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Abstract—In this paper, we develop an energy-efficient
routing scheme that takes into account four key wireless
system elements: transmission power; interference; resid-
ual energy; and energy replenishment. Since energy is a
scarce resource, many energy-aware routing algorithms
have been proposed to improve network performance.
However, previous algorithms have been designed for a
subset of these four main elements, which could limit their
applicability. Thus, our contribution is here to develop
a unified routing algorithm called the Energy-efficient
Unified Routing (EURo) algorithm that accommodates any
combination of these above key elements and adapts to
varying wireless environments. We study the impact of key
wireless elements on routing, and show via simulations that
EURo outperforms the state-of-the-art.

Index Terms—wireless communication, routing proto-
cols, energy conservation, cross-layer, simulations.

I. INTRODUCTION

Energy is a precious resource in wireless networks.
For many multi-hop networking scenarios, nodes are
battery-operated, thus requiring efficient energy manage-
ment to ensure connectivity across the network. Even
when wireless networks are connected to power outlets,
due to interference between active links the network
may demand excessive energy per unit time (Power) so
that the overall performance is reduced. Since energy
efficiency is directly connected to the network life-time
or network capacity, there have been many efforts to
study energy-efficient networks in the wireless network
community [2]. In the case of multi-hop wireless net-
works [3], [4], efficient routing algorithms are critical
for network performance. The energy efficiency of multi-
hop wireless networks is also receiving increasing atten-
tion due to its increasing importance of sensor networks
in smart grids [5].

In previous works, four main metrics have been used
for energy-efficient routing: transmission power, interfer-
ence, residual battery energy, and energy replenishment.
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Fig. 1. Previous works for energy-efficient routing: ME, LIR, LRR,
WME, E-WME, CMAX, OptSINR, and MBC.

However, previous works typically deal with either one
or two of these metrics, as illustrated in Fig. 1. For
example, in [6], [7], energy-efficient routing mechanisms
have been developed to find Minimum Energy (ME)
routes in multi-hop wireless networks, but these algo-
rithms do not account for the interference with other
links nor battery energy. The authors in [8] study end-
to-end QoS constraints, but ignore the impact of routing
a new flow on the interference and power requirements
of the network, i.e., they do not consider how routing a
new flow interferes with ongoing flows in the network.
In [9], [10], [11], [12], the authors choose routes that use
only interference between links as a metric for routing. In
[9], [10] Least-Interference Routing (LIR) algorithms are
developed to minimize the amount of interference caused
by a transmission, while in [11], [12], Least-Resistance
Routing (LRR) algorithms are developed to minimize the
amount of interference encountered by a transmission.
These algorithms in [9], [10], [11], [12] may result in
choosing energy-inefficient routes because they do not
explicitly consider energy efficiency and residual energy,
but only interference.

In [13], [14], [15], the authors show that residual
energy plays an important role in improving network



performance, and thus propose power-aware algorithms
based on this insight. The Maximum Battery Capacity
(MBC) algorithm in [13] considers only residual battery
energy as routing metrics, while CMAX [15] and the
Weighted Minimum Energy (WME) routing algorithm
[14] consider additional energy metrics, they do not
take into account interference among active links. The
authors in [14] also propose the Energy-opportunistic
Weighted Minimum Energy (E-WME) routing algorithm
for the renewable energy case. However, E-WME still
does ignore the impact of interference on the network.

In [16], the authors show that the interference between
links significantly affects network performance and pro-
posed the energy-efficient interference-based routing
algorithm, called Optimal SINR Routing (OptSINR).
However, the residual energy is not taken into account.

In practice, the four key elements transmission power,
interference, residual battery energy, and energy re-
plenishment affect the choice of finding energy-efficient
routes. For a given wireless network, the roles of the
key elements can change. For example, the interference
of light traffic is negligible while heavy traffic induces a
plenty of interference in the network. However, because
previous studies have ignored one or more of these
metrics, the resultant algorithms may not be energy ef-
ficient in a real wireless environment, where all of these
elements play an important role. Thus, it is necessary
to develop a simple and energy-efficient algorithm that
takes into account all of these critical metrics and adapts
to the varying environments.

In this paper, we make the following contributions.
We develop a unified energy-efficient routing algorithm
that parameterizes all the four key metrics: transmission
power, interference between links (or routes), residual
battery energy, and energy replenishment. We also show
how the proposed algorithm works in different environ-
ments and how the proposed algorithm is related to other
algorithms proposed in previous works. Throughout this
paper, unless stated otherwise, we use boldface notation
to denote either a matrix or a vector.

The rest of the paper is organized as follows. In
Section II, we describe the system model and state our
basic assumptions. In Section III, we develop an energy-
efficient unified routing algorithm. In Section IV, we
study the properties of the proposed routing algorithm
in various environments. In Section V, we provide nu-
merical results to study the efficacy of the scheme. We
conclude in Section VI.

