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Abstract—We consider the scheduling problem in downlink
wireless networks with heterogeneous, Markov-modulated, ON/OFF
channels. It is well known that the performance of scheduling
over fading channels relies heavily on the accuracy of the avail-
able channel state information (CSI), which is costly to acquire.
Thus, we consider the CSI acquisition via a practical ARQ-based
feedback mechanism whereby channel states are revealed at
the end of only scheduled users’ transmissions. In the assumed
presence of temporally correlated channel evolutions, the desired
scheduler must optimally balance the exploitation–exploration
tradeoff, whereby it schedules transmissions both to exploit those
channels with up-to-date CSI and to explore the current state of
those with outdated CSI. In earlier works, Whittle’s Index Policy
had been suggested as a low-complexity and high-performance
solution to this problem. However, analyzing its performance in
the typical scenario of statistically heterogeneous channel state
processes has remained elusive and challenging, mainly because
of the highly coupled and complex dynamics it possesses. In this
work, we overcome these difficulties to rigorously establish the
asymptotic optimality properties of Whittle’s Index Policy in the
limiting regime of many users. More specifically: 1) we prove
the local optimality of Whittle’s Index Policy, provided that the
initial state of the system is within a certain neighborhood of a
carefully selected state; (2) we then establish the global optimality
of Whittle’s Index Policy under a recurrence assumption that is
verified numerically for our problem. These results establish that
Whittle’s Index Policy possesses analytically provable optimality
characteristics for scheduling over heterogeneous and temporally
correlated channels.

Index Terms—Imperfect CSI, Markov channel model, Restless
Multiarmed Bandit Problem, scheduling algorithm, Whittle’s
Index Policy.
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I. INTRODUCTION

C HANNEL fluctuation is an intrinsic characteristic of
wireless communications. Such a variation calls for allo-

cation of the wireless resources in a dynamic manner, leading
to the classic opportunistic scheduling principle (e.g., [1] and
[2]). Under the assumption that the instantaneous channel state
information (CSI) is fully available to the scheduler, many
efficient opportunistic scheduling algorithms (e.g., [4]–[6])
have been proposed and extensively studied.
More recent works have focused on designing scheduling al-

gorithms under imperfect CSI, where the channel state is mod-
eled as independent and identically distributed (i.i.d.) processes
across time (e.g., [9]–[13]). On the other hand, although the
i.i.d. channel model brings ease of analysis, it fails to capture
the time-correlation of the fading channels [3]. Specifically, it
fails to exploit the channel memory, which is a critical resource
for making scheduling decisions. However, designing efficient
scheduling schemes under time-correlated channels with im-
perfect CSI is a very challenging problem. The challenge is
mainly because of the difficulty in making the classic “exploita-
tion versus exploration” tradeoff (e.g., [7] and [8]), in which a
scheduler needs to strike a balance between selecting the chan-
nels with up-to-date channel memory that guarantees high im-
mediate gains, or to explore the channels with outdated CSI
for more informed decisions and associated future throughput
gains.
We consider the downlink scheduling problem where a base

station transmits to the users within its transmission range, sub-
ject to scheduling constraints. To model the time correlations
present over fading channels, we assume that wireless channels
evolve as Markov-modulated ON/OFF processes. The channel
state information is obtained from ARQ-based feedback, only
after each scheduled transmission. Nevertheless, due to time
correlation, the memory of the past channel state can be used
to predict the current channel state prior to scheduling decision.
Hence, channel memory should be intelligently exploited by the
scheduler in order to achieve high throughput performance.
In a related work [14], a similar problem is considered under

delayed CSI, where it is assumed that perfect CSI is available
within a maximum delay, which is in turn smaller than the delay
experienced by the ARQ feedback used for collision detection.
These assumptions allow the scheduling decisions to be decou-
pled from CSI acquisition, which leads to the development of
centralized as well as distributed schedulers. However, this ap-
proach does not use ARQ as a means of acquiring improved
channel quality information. In contrast, in our setup the nature
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of ARQ feedback creates an implicit impact of scheduling deci-
sions on the CSI feedback, which completely transforms the na-
ture of the optimal scheduler design, and therefore requires a dif-
ferent approach. Under the scenario where all the channels have
identical Markov statistics, round-robin-based algorithms (e.g.,
[15]–[18]) have been shown to possess optimality properties in
throughput performance. However, the round-robin-based al-
gorithms are no longer optimal in asymmetric scenarios, e.g.,
when different channels have different Markov transition statis-
tics, as is naturally the case in typical heterogeneous conditions.
Under the asymmetric scenarios, our downlink scheduling

problem is an example of the classic Restless Multiarmed
Bandit Problem (RMBP) [19]. Low-complexityWhittle’s Index
Policies [19] for the downlink scheduling problem have been
proposed in [20] and [21] based on RMBP theory. However, al-
though Whittle’s Index Policy can bring significant throughput
gains by exploiting the channel memory [21], the analytical
characterization of its performance under asymmetric scenarios
is very challenging and prohibitively technical. This is because
asymmetry leads to a sophisticated interplay of memory evolu-
tion among channels with heterogeneous characteristics, which
brings a significant challenge to the analysis of Whittle’s Index
Policy not present in the perfectly symmetric scenario.
For RMBP problems under general scenarios, Whittle’s

