
IEEE/ACM TRANSACTIONS ON NETWORKING, TO APPEAR 1

Optimal Control of Wireless Networks with Finite
Buffers

Long Bao Le, Member, IEEE, Eytan Modiano, Senior Member, IEEE, and Ness B. Shroff, Fellow, IEEE

Abstract—This paper considers network control for wireless
networks with finite buffers. We investigate the performance
of joint flow control, routing, and scheduling algorithms which
achieve high network utility and deterministically bounded back-
logs inside the network. Our algorithms guarantee that buffers
inside the network never overflow. We study the tradeoff between
buffer size and network utility and show that under the one hop
interference model if internal buffers have size (N−1)/(2ε) then
ε-optimal network utility can be achieved, where ε is a control
parameter and N is the number of network nodes. The un-
derlying scheduling/routing component of the considered control
algorithms requires ingress queue length information (IQI) at
all network nodes. However, we show that these algorithms can
achieve the same utility performance with delayed ingress queue
length information at the cost of a larger average backlog bound.
We also show how to extend the results to other interference
models and to wireless networks with time varying link quality.
Numerical results reveal that the considered algorithms achieve
nearly optimal network utility with a significant reduction in
queue backlog compared to existing algorithms in the literature.

Index Terms—Network control, wireless scheduling, flow con-
trol, routing, delay control, throughput region, finite buffer, utility
maximization

I. INTRODUCTION

The design of wireless networks that efficiently utilize
network capacity and provide quality of service guarantees
for end users is one of the most important problems in
network theory and engineering. Since the seminal paper of
Tassiulas and Ephremides [1] in which they proposed a joint
routing and scheduling algorithm that achieves the maximum
network throughput, significant efforts have been invested
in developing more efficient network control algorithms [2]-
[22]. Most existing works, however, focus on achieving a
guaranteed fraction of the maximum throughput region with
low communication and computation complexity.

In addition, most papers on network control assume that all
buffers in the network are infinite, so buffer overflow never
occur. In practice, network buffers are finite. Therefore, sizing
buffers such that buffer overflow inside the network can be
alleviated or completely avoided is an important engineering

Manuscript received March 03 2011; revised August 18 2011 and November
7, 2011; approved by IEEE/ACM TRANSACTIONS ON NETWORKING
Editor L. Andrew. This work was supported by ARO Muri grant num-
ber W911NF-08-1-0238, NSF grant numbers CNS-0626781, DTRA grant
HDTRA1-07-1-0004, NSERC Postdoctoral fellowship, and NSERC Discovery
Grant. The preliminary results of this paper was presented in part at IEEE
INFOCOM’2010.

Long Bao Le is with INRS-EMT, University of Quebec, Montreal, QC,
Canada (e-mail: long.le@emt.inrs.ca).

Eytan Modiano is with Laboratory for Information and Decision Systems
(LIDS), Massachusetts Institute of Technology, Cambridge, MA, USA (e-mail:
modiano@mit.edu).

Ness B. Shroff is with the Department of Electrical and Computer Engi-
neering and the Department of Computer Science and Engineering, The Ohio
State University, Columbus, OH 43210 USA (e-mail: shroff@ece.osu.edu).

problem. Moreover, buffer sizing should be performed in such
a way that network capacity is not wasted. In fact, networks
with finite buffers may suffer from significant throughput loss
if they are not designed appropriately (e.g., see [23] and
references therein).

There have been some recent papers that analyze delay
performance of cross-layer scheduling algorithms [24]-[28].
In particular, it was shown that the well-known maximum
weight scheduling algorithm achieves order-optimal delay in
the uplink-downlink of cellular networks [24] and in most
practical large-scale multihop wireless networks [25]. Other
works on delay analysis for different scheduling algorithms
in wireless networks can be found in [27]-[28]. In [4], [26],
[29], and [30], it was shown that by combining the principle
of shortest-path routing and differential backlog routing, end-
to-end delay performance can be improved. In [15], [32], the
virtual queue technique was used to improve network delay
performance. In [33], it was shown that it is possible to achieve
a guaranteed stability region with bounded information delay
if we allow a small reduction in achievable network utility.
These existing works, however, do not consider the problem
of providing backlog or delay performance guarantees.

In this paper, we employ flow controllers to determinis-
tically bound queue backlogs inside the network. Specifi-
cally, we combine the Lyapunov optimization technique of
[2], [3], [30] and the scheduling mechanism proposed in
[6] to construct joint flow control, routing and scheduling
algorithms for wireless networks with finite buffers. Note that
in [2], [3], [30] the problem of network utility maximization
is considered assuming that all buffers in the network are
infinite. The authors of [6] proposed scheduling algorithms
for networks with finite buffers. However, this work does
not consider flow control or dynamic routing, and requires
that the traffic arrival rates are strictly within the feasible
throughput region. Moreover, [31] demonstrated that it is
possible to achieve deterministically bounded queue backlogs
for the throughput optimization problem (i.e., linear utility),
without taking into account general utility maximization. Our
current paper considers the general setting where traffic arrival
rates can be either inside or outside the throughput region,
internal buffers in the network are finite, and dynamic routing
is used to achieve the largest possible network throughput. Our
contributions can be summarized as follows.
• We consider control algorithms that achieve high network

utility and deterministically bounded backlogs for all
buffers inside the network. Moreover, these algorithms
ensure that internal buffers never overflow.

• We demonstrate a tradeoff between buffer sizes and
achievable network utility under the one hop interference
model.

• We show that delayed ingress queue information does

IEEE/ACM TRANSACTIONS ON NETWORKING, TO APPEAR 2

not affect the utility of the control algorithms albeit at
the cost of a larger backlog bound.

• We extend the obtained results to other interference
models and to wireless networks with time varying link
quality

• We show via simulations that the considered control
algorithms perform very well in both the under and over-
loaded traffic regimes. Specifically, they achieve nearly
optimal utility performance with very low and bounded
backlogs.

The remainder of this paper is organized as follows. The
system model is described in section II. In section III, we
analyze the performance of the control algorithm in the heavy
traffic regime. Section IV focuses on the performance analysis
of the control algorithm for arbitrary traffic arrival rates. Some
extensions are presented in section V. Numerical results are
presented in section VI followed by conclusion in section VII.

II. SYSTEM MODEL

We consider a wireless network which is modeled as a
graph G = (Γ, E) where Γ is the set of nodes and E is
the set of links. Let N and L be the number of nodes and
links in the network, respectively. We assume a time-slotted
wireless system where packet arrivals and transmissions occur
at the beginning of time slots of unit length. There are multiple
network flows in the network each of which corresponds to a
particular source-destination pair.

Arrival traffic is stored in input reservoirs and flow con-
trollers are employed at source nodes to determine the amount
of traffic to admit from input reservoirs into the network in
each time slot. Let nc be the source node and dc be the
destination node of flow c. We will refer to the queue at the
source node nc, which “stores” admitted traffic of flow c as
an ingress buffer. It is worth emphasizing that we do not need
physical buffers to implement these ingress queues in practice.
Specifically, the backlog values of these ingress buffers can be
simply maintained by software counters while all data packets
are physically stored in the input reservoirs.

All other buffers storing packets of flow c inside the network
are called internal buffers. Let R

(c)
nc (t) be the amount of traffic

of flow c injected from the input reservoir into the network at
node nc in time slot t. Note that a particular node can be a
source node for several flows. Let Cn be the set of flows whose
source node is n. Hence, for any flow c ∈ Cn its source node
nc is node n. It is assumed that

∑
c∈Cn

R
(c)
n ≤ Rmax

n where
the parameter Rmax

n can be used to control the burstiness of
admitted traffic from node n into the network. Let Rmax =
max{n} {Rmax

n }, which will be used in the analysis. Let C
denote the total number of flows in the network.

Each internal node maintains multiple finite buffers (one per
flow) while ingress buffers at all source nodes are assumed
to be unlimited. This implies that the input reservoirs are
unlimited in size because data packets at source nodes are
physically stored in the input reservoirs. This assumption is
justified by the fact that in many wireless networks (e.g.,
wireless sensor networks) buffer space is limited. However,
buffers in ingress routers or devices are relatively large.
Moreover, since input buffers only need to store traffic from

Flow
controller

Ingress queue
Input reservoir

Source

Destination

Fig. 1. Wireless network with finite internal buffers

a small number of end-users, they can be made large enough
to accommodate all incoming traffic with high probability.

Let lc be the size of the internal buffer used to store packets
of flow c at each network node. We denote the queue length1

of flow c at node n at the beginning of time slot t by Q
(c)
n (t).

Note that data packets of any flow are delivered to the higher
layer upon reaching the destination node, so Q

(c)
dc

(t) = 0.
Assume that the capacity of any link is one packet per time
slot. In addition, let µ

(c)
nm(t) be the number of packets of

flow c transmitted over link (n,m) in time slot t. Therefore,
µ

(c)
nm(t) = 1 if we transmit a packet of flow c over link (n,m)

and µ
(c)
nm(t) = 0, otherwise. In the following, we will use

µ
(c)
nm(t) or µ

(c)
l (t) to denote the number of packet transmitted

over link (n,m) or link l, respectively (i.e., network links can
be represented by the corresponding transmitting and receiving
nodes or just by a single letter). Let Ωin

n and Ωout
n be the set of

incoming and outgoing links at node n. The network model
is illustrated in Fig. 1. For notational convenience, when there
is no ambiguity, we omit the time index t in related variables.

We assume that the traffic of any flow is not routed back
to its source node. Therefore, we have µ

(c)
mnc = 0,∀m, c. It

is clear that this restriction does not impact the achievable
throughput of the considered control algorithms. We assume
that a node can communicate with (i.e., transmit or receive)
at most one neighboring node. Any link can be activated as
long as no node is involved in more than one transmission or
reception (i.e., node exclusive interference constraints).2

We further assume that node n will not transmit data of
flow c along any link (n,m) whenever Q

(c)
n < 1 (i.e., a node

will not transmit traffic of any flow if the corresponding queue
does not have enough data to fill the link capacity). Under this
assumption, the queue evolutions can be written as

Q(c)
n (t + 1) = Q(c)

n (t)−
∑

l∈Ωout
n

µ
(c)
l (t) +

∑

l∈Ωin
n

µ
(c)
l (t)

+R(c)
n (t), (1)

where R
(c)
n (t) = 0, ∀t and n 6= nc. Note that∑

l∈Ωout
n

µ
(c)
l (t) = 1 only if Q

(c)
n (t) ≥ 1 and one of the

outgoing links of node n is activated for flow c. Let r
(c)
n (t)

be the time average rate of admitted traffic for flow c at the

1To be precise, Q
(c)
n (t) is a virtual queue length because it can take real

numbers for source buffers.
2This assumption is made for simplicity of the derivations. Extensions to

other interference models (e.g., k-hop interference model) are discussed later
in section V. Note that the k-hop interference model implies that no two links
within k hops of each other can be simultaneously active. The node exclusive
interference model corresponds to the 1-hop interference model.