II. SYSTEM MODEL AND POWER CONTROL

A. System model

We consider a power-controlled wireless network that
supports multi-hop routing, i.e., each node can control

its transmission power. We further assume that flow
dynamics are over a much larger time-scale than power
control dynamics, so that the time required for power
control to converge is negligible. The multi-hop wireless
network is modeled as a directed graph G = (N ,L),
where N represents the set of nodes and L the set of
edges that represent communication links between nodes
in the network. Each node n in N has initial energy εinitn

and an energy replenishment rate ξn. Each link l in L is
identified by an ordered pair of nodes, i.e., the transmitter
T (l) and receiver R(l). Links sharing the same frequency
interfere with other links when simultaneously activated.
A new service with data ζ to be transmitted requires a
fixed data rate ∆q, so that the service flow has a fixed
duration µ, i.e., µ = ζ

∆q . For this paper, we assume that
a flow will be routed over only a single route for the
entire duration of the flow. We define, E(l), the energy
consumption of link l to be E(l) = P (l)µl, where P (l)
is the transmission power of link l and µl is the amount
of time it takes the flow to be served at link l.

B. Wireless link model

As mentioned earlier, due to the shared nature of the
wireless medium, wireless links interfere with each other.
The impact of interference affects the available capacity
of these links.

We define an increasing function g(·) that maps the
achievable bandwidth (channel capacity) r(l) to the cor-
responding signal-to-interference-and-noise-ratio (SINR)
θ(l) as θ(l) = g(r(l)). We assume that the function g is
differentiable with respect to r(l), almost everywhere.

In the case of band-limited additive white Gaussian
noise (AWGN) channel, the channel capacity (also called
the Shannon’s capacity) at link l, r(l), is given by
r(l) = B(l) log (1 + θ(l)) , where B(l) represents the
channel bandwidth at link l. Hence, the required SINR
becomes θ(l) = exp

(
r(l)
B(l)

)
−1. In the low SINR region,

the available capacity is often assumed to be a linear
function of SINR [17], that is expressed as

θ(l) = Kr(l), (1)

where K is a constant.
Since there exists an one-to-one mapping from a min-

imum bandwidth to the corresponding minimum SINR,
we replace a rate constraint by an SINR constraint as a
measure of the minimum quality required on the link.
We let ∆c denote an additional SINR constraint at a
link when a new flow with an additional bandwidth ∆q
comes into the link. In the case of the linear SINR
regime, the additional SINR constraint ∆c is equal to
K∆q from (1).



The SINR θ(l) at each link l is defined as

θ(l) =
G(T (l), R(l))P (l)∑

m:m̸=l P (m)G(T (m), R(l)) + σR(l)

=
G(T (l), R(l))P (l)

ηR(l)
, (2)

where σR(l) is the ambient noise at node R(l), P (l) is the
transmission power at node T (l), G(T (m), R(l)) is the
path gain between transmitter T (m) and receiver R(l),
and ηR(l) is the sum of interference and noise at
node R(l). The path gain G(T (m), R(l)) is modeled as

G(T (m), R(l)) = KT (m)R(l)d
−δ
T (m)R(l), (3)

where KT (m)R(l) is the attenuation factor that models
power loss due to shadowing, dT (m)R(l) is the distance
between nodes T (m) and R(l), and δ is the path loss
exponent that typically ranges between 2 and 6 [18].

C. Power control

Recall that L is the set of links. We let P denote the
power vector defined by

P = (P (1), · · · , P (LL))
T ,

where LL is the number of links in set L. Each link
has a minimum requirement c(l) in terms of SINR, i.e.
θ(l) ≥ c(l). Using (2), we can rewrite the minimum
SINR requirements in matrix form as

P ≥ FP+ b, (4)

where b = (b(1), · · · , b(LL))
T such that b(l) =

c(l)σR(l)

G(T (l),R(l)) , and F is the LL × LL matrix with (l,m)
entry

F (l,m) =

{
G(T (m),R(l))c(l)

G(T (l),R(l)) , l ̸= m

0 , l = m.
(5)

Matrix F defined by (5) has non-negative elements,
and since the links interact with each other, it is also
irreducible. Hence, we have the following theorem [19]
from the Perron-Frobenius theorem and standard matrix
theory.

Theorem 1: The following statements are equivalent:
1) ρF ≤ 1 where ρF is the Perron-Frobenius eigen-

value of F.
2) There exists a vector P > 0 such that

(I− F)P ≥ b.
3) (I− F)−1 exists and is positive componentwise.

If there exists a positive feasible vector P, it follows
from Theorem 1 that (I− F)−1 exists. From (4) we
obtain P ≥ (I− F)−1b. Hence, we have the Pareto
optimal1 solution (I− F)−1b that supports the network

1P∗ is said to be Pareto optimal if P∗ is feasible and any feasible
P satisfies P ≥ P∗ componentwise.

topology defined by links in L, and their associated
minimum requirements. One can use a distributed power
control algorithm [19] to achieve this minimum power
vector. As is well known, link scheduling can improve
network performance. However, in general, when a link
scheduling algorithm is used, some links will not be
activated. This means that those entries in F, for which
the links are not activated, will be zero so that (I− F)
will not have a full rank. In this case, the optimal solution
(I− F)−1b can be found using a Moore-Penrose inverse
matrix [20]. The entry of the solution has non-negative
values when the link is activated, and zero otherwise.

We let (I− F)
−1
(l) denote the lth column vector of ma-

trix (I− F)−1 and (I− F)
−1∑l the element-wise sum of

vector (I− F)
−1
(l) . Then, the minimum energy increment

∆E∗
l of each link in the network, when a new flow with

additional constraint ∆c and duration µ arrives at link l,
can be expressed as

∆E∗
l = ∆P∗

l µ

= (I− F′)
−1
(l)

(
ηR(l)

G(T (l), R(l))

)
∆c µ, (6)

where ∆P∗
l is the minimum power addition required

in the network to serve the new flow at link l, F′ is
the matrix corresponding to F in the new environment.
Similarly, when a flow is served by a set Λ of links at a
given time slot, the increased energy consumption ∆EΛ

can be expressed as

∆E∗
Λ =

∑
l∈Λ

(I− F′)
−1
(l)

(
ηR(l)

G(T (l), R(l))

)
∆c µ.