Index Policy has been proven in [22] to be asymptotically
optimal as the number of users grows, provided a nontrivial
condition, known as Weber’s condition, holds. Nonetheless,
Weber’s condition concerns the global convergence of a non-
linear differential equation, which is extremely difficult to
verify even numerically in our downlink scheduling scenario.
In [23], optimality properties of general RMBP are studied,
where a suboptimal BALANCED-INDEX policy, as well as
a THRESHOLD-WHITTLE policy, are proved to provide
2-approximation performance, i.e., achieves at least half of the
optimal reward. Our work takes a different approach than [23]
to specifically study the per-user throughput performance of the
Whittle’s Index Policy for downlink scheduling and consider
the strict optimality metric in the asymptotic regime when the
number of users scales.
In this paper, we take significant steps in analyzing the op-

timality properties of Whittle’s Index Policy for the downlink
scheduling problem in the presence of channel heterogeneity.
Specifically, our contributions are as follows.
• We apply the Whittle’s index framework to our downlink
scheduling problem and identify the optimal policy for
the problem with a relaxed constraint in Section III. This
policy, with carefully selected randomization, provides a
performance upper bound to Whittle’s Index Policy.

• We establish the local optimality of Whittle’s Index Policy
in the asymptotic regime when the number of users scales
in Section V. Specifically, we show that the performance
of the index policy can get arbitrarily close to that of the
relaxed-constraint optimal policy, provided that the initial
state of the system is within a certain neighborhood of a
carefully selected state.

• Based on the local optimality result, under a numerically
verifiable recurrence assumption, we then establish the
global optimality of Whittle’s Index Policy in the limiting
regime of many users in Section VI.

Fig. 1. Two-state Markov chain model for channels in class .

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. Downlink Wireless Channel Model
We consider a time-slotted, wireless downlink system with

one base station and users. The wireless channel
between base station and user remains static within each
time-slot and evolves stochastically across time-slots, in-
dependently across users. We adopt the simplest nontrivial
model of time-correlated fading channels by considering
two-state ON/OFF channels, where the state space of channel
is , with the value of each state representing the
transmission rate a channel can support at the state.
One important component of our model is the inclusion of

channel heterogeneity that the users will typically experience
in real systems. Such asymmetry creates a significant challenge
to the design and analysis of optimal scheduling schemes com-
pared to perfectly symmetric channels. To avoid cumbersome
notation and unessential technical complications, in this work
we model channel asymmetry by considering only two classes
of channel statistics. Specifically, for all the channels in class

, their states evolve according to the same Markov
statistics. However, these characteristics differ between classes.
The state transition of channels in class is depicted in Fig. 1,
represented by a 2 2 probability transition matrix

where

for channel in class . The number of class- channels is
with being the proportion of channels in class

with respect to the total number of channels.
We study the scenario where all the Markovian channels are

positively correlated, i.e., for . This as-
sumption, which is commonly made in this domain (e.g., [17],
[18], and [24]), means that the channel evolution has a posi-
tive auto-correlation. Hence, roughly speaking, the channel has
a stronger potential to stay in its previous state than jumping
to another, which is typical especially in slow fading environ-
ment. For ease of exposition, we shall exclude the trivial case
when or .

B. Scheduling Model—Belief Value Evolution
We assume that the base station can simultaneously transmit

to at most users in a time-slot without interference,
where stands for the maximum fraction of users
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Fig. 2. Belief values update when staying idle, .

that can be activated. For example, in a multichannel commu-
nication model, would correspond to the fraction of all users
that can be simultaneously serviced in unit time. However, the
scheduler does not know the exact channel state in the current
slot when the scheduling decision is made. Instead, the sched-
uler maintains a belief value for each channel , which is
defined as the probability of channel being in the ON state at
the beginning of slot . The accurate channel state is revealed
via ACK/NACK feedback from the scheduled users, only at the
end of each time-slot after the data is transmitted. This accurate
channel state feedback is in turn used by the scheduler to update
the belief values.
For user in class , let indicate

whether the user is selected for transmission in slot . Then, from
the definition the belief values, evolves as follows:

if
if
if

(1)

In our setup, belief values are known to be sufficient statis-
tics to represent the past scheduling decisions and feedback
(e.g., [16], [25]). In the meanwhile, in our ON/OFF channel
model, also equals the expected throughput contributed
by channel if it is scheduled in time-slot .
For a user in class , we use to denote its belief

value when the most recent observed channel was ,
and is slots in the past. From the belief update rule (1), can
be calculated as a function of as

Fig. 2 illustrates the belief value update when a channel stays
idle (i.e., ). It is clear that if the scheduler is never up-
dated of the state of channel (in class ), the belief value will
converge to its stationary probability of being ON, denoted by
the stationary belief value .
The vector denotes the belief values

of all channels at the beginning of slot . We use to rep-
resent the set of the belief values for class- channels, where

. We assume that the system
starts to operate from slot . At the beginning of slot 0, for
each channel the scheduler has either observed its channel state
before, or has never been updated of its channel state, i.e., with

belief value . It is then clear that, based on the belief update
rule (1), for all , i.e., each belief value
evolves over countably many states.
In the rest of the paper, we shall use “belief value” and “belief

state” interchangeably.