IEEE/ACM TRANSACTIONS ON NETWORKING, TO APPEAR 3

corresponding source node nc up to time t, that is

r(c)
nc

(t) , 1
t

t−1∑
τ=0

E
{

R(c)
nc

(τ)
}

. (2)

The long-term time-average admitted rate for flow c is defined
as

r(c)
nc

, lim
t→∞

r(c)
nc

(t). (3)

Now, we recall the definitions of network stability and the
maximum achievable throughput region (or throughput region
for brevity) [1], which will be used in our analysis. A queue
for a particular flow c at node n is called stable if its average
backlog is bounded. In addition, the network is called stable if
all individual queues in the network are stable. The maximum
achievable throughput region Λ of a wireless network with
unlimited input and internal buffers is the set of all traffic
arrival rate vectors for which there exists a network control
algorithm to stabilize all individual queues in the network.

Note that when internal buffers are finite, stability corre-
sponds to maintaining bounded backlogs in ingress buffers
(since internal buffers are finite by design, the issue of stability
does not arise there). In this context, it is necessary to devise a
control algorithm that achieves high throughput and/or utility
without any overflow at internal buffers.

III. NETWORK OPTIMIZATION IN THE HEAVY TRAFFIC
REGIME

We start by considering the case where all sources are
constantly backlogged. We seek a balance between optimizing
the total network utility and bounding total queue backlog
inside the network. Specifically, we want to solve the following
optimization problem

maximize
∑

c

g(c)
(
r(c)

nc

)
(4)

subject to
(
r(c)

nc

)
∈ Λ, (5)

Q(c)
n ≤ lc, ∀c, and n 6= nc, (6)

where g(c)(.) are assumed to be non-negative, increasing
and strictly concave utility functions, r

(c)
nc is the time av-

erage admitted rate for flow c at node nc,
(
r
(c)
nc

)
=

(
r
(1)
n1 , r

(2)
n2 , · · · , r

(C)
nC

)T

is the time average admitted rate
vector, (.)T denotes the vector transposition, and lc is the
internal buffer size. Here, utility functions express the level of
satisfaction of users with respect to admitted rates. Constraint
(6) ensures that the backlogs in internal buffers are finite and
bounded by lc at all times.

To quantify the performance of the control algorithms, we
need some more definitions. First, let us define the ε-stripped
throughput region as follows:

Λε ,
{(

r(c)
nc

)
|
(
r(c)
nc

+ ε
)
∈ Λ

}
, (7)

where
(
r
(c)
nc

)
,

(
r
(1)
n1 , r

(2)
n2 , · · · , r

(C)
nC

)T

. Also, let (r∗(c)nc (ε))
be an ε-optimal solution of a general network optimization
problem, which is defined as the solution of the following
optimization problem

maximize
∑

c g(c)
(
r
(c)
nc

)
(8)

subject to
(
r
(c)
nc

)
∈ Λε, (9)

r
(c)
nc ≤ λ

(c)
nc , (10)

where
(
λ

(c)
nc

)
=

(
λ

(1)
n1 , λ

(2)
n2 , · · · , λ

(C)
nC

)T

is the average traffic
arrival rate vector. We will quantify the performance of the
considered control algorithms in terms of (r∗(c)nc (ε))3. Note
that (r∗(c)nc (ε)) tends to the optimal solution (r∗(c)nc) as ε →
0 where (r∗(c)nc) is the optimal solution of the optimization
problem (8)-(10) where Λε is replaced by Λ (i.e., the original
throughput region). Also, for constantly backlogged sources
the constraints on traffic arrival rates (10) are not needed.

In [3], [30], the corresponding problem without the buffer
limit is considered. As a result, queue backlogs inside the
network at internal buffers can be very large (although with
bounded expectations). The large backlog accumulation inside
the network is not desirable because it can lead to increased
delays, buffer overflows, and throughput reduction due to
retransmission of lost packets. Now, consider the following
algorithm that provides a feasible solution for the problem
formulated in (4)-(6).

Algorithm 1: Constantly Backlogged Sources
1) Flow Control: Each node nc injects an amount of traffic

into the network which is equal to R
(c)
nc (t) = x

(c)
nc

where x
(c)
nc is the solution of the following optimization

problem

maximize{
x
(c)
nc

} ∑
c

[
V g(c)

(
x

(c)
nc

)
− 2Q

(c)
nc x

(c)
nc

]

subject to 0 ≤ ∑
d∈Cnc

x
(d)
nc ≤ Rmax

nc
, ∀c

,

(11)
where V is a controlled parameter.

2) Routing/Scheduling: Each link (n,m) calculates the
differential backlog for flow c as follows:

dB(c)
n,m ,





Q(c)
nc

lc

[
lc −Q

(c)
m

]
, if n = nc

Q(c)
nc

lc

[
Q

(c)
n −Q

(c)
m

]
, if n,m 6= nc

. (12)

Then, link (n,m) calculates the maximum differential
backlog as follows:

W ∗
(n,m) , max

c

{
dB(c)

n,m

}
. (13)

Let ~S be the schedule where its l-th component Sl = 1
if link l is scheduled and Sl = 0 otherwise. The schedule
~S∗ is chosen in each time slot t as follows:

~S∗ = argmax
~S∈Φ

~ST ~W ∗, (14)

where Φ is the set of all feasible schedules as determined
by the underlying wireless interference model. We will
not schedule any link l with W ∗

l ≤ 0. For each
scheduled link, one packet of the flow that achieves the
maximum differential backlog in (12) is transmitted if
the corresponding buffer has at least one packet waiting
for transmission.

Before investigating the performance of this algorithm, we
would like to make some comments. First, it can be observed

3Note that the ε-optimality notion in this paper may not be the same with
that used in optimization theory literature.

IEEE/ACM TRANSACTIONS ON NETWORKING, TO APPEAR 4

that the flow controller of this algorithm admits less traffic of
flow c if the corresponding ingress buffer is more congested
(i.e., large Q

(c)
nc). Also, a larger value V results in higher

achievable utility albeit at the cost of larger queue backlogs.
Moreover, the routing component of this algorithm (12) is an
adaptation of the differential backlog routing [1] to the case of
finite buffers [6]. The scheduling rule (14) is the well-known
max-weight scheduling algorithm.

In fact, the flow controller of this algorithm is the same
as that proposed in [30], [3] while the differential backlog in
(12) is the same as that in [6]. However, [30], [3] assume that
all network buffers are infinite while [6] assumes that traffic
arrival rates are inside the corresponding throughput region
and static routing. In contrast, we consider dynamic routing
to achieve the largest possible network throughput. Also, we
consider both heavy traffic and arbitrary arrival rates and
employ flow controllers to control the utility-backlog tradeoff.

The differential backlog in (12) ensures that internal buffers
never overflow. In fact, the differential backlog of any source
link (nc,m), given by Q

(c)
nc /lc

[
lc −Q

(c)
m

]
, bounds the back-

logs of all internal buffers by lc. The differential backlogs
of all other links (n,m), given by Q

(c)
nc /lc

[
Q

(c)
n −Q

(c)
m

]
,

is essentially the multiplication of the standard differential
backlog

[
Q

(c)
m −Q

(c)
m

]
from [1] and the normalized ingress

queue backlog Q
(c)
nc /lc. Incorporating ingress queue backlog

into the differential backlog in (12) prioritizes the flow whose
ingress queue is more congested. This helps stabilize ingress
queues because the scheduling component of algorithm 1 still
has the “max-weight” structure as that proposed in [1].

Assume that for each flow c, each wireless node maintains
a buffer space of at least lc packets. Assume that all buffers in
the network are empty initially. Then, the queue backlogs in
all internal buffers for flow c are always smaller than or equal
to lc. That is

Q(c)
n (t) ≤ lc, ∀c, t and n 6= nc. (15)

To see this, note that all internal buffers in the network
always have an integer number of packets. This is because
the scheduler of Algorithm 1 does not transmit a fraction of
packet from any ingress buffer to the corresponding internal
buffer. Because at most one packet can be transmitted from
any queue in one time slot, buffer overflow can only occur
at a particular internal buffer if the number of packets in that
buffer is lc and it receives one more packet from one of its
neighboring nodes. We will show that this could not happen
by considering the following cases.
• Consider any link (nc,m) for a particular flow c. It can

be observed that if Q
(c)
m = lc then the buffer at node

m for flow c will never receive any more packets from
node nc. This is because the differential backlog of link
(nc,m) in this case is dB

(c)
nc,m = Q

(c)
nc /lc

[
lc −Q

(c)
m

]
=

0. Therefore, link (nc,m) is not scheduled for flow c.
• Consider any link (n,m) for n 6= nc. Suppose the first

buffer overflow event in the network occurs at node
m for flow c. Right before the time slot where this
first buffer overflow occured, we must have Q

(c)
m = lc.

However, consider the differential backlog of any link
(n,m) in this previous time slot, we have dB

(c)
n,m =

Q
(c)
nc /lc

[
Q

(c)
n −Q

(c)
m

]
= Q

(c)
nc /lc

[
Q

(c)
n − lc

]
≤ 0. This

means any such link (n,m) will not be scheduled for
flow c. Therefore, overflow could not occur at node m.

Therefore, we have deterministically bounded backlogs inside
the network at all times. Now, we are ready to state one of
the main results of this paper.