D. Problem formulation

The objective is to maximize the throughput over some
finite time period [0, t], i.e.,

(A) max
∑

j:j≤k(t)

ζjI(j),

where j is the index of a flow arrived at the network,
I(j) is the indicator function that takes on a value of
one only when flow j is successfully delivered from the
source to destination, ζj is the amount of data of j, and
k(t) is the index of the last arrival during time t, under
following constraints:

(AC − 1) θ(l) ≥ c(l) ∀l ∈ L,
(AC − 2) Pmax(l) ≥ P (l) ≥ 0 ∀l ∈ L,
(AC − 3) εn ≥ 0 ∀n ∈ N .

To that end, our problem is to find a route that is energy-
efficient and satisfies the constraints when a flow comes
into the network.



III. UNIFIED ENERGY-EFFICIENT ROUTING (EURO)
ALGORITHM

To solve problem (A) under the three constraints, we
use a two-step approach. We first review the case with-
out interference constraints. We then add interference
constraints to develop a unified routing algorithm. We
begin without considering scheduling, and then extend
the developed algorithm to the case when the links are
randomly scheduled.

A. Energy-efficient routing for battery-operated net-
works in the absence of interference

In [14], it is shown that WME routing is an asymptot-
ically optimal solution to problem (A) with constraints
(AC − 2) and (AC − 3) by balancing the energy
consumption across the network. In the absence of
interference, WME can be expressed as follows.

(B) argminR
∑
l∈R

W∆El

subject to Pmax(l) ≥ P (l) ≥ 0 ∀l ∈ L,
εn ≥ 0 ∀n ∈ N ,

where W is a weight vector that is a function of the
residual energy of nodes when a new flow arrives to
the network, and ∆El is the energy increment over the
network when the new flow is served at link l. In the
interference-free environment, the lth entry of ∆El is
equal to the transmission energy increment of link l,
which is used in [14], [15] when a new flow traverses
over link l. The weight vector W is a row vector
W = (W (1),W (2), · · · ,W (LL)). To maximize the
lifetime over all nodes and the throughput served by the
network, routes need to avoid nodes with small residual
energy and balance the energy consumption across all the
nodes. To that end, the weight for each link is proposed
to be an exponential function of the nodal residual energy
in [14], [15], i.e.,

W (l) = εinitT (l)(γ
λ(l) − 1), (7)

where γ is a constant, and λ(l) is the ratio of the
depleted energy to the initial energy at transmitter T (l)
of link l. In the case of renewable energy [14], [21], the
weight adds a multiplicative factor of an inversely linear
function the replenishment rate in [14], which is defined
as

W (l) =
εinitT (l)

ξT (l)
(γλ(l) − 1). (8)

Hence, the weight vector W can express the impact of
the battery (including residual energy and replenishment)
on routing.

B. Unified energy-efficient routing

As a preliminary step, we need to discuss if the
optimality of (6) is also applicable to the weighted sum
case with (7). Let E∗ be a Pareto optimal solution
required to meet the SINR requirement. The weights
defined in (7) are always nonnegative. Hence, for a given
route R, we have the following inequality:∑

l∈R

W∆El −
∑
l∈R

W∆E∗
l

=
∑
l∈R

W ((El −E)− (E∗
l −E))

=
∑
l∈R

W (El −E∗
l ) ≥ 0,

where E, El, and E∗
l represent the current transmission

power of links, the transmission power of links when
a new flow comes into link l, and the Pareto optimal
transmission power of links when a new flow comes into
link l, respectively. Hence, the Pareto optimal E∗ makes
the weighted energy also Pareto optimal.

We now are in a position to solve problem (A) with
the three constraints, which is really the problem (B), but
with interference constraints. Since the Pareto optimal
energy makes the weighted energy Pareto optimal, our
energy-efficient solution to (A) is expressed as

(C) argminR
∑
l∈R

W∆E∗
l

subject to Pmax(l) ≥ P (l) ≥ 0 ∀l ∈ L,
θ(l) ≥ c(l) ∀l ∈ L,
εn ≥ 0 ∀n ∈ N .

As ∆c goes to zero, F′ in (6) converges to F element-
wise so that the minimum energy ∆E∗

l that meets all
the SINR constraints becomes

∆E∗
l = (I− F)

−1
(l)

(
ηR(l)

G(T (l), R(l))

)
∆c µ. (9)

When the minimum SINR for the incoming flow is
infinitesimally small, our energy-efficient routing algo-
rithm can be formally expressed as

argmin
R∈R(i,j)

∑
l∈R

(
W(I− F)

−1
(l)

(
ηR(l)

G(T (l), R(l))

))
,(10)

where R(i, j) is the set of possible routes from source
node i to destination node j of the incoming flow. Instead
of ∆El, the exact value of the network energy increment
over a route, we can choose a minimum energy route
from the interference measured at R(l), ηR(l)

G(T (l),R(l)) , and
(I− F)

−1
(l) .