C. Downlink Scheduling Problem—POMDP Formulation
We consider the broad class of (possibly nonstationary)

scheduling policies that makes a scheduling decision based on
the history of observed channel states and scheduling actions.
The downlink scheduling problem is then to identify a policy
in that maximizes the infinite horizon, time average expected
throughput, subject to the constraint on the number of users se-
lected at each time-slot. Given the initial state , the problem
is formulated as

(2)

s.t. (3)

where the belief value evolves according to rule (1) based
on the scheduling decision under policy . Such an ob-
jective is standard in literature for Markov decision processes
under the long-term average reward criteria (e.g., [26]). Noting
that since the scheduling decisions are made based on incom-
plete knowledge of channel states, this problem is a partially
observable Markov decision process (POMDP) [25].
This problem is in fact an example of Restless Multiarmed

Bandit Problem [19]. For a general RMBP, finding an optimal
solution is PSPACE-hard [27]. However, for the downlink
scheduling problem at hand, a low-complexity Whittle’s Index
Policy was proposed in [20] and [21] based on the RMBP theory
that inherently exploits the channel memory when making
scheduling decisions. For detailed descriptions of general
RMBP and Whittle’s Index Policy for downlink scheduling,
please refer to [19]–[21].
For the downlink scheduling problem, we note that there

is only limited analytical characterization of Whittle’s Index
Policy, which is restricted in perfectly symmetric scenarios
where Whittle’s Index Policy takes a special round-robin form
[20]. In asymmetric cases, however, the scheduling decision
no longer takes the form of round-robin, bringing sophisticated
complications in belief value evolutions that are tightly coupled
among channels, which significantly complicates the analysis.
The main focus of this paper is to analytically characterize the
performance of Whittle’s Index Policy in the asymmetric case
with two classes of channels.

III. UPPER BOUND ON ACHIEVABLE THROUGHPUT
We begin our analysis by characterizing an upper bound to

the throughput performance of all feasible downlink scheduling
policies that satisfies the constraint (3). The upper bound is ob-
tained from a fictitious policy that is optimal for the downlink
scheduling problem under a relaxed constraint.
Note here that such relaxation is also a crucial step in the

study of the general RMBP problem. Yet, our analysis, being
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specific to the downlink scheduling problem, has its novelties,
as we shall remark on later.

A. Average-Constrained Relaxed Scheduling Problem

We consider an associated relaxed problem of (2)–(3) that
only requires an average number of users to be activated in the
long run, defined as follows:

(4)

s.t. (5)

Note that, contrary to the stringent constraint (3), the relaxed
constraint (5) allows the activation of more than fraction of
users in each time-slot, provided the long-term average fraction
does not exceed . Hence, the optimal policy under this relaxed
constraint, which we shall identify next, provides a throughput
upper bound to any policy that satisfies the stringent constraint.

B. Optimal Policy for the Relaxed Problem

We remark that the relaxed problem is also an important com-
ponent of Whittle’s analysis of general RMBPs [19], in which
an optimal policy for the relaxed problem is developed based
on theWhittle’s index values. Following the approach of classic
RMBP framework [19], in our downlink scenario, we identify
an optimal policy for the relaxed problem based on Whittle’s
indices.
Specifically, for channels in class , the Whittle’s index value

is assigned to each belief state . These index
values intuitively capture the exploitation and exploration value
to be gained from scheduling the associated channel when its
belief value is . This characteristic of is also illustrated
in Section VII-B via numerical investigations. The index value
function is expressed in closed form as

if

if
(6)

Note that the above expression is a modified version of the
expression in [20]. Details of the derivation can be found in [28].
The following two characteristics they possess are primarily

significant for our analysis.
• monotonically increases with .
• for all .
The next lemma identifies an index-based policy with appro-

priate randomization that is optimal for the relaxed constraint
problem. This policy schedules each user based on its own belief
value, independently from other users. The proof of the lemma
can be found in [20].
Lemma 1: For the problem under relaxed constraint, there

exists an optimal stationary policy , parameterized by the
threshold and a randomization parameter , such
that we have the following.

i) Channel in class is scheduled if , and
stays idle if . If , it is
scheduled with probability .

ii) The parameters and are such that, under policy ,
the relaxed constraint (5) is strictly satisfied with equality.

From now on, we shall denote as the “Optimal Relaxed
Policy.” For technical purposes, we henceforth assume is such
that . Since each value maps to a unique
pair [29], only countably many values correspond to
, i.e., achieved by deterministic policies. Therefore, the set of

for which has Lebesgue measure one.

C. Steady-State Distribution of Belief Values
We next present the transition structure of the belief values

under Optimal Relaxed Policy, captured in the following
lemma. The structure will be critical in the development of our
subsequent main results.
Lemma 2: For each channel in class , under the Optimal

Relaxed Policy, the structure of belief value evolution depends
on the threshold of policy.

i) If , then the belief value evolution of each
class- channels is positive recurrent with a finite recur-
rent class.

ii) If , the belief value evolution is transient.
With probability 1, ultimately no channel in class will
transmit.
Proof: The proof of this lemma follows from the mono-

tonic structure of belief evolution, as shown in Fig. 2. Details
are included in Appendix A.
Thus, if , the above analysis re-

veals that ultimately no user transits, corresponding to the trivial
case of . Also, if is between and ,
the class with the smaller will eventually transit into a
passive mode, hence reducing the system to a well-understood
scenario with a single class of channels [15], [16]. Thus, here
we focus on the heterogeneous case of ,
where the steady-state belief value distribution exists for both
classes under the Optimal Relaxed Policy.