Theorem 1: Given ε > 0, if the internal buffer size satisfies

lc ≥ N − 1
2ε

. (16)

Then, we have the following bounds for utility and ingress
queue backlog

lim inf
t→∞

∑
c

g(c)
(
r(c)

nc
(t)

)
≥

∑
c

g(c)
(
r∗(c)nc

(ε)
)
− D1

V
, (17)

∑
c

Q
(c)
nc ≤

D1 + V Gmax

2λmax − (N−1)
lc

, (18)

where recall that (r∗(c)nc (ε)) is an ε-optimal solution, which
is an optimal solution of the optimization problem (8)-(10),
D1 , C(R2

max + 2) + C(N − 1)Rmaxlc is a finite number, C
is the number of flows in the network, Rmax is the maximum
amount of traffic injected into the network from any node, V
is a design parameter which controls the utility and backlog
bound tradeoff, λmax is the largest number such that ~λmax ∈ Λ
where ~λ = (λ, λ, · · · , λ)T is a column vector with all elements
equal to λ,

Gmax , max{∑
c∈Cn

r
(c)
n ≤Rmax

n

}

{∑
c

g(c)
(
r(c)
nc

)}
, (19)

∑
c

Q
(c)
nc , lim sup

M→∞

1
M

M−1∑
τ=0

∑
c

E
{

Q(c)
nc

(τ)
}

. (20)

Proof: The proof is given in Appendix A.

r1

r2

ε
ε

λ

Boundary of ε-stripped throughput region

Boundary of throughput region

())ε(r*(c)
n c

()*(c)
nc

r

Fig. 2. Geometric illustration of optimal rate and lower-bound of achievable
rate in the heavy load regime

Here, we would like to make some comments. First, as V →
∞, the total utility achieved by the time-average admitted
rate

(
r
(c)
nc

)
is lower-bounded by that due to

(
r
∗(c)
nc (ε)

)
from

(8)-(10). This lower-bound is parameterized by the design
parameter ε, which in turn determines the queue backlog
bound in all internal buffers as given by (16). Specifically,
suppose we choose lc = (N − 1)/(2ε) as suggested by (16).
Then, when ε is larger, the buffer size lc is smaller but the
utility lower-bound achieved by

(
r
∗(c)
nc (ε)

)
is also smaller as

given in (17). This achievable admitted rate vector
(
r
∗(c)
nc (ε)

)

IEEE/ACM TRANSACTIONS ON NETWORKING, TO APPEAR 5

is illustrated in Fig. 2. Second, the inequality (18) gives the
upper-bound for the total ingress queue backlog, which is
controlled by another design parameter V . In particular, when
V increases, the utility lower bound in (17) also increases but
the upper-bound on the total ingress queue backlog becomes
larger.

Remark 1: Without flow control, [6] has shown how to
choose the internal buffer size to stabilize the input buffers.
However, this chosen buffer size depends on the relative
distance between the traffic arrival rate vector and the bound-
ary of the throughput region. In practice, it is not easy to
determine this distance parameter. Moreover, input queues will
become unstable when the traffic arrival rate is outside the
throughput region. In contrast, by appropriately designing a
flow controller, our cross-layer algorithm can always stabilize
the ingress queues. In addition, the internal buffer size in our
design depends on a tunable design parameter ε, which only
impacts the utility lower bound and does not depend on the
traffic itself.

Remark 2: Given ε, if we choose the smallest possible buffer
size suggested by Theorem 1 (i.e., lc = (N − 1)/(2ε)), the
backlog bound becomes

1
M

M−1∑
τ=0

∑
c

E
{

Q(c)
nc

(τ)
}
≤ D1 + V Gmax

2 (λmax − ε)
. (21)

Taking ε = 0, we have a backlog bound of same form as that
derived in [3].

IV. NETWORK OPTIMIZATION WITH ARBITRARY ARRIVAL
RATES

Now, we consider the more general case where traffic arrival
rates

(
λ

(c)
nc

)
can be inside or outside the maximum throughput

region. In this case, the long-term time average admitted
rates should be constrained to be smaller than the average
traffic arrival rates. For this case, our objective is to solve the
following stochastic optimization problem

maximize
∑

c

g(c)
(
r(c)

nc

)
(22)

subject to
(
r(c)

nc

)
∈ Λ, (23)

0 ≤ r(c)
nc
≤ λ(c)

nc
, (24)

Q(c)
n ≤ lc, ∀c, and n 6= nc. (25)

In this network setting, because the traffic arrival rates may
be inside the throughput region, we rely on newly-introduced
variables Y

(c)
n (t) that capture “virtual queues backlogs” to

perform flow control. These virtual queues track the difference
between the instantaneous admitted traffic rates R

(c)
n (t) and the

“potential” admitted rates z
(c)
nc (t). In particular, we consider

the following control algorithm.

Algorithm 2: Sources with Arbitrary Arrival Rates

1) Flow Control: Each node nc injects an amount of traffic
of flow c into the network R

(c)
nc (t), which is the solution

of the following optimization problem

maximize{
R

(c)
nc (t)

} ∑
c∈Cnc

[
Y

(c)
nc (t)−Q

(c)
nc (t)

]
R

(c)
nc (t)

subject to
∑

d∈Cnc
R

(d)
nc (t) ≤ Rmax

nc
,

R
(c)
nc (t) ≤ A

(c)
nc (t) + L

(c)
nc (t),

(26)
where L

(c)
nc (t) is the backlog of the input reservoir,

A
(c)
nc (t) is the number of arriving packets in time slot

t, and Y
(c)
nc (t) represents “backlog” in the virtual queue

which has the following queue-like evolution

Y (c)
nc

(t + 1) = max
{

Y (c)
nc

(t)−R(c)
nc

(t), 0
}

+ z(c)
nc

(t), (27)

where z
(c)
nc (t) are auxiliary variables which are calcu-

lated from the following optimization problem

maximize{
z
(c)
nc (t)

} ∑
c

{
V g

(
z
(c)
nc (t)

)
− 2Y

(c)
nc (t)z(c)

nc (t)
}

subject to
∑

d∈Cnc
z
(d)
nc (t) ≤ Rmax

nc
.

(28)
We then update the virtual queue variables Y

(c)
nc accord-

ing to (27) in every time slot. We update L
(c)
nc (t) by

decreasing it by R
(c)
nc (t) and then increasing it by the

number of arriving packets for flow c in time slot t.
2) Scheduling and routing are performed as in Algorithm

1.

The flow controller in this algorithm is the same as that
in [2]. Its operation can be interpreted intuitively as follows.
The auxiliary variables z

(c)
nc (t) plays the role of R

(c)
nc (t) in

algorithm 1 for the heavy traffic regime. In fact, the opti-
mization problem (28) from which we calculate z

(c)
nc (t) is

similar to the one in (11) where Q
(c)
nc is replaced by Y

(c)
nc .

Hence, z
(c)
nc represents the potential rate that would have

been admitted if sources were backlogged. The virtual queue
Y

(c)
nc (t) captures the difference between the potential admitted

rate z
(c)
nc (t) and the actual admitted rate R

(c)
nc (t) based on which

the flow controller determines the amount of admitted traffic
R

(c)
nc (t) from (26). Here, the “virtual differential backlogs”[
Y

(c)
nc −Q

(c)
nc

]
determines from which flow to inject data into

the network.
In addition, it can be observed that (27) captures the

dynamics of a virtual queue with service process R
(c)
nc (t)

and arrival process z
(c)
nc (t). Hence, if these virtual queues are

stable, then the time-average rates of R
(c)
nc (t) are equal to the

time-average of z
(c)
nc (t). That means we must have r

(c)
nc = z

(c)
nc

where z
(c)
nc denotes the time average of z

(c)
nc (t).

It can be verified that the amount of admitted traffic R
(c)
nc (t)

calculated from (26) only takes integer values assuming that
Rmax

nc
are integer. Specifically, the solution of (26) can be cal-

culated as follows. First, we sort the quantities
[
Y

(c)
n −Q

(c)
n

]

for all flows c whose source nodes are node n. Then, starting
from the flow with the largest positive value in the sorted list,
we admit the largest possible amount of traffic considering
the constraints in (26). Because A

(c)
nc , L

(c)
nc , and Rmax

nc
are all

integer, R
(c)
nc (t) will take integer values. Because R

(c)
nc (t) are

integer, each ingress buffer is either empty or contains an
integer number of packets. Assume that packet arrivals are

IEEE/ACM TRANSACTIONS ON NETWORKING, TO APPEAR 6

i.i.d over time slots 4, we state the performance of Algorithm
2 in the following theorem.

Theorem 2: Given ε > 0, if the internal buffer size satisfies

lc ≥ N − 1
2ε

. (29)

Then, we have the following bounds for utility and ingress
queue backlog

lim inf
M→∞

∑
c

E
{

g(c)
(
r(c)

nc
(M)

)}
≥

∑
c

g(c)
(
r∗(c)nc

(ε)
)

−D2

V
, (30)

∑
c

Q
(c)
nc ≤

D2 + V Gmax

2λmax − (N−1)
lc

, (31)

where again (r∗(c)nc (ε)) is the ε-optimal solution, which is an
optimal solution of the optimization problem (8)-(10), and
D2 , 3CR2

max + C(N − 1)Rmaxlc is a finite number.
Proof: The proof is given in Appendix B.

r1

r2

ε
ε

Boundary of ε-stripped throughput region

Boundary of original throughput region

()(c)
nc

r → λ

as V→ ∞

Fig. 3. Geometric illustration of optimal rate and lower-bound of achievable
rate in the low load regime

Note that when
(
λ

(c)
nc

)
∈ Λε, we have

(
r
∗(c)
nc (ε)

)
=

(
λ

(c)
nc

)

where
(
λ

(c)
nc

)
is the average traffic arrival rate vector. There-

fore, we have
(
r
(c)
nc (ε)

)
→

(
λ

(c)
nc

)
as V → ∞ in this case.

That means we can achieve optimal utility in this case by
letting V → ∞. This observation is illustrated in Fig. 3.
Otherwise, if

(
λ

(c)
nc

)
6= Λε then we return to the heavy traffic

case considered in the previous section. In this case, the lower-
bound on the achieved utility depends on the chosen parameter
ε.

V. FURTHER EXTENSIONS

In this section, we show how to extend the results obtained
in the previous sections in two important directions, namely
the impact of delayed IQI and extensions to other interference
models and to wireless networks with time varying link
quality.

4While we assume i.i.d arrivals for simplicity, the results can be extended
to more general arrivals that satisfy E

{
A

(c)
nc (t)

}
= λ

(c)
nc for any time slot

t. This condition is required so that (80) in Appendix B holds. Therefore, the
results in Theorem 2 are valid for Markovian traffic.

A. Delayed Ingress Queue Length Information

Assume that the same scheduling/routing algorithm as in
Algorithm 1 is employed. However, only delayed IQI is
available at all network nodes. Let T be the time delay of
ingress queue length Q

(c)
nc (t) at all other network nodes (i.e,

only Q
(c)
nc (t− T) is available at other nodes in time slot t). In

the following, we investigate the performance of Algorithm 1
when delayed IQI is used for scheduling. In particular, each
link (n,m) and flow c calculate the differential backlog in slot
t as follows:

dB(c)
n,m(t)

,





Q(c)
nc

(t)

lc

[
lc −Q

(c)
m (t)

]
, if n = nc

Q(c)
nc

(t−T)

lc

[
Q

(c)
n (t)−Q

(c)
m (t)

]
, if n,m 6= nc

.

This differential backlog is used for routing/scheduling while
the same congestion controller as in Algorithm 1 is employed.
Note that the flow controller for flow c at node nc only requires
its local ingress queue length information Q

(c)
nc (t). Hence,

this queue length information is available without delay. We
have the following results for this cross-layer algorithm with
delayed IQI.