In the EURo algorithm outlined in Algorithm 1, each
node checks the availability of two resources for an
incoming flow: battery energy including energy replen-
ishment and transmission power. If the better is depleted



or the transmission power is saturated at a node, the
node denies the incoming flow. For implementation,
a predefined threshold can be used to check energy
depletion for admitting the new incoming flows. If the
battery level of a given node is below the threshold, then
the battery is assumed to be depleted and the new flow
is rejected. Otherwise, the new flow is admitted when
transmission power of the node is not saturated.

Algorithm 1: Energy-efficient Unified Routing
(EURo) algorithm

Construct a directed graph G = (N ,L);
For an incoming flow, check if resources are
available;
if yes then

Measure the interference strength at all nodes in
N ;
Calculate (I− F)−1 based on path loss and
constraints;
Calculate the present weight vector W taking
into account energy replenshiment;

Calculate link cost W(I− F)
−1
(l)

(
ηR(l)

G(T (l),R(l))

)
∀l ∈ L;
Apply a shortest path algorithm to find the
minimum cost route;

else
Reject the incoming flow;
Notify the rejection to the source;

end

C. Link scheduling

To capture the dynamics of scheduling, we define
Pτ = SτP such that scheduling matrix Sτ is an LL×LL
diagonal matrix at time slot τ with (l, l) entry defined
as one, if link l is active, zero otherwise. Then, (4) can
be modified as SτP ≥ FτP + Sτb, ∀τ ∈ T, where T
is a set of time slots and Fτ is an LL ×LL matrix with
(l,m) entry defined as

F (l,m) =

{
1τ,(l,m)G(T (m),R(l))c(l)

G(T (l),R(l)) , l ̸= m

0 , l = m,

where 1τ,(l,m) is one, if links l and m are simultaneously
active at time τ , otherwise zero. Since in practice nodes
cannot have perfect information of link scheduling of all
the nodes in the network and since flows randomly arrive
at and depart from the network, we consider the impact
of random scheduling on the routing algorithm.

We now assume that links are randomly scheduled
and that the statistics of the links are available at each
node. Let Π be an LL×LL diagonal matrix such that the
(l, l) entry of Π is defined as the probability that link l is

activated. We let πm|l denote the conditional probability
that link m is active given that link l is active. From [16],
the additional expected network energy ∆Ēl is given by

∆Ē∗
l =

(
Π(I− F̄)−1

)
(l)

(
η̄R(l)

G(T (l), R(l))

)
∆c µ,

where η̄R(n) is the average of the interference and noise
measured at the receiving node of link n when link n
is active, and F̄ is an LL ×LL matrix with entry (l,m)

Fτ (l,m) defined as 1τ,(l,m)G(T (m),R(l))c(l)

G(T (l),R(l)) if m ̸= l, zero
otherwise. Hence, our energy-efficient routing algorithm
for random link scheduling schemes can be expressed
as, with the same constraints of (C),

argmin
R∈R(i,j)

∑
l∈R

(
W

(
Π(I− F̄)

−1
)
(l)

η̄R(l)

G(T (l), R(l))

)
.

The algorithm procedure is also similar to the procedure
that we have discussed above.

D. Distributed algorithm

Our routing algorithm (10) described in the previous
subsection requires global information such as W and
(I− F)

−1
(l) . The global information for link costs does

not lead itself immediately to distributed implementation.
The computational complexity for link costs exponen-
tially increase as the number of nodes goes by. However,
since wireless signal strength exponentially decays in
terms of distance, as in (3), distant wireless links barely
affect each other. In large networks, update information
could be also stale. Hence, gathering global information
is not effective.

To reduce the computational complexity, we define
the information range as the range for a node to locally
disseminate its information (e.g. residual energy and
minimum SINR to transmit) to neighboring nodes in
the range. The computational complexity of the local
information is independent of the network size but
depends on only the number of neighboring nodes to
share information.

For a distributed version of EURo, we can employ a
distributed shortest path routing algorithm such as the
Bellman-Ford algorithm [22]. For link costs in (10), we
use W̃ and (I− F̃)

−1
, instead of W and (I− F)

−1

that need global information, where W̃ and (I− F̃)
−1

are correspondingly reduced matrices using local infor-
mation from nodes in the preset information range of a
node. The interference and noise strength ηR(l) and the
path gain G(T (l), R(l)) in (10) are locally measurable
[18]. Hence, each node can locally compute link costs
for the distributed algorithm.

Nodes in the network can update the information
for routing in several ways [23]. A simple method is
that nodes periodically broadcast their status to other



nodes, and their neighboring nodes update their stored
information. Another way is to use piggy-backing. When
the status information is relatively small compared to
the data being transmitted, each node attaches its infor-
mation to transmitting data in order to disseminate the
information. A control channel can be used for informa-
tion distribution. The combination of these methods is
also an alternative option to implement.

When the information range is set such that nodes
distribute their status information to only adjacent nodes
and a distributed version of EURo uses only this lim-
ited information from adjacent nodes, the information
to be shared will be sufficiently small. Since piggy-
backing status information does not require additional
transactions, the overhead for the distributed version of
EURo with only adjacent node information will be quite
negligible.