D. Upper Bound on Achievable Throughput
The throughput performance of Optimal Relaxed Policy pro-

vides an throughput upper bound for all policies under the strin-
gent constraint. The value of such an upper bound clearly de-
pends on the number of users in each class ,
as well as the fraction of users allowed for activation. De-
noting , we represent the time average expected
throughput of the Optimal Relaxed Policy as . The
following lemma states that, as long as and are given, the
per-user throughput (i.e., ) is independent of .
Lemma 3: Given and is independent of , de-

noted henceforth as .
Proof: The proof follows from showing that, when the

number of users grows, as long as the proportion of each
class of channels stays the same and the fraction of users ac-
tivated does not change, the form of Optimal Relaxed Policy
does not change. Since each user is scheduled independently,
the throughput is proportional to , establishing the
lemma. Details are provided in Appendix B.
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We hence refer to the pair as “system parameters.”
Therefore provides a throughput upper bound to any
policy in the same system under the stringent constraint (3).
Equivalently, provides a per-user throughput perfor-
mance upper bound to all policies that satisfies the stringent
constraint.
We next describe Whittle’s Index Policy for the strictly con-

strained problem (2)–(3), and later study the closeness of its per-
formance to the upper bound established here.

IV. WHITTLE’S INDEX POLICY DESCRIPTION

In this section, we formally introduce Whittle’s Index Policy
for solving the stringently constrained downlink scheduling
problem (2)–(3).

A. Whittle’s Index Policy
The Optimal Relaxed Policy, along with the Whittle’s index

values, gives consistent ordering of belief values with respective
to the indices. For instance, under the Optimal Relaxed Policy,
if it is optimal to schedule one channel, it is then optimal to
transmit to other channels with higher index values. Thus, the
Whittle’s index value gives an intuitive order of how attractive
the channel is for scheduling. This intuition leads to Whittle’s
Index Policy [20] under the stringent constraint on the max-
imum number of channels that can be scheduled.
Whittle’s Index Policy: At the beginning of each time-slot,

the channel in class is scheduled if its Whittle’s index value
is within the top index values of all channels in

that slot, with arbitrary tie-breaking while assuring a total
channels being scheduled.

Whittle’s Index Policy is attractive because it has very low
complexity, and it was observed via numerical investigations to
yield significant throughput performance gains over the sched-
uling strategies that does not utilize channel memory [21]. The
main focus of our work is to analytically understand the ap-
proximate or asymptotic optimality of Whittle’s Index Policy
in asymmetric scenarios.

B. Whittle’s Index Policy Over Truncated State Space
Recall from Section II that the belief values evolve over a

countable state space, and also note that if a channel is not sched-
uled for a long time, its belief value will get arbitrarily close to
its stationary belief value. This motivates us to consider a trun-
cated version of the belief value evolution whereby the belief
value is set to its steady state if the corresponding channel is
not scheduled for a large number, say , slots. This mild as-
sumption facilitates more tractable performance analysis of the
policy. Thus, if a class- user is not scheduled for time-slots,
its channel state history is entirely forgotten and its belief value
will transit to the stationary belief value , where the trunca-
tion is assumed to be very large.
Whittle’s Index Policy is then implemented over the trun-

cated belief state, which differs from the nontruncated case
merely in the truncated belief value evolution. We believe that
the truncated scenario can provide arbitrarily close approxima-
tion to the original system when is large. More importantly,
as we shall see in Sections V and VI, Whittle’s Index Policy,
implemented over the truncated belief state space, achieves

asymptotically optimal performance as long as the truncation
is sufficiently large.

V. LOCAL OPTIMALITY OF WHITTLE’S INDEX POLICY
In this section, we study the optimality properties ofWhittle’s

Index Policy for downlink scheduling, over a large truncated be-
lief space. This result forms the basis for the subsequent global
optimality result in Section VI. We start by introducing a state
space over which the local optimality will be established.

A. System State Vector
We define the system state as a vector that represents

the proportion of channels in each belief value, over the trun-
cated space when the total number of users is , i.e.,

, with

where and respectively denote the proportion of
channels in the corresponding belief state and , with re-
spect to the total number of users . Hence, each element of

is a multiple of so that takes values in a lattice
with mesh size . Noting that the total number of users in
each class does not change over time, for any the system state

where

(7)

The system state vector does not distinguish users with
the same belief state, thus its dimension will not scale with .
Therefore, compared to , it provides a more convenient rep-
resentation of the system belief state. Furthermore, fully
determines the instantaneous throughput gain in slot under
both Whittle’s Index Policy and the Optimal Relaxed Policy
(introduced in Lemma 1) because the instantaneous throughput
gains under both policies are only determined by the distribution
of the channels with different belief values, not their identities.
From Lemma 2 and the subsequent remarks, under the oper-

ation of the Optimal Relaxed Policy, the belief state evolution
of each channel is positive recurrent with a steady-state distri-
bution. The following lemma also establishes the independence
of this steady-state distribution from and defines a useful pa-
rameter for future use.
Lemma 4: Given the system parameters , the system

state vector under the Optimal Relaxed Policy converges
in distribution to a random vector, denoted as . The mean
of is independent of and is denoted as

Proof: This lemma follows from a similar principle to
the one we established in Lemma 3. For details, please refer
Appendix C.
It is easy to see that and the form of fully determines

the time average throughput of the Optimal Relaxed Policy.
Therefore, the vector provides an important benchmark for
our asymptotic analysis. If, in the long run underWhittle’s Index
Policy, the system state stays close to , it indicates that
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Whittle’s Index Policy will have throughput performance close
to that of the Optimal Relaxed Policy—the throughput upper
bound. To capture the closeness, we define the neighborhood
of as

(8)

for , where stands for Euclidean distance. We are now
ready to state and prove our first main result regarding a form
of local optimality of Whittle’s Index Policy.