Theorem 3: If the buffer size satisfies

lc ≥ N − 1
2ε

. (32)

Then, we have the following bounds for utility and ingress
queue backlog

lim inf
t→∞

∑
c

g(c)
(
r(c)

nc
(t)

)
≥

∑
c

g(c)
(
r∗(c)nc

(ε)
)
− D3

V
, (33)

∑
c

Q
(c)
nc ≤

D3 + V Gmax

2λmax − (N−1)
lc

, (34)

where again (r∗(c)nc (ε)) is an ε-optimal solution, which is an
optimal solution of the optimization problem (8)-(10), V is
predetermined number, D3 , D1 +C(N +2Rmax +1)T , and
D1 is given in Theorem 1.

Proof: The proof is given in Appendix C.
This theorem says that the same network utility lower-bound

as that in Algorithm 1 can be achieved under delay IQI at the
cost of a larger average backlog bound as V →∞. However,
the backlog upper-bound in (34) is larger than that derived in
Theorem 1 as D3 depends on T .

It has been shown in [6] that a slightly larger buffer size is
required when scheduling is performed based on queue length
vector (for both ingress and internal buffers) with estimation
errors. In this theorem, we show that when only IQI is delayed
while internal queue information is available without delay, we
do not need a larger buffer size if an appropriate flow controller
is available. In addition, there are some other existing works
along this line in the literature [19], [20] where it has been
shown that infrequent or delayed channel estimation may
reduce the maximum throughput region. However, delayed
queue backlog information does not decrease utility.

Remark 3: Although we have assumed that the IQI delay
value is the same for all nodes, the same utility performance
guarantee can be achieved even if routing and scheduling is

IEEE/ACM TRANSACTIONS ON NETWORKING, TO APPEAR 7

performed based on IQI with different delay values at different
nodes. This is because ingress backlogs can only be offset by
finite values in any finite time interval. Also, these offsets
are negligible if ingress backlogs become sufficiently large.
Therefore, the same utility performance can be achieved even
under the heterogeneous delay scenario. In fact, we can modify
the proof in Appendix C to account for these heterogeneous
delays by changing constant factors in (92), (94) accordingly.

B. Extensions to Other Interference Models

In this section, we extend the obtained results to a general
interference model. For brevity, we only consider the case
of constantly backlogged sources. Let K be the maximum
number of links activated in any feasible schedule under the
underlying interference model. Then, given ε > 0, the required
buffer size to achieve the backlog bound in Theorem 1 is

lc ≥ K

ε
. (35)

In addition, given this chosen buffer size, the total average
ingress backlog can be bounded as

∑
c

Q
(c)
nc ≤

D1 + V Gmax

2λmax − 2K
lc

, (36)

where D1 is defined in Theorem 1.
Proof: We can prove these results by using the Lyapunov

drift technique with the same Lyapunov function used in the
proof of Theorem 1. However, in deriving the Lyapunov drift,
we have a slightly different bound for (46). Specifically, we
have

∑
c

Q
(c)
nc

lc

∑

n:n6=nc

E






−

∑

l∈Ωout
n

µ
(c)
l +

∑

l∈Ωin
n

µ
(c)
l




2




≤
∑

c

2KQ
(c)
nc

lc
(37)

where the inequality in (37) holds because we have

∑

n:n6=nc

E






−

∑

l∈Ωout
n

µ
(c)
l +

∑

l∈Ωin
n

µ
(c)
l




2



≤ 2K, ∀c. (38)

This is because for any particular flow c each activated link l
contributes at most 2 to LHS of (38) and we can activate at
most K links in the network simultaneously. Taking the same
proof procedure as in Appendix 1 with this new bound (37),
we can obtain the desired results.

It can be observed that the required lower bound on internal
buffer sizes under a general interference model is smaller than
that under the one hop interference model if K < (N − 1)/2
(i.e., the number of activated links in any feasible schedule
is small). This would be the case for stringent interference
models such as the k-hop interference model with large k,
and the SINR interference model with large required SINR
thresholds [34]. This result is illustrated in the following
example.

Example: Consider a line network with N links and the k-
hop interference model. The maximum number of links that
can be activated by any feasible schedule in this setting is

K = max {1, bN/(k + 1)c}. Therefore, the required lower
bound for buffer size to achieve the ε-optimal utility is
K = max {1, bN/(k + 1)c} /ε. For large N , this required
buffer size decreases by a factor of (k + 1)/2 compared to
that derived under the one hop interference model. It can be
observed that this result for line networks is quite conservative.
In general, for wireless networks with richer connectivity, K
would decrease much faster with k, which, therefore, requires
much smaller buffer size. This would also intuitively holds
for the SINR interference model with large required SINR
thresholds [34].

C. Wireless Networks with Time Varying Link Quality

We have assumed deterministic interference and channel
models in the previous sections. We now extend the obtained
results to wireless networks having links with time varying
quality [21], [35]. Again, assume that allowable schedules
satisfy node exclusive interference constraints and let Φ denote
the set of allowable schedules. In addition, let ~Z(t) denote
the channel state vector, which determines the probability of
successful transmissions in time slot t. Given a particular link
activation set ~S(t) ∈ Φ and channel state vector ~Z(t), we can
define the following probability of successful transmission for
link l ∈ ~S(t) as follows [35]:

Pr
{

link l succeeds|~S(t), ~Z(t)
}

= Pl

(
~S(t), ~Z(t)

)
. (39)

Note that the maximum achievable throughput region under
this channel model is smaller than that assuming reliable
transmissions considered in the previous sections. Under this
channel and interference model, the same flow controller as
in Algorithms 1 and 2 can be employed along with the
corresponding modified differential backlog metric. However,
link scheduling must take into account the time varying link
reliability. Specifically, given the channel state vector ~Z(t) the
schedule ~S∗ is chosen in each time slot t as follows:

~S∗ = argmax
~S∈Φ

L∑

l=1

SlPl

(
~S(t), ~Z(t)

)
W ∗

l (t). (40)

For each scheduled link, one packet of the flow that achieves
the maximum modified differential backlog is transmitted if
the corresponding buffer has at least one packet waiting for
transmission. It can be shown that the same performance
as presented in Theorems 1 and 2 can be achieved for this
modified algorithm.

VI. NUMERICAL RESULTS

We study the performance of the control algorithms using
computer simulations. We consider a simple network of six
nodes as shown in Fig. 4. All links are assumed to be bi-
directional and the maximum weight scheduling algorithm
is invoked in each time slot assuming the node exclusive
(i.e., one-hop) interference model. We simulate four traffic
flows whose (source, destination) pairs are (1, 6), (3, 4), (6,
2), (5, 2). We assume packet arrivals to all input reservoirs
are Bernoulli processes. The utility function is chosen to be
g(r) = ln(1 + βr) with β = 500, Rmax

n = 2, ∀n, V = 1000
(it is observed that increasing V further does not improve the
utility performance of the investigated algorithms).

IEEE/ACM TRANSACTIONS ON NETWORKING, TO APPEAR 8

TABLE I
OVERLOADED TRAFFIC FOR ~λ = (0.9, 0.9, 0.9, 0.9)

N−1
2lc

r
(1)
1 r

(2)
3 r

(3)
6 r

(4)
5 rtot Qingress Qinternal qmax σ̂max

CLC2b [2] lc = ∞ 0 0.2503 0.3004 0.3003 0.3001 1.1511 42×103 8.02 ×103 992.83 28.16

Proposed

lc = 2 1.25 0.2788 0.2788 0.2789 0.2787 1.1152 7.18 ×103 16.38 1.49 0.50
lc = 10 0.25 0.2501 0.3002 0.3003 0.3001 1.1507 7.00 ×103 53.20 6.45 0.55
lc = 50 0.05 0.2501 0.3002 0.3004 0.3001 1.1507 7.00 ×103 237.19 30.43 0.56
lc = 100 0.025 0.2502 0.3002 0.3004 0.3000 1.1507 7.00 ×103 466.38 60.45 0.60

TABLE II
UNDERLOADED TRAFFIC FOR ~λ = (0.24, 0.29, 0.29, 0.29)

N−1
2lc

r
(1)
1 r

(2)
3 r

(3)
6 r

(4)
5 rtot Qingress Qinternal qmax σ̂max

CLC2b [2] lc = ∞ 0 0.2400 0.2899 0.2901 0.2897 1.1097 25.28 43.21 4.17 1.92

Proposed

lc = 2 1.25 0.2400 0.2894 0.2896 0.2894 1.1084 6.72×103 16.31 1.43 0.51
lc = 10 0.25 0.2399 0.2900 0.2900 0.2900 1.1099 26.64 68.38 6.95 1.05
lc = 50 0.05 0.2397 0.2899 0.2899 0.2900 1.1095 22.11 296.59 34.59 2.84
lc = 100 0.025 0.2401 0.2901 0.2902 0.2898 1.1102 21.65 559.71 69.59 4.41

TABLE III
OVERLOADED TRAFFIC WITH DELAYED IQI FOR ~λ = (0.9, 0.9, 0.9, 0.9), T = 20

N−1
2lc

r
(1)
1 r

(2)
3 r

(3)
6 r

(4)
5 rtot Qingress Qinternal qmax σ̂max

Proposed

lc = 2 1.25 0.2736 0.2737 0.2738 0.2736 1.0947 7.31 ×103 16.02 1.40 0.50
lc = 10 0.25 0.2502 0.3002 0.3003 0.3000 1.1507 7.00 ×103 56.97 6.45 0.55
lc = 50 0.05 0.2501 0.3002 0.3003 0.3001 1.1507 7.00 ×103 240.24 30.44 0.56
lc = 100 0.025 0.2502 0.3002 0.3003 0.3000 1.1507 7.00 ×103 468.96 60.45 0.60

For each set of simulation parameters, we obtained mean
queue length and admitted rates for different traffic flows by
averaging them over 107 time slots. We then repeated each
simulation test 20 times. Results presented in section corre-
spond to sample means over 20 simulation runs. The absolute
deviations from the presented sample means of average queue
length and admitted rates for each of the 20 simulation runs
are less than 1% of the sample means.

We compare the performance of Algorithm 2 with that of
Algorithm CLC2b proposed in [2], which assumed infinite
internal buffer size (i.e., lc = ∞ for all flows). We show time
average admitted rates for each of the flows, total admitted
rate of all flows rtot, and the total average ingress and
internal queue length. Specifically, the total average ingress
and internal queue length are calculated as Qingress ,

∑
c Q

(c)

nc

and Qinternal ,
∑

c

∑
n6=nc

Q
(c)

n where Q
(c)

n is the average
queue length for flow c at node n.