IV. PROPERTIES OF THE UNIFIED ROUTING
ALGORITHM

We study the properties of the unified routing algo-
rithm proposed in the previous section.The metric used
in our routing algorithm (10) is composed of the product
of three components that represent energy, transmission
power, and the impact of the transmission power. As
explained in the previous section, residual energy and
energy replenishment can be represented as W, together.
Hence, we categorize measurement elements regarding
battery energy as a single class, as shown in Table I, and
study the impact of battery energy in subsection IV-B.

In various wireless environments as summarized in
Table I, we study how each component plays a role and
show how our routing algorithm relates to other previous
routing algorithms.

A. No interference and infinite energy
We assume here that interference is negligible and that

each node’s energy is unlimited. For example, a system
is connected to an outlet and the arrival rate into the
system is very low.

Since there is no interference, matrix F becomes a
zero matrix from (5). The unlimited energy constraint
means that the weight W (l) is constant for all links. In
the case of homogeneous networks, the ambient noise is
identical. Hence the algorithm becomes

argmin
R∈R(i,j)

∑
l∈R

(
W(I− F)

−1
(l)

(
ηR(l)

G(T (l), R(l))

))
= argmin

R∈R(i,j)

∑
l∈R

(
1

G(T (l), R(l))

)
.

This is then the same as the Minimum Energy routing
algorithm so that under this assumption our routing
algorithm performs at least as well as the Minimum
Energy routing algorithm.

B. No interference with energy limitation

We assume that interference is negligible and that
each node is operated using a battery. Since there is no
interference, matrix F becomes zero as in the previous
case. Hence, in this environment our routing algorithm
can be simplified as

argmin
R∈R(i,j)

∑
l∈R

(
W(I− F)

−1
(l)

(
ηR(l)

G(T (l), R(l))

))
= argmin

R∈R(i,j)

∑
l∈R

(
W (l)

σR(l)

G(T (l), R(l))

)
.

The weight W (l) depends on the presence or absence
of replenishment functionality in the network. When all
the nodes in the network have no replenishment resource,
the weight becomes (7). In the case when all the nodes
have rechargeable resource, the weight is expressed by
(8), which includes the impact of energy replenishment.
Hence, this algorithm is now identical to the Weighted
Minimum Energy routing algorithm, given in [14], [15]
(or E-WME in [14]). In the general wireless environ-
ment our routing algorithm considering interference can
distribute the relay load over the network in terms of
battery energy (including residual energy and energy
replenishment) so that the performance of our routing
algorithm is at least as high as that of the WME (or
E-WME) routing algorithm.

C. Interference and infinite energy

We assume that interference is significant and that
each node is connected to a power outlet such as a
wireless mesh network with a significant incoming flow
rate. Since there is no constraint on the available energy
(power outlet is available), the weight of each node in
(10) is identical. Hence our routing algorithm can now
be expressed as

argmin
R∈R(i,j)

∑
l∈R

(
W(I− F)

−1
(l)

(
ηR(l)

G(T (l), R(l))

))
= argmin

R∈R(i,j)

∑
l∈R

(
(I− F)

−1∑l

(
ηR(l)

G(T (l), R(l))

))
,

which is identical to the OptSINR routing algorithm
[16]. In this wireless environment, our routing algorithm
performs as well as OptSINR.

D. Interference only

We consider the case when only interference is used
as the metric for choosing a route. The case can be
categorized into two cases: minimize the interference
experienced by a route, and minimize the interference
induced by a route.



TABLE I
COMPARISON OF ALGORITHMS: WE CONSIDER FIVE DIFFERENT ENVIRONMENTS DEPENDING ON CONSIDERED METRIC. WE MARK WITH

AN O WHEN AN ALGORITHM CONSIDERS THAT METRIC, OTHERWISE, WE MARK AN X.

Case (Section)
Measure elements

Algorithms
Interference Transmission power

Battery energy
Residual energy Energy replenishment

1 (IV-A) X O X X ME

2 (IV-B)
X O O X WME, CMAX
X O O O E-WME

3 (IV-C) O O X X OptSINR

4 (IV-D) O X X X LIR, LRR

5 O O O O EURo

To study routing algorithms that consider only inter-
ference, we need to investigate the physical meaning of
(9). Since the inverse matrix of (I−F) is expressed by
I+ F+ F2 + F3 + · · · , the additional energy over the
network can be rewritten as follows.

∆E∗
l

= (I∑l + F∑l + F2∑l + · · · )
(

ηR(l)

G(T (l), R(l))

)
∆c µ

= (0, · · · , 0︸ ︷︷ ︸
l−1

,

(
ηR(l)

G(T (l), R(l))

)
∆c µ, 0, · · · , 0︸ ︷︷ ︸

LL−l

)T

+ F∑l

(
ηR(l)

G(T (l), R(l))

)
∆c µ+ · · · . (11)

The first term in (11) represents the amount of additional
energy at each link when link l serves a new flow
with additional constraint ∆c. The second term is the
amount of additional energy over the network when link
l increases its transmission energy by the first term to
serve the new incoming flow. In the same way, each term
in (11) represents the iterated energy over the network
induced by interference.

The routing algorithm to minimize the interference ex-
perienced by a route, called LRR [11], can be expressed
as

argmin
R∈R(i,j)

∑
l∈R

ηR(l),

where ηR(l) is the interference measured at the receiver
node R(l) of link l.

From Equation (11), the routing algorithm minimizing
the experienced interference is the same as the mini-
mization of the element-wise summation of only the first
terms when the path gain of link l is ignored. Since the
impact of the interference on the network (the second
and higher order terms in (11)) and the path gain are
ignored, the routing algorithm could choose less energy-
efficient routes than OptSINR and our unified energy-
efficient routing algorithm.