B. Local Optimality of Whittle’s Index Policy

Under the system parameters , we let rep-
resent the time average throughput obtained over the time du-
ration under Whittle’s Index Policy, conditioned on
the initial system state , i.e.,

where denotes the scheduling decision vector made
by Whittle’s Index Policy at time .
Recall from Lemma 3 that denotes the per-user

throughput under the Optimal Relaxed Policy, which serves as
an upper bound on Whittle’s Index Policy performance. The
next proposition characterizes the local convergence property
of Whittle’s Index Policy performance to .
Proposition 1: Under the system parameters , there ex-

ists a neighborhood of such that, if the initial
system state is within , then

where is any increasing sequence of positive integers
with , for and all .

Proof Outline: Here, we give a high-level description of
the proof for an intuitive understanding, and refer the reader to
[36] for the rigorous derivation.

We start by defining a fluid approximation, whereby the
discrete-time evolution of under Whittle’s Index Policy
is modeled as a deterministic vector that evolves in
discrete time over and is independent of . Under this fluid
approximation, the users are no longer unsplittable entities so
that the state space of is no longer restricted to a lattice as
it was for . Also, the fluid approximation evolves in
a deterministic manner, in contrast to the stochastic transition
of . The evolution of is defined by a difference equa-
tion as a function of the expected state change of under
Whittle’s Index Policy as follows:

(9)

where is any integer for which is a feasible state.
We then establish local convergence of the fluid approxima-

tion model when is within a small enough neighborhood
of . We show the convergence by first noting that

the differential equation (9) is linear within a wider convex re-
gion than . Within this region, we obtain a closed-form
expression of the right-hand side of (9), which enables us to in-
vestigate the eigenvalue structure of the linear differential equa-
tion. We show that each eigenvalue satisfies and apply
standard linear system theory to establish the local convergence.

We then connect the fluid approximation model to the
discrete-time stochastic system state by using a discrete-
time extension of Kurtz’s Theorem, which can be interpreted
as an extension of the strong law of large numbers to random
processes (see [30]). Essentially, it states that, over any finite
time duration , the actual system evolution can be
made arbitrarily close to the above fluid approximation by
increasing the number of channels sufficiently, with expo-
nential convergence rate.

The previous convergence result, together with the local
convergence result of the fluid evolution to , enables us
to establish the local convergence of the system state to

as the number of users grows, provided that the initial state
. Hence, the system state underWhittle’s Index

Policy will stay close (in a probabilistic sense) to the expectation
of the system state under the Optimal Relaxed Policy, which,

in turn, indicates that the throughput performance of Whittle’s
Index Policy will approach the throughput upper bound ,
as expressed in the proposition.
We again emphasize that the technical details of the outlined

steps are fairly intricate and are moved to [36].
Proposition 1 illustrates an interesting local optimality prop-

erty of Whittle’s Index Policy as the number of users and the
time horizon increases while the system parameters
stay the same. It indicates that, under Whittle’s Index Policy, as
long as the initial state is close enough to , the average
per-user throughput over any finite time duration will get arbi-
trarily close to the Optimal Relaxed Policy performance as the
number of users scales.
Remark: We note that the sequence is used to guar-

antee that the number of channels in each class, as well as the
number of scheduled users, take integer values. In fact, our re-
sult can be generalized to all by slightly perturbing and
as a function of but assuring their limits are well defined.
Note that we have assumed the model of two-classes of

channels. Future research direction includes generalization to
multiple-class scenarios or models where users have arbitrary
transition probabilities. The main challenge in generalizing to
such setup is to analyze the eigenvalue structure of the system
state’s transition matrix (e.g., [36, Lemma 11]) since analyti-
cally studying the form of the eigenvalues can be difficult when
there are multiple classes of users.

VI. GLOBAL OPTIMALITY OF WHITTLE’S INDEX POLICY

The above local optimality result heavily relies on the ini-
tial state being close to , which is difficult to guar-
antee. In this section, we study the global optimality of the infi-
nite horizon throughput performance of Whittle’s Index Policy
starting from any initial state. We begin our analysis by pre-
senting the recurrence structure of the system state.
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Lemma 5: Under system parameters , for any , if
the number of users is large enough, we have the following.

i) The system state evolves as an aperiodic Markov
chain, in a state space that contains only one recurrent
class.