In addition, to illustrate the queue dynamics under our
proposed algorithms and Algorithm CLC2b, we present the
maximum average backlog qmax and the maximum sample
standard deviation of queue backlogs σ̂max over all inter-
nal queues where qmax , max{c,n 6=nc}Q

(c)

n and σ̂max ,
max{c,n 6=nc} σ̂

(c)
n where σ̂

(c)
n is the sample standard deviation

of queue backlog of flow c at node n. The minimum values
of average backlogs and sample standard deviation of queue
backlogs over internal buffers are very close to zero, which
are not presented for brevity.

We present the performance of Algorithm 2 for the over-
loaded case in Table I for different values of internal buffer
size. Recall that given the buffer size lc, Theorem 2 implies
that the lower bound of the network utility corresponds to a

1

2

3

4

5

6

Fig. 4. Simulation network with primary interference model

rate vector which lies inside the ε-stripped throughput region
where ε is bounded above by (N − 1)/(2lc) as V → ∞.
To illustrate this performance bound, we also show the cor-
responding values of (N − 1)/(2lc) for different lc values
in Tables I, II, and III. Table I shows that this performance
bound is quite conservative, and that the proposed algorithm
achieves utilities that are much closer to optimal than this
bound would indicate. In particular, while lc = 2 results
in a slightly smaller total admitted rate and deviation from
optimal rates, lc = 10 achieves time-average admitted rates
that are very close to the optimal ones. For lc = 50, the
corresponding ε is ε = (N − 1)/(2lc) = 5/100 = 0.05.
However, the simulation results suggest that the actual loss
in utility is negligible in this case.

Also, Table I shows that our proposed algorithm achieves
significantly smaller average queue lengths in both ingress and
internal buffers compared to those due to Algorithm CLC2b
in [2]. For example, with lc = 10, we can achieve admitted
rates very close to the optimal values while the average
ingress queue length is 6 times smaller, and the average total
queue length in internal buffers is about 150 times smaller
than those due to Algorithm CLC2b in [2]. It can also be
observed that oversizing the internal buffers does not change
the total average ingress queue length although it increases

IEEE/ACM TRANSACTIONS ON NETWORKING, TO APPEAR 9

the total average internal queue length. Moreover, Algorithm
2 achieves much smaller qmax and σ̂max compared to those
due to Algorithm CLC2b. In particular, the values of σ̂max for
different values of lc are negligible, which suggests very stable
queue backlogs achieved by Algorithm 2 in the highly loaded
scenario.

We present numerical results for the underloaded traffic case
in Table II. This table shows that Algorithm CLC2b [2] may
achieve smaller average backlogs in ingress or internal buffers
and our proposed algorithm has comparable performance with
Algorithm CLC2b for lc = 10. For lc = 2 and lc = 10,
our proposed algorithm results in smaller σ̂max compared to
Algorithm CLC2b. However, for lc = 50 and lc = 100,
Algorithm CLC2b achieves smaller qmax and σ̂max than those
due to our proposed algorithm.

In addition, it is shown that under-sizing the internal buffers
results in significant increase in average ingress queue length.
Intuitively, this is because with finite buffers throughput is
slightly reduced leading to greater backlogs in ingress buffers.
Also, over-sizing internal buffers improves queue length of
ingress buffers but increases total queue length in internal
buffers. Finally, we show the performance of our algorithm
with delayed IQI for the overloaded traffic case, and T = 20
in Table III. This table shows that delayed IQI does not impact
the throughput performance while it only results in marginal
increase in the total average queue length of internal buffers.
It can also observed that qmax and σ̂max presented in Table III
are almost the same as those in Table I, which are achieved
without IQI delay.

VII. CONCLUSION

In this paper, we proposed and analyzed the performance
of control algorithms for wireless networks with finite buffers.
Two different algorithms were investigated for both scenarios
of heavy traffic and arbitrary traffic arrival rates. We also
analyzed the performance of the control algorithms with de-
layed IQI. Numerical results confirm the superior performance
of our proposed algorithms in terms of the backlog-utility
tradeoff compared to existing algorithms in the literature.
Our paper provides a unified framework for the problems of
utility maximization, buffer sizing, and delay control in a very
general setting. Developing decentralized control algorithms
for wireless networks with finite buffers that achieve optimal
buffer-utility tradeoff is an open problem which will be
considered in our future work.

APPENDIX A
PROOF OF THEOREM 1

Consider the following Lyapunov function

L(~Q) ,
∑

c

(
Q(c)

nc
(t)

)2

+
∑

c

∑

n:n 6=nc

1
lc

(
Q(c)

n (t)
)2

Q(c)
nc

(t). (41)

Note that this is the same Lyapunov function as that proposed
in [6]. Now, consider the Lyapunov drift

∆(t) , E
{

L(~Q)(t + 1)− L(~Q)(t) | ~Q(t)
}

. (42)

Recall that
∑

l∈Ωin
nc

µ
(c)
l (t) = 0, ∀c, t because we do not

allow traffic of any flow c to be routed back to the source

node nc. Hence, we have

Q(c)
nc

(t + 1) = Q(c)
nc

(t)−
∑

l∈Ωout
nc

µ
(c)
l (t) + R(c)

nc
(t). (43)

Now, we find the drift for the first term in (41). Squaring both
sides of (43) and performing some manipulations, we obtain

Q(c)
nc

(t + 1)2 −Q(c)
nc

(t)2 =


R(c)

nc
(t)−

∑

l∈Ωout
n

µ
(c)
l (t)




2

+2Q(c)
nc

(t)


R(c)

n (t)−
∑

l∈Ωout
nc

µ
(c)
l (t)




≤ 2Q(c)
nc

(t)


R(c)

n (t)−
∑

l∈Ωout
n

µ
(c)
l (t)


 + R2

max (44)

where (44) holds because we have

R(c)

nc
(t)−

∑

l∈Ωout
n

µ
(c)
l (t)




2

≤ R2
max.

Now, to find the drift for the second term in (41), we have
∑

c

1
lc

Q(c)
nc

(t + 1)
∑

n:n 6=nc

(
Q(c)

n (t + 1)
)2

=
∑

c

1
lc


Q(c)

nc
(t)−

∑

l∈Ωout
nc

µ
(c)
l (t) + R(c)

nc
(t)




×
∑

n:n6=nc

(
Q(c)

n (t + 1)
)2

=
∑

c

1
lc

Q(c)
nc

(t)
∑

n:n 6=nc

(
Q(c)

n (t + 1)
)2

+
∑

c

1
lc


R(c)

nc
(t)−

∑

l∈Ωout
nc

µ
(c)
l (t)


 ∑

n:n6=nc

(
Q(c)

n (t + 1)
)2

=
∑

c

1
lc

Q(c)
nc

(t)
∑

n:n6=nc


Q(c)

n (t)−
∑

l∈Ωout
n

µ
(c)
l (t)

+
∑

l∈Ωin
l

µ(c)
n (t)




2

+
∑

c

1
lc


R(c)

nc
(t)−

∑

l∈Ωout
nc

µ
(c)
l (t)


 ∑

n:n6=nc

(
Q(c)

n (t + 1)
)2

=
∑

c

1
lc

Q(c)
nc

(t)
∑

n:n 6=nc

Q(c)
n (t)2

+2
∑

c

∑

n:n 6=nc

Q
(c)
n Q

(c)
nc

lc


−

∑

l∈Ωout
n

µ
(c)
l +

∑

l∈Ωin
n

µ
(c)
l




+
∑

c

∑

n:n6=nc

Q
(c)
nc

lc


−

∑

l∈Ωout
n

µ
(c)
l +

∑

l∈Ωin
n

µ
(c)
l




2

+
∑

c

1
lc


R(c)

nc
(t)−

∑

l∈Ωout
nc

µ
(c)
l (t)


 ∑

n:n 6=nc

(
Q(c)

n (t + 1)
)2

. (45)

IEEE/ACM TRANSACTIONS ON NETWORKING, TO APPEAR 10

Note that we have

∑
c

Q
(c)
nc

lc

∑

n:n6=nc

E






−

∑

l∈Ωout
n

µ
(c)
l +

∑

l∈Ωin
n

µ
(c)
l




2




≤
∑

c

(N − 1)Q(c)
nc

lc
, (46)

∑
c

1
lc


R(c)

nc
(t)−

∑

l∈Ωout
nc

µ
(c)
l (t)


 ∑

n:n 6=nc

(
Q(c)

n (t + 1)
)2

≤ C
1
lc

Rmax(N − 1)l2c = CRmax(N − 1)lc (47)

where the inequality in (46) holds because we have


−

∑

l∈Ωout
n

µ
(c)
l +

∑

l∈Ωin
n

µ
(c)
l




2

≤ 1, ∀n 6= nc. (48)

Using the results in (46) and (47) to (45), we have

∑
c

1
lc

Q(c)
nc

(t + 1)
∑

n:n 6=nc

(
Q(c)

n (t + 1)
)2

−
∑

c

1
lc

Q(c)
nc

(t)
∑

n:n6=nc

Q(c)
n (t)2

≤ 2
∑

c

∑

n:n 6=nc

Q
(c)
n Q

(c)
nc

lc


−

∑

l∈Ωout
n

µ
(c)
l +

∑

l∈Ωin
n

µ
(c)
l




+
∑

c

(N − 1)Q(c)
nc

lc
+ CRmax(N − 1)lc. (49)

Using the drifts for the two terms of (41) derived in (44) and
(49), the Lyapunov drift can be written as

∆(t) ≤ D4 +
∑

c

(N − 1)Q(c)
nc

lc

+2
∑

c

Q(c)
nc

E



−

∑

l∈Ωout
nc

µ
(c)
l + R(c)

nc
| ~Q(t)





+2
∑

c

∑

n:n6=nc

Q
(c)
n Q

(c)
nc

lc
E



−

∑

l∈Ωout
n

µ
(c)
l +

∑

l∈Ωin
n

µ
(c)
l | ~Q(t)





where D4 = CR2
max + CRmax(N − 1)lc is a finite number.

