link activation, since a d|sc:0|e|c[iecbraphS denoted as Analysis in Figs. 11 (a) and (b) are olataine
link cannot be at_:tlvgted. Such an event can occur more oftehm (10) and (12), respectively. From the figures, we haee th
for a smallera, yielding a larger gap, as shown in Fig. 9. fo|lowing observations and interpretations: (i) As the rage
velocity increases, the average number of clusters inesgas
and the connection probability decreases. This observatio
indicates that high-speed highways are more prone to discon

Vehicle mobility pattern is one of the major factors thahection than low-speed highways. Note that, in Sectionnd,
govern the connectivity of a VANET. In this section, weshowed that the spatial distribution of vehicles at any mgive
investigate the effect of average velocity changes on tlime t is Poisson with the spatial density, = AE[V 1] (see
connectivity of a VANET between two adjacent RSUSs. Equation (2)). Hence, for a fixed arrival rake smaller u(t)

Let u(t) be the average velocity of a vehicle arriving atesults in a more dense network (having more vehicles), lwhic
time ¢. We assume that(t) changes over time according
to Fig. 10. Each vehicle arriving at time is assigned a 8in most general cases, the vehicle velocity can vary witle timthe vehicle
randomly chosen velocity betweefu(t) — 20) km/h and moves along the highway. It has been shown that if vehiclecitéés change

. . . . . ., over time according to a wide-sense stationary random psodbe steady-

(u(t) + 20) km/h, and maintains its assigned velocity whil

/ ) : State distribution of vehicle locations is the same as whaficle velocities
moving on the highway segment between two adjacent RSkls constant over time [11], [38].

D. Effect of velocity changes on connectivity



in turn leads to improving the connectivity, as shown in F&s [5]
and 7. (ii) The amount of increase or decrease in Figs. 11 (a

and (b) becomes prominent for shorter transmission rdhge

(6]

That is, the shorter the transmission range, the conngctivi

becomes more sensitive to velocity changes. Hence, usingl@

longer transmission range can help to stably sustain nk&twor

connectivity over time against velocity changes. (iii) met

worst case (i.e.Rr = 200 m), the connection probability is in [8]
the range from 0.15 to 0.55 with 1.7 to 2.7 clusters on average
The connectivity can be noticeably improved by increasieg t [g]

transmission range fronkr = 200 m to Ry = 300 m; the

network is in a fully connected state for at least 4 out of ﬁo]

hours with 1 to 1.3 clusters on average.

VII. CONCLUSION AND FUTURE WORK

In this paper, we analyze properties of a vehicle-to-vehi

c

i

(11]

network with a random topology. To that end, we mod }2]
a one-dimensional random topology network with geometric

elements, such as line segments and points. Using the
from geometric probability, we analyze properties of such

el

vehicular network not only in a disconnected phase but also
in a connected phase. For a given number of vehicles, difl

analysis provides the probability that the network is cated,

as well as the expected number of clusters that the network

forms. Moreover, our analysis shows that the average number
of vehicles needed for the network to be fully connect

is approximately. (log L + loglog 1 + 0.5772) for a given
transmission rangeRr, wherea = ~%-. When CSMA/CA is

adopted as a random access scheme, then each packet betthe
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