In [9], [10], the following routing algorithm is used
to minimize the interference induced by a route, called

LIR2 in [9],

argmin
R∈R(i,j)

∑
l∈R

 ∑
m∈L−{l}

G(T (l), R(m))

 , (12)

where G(T (l), R(m)) is the path gain from the trans-
mitter of link l to the receiver of link m. This algorithm
(12) corresponds to (11), when we fix G(T (l), R(l))
∀l ∈ L to be a constant value and ignore the transmission
power of link l (the first term in (11)) and the impact of
interference on the network (the third and higher order
terms in (11)). Thus, the routing algorithm (12) results
in choosing less energy-efficient routes than OptSINR as
well as our routing algorithm.

From IV-A, IV-B, IV-C, and IV-D, we show that
our routing algorithm includes all the factors separately
considered in the previous works and adapts to dif-
ferent network environments. Furthermore, our routing
algorithm performs better than or at least as well as
the other algorithms that are designed under marginal
environments.

V. SIMULATIONS

In this section we use simulations to verify the
performance of our algorithm EURo. We compare the
performance of EURo to WME, LIR, and ME. Other
algorithms have been extensively studied in comparison
with WME and OptSINR in [14], [16], and WME and
OptSINR have been found to perform better than these
other algorithms. Therefore, in this section we compare
the performance only between these four algorithms. In
the first three scenarios, we consider the four algorithms
with global information to obtain the achievable perfor-
mance in each marginal environment. In the last two
scenarios, we compare distributed EURo (dEURo) with
other four algorithms (EURo, WME, LIR, and ME). In

2The original routing algorithm proposed in [9] defines the potential
interference as the number of links of which interference levels are
above a certain threshold. To generalize the problem, we use here the
total amount of interference level.



the renewable energy environment, we also compare its
performance with E-WME.

For all the algorithms compared, we assume that the
nodes employ power control. In each case, when sending
flows through the routes chosen by the algorithm, each
node adjusts its transmission power to satisfy the new
minimum constraint at the links. For the simulations, we
use a seven by seven grid network, and the separation
between adjacent nodes in the x− and y− coordinates
is one unit of distance. We fix the path loss exponent at
three, the attenuation factor at one, and the ambient noise
at one. We assume that all ambient noise is identical and
that each link is directional. We assume that wireless
links are linear, as defined in (1), and that the required
SINR of a new service flow is fixed at 0.1 (-10 dB) under
the same constraints of (C). In an IS-95 direct sequence
code division multiple access (DS-CDMA) system with
bandwidth 1.23 MHz, the minimum SINR for a 9.6 kbps
channel is -14 dB (0.0398) [18]. We set a minimum
SINR for each incoming service flow at -10 dB in this
simulation.

For link scheduling, we use the fixed and periodic
link scheduling scheme used in [16], [24]. We fix γ
in (7) at 200 and a packet length at 200 slots. For
each simulation, we use 10 different random seeds and
average the performance.

For dEURo, we set the information range of each node
to include only adjacent nodes to share the information to
compute link costs for distributed shortest path routing.
To update local information, each node periodically an-
nounces its status information to its adjacent neighbors.

We define the number of partitions as the number of
transmission failures due to depleted relay nodes and use
this measure to compare the performance of the various
schemes, as in [14].

A. No interference
We first consider the case when there is no interference

between routes. The service times of flows here do not
overlap in the networks so that routes do not interfere
with each other. Each node initially has 10 units of
energy, and the battery energy is non-renewable. In this
case, the metrics of WME and EURo are identical so that
EURo works the same as WME, as shown in Figs. 2
and 3. Because they take into account residual energy
in their cost functions, WME and EURo outperform
LIR and ME. Since LIR can distribute load over the
network better than ME, for a given number of node
partitions, LIR successfully delivers more packets to
their destinations than ME.

B. Impact of interference
In this subsection, we consider the impact of inter-

ference on the algorithms. We assume that the initial
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Fig. 2. Accumulated throughput versus the number of partitions when
there exists no interference between links
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Fig. 3. The minimum remaining energy versus the number of arrived
packets when there exists no interference between links

battery energy of each node is 10 units of energy and
that the battery energy is non-renewable. For simplicity,
we fix the ongoing link between two adjacent nodes.
The ongoing link continuously transmits a flow with 2
dB SINR. Flows with −10 dB SINR between the other
nodes randomly arrive in the network, and the arrival
rate is assumed to be small enough for the flows to
not overlap. In this environment, EURo outperforms the
other algorithms.

Fig. 4 shows the number of successfully delivered
flows versus the number of partitions. EURo is almost
constant over the number of partitions. However, due
to interference, routes chosen by WME expend more
energy than those of EURo, so that WME results in a
smaller throughput. Compared to the previous case in
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Fig. 4. Accumulated throughput versus the number of partitions when
links interfere with each other

0 200 400 600 800 1000
0

1

2

3

4

5

6

7

8

9

10

The number of packets

T
he

 m
in

im
um

 r
em

ai
ni

ng
 e

ne
rg

y

 

 

EURo
WME
LIR
ME

Fig. 5. The minimum remaining energy versus the number of arrived
packets when links interfere with each other

subsection V-A, WME still performs better than LIR,
but the performance differential is reduced.