Subtracting V
∑

c E
{

g(c)
(
R

(c)
nc

)
| ~Q(t)

}
from both sides,

we have

∆(t)− V
∑

c

E
{

g(c)
(
R(c)

nc

)
| ~Q(t)

}
≤ D4

+
∑

c

(N − 1)Q(c)
nc

lc
− 2

∑
c

Q(c)
nc

E





∑

l∈Ωout
nc

µ
(c)
l | ~Q(t)





−2
∑

c

∑

n:n6=nc

Q
(c)
n Q

(c)
nc

lc
E





∑

l∈Ωout
n

µ
(c)
l −

∑

l∈Ωin
n

µ
(c)
l | ~Q(t)





−
∑

c

E
{

V g(c)
(
R(c)

nc

)
− 2Q(c)

nc
R(c)

nc
| ~Q(t)

}
. (50)

Now, we define the following quantities

Ψ1(~Q) , 2
∑

c

Q(c)
nc

E





∑

l∈Ωout
nc

µ
(c)
l | ~Q(t)





+2
∑

c

∑

n:n6=nc

Q
(c)
n Q

(c)
nc

lc
E





∑

l∈Ωout
n

µ
(c)
l −

∑

l∈Ωin
n

µ
(c)
l | ~Q(t)



 , (51)

Ψ2(~Q) ,
∑

c

E
{

V g(c)
(
R(c)

nc

)
− 2Q(c)

nc
R(c)

nc
| ~Q(t)

}
. (52)

Then, the inequality (50) can be rewritten as

∆(t)− V
∑

c

E
{

g(c)
(
R(c)

nc

)
| ~Q(t)

}
≤ D4

+
∑

c

(N − 1)Q(c)
nc

lc
−Ψ1(~Q)−Ψ2(~Q). (53)

It can be verified that

Ψ1(~Q) = 2
∑

c

∑

(nc,m)∈Ωout
nc

Q
(c)
nc

lc
E

{
µ(c)

ncm | ~Q(t)
}[

lc −Q(c)
m

]

+2
∑

c

∑

(n,m)∈E:n6=nc

Q
(c)
nc

lc
E

{
µ

(c)
(n,m) | ~Q(t)

}[
Q(c)

n −Q(c)
m

]
. (54)

Hence, the routing/scheduling and flow control components
of Algorithm 1 maximize Ψ1(~Q) and Ψ2(~Q), respectively.
Strictly speaking, the routing/scheduling component of Algo-
rithm 1 maximizes Ψ1(~Q) only for Q

(c)
nc (t) ≥ 1 because we

do not transmit any traffic of flow c over any link (nc,m)
if Q

(c)
nc (t) < 1. Given r

∗(c)
nc (ε) ∈ Λε defined before, we

have
(
r
∗(c)
nc (ε) + ε

)
∈ Λ. Hence, there exists a stationary and

randomized policy that chooses a link rate vector
(
µ
∗(c)
l (t)

)

that satisfies for all time slot t [4]:

r∗(c)nc
(ε) + ε = E





∑

l∈Ωout
nc

µ
∗(c)
l (t)



 , ∀ c, (55)

E





∑

l∈Ωout
n

µ
∗(c)
l (t)−

∑

l∈Ωin
n

µ
∗(c)
l (t)



 = 0, ∀ n 6= nc. (56)

Recall that the routing/scheduling and flow control compo-
nents of Algorithm 1 maximize Ψ1(~Q) and Ψ2(~Q), respec-
tively. Hence, we have

Ψ1(~Q) ≥ 2
∑

c

Q(c)
nc

[
r∗(c)nc

(ε) + ε
]
− 2C, (57)

Ψ2(~Q) ≥
∑

c

{
V g

(
r∗(c)nc

(ε)
)
− 2Q(c)

nc
r∗(c)nc

(ε)
}

(58)

where the constant 2C in (57) accounts for the fact that we do
not transmit data of flow c on any link (nc,m) if Q

(c)
nc (t) < 1.

Specifically, when Q
(c)
nc (t) < 1, we have

∑

(nc,m)∈Ωout
nc

Q
(c)
nc

lc
E

{
µ(c)

ncm | ~Q(t)
}[

lc −Q(c)
m

]
< 1. (59)

Using the results of (57) and (58) in (53), we have

∆(t)− V
∑

c

E
{

g(c)
(
R(c)

nc

)
| ~Q(t)

}
≤ D1

IEEE/ACM TRANSACTIONS ON NETWORKING, TO APPEAR 11

+
∑

c

(N − 1)Q(c)
nc

lc
− V

∑
c

g(c)
(
r∗(c)nc

(ε)
)
− 2ε

∑
c

Q(c)
nc

where D1 is the constant given in Theorem 1. Taking the
expectations over the distribution of ~Q and summing over t ∈
{1, 2, · · · ,M}, we have

E
{

L(~Q(M))
}
− E

{
L(~Q(0))

}

−V

M−1∑
τ=0

∑
c

E
{

g(c)
(
R(c)

nc
(τ)

)}

≤ MD1 +
M−1∑
τ=0

∑
c

(N − 1)Q(c)
nc (τ)

lc

−V M
∑

c

g(c)
(
r∗(c)nc

(ε)
)
− 2ε

M−1∑
τ=0

∑
c

E
{

Q(c)
nc

(τ)
}

. (60)

By arranging the terms of (60) appropriately and dividing both
sides by V M , we have

1
M

M−1∑
τ=0

∑
c

E
{

g(c)
(
R(c)

nc
(τ)

)}

≥
∑

c

g(c)
(
r∗(c)nc

(ε)
)
−

D1 + E
{

L(~Q(0))
}

/M

V

+
1

V M

M−1∑
τ=0

∑
c

(
2ε− (N − 1)

lc

)
E

{
Q(c)

nc
(τ)

}
(61)

where we have used the fact that L(~Q(M)) ≥ 0 to obtain (61).
Given the value of ε that gives the desired utility reduction,
and recall we choose the buffer size which satisfies

lc ≥ N − 1
2ε

. (62)

Hence, we have

1
V M

M−1∑
τ=0

∑
c

(
2ε− (N − 1)

lc

)
E

{
Q(c)

nc
(τ)

}
≥ 0. (63)

Now, due to Jensen’s inequality, we have

∑
c

g(c)

(
1
M

M−1∑
τ=0

E
{

R(c)
nc

(τ)
})

≥ 1
M

M−1∑
τ=0

∑
c

E
{

g(c)
(
R(c)

nc
(τ)

)}
. (64)

Using the results of (63) and (64) to (61), we have

∑
c

g(c)

(
1
M

M−1∑
τ=0

E
{

R(c)
nc

(τ)
})

≥
∑

c

g(c)
(
r∗(c)nc

(ε)
)
−

D1 + E
{

L(~Q(0))
}

/M

V
. (65)

Taking the limit M →∞ in (65), we have

lim inf
M→∞

∑
c

g(c)
(
r(c)

nc
(M)

)
≥

∑
c

g(c)
(
r∗(c)nc

(ε)
)
− D1

V
. (66)

Therefore, we have proved the utility bound. To prove the
backlog bound, we arrange the inequality (60) appropriately

and divide both sides by M , we have

1
M

M−1∑
τ=0

∑
c

(
2ε− (N − 1)

lc

)
E

{
Q(c)

nc
(τ)

}

−
E

{
L(~Q(0))

}

M
≤ D1 +

V

M

M−1∑
τ=0

∑
c

E
{

g(c)
(
R(c)

nc
(τ)

)}
(67)

where we have used the fact that E
{

L(~Q(M))
}
≥ 0 and

∑
c g(c)

(
r
∗(c)
nc (ε)

)
≥ 0 to obtain (67). From the definition of

Gmax, we have
∑

c

E
{

g(c)
(
R(c)

nc
(τ)

)}
≤ Gmax. (68)

Using this result to (67), we have

1
M

M−1∑
τ=0

∑
c

(
2ε− (N − 1)

lc

)
E

{
Q(c)

nc
(τ)

}

−
E

{
L(~Q(0))

}

M
≤ D1 + V Gmax. (69)

Note that the above inequalities hold for any 0 < ε ≤ λmax.
Also, suppose we choose the same buffer sizes for different
flows which satisfy (62). By choosing ε = λmax and taking
the limit for M →∞ in (69), we have

lim sup
M→∞

1
M

M−1∑
τ=0

∑
c

E
{

Q(c)
nc

(τ)
}
≤ D1 + V Gmax

2λmax − (N−1)
lc

. (70)

Therefore, we have proved the backlog bound.

APPENDIX B
PROOF OF THEOREM 2

Define ~Θ(t) ,
(

~Q(t), ~Y (t)
)

and consider the following
Lyapunov function

L(~Θ) ,
∑

c

(
Q(c)

nc
(t)

)2

+
∑

c

∑

n:n6=nc

1
lc

(
Q(c)

n (t)
)2

Q(c)
nc

(t)

+
∑

c

(
Y (c)

nc
(t)

)2

. (71)

Consider the following one-step Lyapunov drift

∆(t) , E
{

L(~Θ)(t + 1)− L(~Θ)(t) | ~Θ(t)
}

. (72)

Note that the first two terms in the Lyapunov function (71) are
exactly the two terms in the Lyapunov function (41). Hence,
the drifts for these two terms are available in (44) and (49).
Now, we find the drift for the third term in (71). From (27),
we have

Y (c)
nc

(t + 1)2 ≤
[
Y (c)

nc
(t)−R(c)

nc
(t)

]2

+ z(c)
nc

(t)2

+2z(c)
nc

(t)max
{

Y (c)
nc

(t)−R(c)
nc

(t), 0
}

≤ Y (c)
nc

(t)2 − 2Y (c)
nc

(t)R(c)
nc

(t) + 2z(c)
nc

(t)Y (c)
nc

(t)

+z(c)
nc

(t)2 + R(c)
nc

(t)2. (73)

Hence, we have

Y (c)
nc

(t + 1)2 − Y (c)
nc

(t)2

≤ 2
[
−R(c)

nc
(t) + z(c)

nc
(t)

]
Y (c)

nc
(t) + 2R2

max. (74)

IEEE/ACM TRANSACTIONS ON NETWORKING, TO APPEAR 12

Using the results of (44) and (49), (74) in the Lyapunov drift
(72), we have

∆(t) ≤ D2 +
∑

c

(N − 1)Q(c)
nc

lc

+2
∑

c

Q(c)
nc

E



−

∑

l∈Ωout
nc

µ
(c)
l + R(c)

nc
| ~Θ(t)





+2
∑

c

∑

n:n6=nc

Q
(c)
n Q

(c)
nc

lc
E



−

∑

l∈Ωout
n

µ
(c)
l +

∑

l∈Ωin
n

µ
(c)
l | ~Θ(t)





+2
∑

c

Y (c)
nc

(t)E
{

z(c)
nc

(t)−R(c)
nc

(t) | ~Θ(t)
}

(75)

where D2 is the constant given in Theorem 2. Subtracting
V

∑
c E

{
g(c)

(
z
(c)
nc

)
| ~Θ(t)

}
from both sides of this inequal-

ity, we have

∆(t)− V
∑

c

E
{

g(c)
(
z(c)
nc

)
| ~Θ(t)