ii) There exists at least one recurrent state within the neigh-
borhood of .
Proof: We prove this lemma by constructing probability

paths from any state to the neighborhood . Details of the
proof are included in [36].
This lemma states that will ultimately enter any small

neighborhood of when is large enough. Together with
Proposition 1, this result shows promise for establishing the
global asymptotic optimality of Whittle’s Index Policy. This is
plausible because once enters , the performance
of Whittle’s Index Policy afterwards can get very close to
its upper bound as scales, as established in Proposition 1.
However, since we consider the infinite horizon time average
throughput, this argument would break down if the time it
takes for to enter also scales up with . This
observation motivates us to introduce a useful assumption,
which will later be justified (in Section VII-A) via numerical
studies.
Assumption : For each , let represent the first

time of reaching starting from , i.e.,

Then, we assume that the expected time of reaching is
bounded by a constant , i.e.,

for all and large enough .
Since for each under Whittle’s Index Policy is re-

current and aperiodic with a finite state space, there exists a
steady-state distribution associated with . As before, we
use to denote the associated limiting random vector.
The next lemma establishes that, under Assumption , the dis-
tribution of approaches a point-mass at as scales.
Here, again, the sequence is defined in the same way
as in Proposition 1.
Lemma 6: Under Assumption and system parameters

, for any , the steady-state probability of
under Whittle’s Index Policy satisfies

Proof: The proof utilizes [30, Theorem 6.89], which builds
on the following arguments.
Note that can be selected to be small enough for

the following argument. As depicted in Fig. 3, we let be a
random variable denoting, in steady state, the time duration be-
tween consecutive hitting times into the neighborhood
from outside of the neighborhood. Let denote the time du-
ration from the time enters the neighborhood
from outside until the time it leaves. Hence, the expected pro-
portion of time that stays outside this neighborhood is

.

Fig. 3. Transition behavior of in steady state.

We know that the numerator is uniformly
bounded for all due to Assumption . However, as in-
creases, it is more likely for to stay within the neigh-
borhood for a long time before exiting it (based on the con-
vergence of fluid approximation model and Kurtz’s Theorem
in the proof of Proposition 1). Thus, and hence the de-
nominator , grow to infinity as scales. Therefore, the
expected proportion of time spent outside vanishes as

scales up, which leads to the statement of the lemma. Details
of the proof can be found in [36].
Under Whittle’s Index Policy with system parameters ,

we let be the achieved infinite horizon, time average
throughput, conditioned on the initial system state ,
i.e.,

From Lemma 6, we know that, in steady state, the system state
is increasingly concentrated around as increases,

regardless of the initial state . We build on this to establish the
global asymptotical optimality of Whittle’s Index Policy.
Proposition 2: Under Assumption , for any initial system

state , we have

Since is an upper bound on the maximum achievable
per-user throughput by any policy, this implies that Whittle’s
Index Policy is optimal in the many-user regime.

Proof: We prove this result by decomposing
as a summation of the expected throughput conditioned on
whether the system state is within or outside an arbitrarily
small neighborhood of . Since the latter has diminishing
probability according to Lemma 6, the expected throughput
of Whittle’s Index Policy can get arbitrarily close to that of
Optimal Relaxed Policy. Details of the proof are provided
in [36].
Remarks:
1) We would like to emphasize that the global optimality re-

sult is not a straightforward extension of the local conver-
gence result by contrasting Propositions 1 and 2. Note that
in Proposition 1, the time limit is outside the limit of the
number of users , where each convergence (with ) is
with respective to a fixed time duration. However, the order
of limit is switched in the global optimality result of Propo-
sition 2, as it states the convergence with the infinite
horizon average throughput, which is much stronger and
hence is much more challenging to prove.

2) We would like to contrast Assumption with Weber’s
condition [22]. For general RMBP problem, Weber’s
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condition leads to the same global asymptotic optimality
result. While confirming Weber’s condition may be pos-
sible in very low-dimensional problems, in our downlink
scheduling problem, this requires one to rule out the
existence of both closed orbits and chaotic behavior of a
high-dimensional nonlinear differential equation, which is
extremely difficult to check—even numerically. Assump-
tion , on the other hand, takes a much simpler form,
as it is defined over the actual stochastic system and is
amenable to easy numerical verification, as is performed
in Section VII-A.

VII. NUMERICAL RESULTS

A. Verification and Interpretation of Assumption
We start by numerically verifying Assumption . We con-

sider the asymmetric scenario with two classes of channels with
system parameters , with

.
We next examine the change of the average hitting time

, while maintaining and .
We let be initial values of that are selected to

be two extreme points in the state space to exhibit the uniformity
of to the initial state. Specifically, state corresponds to
the case when all the users have just observed their channels to
be in OFF state, i.e., with belief value . And corre-
sponds to the case when all users have no initial observation of
their channels state history, i.e., with belief value .
We examine the average value of hitting time and

with a very small neighborhood , when the
number of users grows from to . As
indicated in Fig. 4, for both cases, the average time of hitting
the neighborhood first decreases with , and then converges
and stays almost the same as scales up. This is especially
intriguing. The rationale behind this phenomenon is as follows.
UnderWhittle’s Index Policy, a total number of users are ac-
tivated at each time-slot. Therefore, for relatively small number
of users, the amount of probabilistic belief state transitions, as
well as the amount of system states in the neighborhood, in-
creases with , leading to a higher chance of hitting the de-
sired neighborhood and smaller value of hitting time.
However, the belief update of each user contributes to the
change of the system state , which decreases with .
Therefore, as further increases, the total amount of tran-
sitions of the system state due to channel state feed-
back is roughly , which is invariant of .
This result, along with many other numerical experiments we
have conducted that lead to the same observation [36], verifies
Assumption .

B. “Exploitation Versus Exploration” Tradeoff
In this section, we demonstrate how theWhittle’s index value

captures the “exploitation versus exploration” tradeoff for our
asymmetric downlink scheduling problem.
Consider two classes of ON/OFF fading channels with belief

value evolutions plotted in Fig. 5(a). Note that both classes have
the same stationary distribution of being
at ON state, but channels in class 1 have a higher degree of time

Fig. 4. Average time of hitting . (a) . (b) .