Fig. 5 shows the minimum energy among the nodes in
the network after every transmission. Since the impact of
interference between the ongoing link and new routes,
the energy consumption rate of WME is steeper than
EURo, which considers the residual energy and the
interference.

C. Impact of unevenly distributed initial energy

This scenario includes heterogeneous sensor networks.
Even in homogenous network environments, multiple
deployments of nodes can make the initial battery levels
uneven. Under the same environment as in the pre-
vious subsection, we consider the impact of unevenly
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Fig. 6. Accumulated throughput versus the number of partitions when
battery energy is unevenly distributed over the network
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Fig. 7. The minimum remaining energy versus the number of arrived
packets when battery energy is unevenly distributed over the network

distributed initial battery energy. We assume that the
initial battery energy of the network follows a uniform
distribution between 5 and 15 units of energy so that
the mean of the distribution is 10 units of energy. Due
to the variation of battery energy, the weights W (l) in
the algorithm play a more important role for choosing a
route than those in the homogeneous battery case. Hence
the performance of WME shown in Figs. 6 and 7 is
closer to the performance of EURo compared to the
previous case in subsection V-B.

D. Impact of random arrival flows and local information

To study the impact of random flow arrivals on the
routing algorithms, we fix the initial energy of each node
at 10 units in the absence of energy replenishment and



compare the performance with two different arrival rates
of 0.025 and 0.625 packet per slot, as shown Figs. 8 and
9. When the arrival rate is low, the average of the flows
in the network is low so that the performance is close
to, but slightly poorer than the performance in the case
when there is no interference, as in Fig. 8.

In the case when the arrival rate is high, due to
interference between the links, the algorithms that do
not consider the impact of interference are more affected
than EURo, as shown in Fig. 9. As can be seen from the
figures, even if EURo uses local information from only
adjacent neighborhoods, it outperforms other routing
algorithms. Hence, EURo can be totally implemented
in a distributed manner collaborating with a distributed
shortest path routing algorithm. As we would expect,
the performance of dEURo the distributed version which
uses only truncated information, is slightly poorer than
EURo.

E. Impact of renewable energy source
To study the impact of energy replenishment on the

routing algorithms, we fix the initial energy of each
node at 10 units of energy and a packet arrival rate at
0.625 packet per slot as in the previous subsection. All
the nodes are assumed to be equipped with renewable
batteries. At each time slot, the amount of energy that
a node recharges is assumed to be uniformly distributed
between ξ and 2ξ, where ξ = 1 × 10−3 so that the
average renewal rate is 1.5× ξ.

Fig. 10 shows the performance comparison between
our proposed algorithms and previous algorithms. As
would be expected, when comparing to the simulation
results in the previous subsection, it can be seen that
the network with renewable source performs better than
the network without energy renewal for all the routing
algorithms. Our proposed algorithms outperform the
others because they consider all the four key elements,
and hence manage efficiency better than the other al-
gorithms in the literature. Furthermore, even if dEURo
takes into account only limited neighbor information in
this environment, the performance of dEURo is almost
identical to that of EURo that uses global information.

VI. CONCLUSION

In this paper, we have developed EURo, an energy-
efficient unified routing scheme. Unlike previous works,
the proposed algorithm simultaneously takes into ac-
count four critical system parameters: transmission
power, interference, residual energy, and energy replen-
ishment. We show that our algorithm maps to the state of
the art, when certain quantities are kept fixed. Via simu-
lations we show that our algorithm outperforms other
energy-efficient routing algorithm in various environ-
ments. We also provide a distributed versions of EURo
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Fig. 8. Accumulated throughput versus the number of partitions when
links interfere with each other and arrival rate is 0.025 packet per slot
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Fig. 9. Accumulated throughput versus the number of partitions when
links interfere with each other and arrival rate is 0.625 packet per slot

that use local information, and show via simulations that
it outperforms state-of-the-art routing algorithms.

REFERENCES

[1] S. Kwon and N. B. Shroff, “Unified energy-efficient routing
for multi-hop wireless networks,” in IEEE INFOCOM’08, April
2008, pp. 430–438.

[2] C. E. Jones, K. M. Sivalingam, and P. Agrawal, “A survey of
energy efficient network protocols for wireless networks,” ACM
Journal of Wireless Networks (WINET), vol. 7, no. 4, July 2001.

[3] I. F. Akyildiz, W. Sue, Y. Sankarasubarmaniam, and E. Cayirci,
“A survey on sensor networks,” IEEE Communications Magazine,
vol. 40, no. 8, pp. 102–114, August 2002.

[4] I. F. Akyildiz, X. Wang, and W. Wang, “Wireless mesh networks:
a survey,” Computer Networks, vol. 47, no. 4, pp. 445–487,
March 2005.

[5] IEEE, “IEEE Smart Grid,” http://smartgrid.ieee.org/, 2010.



0 10 20 30 40 50
0

100

200

300

400

500

600

700

Accumulated node partition

T
he

 n
um

be
r 

of
 p

ac
ke

t t
o 

be
 s

en
t s

uc
ce

ss
fu

lly

 

 

EURo
dEURo
E−WME
WME
LIR
ME

Fig. 10. Accumulated throughput versus the number of partitions
when nodes have renewable batteries.

[6] T. Hou and V. O. K. Li, “Transmission range control in multihop
packet radio networks,” IEEE Transactions on Communications,
vol. 34, no. 1, pp. 38–44, 1986.