}
≤ D2

+
∑

c

(N − 1)Q(c)
nc

lc
− 2

∑
c

Q(c)
nc

E





∑

l∈Ωout
nc

µ
(c)
l | ~Θ(t)





−2
∑

c

∑

n:n6=nc

Q
(c)
n Q

(c)
nc

lc
E





∑

l∈Ωout
n

µ
(c)
l −

∑

l∈Ωin
n

µ
(c)
l | ~Θ(t)





−
∑

c

E
{

V g(c)
(
z(c)
nc

)
− 2Y (c)

nc
z(c)
nc
| ~Θ(t)

}

−2
∑

c

E
{

Y (c)
nc

R(c)
nc
−Q(c)

nc
R(c)

nc
| ~Θ(t)

}
. (76)

Now, define the following quantities

Ψ3(~Θ) ,
∑

c

E
{

V g(c)
(
z(c)
nc

)
− 2Y (c)

nc
z(c)
nc
| ~Θ(t)

}
,(77)

Ψ4(~Θ) , 2
∑

c

E
{

Y (c)
nc

R(c)
nc
−Q(c)

nc
R(c)

nc
| ~Θ(t)

}
. (78)

Then, the inequality (76) can be rewritten as follows:

∆(t)− V
∑

c

E
{

g(c)
(
z(c)
nc

)
| ~Θ(t)

}
≤ D2

+
∑

c

(N − 1)Q(c)
nc

lc
−Ψ1(~Θ)−Ψ3(~Θ)−Ψ4(~Θ) (79)

where Ψ1(~Θ) is defined in (51). It can be observed that the
flow control component of Algorithm 2 maximizes Ψ3(~Θ) and
Ψ4(~Θ) defined in (77) and (78), and the routing/scheduling
component maximizes Ψ1(~Θ). Now, recall the definition of
(r∗(c)nc (ε)) in (8)-(10). The rates r

∗(c)
nc (ε) can be achieved

by the following simple admission control rule for traffic
arrival rates inside or outside the throughput region. In each
time slot t, admit all arriving traffic A

(c)
nc (t) with proba-

bility r
∗(c)
nc (ε)/λ

(c)
nc . Under this admission control, we have

E
{

R
(c)
nc | ~Θ

}
= r

∗(c)
nc (ε)/λ

(c)
nc E

{
A

(c)
nc (t)

}
= r

∗(c)
nc (ε) be-

cause arrivals are assumed to be i.i.d. over time slots. Let
(z∗(c)nc (ε)) = (r∗(c)nc (ε)), ∀c. Then, from Algorithm 2, we have

Ψ1(~Q) ≥ 2
∑

c

Q(c)
nc

[
r∗(c)nc

(ε) + ε
]
, (80)

Ψ3(~Θ) ≥
∑

c

{
V g

(
r∗(c)nc

(ε)
)
− 2Y (c)

nc
r∗(c)nc

(ε)
}

, (81)

Ψ4(~Θ) ≥ 2
∑

c

{
Y (c)

nc
r∗(c)nc

(ε)−Q(c)
nc

r∗(c)nc
(ε)

}
. (82)

Note that there is no constant 2C in (80) because Q
(c)
nc (t) only

take integer numbers in this case (i.e., they are either zero or
at least one). This is because the flow controller in Algorithm
2 only injects an integer number of packets into the network
at all times. Using these results in (79), we have

∆(t)− V
∑

c

E
{

g(c)
(
z(c)
nc

)
| ~Θ(t)

}
≤ D2

+
∑

c

(N − 1)Q(c)
nc

lc
− 2ε

∑
c

Q(c)
nc
−

∑
c

V g(c)
(
r∗(c)nc

(ε)
)

. (83)

Using the same technique in the proof of Theorem 1, we can
obtain the desired results.

APPENDIX C
PROOF OF THEOREM 3

Consider the same Lyapunov function as in the proof of
Theorem 1. However, we employ the conditional Lyapunov
drift ∆(t) over ~Q(t, T) , (~Q(t−T), ~Q(t−T +1), . . . , ~Q(t))
in this proof. Then, we have

∆(t)− V
∑

c

E
{

g(c)
(
R(c)

nc
(t)

)
| ~Q(t, T)

}
≤ D4

+
∑

c

(N − 1)Q(c)
nc (t)

lc
−Ψ1(~Q(t))−Ψ2(~Q(t)) (84)

where D4 = CR2
max + CRmax(N − 1)lc. Recall that we have

defined

Ψ1(~Q(t)) = 2
∑

c

∑

(nc,m)∈Ωout
nc

Q(c)
nc

(t)

×
E

{
µ

(c)
(nc,m) | ~Q(t, T)

}[
lc −Q

(c)
m (t)

]

lc

+2
∑

c

∑

(n,m)∈E:n 6=nc

Q
(c)
nc (t)
lc

E
{

µ
(c)
(n,m) | ~Q(t, T)

}[
Q(c)

n (t)−Q(c)
m (t)

]
.

Now, let us define Ψ1,d(~Q(t)) corresponding to Ψ1(~Q(t)) with
delayed IQI as follows:

Ψ1,d(~Q(t)) = 2
∑

c

∑

(nc,m)∈Ωout
nc

Q(c)
nc

(t)

×
E

{
µ

(c)
(nc,m) | ~Q(t, T)

}[
lc −Q

(c)
m (t)

]

lc

+2
∑

c

∑

(n,m)∈E:n6=nc

Q(c)
nc

(t− T)

×
E

{
µ

(c)
(n,m) | ~Q(t, T)

} [
Q

(c)
n (t)−Q

(c)
m (t)

]

lc
. (85)

Now, we compare the second term of Ψ1(~Q(t)) and
Ψ1,d(~Q(t)). First, note that

Q(c)
nc

(t) ≥ Q(c)
nc

(t− T)− T (86)

IEEE/ACM TRANSACTIONS ON NETWORKING, TO APPEAR 13

because at most one packet can be transmitted from a queue
in one time slot. Hence,
∑

c

∑

(n,m)∈E:n 6=nc

Q(c)
nc

(t)

×
E

{
µ

(c)
(n,m) | ~Q(t, T)

}[
Q

(c)
n (t)−Q

(c)
m (t)

]

lc

≥
∑

c

∑

(n,m)∈E:n 6=nc

{
Q(c)

nc
(t− T)− T

}

×
E

{
µ

(c)
(n,m) | ~Q(t, T)

}[
Q

(c)
n (t)−Q

(c)
m (t)

]

lc

≥
∑

c

∑

(n,m)∈E:n 6=nc

Q(c)
nc

(t− T)

×
E

{
µ

(c)
(n,m) | ~Q(t, T)

}[
Q

(c)
n (t)−Q

(c)
m (t)

]

lc

−C(N − 1)T
2

(87)

where (87) holds because

0 ≤
E

{
µ

(c)
(n,m) | ~Q(t, T)

}[
Q

(c)
n (t)−Q

(c)
m (t)

]

lc
≤ 1.

Hence

∑

(n,m)∈E:n6=nc

E
{

µ
(c)
(n,m) | ~Q(t, T)

}[
Q

(c)
n (t)−Q

(c)
m (t)

]

lc
≤ (N − 1)

2

where this inequality holds because we can activate at most
(N − 1)/2 links whose ends are not the source node nc due
to the node exclusive assumption. Using (87) in (85), we have

Ψ1(~Q) ≥ Ψ1,d(~Q)− C(N − 1)T (88)

where this inequality holds because the first terms of Ψ1(~Q(t))
and Ψ1,d(~Q(t)) are the same. Given r

∗(c)
nc (ε), which is the opti-

mal traffic admitted rate lying inside the ε-stripped throughput
region, there exists a stationary and randomized policy that
chooses a link rate vector

(
µ
∗(c)
l (t)

)
that satisfies for all time

slot t [4]:

r∗(c)nc
(ε) + ε = E





∑

l∈Ωout
nc

µ
∗(c)
l (t)



 , ∀ c, (89)

E





∑

l∈Ωout
n

µ
∗(c)
l (t)−

∑

l∈Ωin
n

µ
∗(c)
l (t)



 = 0, ∀ n 6= nc. (90)

Then, due to the operation of our routing/scheduling policy
we have

Ψ1,d(~Q(t)) ≥ 2
∑

c

∑

(nc,m)∈Ωout
nc

Q(c)
nc

(t)

×
E

{
µ
∗(c)
(nc,m) | ~Q(t, T)

}[
lc −Q

(c)
m (t)

]

lc
− 2C

+2
∑

c

∑

(n,m)∈E:n 6=nc

Q(c)
nc

(t− T)

×
E

{
µ
∗(c)
(n,m) | ~Q(t, T)

}[
Q

(c)
n (t)−Q

(c)
m (t)

]

lc

≥ 2
∑

c

∑

(nc,m)∈Ωout
nc

Q(c)
nc

(t− T)

×
E

{
µ
∗(c)
(nc,m) | ~Q(t, T)

}[
lc −Q

(c)
m (t)

]

lc
− 2C − 2CT

+2
∑

c

∑

(n,m)∈E:n 6=nc

Q(c)
nc

(t− T)

×
E

{
µ
∗(c)
(n,m) | ~Q(t, T)

}[
Q

(c)
n (t)−Q

(c)
m (t)

]

lc

= 2
∑

c

Q(c)
nc

(t− T)
[
r∗(c)nc

(ε) + ε
]
− 2C − 2CT. (91)

Using this result in (88), we have

Ψ1(~Q) ≥ 2
∑

c

Q(c)
nc

(t− T)
[
r∗(c)nc

(ε) + ε
]

−2C − C(N + 1)T. (92)

Note that we have

Q(c)
nc

(t− T) ≥ Q(c)
nc

(t)− TRmax (93)

because the maximum amount of traffic injected into the
network from any node is Rmax. Using this result in (92) and
using the fact that r

∗(c)
nc (ε) + ε = E

{∑
l∈Ωout

nc
µ
∗(c)
l (t)

}
≤ 1,

we have

Ψ1(~Q) ≥ 2
∑

c

Q(c)
nc

(t)
[
r∗(c)nc

(ε) + ε
]

−2C − C(N + 2Rmax + 1)T. (94)

Also, due to the operation of our flow controller we have

Ψ2(~Q) ≥
∑

c

{
V g

(
r∗(c)nc

(ε)
)
− 2Q(c)

nc
(t)r∗(c)nc

(ε)
}

. (95)

Using the results in (95) and (94) to (84), we have

∆(t)− V
∑

c

E
{

g(c)
(
R(c)

nc
(t)

)
| ~Q(t, T)

}
= D3

+
∑

c

(N − 1)Q(c)
nc (t)

lc
− V

∑
c

g(c)
(
r∗(c)nc

(ε)
)
− 2ε

∑
c

Q(c)
nc

(t)

where D3 = D1 + C(N + 2Rmax + 1)T . Using the same
technique as in the proof of Theorem 1, we can get the desired
results.