Fig. 5. Evolution of (a) belief value and (b) Whittle’s index value.

correlation, i.e., fade slower, than channels in class 2 since
and . The corresponding Whittle index values of the

two classes of channels are depicted in Fig. 5(b) as functions of
the updated belief value starting from different initial states.
To understand the nature of Whittle’s index value, we first

consider the case when the channels in both classes are ob-
served to be ON at time 0 and stay passive since then. As indi-
cated in Fig. 5(a), the class-1 channel has a higher belief value
than the class-2 channel, hence scheduling the class-1 channel
gives a higher immediate throughput than scheduling the class-2
channel. Moreover, once a class-1 channel is scheduled, it is
more likely to stay in ON state again, bringing high future gains.
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Accordingly, the index values in Fig. 5(b) when both state evo-
lutions start from ON states capture that it is more attractive to
schedule the class-1 channel because of the advantage in both
exploitation and exploration.
On the other hand, when the scheduler has observed channels

in both classes to be OFF at time 0, Fig. 5(a) shows that the class 2
channel has a higher belief value than the class-1 channel. How-
ever, although the Whittle’s index value in Fig. 5(b) of class-2
channel is initially smaller than that of class-1 channel, after
a certain amount of delay (around 8 slots in the figure) this
order is switched, which is interpreted as follows: Initially, since
the class-1 channel has smaller belief value than that of the
class-2 channel, it is more attractive to exploit the immediate
gain brought by the class-2 channel. However, as the passive
time grows, as indicated in Fig. 5(a), the difference between
immediate gain of both classes diminishes. Then, it becomes
more attractive to explore the class-1 channel because its longer
memory can bring higher future gains if it turns out to be in ON
state.
This investigation reveals the intricate nature of Whittle’s

index value in capturing the fundamental “exploration versus
exploitation” tradeoff. In our scheduling problem with asym-
metric channel statistics, such a property of Whittle’s Index
Policy turns out to be crucial in achieving asymptotically op-
timal performance.

C. Performance Evaluation and Comparison
Note that our results focus on asymptotic regime when the

number of users scales up. We next numerically evaluate the
performance of the Whittle’s Index Policy under finite number
of users. We next consider a system where

, and ,
and evaluate the value when increases as
multiples of 5, i.e., . Fig. 6(a) and
(b) respectively corresponds to the aforementioned extreme
points. As observed in Fig. 6, the per-user throughput value

of Whittle’s Index Policy quickly converges to
the upper bound value . This result indicates that, in
realistic scenarios with finite , the global convergence result
in Proposition 2 holds under moderate number of users (under

as shown in Fig. 6).
Fig. 6 also plots the per-user throughput performance

of the BALANCEDINDEX policy, which is proposed in
[23] and proved to achieve throughput half of the optimal
throughput, i.e., 2-approximation performance. As observed
in Fig. 6, the asymptotic per-user throughput performance
of BALANCEDINDEX is strictly lower than the Whittle’s
Index Policy. This is because although BALANCEDINDEX
policy guarantees 2-approximation to the optimal throughput
performance, it does not provide strictly optimal per-user
throughput performance in the asymptotic regime of large
number of users, as compared with Whittle’s Index Policy.
Fig. 6 also evaluates the performance of a slight modification of
Whittle’s Index Policy, namely the THRESHOLD-WHITTLE
policy, proposed in [23] by slightly adjusting the Whittles
index value at belief values . It can be observed
from the figure that the per-user throughput performance
of THRESHOLD-WHITTLE policy is very close to that of

Fig. 6. Performance evaluation and comparison of per-user throughput of
Whittle’s Index Policy. (a) . (b) .

the Whittle’s Index Policy, indicating that the modification
of the Whittle’s indices in THRESHOLD-WHITTLE policy
does not bring significantly change the throughput perfor-
mance for the plotted example. It was proven in [23] that the
THRESHOLD-WHITTLE policy achieves at least half of the
optimal throughput. However, analytically proving the asymp-
totic optimality of THRESHOLD-WHITTLE policy remains
an open question.

D. Evaluation of Fairness Among Users
In this section, we evaluate the fairness performance of

Whittle’s Index Policy. We examine the throughput difference
between the two types of users, under different sets of Markov
transition statistics. To facilitate better evaluation, we define
the throughput to be the per-user throughput within
each class of users, i.e.,

where represents the set of users in class . We consider the
scenario where and
with . Therefore, the channels in class 1
have a much higher degree of correlation than the channels
in class 2, i.e., it is more likely for the channels in class 1 to
stay in its previous-slot state than change to a different state
compared to channels in class 2. However, channels in both
classes have the same steady-state probability in state “1,” i.e.,

. Fig. 7 plots the per-user throughput within each
class under Whittle’s Index Policy. It can be observed that users
in class 1 achieve higher throughput than users in class 2. The
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Fig. 7. Evaluation of with . (a) Whittle’s Index Policy. (b)
Policy Ξ.