[7] T. Melodia, D. Pompili, and I. F. Akyildiz, “Optimal local
topology knowledge for energy efficient geographical routing in
sensor networks,” in IEEE INFOCOM’04, vol. 3, March 2004,
pp. 1705–1716.

[8] R. Manohar and A. Scaglione, “Power optimal routing in wireless
networks,” in IEEE International Conference on Communications
(ICC)’03, vol. 4, May 2003, pp. 2979–2984.

[9] J. Stevens, “Spatial reuse through dynamic power and routing
control in common- channel random-access packet radio net-
works,” Ph.D. dissertation, University of Texas at Dallas, 1988.

[10] H. Wei, S. Ganguly, R. Izmailov, and Z. J. Hass, “Interference-
aware ieee 802.16 wimax mesh networks,” in IEEE VTC’05-
Spring, vol. 5, May-June 2005, pp. 3102 – 3106.

[11] M. B. Pursley and H. B. Russell, “Routing in frequency-hop
packet radio networks with partial-band jamming,” IEEE Trans-
actions on Communications, vol. 41, no. 7, pp. 1117–1124, 1993.

[12] J. Tang, G. Xue, C. Chandler, and W. Zhang, “Interference-
aware routing in multihop wireless networks using directional
antennas,” in IEEE INFOCOM’05, vol. 1, March 2005, pp. 751–
260.

[13] S. Singh, M. Wu, and C. S. Raghavendra, “Power-aware routng in
mobile ad-hoc networks,” in ACM MobiCom’98, Octorber 1998,
pp. 181–190.

[14] L. Lin, N. B. Shroff, and R. Srikant, “Asymptotically optimal
energy-aware routing for multihop wireless networks with renew-
able energy sources,” IEEE/ACM Transactions on Networking,
vol. 15, no. 5, pp. 1021–1034, 2007.

[15] K. Kar, M. Kodialam, T. V. Lakshman, and L. Tassiulas, “Routing
for network capacity maximization in energy-constrained ad-hoc
networks,” in IEEE INFOCOM’03, vol. 1, April 2003, pp. 673–
681.

[16] S. Kwon and N. B. Shroff, “Energy-efficient sinr-based routing
for multihop wireless networks,” IEEE Transactions on Mobile
Computing, vol. 8, no. 8, pp. 668–681, 2009.

[17] X. Lin and N. B. Shroff, “The impact of imperfect scheduling on
cross-layer rate control in multihop wireless networks,” in IEEE
INFOCOM’05, vol. 3, March 2005, pp. 1804–1814.

[18] T. S. Rappaport, Wireless Communications: Principles and Prac-
tice. New Jersey: Prantice-Hall, Inc., 1996.

[19] N. D. Bambos, S. C. Chen, and G. J. Pottie, “Radio link
admission algorithm for wireless networks with power control

and active link quality protection,” in IEEE INFOCOM’95, vol. 1,
April 1995, pp. 97–104.

[20] E. K. P. Chong and S. H. Zak, An Introduction to Optimization,
3rd ed. New York: John Wiley and Sons, Inc., 2008.

[21] A. Kansal and M. B. Srivastava, “An environmental energy har-
vesting framework for sensor networks,” in the 2003 international
symposium on Low power electronics and design (ISLPED 2003),
August 2003, pp. 481 – 486.

[22] D. Bertsekas and R. Gallager, Data Networks, 2nd ed. New
Jersey: Prentice-Hall Inc., 1992.

[23] B. Karp, “Geographic routing for wireless networks,” Ph.D.
dissertation, Harvard University, 2000.

[24] F. Baccelli, N. Bambos, and C. Chan, “Optimal power, through-
put and routing for wireless link arrays,” in IEEE INFOCOM’06,
vol. 3, April 2006, pp. 1374–1385.

Sungoh Kwon (S’05 / M’08) received his
B.S. and M.S. degrees in electrical engi-
neering from KAIST, Daejeon, Korea, and
the Ph.D. degree in electrical and computer
engineering from Purdue University, West
Lafayette, IN, in 1994, 1996, and 2007, re-
spectively. From 1996 to 2001, he was a re-
search staff member with Shinsegi Telecomm
Inc., Seoul, Korea. From 2007 to 2010, he
developed LTE schedulers as a principal engi-
neer in Samsung Electronics Company, Ltd.,

Korea. He has joined to University of Ulsan as an assistant professor
since 2010. His research interests are in wireless communication
networks.

Ness B. Shroff (S’91 / M’93 / SM’01 / F’07)
is currently the Ohio Eminent Scholar of
Networking and Communications, and Pro-
fessor of ECE and CSE at The Ohio State
University. Previously, he was a Professor of
ECE at Purdue University and the director
of the Center for Wireless Systems and Ap-
plications (CWSA), a university-wide center
on wireless systems and applications. His
research interests span the areas of wireless
and wireline communication networks, where

he investigates fundamental problems in the design, performance,
pricing, and security of these networks.

Dr. Shroff has received numerous awards for his networking re-
search, including the NSF CAREER award, the best paper awards for
IEEE INFOCOM’06 and IEEE INFOCOM’08, the best paper award
for IEEE IWQoS’06, the best paper of the year award for the Computer
Networks journal, and the best paper of the year award for the Journal
of Communications and Networks (JCN) (his IEEE INFOCOM’05
paper was one of two runner-up papers).