REFERENCES

[1] L. Tassiulas and A. Ephremides, “Stability properties of constrained
queueing systems and scheduling policies for maximum throughput in
multihop radio networks,” IEEE Trans. Automatic Control, vol. 37, no.
12, pp. 1936-1948, Dec. 1992.

[2] L. Georgiadis, M. J. Neely, L. Tassiulas, “Resource allocation and
cross-layer control in wireless networks,” Foundations and Trends in
Networking, vol. 1, no. 1, pp. 1-144, 2006.

[3] M. Neely, E. Modiano, and C. Li, “Fairness and optimal stochastic control
for heterogeneous networks,” IEEE/ACM Trans. Networking, vol. 16, no.
2, April 2008.

[4] M. J. Neely, E. Modiano, and C. E. Rohrs, “Dynamic power allocation and
routing for time varying wireless networks,” IEEE J. Sel. Areas Commun.,
vol. 23, no. 1, pp. 89–103, Jan. 2005.

[5] H.-W. Lee, E. Modiano, and L. B. Le, “Distributed throughput maximiza-
tion in wireless networks via random power allocation,” WiOpt 2009.

[6] P. Giaccone, E. Leonardi and D. Shah, “Throughput region of finite-
buffered networks,” IEEE Trans. Parallel Distributed Systems, vol. 18,
no. 2, pp. 251-262, Feb. 2007.

[7] E. Modiano, D. Shah, and G. Zussman, “Maximizing throughput in
wireless networks via gossiping,” ACM SIGMETRICS 2006.

IEEE/ACM TRANSACTIONS ON NETWORKING, TO APPEAR 14

[8] S. Sanghavi, L. Bui, and R. Srikant, “Distributed link scheduling with
constant overhead,” ACM SIGMETRICS 2007, June 2007.

[9] X. Lin and N. B. Shroff, “The impact of imperfect scheduling on
cross-layer congestion control in wireless networks,” IEEE/ACM Trans.
Networking, vol. 14, no. 2, pp. 302–315, April 2006.

[10] P. Charporkar, K. Kar, and S. Sarkar, “Throughput guarantees through
maximal scheduling in wireless networks,” IEEE Trans. Inf. Theory, vol.
54, no. 2, pp. 572-594, Feb. 2008.

[11] A. Eryilmaz, A. Ozdaglar, and E. Modiano, “Polynomial complexity
algorithms for full utilization of multi-hop wireless networks,” IEEE
INFOCOM 2007.

[12] C. Joo, X. Lin, and N. B. Shroff, “Understanding the capacity region
of the greedy maximal scheduling algorithm in multi-hop wireless net-
works,” IEEE INFOCOM, April 2008.

[13] G. Zussman, A. Brzezinski, and E. Modiano, “Multihop local pooling
for distributed throughput maximization in wireless networks,” IEEE
INFOCOM, April 2008.

[14] C. Joo and N. B. Shroff, “Performance of random access scheduling
schemes in multi-hop wireless networks,” IEEE INFOCOM 2007.

[15] R. Li, L. Ying, A. Eryilmaz, and N. B. Shroff, “A unified approach to
optimizing performance in networks serving heterogeneous flows,” IEEE
INFOCOM 2009.

[16] A. Stolyar, “Large deviations of queues under QoS scheduling algo-
rithms,” Allerton 2006, Sept. 2006.

[17] L. Bui, A. Eryilmaz, R. Srikant, and X. Wu, “Asynchronous congestion
control in multi-hop wireless networks with maximal matching-based
scheduling,” IEEE/ACM Trans. Networking, vol. 16, no. 4, pp. 826-839,
Aug. 2008.

[18] A. Eryilmaz and R. Srikant, “Fair resource allocation in wireless
networks using queue-length-based scheduling and congestion control,”
IEEE/ACM Trans. Networking, vol. 15, no. 6, pp. 1333-1344, Dec. 2007.

[19] L. Ying and S. Shakkottai, “Scheduling in mobile wireless networks
with topology and channel-state uncertainty,” IEEE INFOCOM 2009.

[20] K. Kar, X. Luo, S. Sarkar, “Throughput-optimal scheduling in multi-
channel access point networks under infrequent channel measurements,”
IEEE Trans. Wireless Commun., vol. 7, no. 7, pp. 2619–2629, July 2008.

[21] L. Tassiulas and A. Ephremides, ”Dynamic server allocation to parallel
queues with randomly varying connectivity,” IEEE Trans. Inf. Theory,
vol. 39, no. 2, pp. 466–478, Mar. 1993.

[22] A. Stolyar, “Maximizing queueing network utility subject to stability:
Greedy primal-dual algorithm,” Queueing Systems, vol. 50, no. 4, pp.
401–457, Aug. 2005.

[23] A. Baron, R. Ginosar, and I. Keslassy, “The capacity allocation paradox,”
IEEE INFOCOM 2009.

[24] M. Neely, “Order optimal delay for opportunistic scheduling in multi-
user wireless uplinks and downlinks,” IEEE/ACM Trans. Networking, vol.
16, no. 5, pp. 1188–1199, Oct. 2008.

[25] L. B. Le, K. Jagannathan, and E. Modiano, “Delay analysis of maximum
weight scheduling in wireless ad hoc networks,” CISS’2009, Mar. 2009.

[26] W. Khan, L. B. Le, and E. Modiano, “Autonomous routing algorithms
for networks with wide-spread failures,” IEEE MILCOM 2009, Oct. 2009.

[27] M. Neely, “Delay analysis for maximal scheduling in wireless networks
with bursty traffic,” IEEE INFOCOM 2008.

[28] G. R. Gupta and N. B. Shroff, “Delay analysis for multi-hop wireless
networks,” IEEE INFOCOM 2009.

[29] L. Ying, S. Shakkottai, and A. Reddy, “On combining shortest-path and
back-pressure routing over multihop wireless networks,” IEEE INFOCOM
2009.

[30] M. J. Neely, “Dynamic power allocation and routing for satellite and
wireless networks with time varying channels.” PhD thesis, Massachusetts
Institute of Technology, 2003.

[31] M. J. Neely, “Energy optimal control for time varying wireless net-
works,” IEEE Trans. Inf. Theory, vol. 52, no. 7, pp. 2915-2934, July
2006.

[32] L. Bui, R. Srikant, and A. Stolyar, “Novel architecture and algorithms
for delay reduction in back-pressure scheduling and routing,” IEEE
INFOCOM 2009.

[33] T. Lan, X. Lin, M. Chiang, and R. B. Lee, “Suboptimal resource
allocation: Stability and benefits,” IEEE/ACM Trans. Networking, to
appear.

[34] L. B. Le, E. Modiano, C. Joo, and N. B. Shroff, “Longest-queue-first
scheduling under SINR interference model,” ACM MobiHoc’10, Sept.
2010.

[35] M. J. Neely, “Delay-based network utility maximization,” IEEE INFO-
COM 2010.

PLACE
PHOTO
HERE

Long Bao Le (S’04-M’07) received the B.Eng.
degree with highest distinction from Ho Chi Minh
City University of Technology in 1999, the M.Eng.
degree from Asian Institute of Technology (AIT) in
2002 and the PhD degree from University of Man-
itoba in 2007. He is currently an assistant profes-
sor at INRS-EMT, University of Quebec, Montreal,
Quebec, Canada. Before that, he was a postdoctoral
researcher first at University of Waterloo then at
Massachusetts Institute of Technology. His current
research interests include cognitive radio, wireless

protocol engineering and resource allocation, stochastic control and cross-
layer design for communication networks. He is a Member of the IEEE.

PLACE
PHOTO
HERE

Eytan Modiano (S’90-M’93-SM’00) received his
B.S. degree in Electrical Engineering and Com-
puter Science from the University of Connecticut
at Storrs in 1986 and his M.S. and PhD degrees,
both in Electrical Engineering, from the University
of Maryland, College Park, MD, in 1989 and 1992
respectively. He was a Naval Research Laboratory
Fellow between 1987 and 1992 and a National
Research Council Post Doctoral Fellow during 1992-
1993. Between 1993 and 1999 he was with MIT
Lincoln Laboratory where he was a project leader for

MIT Lincoln Laboratory’s Next Generation Internet (NGI) project. Since 1999
he has been on the faculty at MIT; where he is a Professor in the Department of
Aeronautics and Astronautics and the Laboratory for Information and Decision
Systems (LIDS). His research is on communication networks and protocols
with emphasis on satellite, wireless, and optical networks. He is the co-
recipient of the Sigmetrics 2006 Best paper award for the paper “Maximizing
Throughput in Wireless Networks via Gossiping,” and the Wiopt 2005 best
student paper award for the paper “Minimum Energy Transmission Scheduling
Subject to Deadline Constraints.”

He is currently an Associate Editor for IEEE/ACM Transactions on
Networking. He had served as Associate Editor for IEEE Transactions
on Information Theory, and as guest editor for IEEE JSAC special issue
on WDM network architectures; the Computer Networks Journal special
issue on Broadband Internet Access; the Journal of Communications and
Networks special issue on Wireless Ad-Hoc Networks; and for IEEE Journal
of Lightwave Technology special issue on Optical Networks. He was the
Technical Program co-chair for IEEE Wiopt 2006, IEEE Infocom 2007, and
ACM MobiHoc 2007.

PLACE
PHOTO
HERE

Ness B. Shroff (S’91-M’93-SM’01-F’07) received
the Ph.D. degree from Columbia University, New
York, NY, in 1994.

He currently holds the Ohio Eminent Scholar
chaired professorship in Networking and Commu-
nications in the departments of ECE and CSE at
The Ohio State University, in Columbus, OH. He
also currently serves as a Guest Chaired Professor
of wireless communications with the Department of
Electronic Engineering, Tsighnua University, Bei-
jing, China. Previously, he was a Professor of ECE

with Purdue University, West Lafayette, IN, and the Director of the Center
for Wireless Systems and Applications (CWSA), a university-wide center
on wireless systems and applications. His research interests span the areas
of wireless and wireline communication networks, where he investigates
fundamental problems in the design, performance, pricing, and security of
these networks.

Dr. Shroff has received numerous awards for his networking research,
including the National Science Foundation CAREER award, the Best Paper
awards for IEEE INFOCOM 2006 and 2008, the Best Paper Award for IEEE
IWQoS 2006, the Best Paper of the Year Award for Computer Networks,
and the Best Paper of the Year Award for the Journal of Communications
and Networks (his IEEE INFOCOM 2005 paper was one of two runner-up
papers).