higher throughput gain of class 1 is brought by the higher de-
gree of temporal correlation and also the aforementioned “Ex-
ploitation versus Exploration” tradeoff. Since the class-1 chan-
nels have higher degree of time-correlation, if a class-1 channel
is previously observed in state 1, the scheduler tends to continue
to serve it for longer time to obtain high immediate gains. It is
also more attractive to explore a channel in class 1 because, as
previously discussed, higher future gains can be obtained if it
turns out to be in state “1.” Therefore, channels in class 1 have
higher overall throughput than channels in class 2, resulting in
the big gap in throughput between the two classes of users in
Fig. 7.
To facilitate better performance in terms of fairness, we eval-

uate the performance of the following heuristic policy Ξ based
on the Whittle’s index values. In policy Ξ, instead of directly
using Whittle’s index values, the algorithm schedules the
users with the largest

at slot , where is user ’s achieved throughput up to slot ,
i.e., Ξ . Hence, a user’s priority

for scheduling is determined by its Whittle’s index value rela-
tive to its own actual achieved throughput. Therefore, policy Ξ
mimics the proportional fair scheduling algorithms (e.g., [3])
commonly used in communication networks. Fig. 7(b) evalu-
ates the performance of policy Ξ. As we can see, under the algo-
rithm Ξ, the throughput gap between the two classes of channels
is closer than Whittle’s index policy, indicating improved fair-
ness performance. Finally, we believe that combining Whittle’s
index and the frame-based scheduling [18] can lead to low-com-
plexity algorithms that optimally meet the fairness constraints
among different users.

VIII. CONCLUSION

In this paper, we studied the problem of downlink sched-
uling over ON/OFF Markovian fading channels in the presence
of channel heterogeneity. We consider the scenario where in-
stantaneous channel state information is not perfectly known at
the scheduler, but is acquired via a practical ARQ-styled feed-
back after each scheduled transmission. We analytically char-
acterized the performance of Whittle’s Index Policy for down-
link scheduling and proved its local and global asymptotic op-
timality properties as the number of users scales. Specifically,
provided that the initial system state is within a certain region,
we established the local optimality of Whittle’s Index Policy
by investigating the evolution of the system belief state with a
fluid approximation. We then established the global asymptotic
optimality of Whittle’s Index Policy under a recurrence condi-
tion, which is suitable for numerical verification. Our results
establish that Whittle’s Index Policy, which is attractive due
to its low-complexity operation, also processes strong asymp-
totic optimality properties for scheduling over heterogeneous
Markovian fading channels. Future research directions include
design of scheduling algorithms that not only maximizes the
sum throughput, but also provides fairness among heteroge-
neous users using Whittle’s index.

APPENDIX A
PROOF OF LEMMA 2

(i) First consider the scenario where and sup-
pose for the belief state . If the belief
value of a channel is above at the beginning of a slot, the
channel will be activated. According to the belief value evolu-
tion rule (1), in the next slot its belief value will either be or
, depending on the underlying channel state revealed at the

end of a slot. Clearly, the belief evolution in this case is posi-
tive recurrent within a finite state space, i.e., the belief state can
only take the values . On the other hand,
if the belief value is below , the channel remains idle and
will activate once its belief value exceeds . Fig. 8 illustrates
the belief evolution in steady state under this scenario.
(ii) Consider the scenario where . In this case,

a channel is activated if its index value is above . After trans-
mission, if the channel is observed to be in OFF state, its belief
value will transit to and stays idle until its index value crosses
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Fig. 8. Belief value transition in steady state when .

. Since , it is clear from the belief value evo-
lution (see Fig. 2) that, starting from , the belief value will
always be smaller than . Hence the channel will stay idle at
all times. On the other hand, if the channel is observed to be
in ON state after transmission, the belief value will transit to
and the channel will keep on transmitting until the underlying
channel turns out to be in OFF state. Since we assumed ,
the channel will ultimately be in OFF state and its belief value
will transit to and stays in idle mode ever since. Therefore,
eventually no channel in class will be scheduled, and the belief
values will keep transit toward, but never reach, the steady-state
belief value .

APPENDIX B
PROOF OF LEMMA 3

Consider two systems with different total number of users
but identical and . Suppose the first system has total
number of users while the second system has number of
users. For the first system with total number of users, sup-
pose the policy , specified in Lemma 1, is optimal for the re-
laxed-constraint problem. For each channel in class , we let

denote the expected fraction of time of activation, i.e.,

Then, according to Lemma 1(ii), the expected number of ac-
tivated users satisfies

Now apply the same policy when the total number of users
is . Since schedules each channel independently, and

does not change in this scenario. Therefore, the expected
number of activated users is expressed as

hence the complementary slackness condition [i.e., Lemma
1(ii)] for the relaxed-constraint problem is also satisfied under
, when the total number of users is . Hence, the policy
satisfies both Lemma 1(i) and (ii) under the total number of

users and is an optimal policy for that scenario.
Therefore, fixing system parameters , for different

number of users, the policy is always optimal. Since
the policy schedules each channel independently, we let

denote the expected reward contributed by each
channel in class . Hence, we have

Therefore, the per-user throughput is

which is independent of . Hence, the lemma is proven.

APPENDIX C
PROOF OF LEMMA 4

Given system parameters , we know from the proof
of Lemma 3 that the form of the Optimal Relaxed Policy, de-
noted by , does not change with the number of users.
Since schedules each channel independently, we let vector

denote the steady-state
distribution of the belief value of a user in class under , with

. Therefore

Since is independent of is independent of for
. Therefore, is independent of the user number
, which proves the lemma.
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